1
|
Fu X, Hu X. Ultrasound-Controlled Prodrug Activation: Emerging Strategies in Polymer Mechanochemistry and Sonodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8040-8058. [PMID: 38698527 PMCID: PMC11653258 DOI: 10.1021/acsabm.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Ultrasound has gained prominence in biomedical applications due to its noninvasive nature and ability to penetrate deep tissue with spatial and temporal resolution. The burgeoning field of ultrasound-responsive prodrug systems exploits the mechanical and chemical effects of ultrasonication for the controlled activation of prodrugs. In polymer mechanochemistry, materials scientists exploit the sonomechanical effect of acoustic cavitation to mechanochemically activate force-sensitive prodrugs. On the other hand, researchers in the field of sonodynamic therapy adopt fundamentally distinct methodologies, utilizing the sonochemical effect (e.g., generation of reactive oxygen species) of ultrasound in the presence of sonosensitizers to induce chemical transformations that activate prodrugs. This cross-disciplinary review comprehensively examines these two divergent yet interrelated approaches, both of which originated from acoustic cavitation. It highlights molecular and materials design strategies and potential applications in diverse therapeutic contexts, from chemotherapy to immunotherapy and gene therapy methods, and discusses future directions in this rapidly advancing domain.
Collapse
Affiliation(s)
- Xuancheng Fu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Duan X, Wan JMF, Yu ACH. The molecular impact of sonoporation: A transcriptomic analysis of gene regulation profile. ULTRASONICS SONOCHEMISTRY 2024; 111:107077. [PMID: 39368882 PMCID: PMC11600025 DOI: 10.1016/j.ultsonch.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Sonoporation has long been known to disrupt intracellular signaling, yet the involved molecules and pathways have not been identified with clarity. In this study, we employed whole transcriptome shotgun sequencing (RNA-seq) to profile sonoporation-induced gene responses after membrane resealing has taken place. Sonoporation was achieved by microbubble-mediated ultrasound (MB-US) exposure in the form of 1 MHz ultrasound pulsing (0.50 MPa peak negative pressure, 10 % duty cycle, 30 s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio). Using propidium iodide (PI) and calcein respectively as cell viability and cytoplasmic uptake labels, post-exposure flow cytometry was performed to identify three viable cell populations: 1) unsonoporated cells, 2) sonoporated cells with low uptake, and 3) sonoporated cells with high uptake. Fluorescence-activated cell sorting was then conducted to separate the different groups followed by RNA-seq analysis of the gene expressions in each group of cells. We found that sonoporated cells with low or high calcein uptake showed high similarity in the gene responses, including the activation of multiple heat shock protein (HSP) genes and immediate early response genes mediating apoptosis and transcriptional regulation. In contrast, unsonoporated cells exhibited a more extensive gene expression alteration that included the activation of more HSP genes and the upregulation of diverse apoptotic mediators. Four oxidative stress-related and three immune-related genes were also differentially expressed in unsonoporated cells. Our results provided new information for understanding the intracellular mobilization in response to sonoporation at the molecular level, including the identification of new molecules in the sonoporation-induced apoptosis regulatory network. Our data also shed light on the innovative therapeutic strategy which could potentially leverage the responses of viable unsonoporated cells as a synergistic effector in the microenvironment to favor tumor treatment.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada; School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jennifer M F Wan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
3
|
Shi J, Ma Y, Shi R, Yu ACH, Qin P. Manipulating long-term fates of sonoporated cells by regulating intracellular calcium for improving sonoporation-based delivery. J Control Release 2024; 375:142-154. [PMID: 39218159 DOI: 10.1016/j.jconrel.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sonoporation-based delivery has great promise for noninvasive drug and gene therapy. After short-term membrane resealing, the long-term function recovery of sonoporated cells affects the efficiency and biosafety of sonoporation-based delivery. It is necessary to identify the key early biological signals that influence cell fate and to develop strategies for manipulating the long-term fates of sonoporated cells. Here, we used a customized experimental platform with a single cavitating microbubble induced by a single ultrasound pulse (frequency: 1.5 MHz, pulse length:13.33 μs, peak negative pressure: ∼0.40 MPa) to elicit single-site reversible sonoporation on a single HeLa cell model. We used a living-cell microscopic imaging system to trace the long-term fates of sonoporated HeLa cells in real-time for 48