1
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
2
|
Karvinen S, Korhonen T, Sievänen T, Karppinen JE, Juppi H, Jakoaho V, Kujala UM, Laukkanen JA, Lehti M, Laakkonen EK. Extracellular vesicles and high-density lipoproteins: Exercise and oestrogen-responsive small RNA carriers. J Extracell Vesicles 2023; 12:e12308. [PMID: 36739598 PMCID: PMC9899444 DOI: 10.1002/jev2.12308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/22/2022] [Accepted: 01/22/2023] [Indexed: 02/06/2023] Open
Abstract
Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c-miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV-carried miRs, the co-isolation of high-density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA-derived sRNA. Furthermore, we demonstrate that oestrogen-based hormonal therapy (HT) allows the acute exercise-induced miR-response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tia‐Marje Korhonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tero Sievänen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari E. Karppinen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Kaarina Juppi
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Veera Jakoaho
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari A. Laukkanen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland,Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Maarit Lehti
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Eija K. Laakkonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
3
|
Kumar K, Singh N, Yadav HN, Maslov L, Jaggi AS. Endless Journey of Adenosine Signaling in Cardioprotective Mechanism of Conditioning Techniques: Clinical Evidence. Curr Cardiol Rev 2023; 19:56-71. [PMID: 37309766 PMCID: PMC10636797 DOI: 10.2174/1573403x19666230612112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
Myocardial ischemic injury is a primary cause of death among various cardiovascular disorders. The condition occurs due to an interrupted supply of blood and vital nutrients (necessary for normal cellular activities and viability) to the myocardium, eventually leading to damage. Restoration of blood supply to ischemic tissue is noted to cause even more lethal reperfusion injury. Various strategies, including some conditioning techniques, like preconditioning and postconditioning, have been developed to check the detrimental effects of reperfusion injury. Many endogenous substances have been proposed to act as initiators, mediators, and end effectors of these conditioning techniques. Substances, like adenosine, bradykinin, acetylcholine, angiotensin, norepinephrine, opioids, etc., have been reported to mediate cardioprotective activity. Among these agents, adenosine has been widely studied and suggested to have the most pronounced cardioprotective effects. The current review article highlights the role of adenosine signaling in the cardioprotective mechanism of conditioning techniques. The article also provides an insight into various clinical studies that substantiate the applicability of adenosine as a cardioprotective agent in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leonid Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
4
|
p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics. Sci Rep 2022; 12:5938. [PMID: 35396524 PMCID: PMC8994030 DOI: 10.1038/s41598-022-09757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.
Collapse
|
5
|
Van Lent J, Verstraelen P, Asselbergh B, Adriaenssens E, Mateiu L, Verbist C, De Winter V, Eggermont K, Van Den Bosch L, De Vos WH, Timmerman V. Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction. Brain 2021; 144:2471-2485. [PMID: 34128983 PMCID: PMC8418338 DOI: 10.1093/brain/awab226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Axonal Charcot-Marie-Tooth neuropathies (CMT type 2) are caused by inherited mutations in various genes functioning in different pathways. The type of genes and multiplicity of mutations reflect the clinical and genetic heterogeneity in CMT2 disease, which complicates the diagnosis and has halted therapy development. Here, we used CMT2 patient-derived pluripotent stem cells (iPSCs) to identify common hallmarks of axonal degeneration shared by different CMT2 subtypes. We compared the cellular phenotypes of neurons differentiated from CMT2 patient iPSCs with those from healthy controls and a CRISPR/Cas9-corrected isogenic line. Our results demonstrate neurite network alterations along with extracellular electrophysiological abnormalities in the differentiated motor neurons. Progressive deficits in mitochondrial and lysosomal trafficking, as well as in mitochondrial morphology, were observed in all CMT2 patient lines. Differentiation of the same CMT2 iPSC-lines into peripheral sensory neurons, only gave rise to cellular phenotypes in subtypes with sensory involvement, supporting the notion that some gene mutations predominantly affect motor neurons. We revealed a common mitochondrial dysfunction in CMT2-derived motor neurons, supported by alterations in the expression pattern and oxidative phosphorylation, which could be recapitulated in the sciatic nerve tissue of a symptomatic mouse model. Inhibition of a dual leucine zipper kinase (DLK) could partially ameliorate the mitochondrial disease phenotypes in CMT2 subtypes. Altogether, our data reveals shared cellular phenotypes across different CMT2 subtypes and suggests that targeting such common pathomechanisms could allow the development of a uniform treatment for CMT2.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium.,Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Ligia Mateiu
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
| | - Christophe Verbist
- Laboratory of Molecular Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| |
Collapse
|
6
|
Kotrasová V, Keresztesová B, Ondrovičová G, Bauer JA, Havalová H, Pevala V, Kutejová E, Kunová N. Mitochondrial Kinases and the Role of Mitochondrial Protein Phosphorylation in Health and Disease. Life (Basel) 2021; 11:life11020082. [PMID: 33498615 PMCID: PMC7912454 DOI: 10.3390/life11020082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.
Collapse
Affiliation(s)
- Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Barbora Keresztesová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
| | - Gabriela Ondrovičová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Henrieta Havalová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- Correspondence: (E.K.); (N.K.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
- Correspondence: (E.K.); (N.K.)
| |
Collapse
|
7
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
8
|
Sevoflurane Pre-conditioning Ameliorates Diabetic Myocardial Ischemia/Reperfusion Injury Via Differential Regulation of p38 and ERK. Sci Rep 2020; 10:23. [PMID: 31913350 PMCID: PMC6949279 DOI: 10.1038/s41598-019-56897-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus (DM) significantly increases myocardial ischemia/reperfusion (MI/R) injury. During DM, cardioprotection induced by conventional pre-conditioning (PreCon) is decreased due to impaired AMP-activated protein kinase (AMPK) signaling. The current study investigated whether PreCon with inhaled anesthetic sevoflurane (SF-PreCon) remains cardioprotective during DM, and identified the involved mechanisms. Normal diet (ND) and high-fat diet (HFD)-induced DM mice were randomized into control and SF-PreCon (3 cycles of 15-minute period exposures to 2% sevoflurane) groups before MI/R. SF-PreCon markedly reduced MI/R injury in DM mice, as evidenced by improved cardiac function (increased LVEF and ±Dp/dt), decreased infarct size, and decreased apoptosis. To determine the relevant role of AMPK, the effect of SF-PreCon was determined in cardiac-specific AMPKα2 dominant negative expressing mice (AMPK-DN). SF-PreCon decreased MI/R injury in AMPK-DN mice. To explore the molecular mechanisms responsible for SF-PreCon mediated cardioprotection in DM mice, cell survival molecules were screened. Interestingly, in ND mice, SF-PreCon significantly reduced MI/R-induced activation of p38, a pro-death MAPK, without altering ERK and JNK. In DM and AMPK-DN mice, the inhibitory effect of SF-PreCon upon p38 activation was significantly blunted. However, SF-PreCon significantly increased phosphorylation of ERK1/2, a pro-survival MAPK in DM and AMPK-DN mice. We demonstrate that SF-PreCon protects the heart via AMPK-dependent inhibition of pro-death MAPK in ND mice. However, SF-PreCon exerts cardioprotective action via AMPK-independent activation of a pro-survival MAPK member in DM mice. SF-PreCon may be beneficial compared to conventional PreCon in diabetes or clinical scenarios in which AMPK signaling is impaired.
Collapse
|
9
|
Chang D, Li H, Qian C, Wang Y. DiOHF Protects Against Doxorubicin-Induced Cardiotoxicity Through ERK1 Signaling Pathway. Front Pharmacol 2019; 10:1081. [PMID: 31611788 PMCID: PMC6777440 DOI: 10.3389/fphar.2019.01081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is an effective anticancer agent. Its clinical use is, however, limited due to its detrimental side effects, especially the cardiotoxicity caused by ROS, mitochondrial dysfunction and apoptosis. 3’,4’-dihydroxyflavonol (DiOHF) is a recently developed potent synthetic flavonoid which has been reported to exert anti-oxidative activity in myocardial ischemia–reperfusion injury and maintain the normal mitochondrial function. The aim of this study was to explore the protective effects of DiOHF on the DOX-induced cardiotoxicity. We established DOX-induced cardiotoxicity in H9C2 cells by incubation with 1 μM DOX and in BALB/c mice by DOX injection. DiOHF effectively prevented and reversed the DOX-induced cardiotoxicity, including ROS production, mitochondrial dysfunction, and apoptosis. The DOX-induced cardiotoxicity was accompanied by ERK1/2 activation and abolished by the silence of ERK1, rather than ERK2. Furthermore, DOX treatment in mice induced an increase in serum CK-MB level and myocardial fibrosis with a reduction in left ventricular (LV) function. These detrimental effects were blunted by DiOHF administration. Conclusion: DiOHF suppresses and reverses the DOX-induced cardiotoxicity by inhibiting ROS release, stabilizing mitochondrial function and reducing apoptosis through activation of the ERK1 signaling.
Collapse
Affiliation(s)
- Danqi Chang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cheng Qian
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Qu F, Cui Y, Zeng J, Zhang M, Qiu S, Huang X, Chen A. Acupuncture induces adenosine in fibroblasts through energy metabolism and promotes proliferation by activating MAPK signaling pathway via adenosine 3 receptor. J Cell Physiol 2019; 235:2441-2451. [PMID: 31556103 DOI: 10.1002/jcp.29148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Acupuncture has many advantages in the treatment of certain diseases as opposed to drug therapy. Besides, adenosine has been revealed to affect cellular progression including proliferation. Therefore, this study aimed at exploring the mechanism involving acupuncture stress and adenosine in fibroblast proliferation. The fibroblasts from fascia tissues of the acupoint area (Zusanli) were stimulated by different levels of stress, different concentrations of adenosine, and agonist or antagonist of A3 receptor (A3 R) to investigate the effect of stress stimulation, adenosine, and adenosine-A3 R inhibition on fibroblasts. Then, the fibroblasts were treated with stress stimulation of 200 kPa or/and mitogen-activated protein kinase (MAPK) blocker. We revealed that stress stimulation and the binding of adenosine and A3 R promoted fibroblast proliferation in the fascial tissue, increased the expression of immune-related factors, adenosine and A3 R, and activated the MAPK signaling pathway. MAPK signaling pathway also directly affected the expression of adenosine, A3 R, and immune-related factors. Stress stimulation and adenosine treatment upregulated A3 R expression, and then activated the MAPK signaling pathway, which could in turn upregulate expression of adenosine, A3 R and immune-related factors, and promote cell proliferation. Adenosine is shown to form a positive feedback loop with the MAPK signaling pathway. Collectively, stress stimulation in vitro induces the increase of adenosine in fibroblasts through the energy metabolism and activation of the MAPK signaling pathway through A3 R, ultimately promoting fibroblast proliferation.
Collapse
Affiliation(s)
- Fei Qu
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yanru Cui
- Department of Physiology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jie Zeng
- Department of Physiology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mingyue Zhang
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shaying Qiu
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaoting Huang
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Aishe Chen
- Department of Physiology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
11
|
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 2019; 25:837-858. [PMID: 31025544 PMCID: PMC6566066 DOI: 10.1111/cns.13141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
Collapse
Affiliation(s)
- Maribel Lucero
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Ana E Suarez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| |
Collapse
|
12
|
Refsnes M, Skuland T, Lilleaas E, Øvrevik J, Låg M. Concentration‐dependent cytokine responses of silica nanoparticles and role of ROS in human lung epithelial cells. Basic Clin Pharmacol Toxicol 2019; 125:304-314. [DOI: 10.1111/bcpt.13221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Magne Refsnes
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Edel Lilleaas
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Marit Låg
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| |
Collapse
|
13
|
Singh L, Kulshrestha R, Singh N, Jaggi AS. Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:225-234. [PMID: 29719445 PMCID: PMC5928336 DOI: 10.4196/kjpp.2018.22.3.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/05/2018] [Accepted: 02/27/2018] [Indexed: 01/11/2023]
Abstract
Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of KATP channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
14
|
John C, Grune J, Ott C, Nowotny K, Deubel S, Kühne A, Schubert C, Kintscher U, Regitz-Zagrosek V, Grune T. Sex Differences in Cardiac Mitochondria in the New Zealand Obese Mouse. Front Endocrinol (Lausanne) 2018; 9:732. [PMID: 30564194 PMCID: PMC6289062 DOI: 10.3389/fendo.2018.00732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Obesity is a risk factor for diseases including type 2 diabetes mellitus (T2DM) and cardiovascular disorders. Diabetes itself contributes to cardiac damage. Thus, studying cardiovascular events and establishing therapeutic intervention in the period of type T2DM onset and manifestation are of highest importance. Mitochondrial dysfunction is one of the pathophysiological mechanisms leading to impaired cardiac function. Methods: An adequate animal model for studying pathophysiology of T2DM is the New Zealand Obese (NZO) mouse. These mice were maintained on a high-fat diet (HFD) without carbohydrates for 13 weeks followed by 4 week HFD with carbohydrates. NZO mice developed severe obesity and only male mice developed manifest T2DM. We determined cardiac phenotypes and mitochondrial function as well as cardiomyocyte signaling in this model. Results: The development of an obese phenotype and T2DM in male mice was accompanied by an impaired systolic function as judged by echocardiography and MyH6/7 expression. Moreover, the mitochondrial function only in male NZO hearts was significantly reduced and ERK1/2 and AMPK protein levels were altered. Conclusions: This is the first report demonstrating that the cardiac phenotype in male diabetic NZO mice is associated with impaired cardiac energy function and signaling events.
Collapse
Affiliation(s)
- Cathleen John
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Jana Grune
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Arne Kühne
- Institute of Pharmacology, Center for Cardiovascular Research, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Carola Schubert
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Pharmacology, Center for Cardiovascular Research, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Kintscher
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Pharmacology, Center for Cardiovascular Research, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Gender in Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Diabetes Research, Oberschleißheim, Germany
- *Correspondence: Tilman Grune
| |
Collapse
|
15
|
Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci 2016; 6:25. [PMID: 27087918 PMCID: PMC4832502 DOI: 10.1186/s13578-016-0089-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 12/02/2022] Open
Abstract
The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most of the cell’s energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular functions. For many decades, mitochondria were considered autonomous organelles merely functioning to generate energy for cells to survive and proliferate, and were thought to be independent of the cellular signaling networks. Consequently, phosphorylation and dephosphorylation processes of mitochondrial kinases and phosphatases were largely neglected. However, evidence accumulated in recent years on mitochondria-localized kinases/phosphatases has changed this longstanding view. Mitochondria are increasingly recognized as a hub for cell signaling, and many kinases and phosphatases have been reported to localize in mitochondria and play important functions. However, the strength of the evidence on mitochondrial localization and the activities of the reported kinases and phosphatases vary greatly, and the detailed mechanisms on how these kinases/phosphatases translocate to mitochondria, their subsequent function, and the physiological and pathological implications of their localization are still poorly understood. Here, we provide an updated perspective on the recent advancement in this area, with an emphasis on the implications of mitochondrial kinases/phosphatases in cancer and several other diseases.
Collapse
|
16
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
17
|
Bibli SI, Iliodromitis EK, Lambertucci C, Zoga A, Lougiakis N, Dagres N, Volpini R, Dal Ben D, Kremastinos DT, Tsantili Kakoulidou A, Cristalli G, Andreadou I. Pharmacological postconditioning of the rabbit heart with non-selective, A1, A2A and A3 adenosine receptor agonists. J Pharm Pharmacol 2014; 66:1140-9. [DOI: 10.1111/jphp.12238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/02/2014] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
We investigated the effects of novel selective and non-selective adenosine receptor agonists (ARs) on cardioprotection.
Methods
Male rabbits divided into six groups were subjected to 30-min heart ischaemia and 3-h reperfusion: (1) control group, (2) postconditioning (PostC) group, (3) group A: treated with the non-selective agonist (S)-PHPNECA, (4) group B: treated with the A1 agonist CCPA, (5) group C: treated with the A2A agonist VT 7 and (6) group D: treated with the A3 agonist AR 170. The infarcted (I) and the areas at risk (R) were estimated as %I/R. In additional rabbits of all groups, heart samples were taken for determination of Akt, eNOS and STAT 3 at the 10th reperfusion minute.
Key findings
(S)-PHPNECA and CCPA reduced the infarct size (17.2 ± 2.9% and 17.9 ± 2.0% vs 46.8 ± 1.9% in control, P < 0.05), conferring a benefit similar to PostC (26.4 ± 0.3%). Selective A2A and A3 receptor agonists did not reduce the infarct size (39.5 ± 0.8% and 38.7 ± 3.5%, P = NS vs control). Akt, eNOS and STAT 3 were significantly activated after non-selective A1 ARs and PostC.
Conclusions
Non-selective and A1 but not A2A and A3 ARs agonists are essential for triggering cardioprotection. The molecular mechanism involves both RISK and the JAK/STAT pathways.
Collapse
Affiliation(s)
- Sophia-Iris Bibli
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Anastasia Zoga
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - Nikolaos Lougiakis
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| | - Nikolaos Dagres
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Dimitrios Th Kremastinos
- Second Department of Cardiology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | | | - Gloria Cristalli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Ioanna Andreadou
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| |
Collapse
|
18
|
Lee SK, Kim JH, Kim JS, Jang Y, Kim J, Park YH, Chun KJ, Lee MY. Polyphenol (-)-epigallocatechin gallate-induced cardioprotection may attenuate ischemia-reperfusion injury through adenosine receptor activation: a preliminary study. Korean J Anesthesiol 2012; 63:340-5. [PMID: 23115687 PMCID: PMC3483493 DOI: 10.4097/kjae.2012.63.4.340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/12/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
Background The activation of guanine nucleotide binding protein-coupled receptors, such as adenosine receptor (ADR) and opioid receptor (OPR), protects the heart against ischemia and reperfusion injury. We hypothesized that ADR or OPR might be involved in polyphenol (-)-epigallocatechin gallate (EGCG)-induced cardioprotection. Methods Langendorff perfused rat hearts were subjected to 30 min of regional ischemia and 2 h of reperfusion. Hearts were treated with 10 µM of EGCG, with or without the ADR or OPR antagonist at early reperfusion. Infarct size measured with 2,3,5-triphenyltetrazolium chloride staining was chosen as end-point. Results EGCG significantly reduced infarct volume as a percentage of ischemic volume (33.5 ± 4.1%) compared to control hearts (14.4 ± 1.1%, P < 0.001). A nonspecific ADR antagonist 8-(p-sulfophenyl) theophylline hydrate (27.1 ± 1.9%, P < 0.05 vs. EGCG) but not a nonspecific OPR antagonist naloxone (14.3 ± 1.3%, P > 0.05 vs. EGCG) blocked the anti-infarct effect by EGCG. The infarct reducing effect of EGCG was significantly reversed by 200 nM of the A1 ADR antagonist DPCPX (25.9 ± 1.1%, P < 0.05) and 15 nM of the A2B ADR antagonist MRS1706 (29.3 ± 1.7%, P < 0.01) but not by 10 µM of the A2A ADR antagonist ZM241385 (23.9 ± 1.9%. P > 0.05 vs. EGCG) and 100 nM of the A3 ADR antagonist MRS1334 (24.1 ± 1.8%, P > 0.05). Conclusions The infarct reducing effect of EGCG appears to involve activation of ADR, especially A1 and A2B ADR, but not OPR.
Collapse
Affiliation(s)
- Sang Kwon Lee
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Yangsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation. J Transplant 2012; 2012:928954. [PMID: 22530110 PMCID: PMC3316985 DOI: 10.1155/2012/928954] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022] Open
Abstract
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Collapse
|
20
|
McIntosh VJ, Lasley RD. Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 2011; 17:21-33. [PMID: 21335481 DOI: 10.1177/1074248410396877] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adenosine is a purine nucleoside, which is produced primarily through the metabolism of adenosine triphosphate (ATP), therefore its levels increase during stressful situations when ATP utilization increases. Adenosine exerts potent cardioprotective effects on the ischemic/reperfused heart, reducing reversible and irreversible myocardial injury. Adenosine receptors (ARs) are G-protein-coupled receptors, and 4 subtypes exist--A(1), A(2A), A(2B), and A(3), all of which have been shown to be cardioprotective. Adenosine receptors are expressed on multiple cardiac cells, including fibroblasts, endothelial cells, smooth muscle cells, and myocytes. Activation of both A(1) and A(3) receptors prior to ischemia has been shown in multiple experimental models to reduce ischemia/reperfusion-induced cardiac injury. Additionally, activation of the A(2A) receptor at the onset of reperfusion has been shown to reduce injury. Most recently, there is evidence that the A(2B) receptor has cardioprotective effects upon its activation. However, controversy remains regarding the precise timing of activation of these receptors required to induce cardioprotection, as well as their involvement in ischemic preconditioning and postconditioning. Adenosine receptors have been suggested to reduce cell death through actions at the mitochondrial ATP-dependent potassium (K(ATP)) channel, as well as protein kinase C and mitogen-activated protein kinase (MAPK) signaling. Additionally, the ability of ARs to interact has been documented, and several recent reports suggest that these interactions play a role in AR-mediated cardioprotection. This review summarizes the current knowledge of the cardioprotective effects of each AR subtype, as well as the proposed mechanisms of AR cardioprotection. Additionally, the role of AR interactions in cardioprotection is discussed.
Collapse
Affiliation(s)
- Victoria J McIntosh
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
21
|
Gorog DA, Jabr RI, Tanno M, Sarafraz N, Clark JE, Fisher SG, Cao XB, Bellahcene M, Dighe K, Kabir AMN, Quinlan RA, Kato K, Gaestel M, Marber MS, Heads RJ. MAPKAPK-2 modulates p38-MAPK localization and small heat shock protein phosphorylation but does not mediate the injury associated with p38-MAPK activation during myocardial ischemia. Cell Stress Chaperones 2009; 14:477-89. [PMID: 19214782 PMCID: PMC2728281 DOI: 10.1007/s12192-009-0101-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 01/02/2009] [Accepted: 01/19/2009] [Indexed: 01/22/2023] Open
Abstract
MAPKAPK-2 (MK2) is a protein kinase activated downstream of p38-MAPK which phosphorylates the small heat shock proteins HSP27 and alphaB crystallin and modulates p38-MAPK cellular distribution. p38-MAPK activation is thought to contribute to myocardial ischemic injury; therefore, we investigated MK2 effects on ischemic injury and p38 cellular localization using MK2-deficient mice (KO). Immunoblotting of extracts from Langendorff-perfused hearts subjected to aerobic perfusion or global ischemia or reperfusion showed that the total and phosphorylated p38 levels were significantly lower in MK2(-/-) compared to MK2(+/+) hearts at baseline, but the ratio of phosphorylated/total p38 was similar. These results were confirmed by cellular fractionation and immunoblotting for both cytosolic and nuclear compartments. Furthermore, HSP27 and alphaB crsytallin phosphorylation were reduced to baseline in MK2(-/-) hearts. On semiquantitative immunofluorescence laser confocal microscopy of hearts during aerobic perfusion, the mean total p38 fluorescence was significantly higher in the nuclear compared to extranuclear (cytoplasmic, sarcomeric, and sarcolemmal compartments) in MK2(+/+) hearts. However, although the increase in phosphorylated p38 fluorescence intensity in all compartments following ischemia in MK2(+/+) hearts was lost in MK2(-/-) hearts, it was basally elevated in nuclei of MK2(-/-) hearts and was similar to that seen during ischemia in MK2(+/+) hearts. Despite these differences, similar infarct volumes were recorded in wild-type MK2(+/+) and MK2(-/-) hearts, which were decreased by the p38 inhibitor SB203580 (1 microM) in both genotypes. In conclusion, p38 MAPK-induced myocardial ischemic injury is not modulated by MK2. However, the absence of MK2 perturbs the cellular distribution of p38. The preserved nuclear distribution of active p38 MAPK in MK2(-/-) hearts and the conserved response to SB203580 suggests that activation of p38 MAPK may contribute to injury independently of MK2.
Collapse
Affiliation(s)
- Diana A. Gorog
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Rita I Jabr
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
- Faculty of Health and Medical Sciences, University of Surrey Postgraduate Medical School, Daphne Jackson Road, Manor Park, Guildford, Surrey GU2 7WG UK
| | - Masaya Tanno
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Negin Sarafraz
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - James E. Clark
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Simon G. Fisher
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Xou Bin Cao
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Mohamed Bellahcene
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Kushal Dighe
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Alamgir M. N. Kabir
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Roy A. Quinlan
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | - Kanefusa Kato
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, Aichi, Japan
| | - Matthias Gaestel
- Institute of Biochemistry, Medical School Hanover, Hanover, Germany
| | - Michael S. Marber
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Richard J. Heads
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| |
Collapse
|
22
|
Gürel E, Smeele KM, Eerbeek O, Koeman A, Demirci C, Hollmann MW, Zuurbier CJ. Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia-reperfusion. J Appl Physiol (1985) 2009; 106:1909-16. [DOI: 10.1152/japplphysiol.90537.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glycolytic enzyme hexokinase (HK) is suggested to play a role in ischemic preconditioning (IPC). In the present study we determined how ischemic preconditioning affects HK activity and HKI and HKII protein content at five different time points and three different subcellular fractions throughout cardiac ischemia-reperfusion. Isolated Langendorff-perfused rat hearts (10 groups of 7 hearts each) were subjected to 35 min ischemia and 30 min reperfusion (control groups); the IPC groups were pretreated with 3 times 5-min ischemia. IPC was without effect on microsomal HK activity, and only decreased cytosolic HK activity at 35 min ischemia, which was mimicked by decreased cytosolic HKII, but not HKI, protein content. In contrast, mitochondrial HK activity at baseline and during reperfusion was elevated by IPC, without changes during ischemia. No effect of IPC on mitochondrial HK I protein content was observed. However, mitochondrial HK II protein content during reperfusion was augmented by IPC, albeit not following the IPC stimulus. It is concluded that IPC results in decreased cytosolic HK activity during ischemia that could be explained by decreased HKII protein content. IPC increased mitochondrial HK activity before ischemia and during reperfusion that was only mimicked by increased HK II protein content during reperfusion. IPC was without effect on the phosphorylation status of HK before ischemia. We conclude that IPC is associated with 1) a biphasic response of increased mitochondrial HK activity before and after ischemia, 2) decreased cytosolic HK activity during ischemia, and 3) cellular redistribution of HKII but not HKI.
Collapse
|
23
|
Ferguson AL, Stone TW. Adenosine preconditions against ouabain but not against glutamate on CA1-evoked potentials in rat hippocampal slices. Eur J Neurosci 2009; 28:2084-98. [PMID: 19046389 DOI: 10.1111/j.1460-9568.2008.06490.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxic and ischaemic brain damage are believed to involve excessive release of glutamate, and recent work shows that glutamate-induced damage in brain slices can be reduced by preconditioning with hypoxia or glutamate itself. Because adenosine is a powerful preconditioning agent, we have investigated whether adenosine could precondition against glutamate in vitro. In rat hippocampal slices, glutamate depolarization reduced the amplitudes of antidromic- and orthodromic-evoked potentials, with only partial recovery. Applying adenosine before these insults failed to increase that recovery. Ouabain also produced depolarization with partial reversibility, but adenosine pretreatment increased the extent of recovery. The preconditioning effect of adenosine on ouabain responses was prevented by blocking receptors for N-methyl-D-aspartate (NMDA), but not receptors for kainate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and was blocked by inhibiting nitric oxide synthase. Preconditioning was also abolished by the ATP-dependent potassium channel blockers, glibenclamide (cytoplasmic) or 5-hydroxydecanoate (mitochondrial). We conclude that adenosine does not precondition against glutamate in hippocampal slices, but that it does precondition against ouabain with a pharmacology similar to studies in vivo. Ischaemic neuronal damage is a complex of many factors, and because adenosine can precondition against ischaemic neuronal damage, its failure to protect against glutamate highlights limitations of using glutamate alone as a model for ischaemia. Because damage following ischaemia, trauma or excitotoxicity also involves reduced Na(+),K(+)-ATPase activity, and adenosine can precondition against ouabain, we propose that ouabain-induced damage represents an additional or alternative model for the contribution to cell damage of Na(+),K(+)-ATPase loss, this being more relevant to the mechanisms of preconditioning.
Collapse
Affiliation(s)
- Alexandra L Ferguson
- Faculty of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
24
|
Yusof M, Kamada K, Kalogeris T, Gaskin FS, Korthuis RJ. Hydrogen sulfide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism. Am J Physiol Heart Circ Physiol 2009; 296:H868-76. [PMID: 19168723 DOI: 10.1152/ajpheart.01111.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H(2)S) is one of three endogenous gases, along with carbon monoxide (CO) and nitric oxide (NO), that exert a variety of important vascular actions in vivo. Although it has been demonstrated that CO or NO can trigger the development of a preconditioned phenotype in postischemic tissues, it is unclear whether H(2)S may also induce protection in organs subsequently exposed to ischemia-reperfusion (I/R). In light of these observations, we postulated that preconditioning with the exogenous H(2)S donor sodium hydrosulfide (NaHS-PC) would inhibit leukocyte rolling (LR) and adhesion (LA) induced by I/R. We used intravital microscopic techniques to demonstrate that NaHS-PC 24 h, but not 1 h, before I/R causes postcapillary venules to shift to an anti-inflammatory phenotype in wild-type (WT) mice such that these vessels fail to support LR and LA during reperfusion. The protective effect of NaHS-PC on LR was largely abolished by coincident pharmacological inhibition of NO synthase (NOS) in WT animals and was absent in endothelial NOS-deficient (eNOS(-/-)) mice. A similar pattern of response was noted in WT mice treated concomitantly with NaHS plus p38 mitogen-activated protein kinase (MAPK) inhibitors (SB 203580 or SK-86002). Whereas the reduction in LA induced by antecedent NaHS was attenuated by pharmacological inhibition of NOS or p38 MAPK in WT mice, the antiadhesive effect of NaHS was still evident in eNOS(-/-) mice. Thus NaHS-PC prevents LR and LA by triggering the activation of an eNOS- and p38 MAPK-dependent mechanism. However, the role of eNOS in the antiadhesive effect of NaHS-PC was less prominent than its effect to reduce LR.
Collapse
Affiliation(s)
- Mozow Yusof
- Dept. of Medical Pharmacology and Physiology, Univ. of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | | | | | | | | |
Collapse
|
25
|
Evaluating the protective role of ischaemic preconditioning in rat hearts using a stationary small-animal SPECT imager and 99mTc-glucarate. Nucl Med Commun 2008; 29:120-8. [PMID: 18094633 DOI: 10.1097/mnm.0b013e3282f29702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the protective role of ischaemic preconditioning (IPC) in rat hearts using Tc-glucarate (GLA) and a stationary SPECT imager, FastSPECT. METHODS Twenty-four rats with 30 min myocardial ischaemia and 150 min reperfusion (IR) were studied as follows. The IPC group (n=6) underwent IPC (five cycles of 4 min ligation of the left coronary artery and reflow) before IR. The control group (n=7) was treated by IR without IPC. The SPT group (n=6) was subjected to IPC and an adenosine antagonist, 8-(p-sulfophenyl)-theophylline (SPT). The vehicle group (n=5) received IPC and SPT carrier vehicle. GLA was delivered intravenously 30 min post-reperfusion, and 2-h dynamic cardiac images were acquired by FastSPECT. RESULTS GLA showed 'hot-spot' accumulation in the ischaemic area-at-risk (IAR) and exhibited lower retention (% 5 min peak) in the IPC and vehicle groups (33.8+/-2.6 vs. 35.7+/-9.2, P>0.05) than in the control and SPT groups (63.1+/-5.3 vs. 54.8+/-4.8, P>0.05). The infarct size (% IAR) was larger in the control and SPT groups (48.2+/-6.3 vs. 41.7+/-6.3, P>0.05) than that in the IPC and vehicle groups (21.0+/-1.9 vs. 19.1+/-4.6, P>0.05). In terms of the ex-vivo IAR-to-normal radioactivity ratio, there was a statistical difference between the control and IPC groups (7.4+/-0.9 vs. 3.0+/-0.4), as well as the SPT and vehicle groups (7.4+/-1.0 vs. 3.4+/-0.5). CONCLUSION IPC offers cardioprotection and relates to the activation of adenosine receptors in rat hearts. FastSPECT GLA imaging is not only useful in detecting early ischaemia-reperfusion injury, but also valuable in evaluating cardioprotection.
Collapse
|
26
|
Ballard-Croft C, Locklar AC, Keith BJ, Mentzer RM, Lasley RD. Oxidative stress and adenosine A1 receptor activation differentially modulate subcellular cardiomyocyte MAPKs. Am J Physiol Heart Circ Physiol 2008; 294:H263-71. [DOI: 10.1152/ajpheart.01067.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which distinct stimuli activate the same mitogen-activated protein kinases (MAPKs) is unclear. We examined compartmentalized MAPK signaling and altered redox state as possible mechanisms. Adult rat cardiomyocytes were exposed to the adenosine A1 receptor agonist 2-chloro- N6-cyclopentyladenosine (CCPA; 500 nM) or H2O2 (100 μM) for 15 min. Nuclear/myofilament, cytosolic, Triton-soluble membrane, and Triton-insoluble membrane fractions were generated. CCPA and H2O2 activated p38 MAPK and p44/p42 ERKs in cytosolic fractions. In Triton-soluble membrane fractions, H2O2 activated p38 MAPK and p42 ERK, whereas CCPA had no effect on MAPK activation in this fraction. The greatest difference between H2O2 and CCPA was in the Triton-insoluble membrane fraction, where H2O2 increased p38 and p42 activation and CCPA reduced MAPK activation. CCPA also increased protein phosphatase 2A activity in the Triton-insoluble membrane fraction, suggesting that the activation of this phosphatase may mediate CCPA effects in this fraction. The Triton-insoluble membrane fraction was enriched in the caveolae marker caveolin-3, and >85% of p38 MAPK and p42 ERK was bound to this scaffolding protein in these membranes, suggesting that caveolae may play a role in the divergence of MAPK signals from different stimuli. The antioxidant N-2-mercaptopropionyl glycine (300 μM) reduced H2O2-mediated MAPK activation but failed to attenuate CCPA-induced MAPK activation. H2O2 but not CCPA increased reactive oxygen species (ROS). Thus the adenosine A1 receptor and oxidative stress differentially modulate subcellular MAPKs, with the main site of divergence being the Triton-insoluble membrane fraction. However, the adenosine A1 receptor-mediated MAPK activation does not involve ROS formation.
Collapse
|
27
|
Patzak A, Lai EY, Fähling M, Sendeski M, Martinka P, Persson PB, Persson AEG. Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2232-42. [PMID: 17898122 DOI: 10.1152/ajpregu.00357.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine (Ado) enhances ANG II-induced constrictions of afferent arterioles (Af) by receptor-dependent and -independent pathways. Here, we test the hypothesis that transient Ado treatment has a sustained effect on Af contractility, resulting in increased ANG II responses after longer absence of Ado. Treatment with Ado (cumulative from 10−11to 10−4mol/l) and consecutive washout for 10 or 30 min increased constrictions on ANG II in isolated, perfused Af. Cytosolic calcium transients on ANG II were not enhanced in Ado-treated vessels. Selective or global inhibition of A1- and A2-adenosine receptors did not inhibit the Ado effect. Nitrobenzylthioinosine (an Ado transport inhibitor) clearly reduced the Ado-mediated responses. Selective inhibition of p38 MAPK with SB-203580 also prevented the Ado effect. Inosine treatment did not influence arteriolar reactivity to ANG II. Contractile responses of Af on norepinephrine and endothelin-1 were not influenced by Ado. Phosphorylation of the p38 MAPK and of the regulatory unit of 20-kDa myosin light chain was enhanced after Ado treatment and ANG II in Af. However, phosphorylation of p38 MAPK induced by norepinephrine or endothelin-1 was reduced in vessels treated with Ado, whereas 20-kDa myosin light chain was unchanged. The results suggest an intracellular, long-lasting mechanism including p38 MAPK activation responsible for the increase of ANG II-induced contractions by Ado. The effect is not calcium dependent and specific for ANG II. The prolonged enhancement of the ANG II sensitivity of Af may be important for tubuloglomerular feedback.
Collapse
Affiliation(s)
- Andreas Patzak
- Institute of Vegetative Physiology, University Hospital Charité, Humboldt-University of Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Peart JN, Headrick JP. Adenosinergic cardioprotection: Multiple receptors, multiple pathways. Pharmacol Ther 2007; 114:208-21. [PMID: 17408751 DOI: 10.1016/j.pharmthera.2007.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/18/2022]
Abstract
Adenosine, formed primarily via hydrolysis of 5'-AMP, has been historically dubbed a "retaliatory" metabolite due to enhanced local release and beneficial actions during cellular/metabolic stress. From a cardiovascular perspective, evidence indicates the adenosinergic system is essential in mediation of intrinsic protection (e.g., pre- and postconditioning) and determining myocardial resistance to insult. Modulation of adenosine and its receptors thus remains a promising, though as yet not well-realized, approach to amelioration of injury in ischemic-reperfused myocardium. Adenosine exerts effects through A(1), A(2A), A(2B), and A(3) adenosine receptor subtypes (A(1)AR, A(2A)AR, A(2B)AR, and A(3)AR), which are all expressed in myocardial and vascular cells, and couple to G proteins to trigger a range of responses (generally, but not always, beneficial). Adenosine can also enhance tolerance to injurious stimuli via receptor-independent metabolic effects. Given adenosines contribution to preconditioning, it is no surprise that postreceptor signaling typically mimics that associated with preconditioning. This involves activation/translocation of PKC, PI3 kinase, and MAPKs, with ultimate effects at the level of mitochondrial targets-the mitochondrial K(ATP) channel and/or the mitochondrial permeability transition pore (mPTP). Nonetheless, differences in cytoprotective signaling and actions of the different adenosine receptor subtypes have been recently revealed. Our understanding of adenosinergic cytoprotection continues to evolve, with roles for the A(2) subtypes emerging, together with evidence of essential receptor "cross-talk" in mediation of protection. This review focuses on current research into adenosine-mediated cardioprotection, highlighting recent findings which, together with a wealth of prior knowledge, may ultimately facilitate adenosinergic approaches to clinical cardiac protection.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Center, Griffith University, PMB 50 Gold Coast Mail Center, QLD, 4217, Australia.
| | | |
Collapse
|
29
|
Ozacmak VH, Sayan H. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat. World J Gastroenterol 2007; 13:538-47. [PMID: 17278219 PMCID: PMC4065975 DOI: 10.3748/wjg.v13.i4.538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.
METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase, malondialdehyde, and reduced glutathione levels were measured.
RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.
CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.
Collapse
Affiliation(s)
- V Haktan Ozacmak
- Department of Physiology, School of Medicine, Zonguldak Karaelmas University, Kozlu 67600, Zonguldak, Turkey.
| | | |
Collapse
|
30
|
Matot I, Weiniger CF, Zeira E, Galun E, Joshi BV, Jacobson KA. A3 adenosine receptors and mitogen-activated protein kinases in lung injury following in vivo reperfusion. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2006; 10:R65. [PMID: 16623960 PMCID: PMC1550918 DOI: 10.1186/cc4893] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/06/2006] [Accepted: 03/15/2006] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Although activation of A3 adenosine receptors attenuates reperfusion lung injury and associated apoptosis, the signaling pathway that mediates this protection remains unclear. Adenosine agonists activate mitogen-activated protein kinases, and these kinases have been implicated in ischemia/reperfusion injury; the purpose of this study was therefore to determine whether A3 adenosine receptor stimulation with reperfusion modulates expression of the different mitogen-activated protein kinases. In addition, we compared the effect of the A3 adenosine agonist IB-MECA with the newly synthesized, highly selective A3 adenosine receptor agonist MRS3558 on injury in reperfused lung. METHOD Studies were performed in an in vivo spontaneously breathing cat model, in which the left lower lobe of the lung was isolated and subjected to 2 hours of ischemia and 3 hours of reperfusion. The selective A3 adenosine receptor agonists IB-MECA (0.05 mg/kg, 0.1 mg/kg, or 0.3 mg/kg) and MRS3558 (0.05 mg/kg or 0.1 mg/kg) were administered before reperfusion. RESULTS Both A3 adenosine receptor agonists administered before reperfusion markedly (P < 0.01) attenuated indices of injury and apoptosis, including the percentage of injured alveoli, wet/dry weight ratio, myeloperoxidase activity, TUNEL (in situ TdT-mediated dUTP nick end labeling)-positive cells, and caspase 3 activity and expression. The more pronounced effects at low doses were observed with MRS3558. Increases in phosphorylated c-Jun amino-terminal protein kinase (JNK), p38, and extracellular signal-regulated kinase (ERK)1/2 levels were observed by the end of reperfusion compared with controls. Pretreatment with the A3 agonists upregulated phosphorylated ERK1/2 levels but did not modify phosphorylated JNK and p38 levels. CONCLUSION The protective effects of A3 adenosine receptor activation are mediated in part through upregulation of phosphorylated ERK. Also, MRS3558 was found to be more potent than IB-MECA in attenuating reperfusion lung injury. The results suggest not only that enhancement of the ERK pathway may shift the balance between cell death and survival toward cell survival, but also that A3 agonists have potential as an effective therapy for ischemia/reperfusion-induced lung injury.
Collapse
Affiliation(s)
- Idit Matot
- Department of Anesthesiology & Critical Care Medicine, Hadassah University Medical Center, The Hebrew University, Jerusalem, Israel
| | - Carolyn F Weiniger
- Department of Anesthesiology & Critical Care Medicine, Hadassah University Medical Center, The Hebrew University, Jerusalem, Israel
| | - Evelyne Zeira
- Goldyne Savad Institute of Gene Therapy, Hadassah University Medical Center, The Hebrew University, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah University Medical Center, The Hebrew University, Jerusalem, Israel
| | - Bhalchandra V Joshi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Liang Q, Elson AC, Gerdes AM. p38 MAP kinase activity is correlated with angiotensin II type 1 receptor blocker-induced left ventricular reverse remodeling in spontaneously hypertensive heart failure rats. J Card Fail 2006; 12:479-86. [PMID: 16911916 DOI: 10.1016/j.cardfail.2006.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/22/2006] [Accepted: 04/27/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND Angiotensin II type 1 receptor blocker L-158,809 (ARB) induces reverse left ventricular (LV) remodeling in spontaneously hypertensive heart failure (SHHF) rats. However, the signaling mechanism that mediates ARB-induced reverse LV remodeling remains unclear. The present study was to determine if changes in mitogen-activated protein kinase (MAPK, including ERK, JNK, and p38) signaling correlate with ARB-elicited reversal of cardiac hypertrophy in SHHF rats. METHODS AND RESULTS In 1 set of experiments, 5-month-old lean female SHHF rats were treated with L-158,809 (ARB) or the vasodilator hydralazine (HYD) for 1 month, respectively. In a second set of experiments, 5-month-old SHHF rats were treated with ARB for 6 months or 1 month and then with HYD for 5 months. Either ARB or HYD normalized left ventricular end systolic pressure in SHHF rats relative to normotensive control Wistar Furth (WF) rats at both 6 and 11 months of age, but only ARB reduced heart-to-body weight ratio in SHHF rats to control level. Western blot analysis showed that cardiac p38 MAPK activity was markedly increased in 6-month-old SHHF rats, but dramatically reduced in 11-month-old SHHF rats compared with WF rats, as indicated by the levels of phosphorylated form of p38. The alterations in p38 activity were completely reversed by ARB treatment but not by HYD treatment. CONCLUSION ARB restored normal cardiac p38 activity, which coincided with ARB-induced reverse LV remodeling in SHHF rats, suggesting a strong correlation between p38 signaling and cardiac remodeling.
Collapse
Affiliation(s)
- Qiangrong Liang
- University of South Dakota, School of Medicine, Cardiovascular Research Institute-South Dakota Health Research Foundation, Sioux Falls, South Dakota 57105, USA
| | | | | |
Collapse
|
32
|
Arrell DK, Elliott ST, Kane LA, Guo Y, Ko YH, Pedersen PL, Robinson J, Murata M, Murphy AM, Marbán E, Van Eyk JE. Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ Res 2006; 99:706-14. [PMID: 16946135 DOI: 10.1161/01.res.0000243995.74395.f8] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ischemic preconditioning is characterized by resistance to ischemia reperfusion injury in response to previous short ischemic episodes, a protective effect that can be mimicked pharmacologically. The underlying mechanism of protection remains controversial and requires greater understanding before it can be fully exploited therapeutically. To investigate the overall effect of preconditioning on the myocardial proteome, isolated rabbit ventricular myocytes were treated with drugs known to induce preconditioning, adenosine or diazoxide (each at 100 micromol/L for 60 minutes). Their protein profiles were then compared with vehicle-treated controls (n=4 animals per treatment) using a multitiered 2D gel electrophoresis approach. Of 28 significantly altered protein spots, 19 nonredundant proteins were identified (5 spots remained unidentified). The majority of these proteins are involved in mitochondrial energetics, including subunits of tricarboxylic acid cycle enzymes and oxidative phosphorylation complexes. These changes were not indiscriminate, with only a small number of enzymes or complex subunits altered, indicating a very specific and targeted affect of these 2 preconditioning mimetics. Among the changes were shifts in the extent of posttranslational modification of 4 proteins. One of these, the adenosine-induced phosphorylation of the ATP synthase beta subunit, was fully characterized with the identification of 5 novel phosphorylation sites. This proteomics approach provides an overall assessment of the cellular response to pharmacological treatment with adenosine and diazoxide and identifies a distinct subset of enzymes and protein complex subunit that may underlie the preconditioned phenotype.
Collapse
Affiliation(s)
- D Kent Arrell
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ballard-Croft C, Locklar AC, Kristo G, Lasley RD. Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Am J Physiol Heart Circ Physiol 2006; 291:H658-67. [PMID: 16565301 DOI: 10.1152/ajpheart.01354.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion activates ERK and p38 MAPK in cardiac membranes, but the role of caveolae in MAPK signaling during this stress has not been studied. The purpose of this study was to determine the effect of in vivo myocardial ischemia-reperfusion on the level and distribution of caveolin-1 and -3 and cholesterol as well as MAPK activation in caveolin-enriched fractions. Adult male rats were subjected to in vivo regional myocardial ischemia induced by 25 min of coronary artery occlusion and 10 min ( n = 5) or 2 h ( n = 4) of reperfusion. Another group of rats served as appropriate nonischemic time controls ( n = 4). A discontinuous sucrose density gradient was used to isolate caveolae/lipid rafts from ischemic and nonischemic heart tissue. Caveolin-1 and -3, as well as cholesterol, were enriched in the light fractions. A redistribution of caveolin-3 and a reduction in caveolin-1 and cholesterol levels in the light fractions occurred after 10 min of reperfusion. The ERKs were activated in ischemic zone light and heavy fractions by 10 min of reperfusion. p44 ERK was activated after 2 h of reperfusion only in the light fractions, whereas p42 ERK phosphorylation was increased in the light and heavy fractions. Although no p38 MAPK activation occurred after 10 min of reperfusion, 2 h of reperfusion caused significant activation of p38 MAPK in nonischemic zone light and heavy fractions. These results show the importance of caveolar membrane/lipid rafts in MAPK signaling and suggest that subcellular compartmentation of p44/p42 ERKs and p38 MAPK may play distinct roles in the response to myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Cherry Ballard-Croft
- Cardiothoracic Division, Department of Surgery, University of Kentucky, MN269 Chandler Medical Center, 800 Rose St., Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
34
|
Forman MB, Stone GW, Jackson EK. Role of Adenosine as Adjunctive Therapy in Acute Myocardial Infarction. ACTA ACUST UNITED AC 2006; 24:116-47. [PMID: 16961725 DOI: 10.1111/j.1527-3466.2006.00116.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy.
Collapse
Affiliation(s)
- Mervyn B Forman
- Emory University and North Atlanta Cardiovascular Associates, P.C., Atlanta, GA, USA
| | | | | |
Collapse
|
35
|
Lasley RD, Keith BJ, Kristo G, Yoshimura Y, Mentzer RM. Delayed adenosine A1 receptor preconditioning in rat myocardium is MAPK dependent but iNOS independent. Am J Physiol Heart Circ Physiol 2005; 289:H785-91. [PMID: 15833799 DOI: 10.1152/ajpheart.01008.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine A1 receptor delayed preconditioning (PC) against myocardial infarction has been well described; however, there have been limited investigations of the signaling mechanisms that mediate this phenomenon. In addition, there are multiple conflicting reports on the role of inducible nitric oxide synthase (iNOS) in mediating A1 late-phase PC. The purpose of this study was to determine the roles of the p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs) in in vivo delayed A1 receptor PC and whether this protection at the myocyte level is due to upregulation of iNOS. Myocardial infarct size was measured in open-chest anesthetized rats 24 h after treatment with vehicle or the adenosine A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 100 microg/kg ip). Additional rats receiving CCPA were pretreated with the p38 inhibitor SB-203580 (1 mg/kg ip) or the MAPK/ERK kinase (MEK) inhibitor PD-098059 (0.5 mg/kg ip). At 24 h after CCPA administration, a group of animals was given the iNOS inhibitor 1400 W 10 min before ischemia. Treatment with CCPA reduced infarct size from 48 +/- 2 to 28 +/- 2% of the area at risk, an effect that was blocked by both SB-203580 and PD-098059 but not 1400 W. Ventricular myocytes isolated 24 h after CCPA injection exhibited significantly reduced oxidative stress during H2O2 exposure compared with myocytes from vehicle-injected animals, and this effect was not blocked by the iNOS inhibitor 1400 W. Western blot analysis of whole heart and cardiac myocyte protein samples revealed no expression of iNOS 6 or 24 h after CCPA treatment. These results indicate that adenosine A1 receptor delayed PC in rats is mediated by MAPK-dependent mechanisms, but this phenomenon is not associated with the early or late expression of iNOS.
Collapse
Affiliation(s)
- Robert D Lasley
- Department of Surgery, Univ. of Kentucky College of Medicine, MN276, Chandler Medical Center, 800 Rose St., Lexington, KY 40536-0298, USA.
| | | | | | | | | |
Collapse
|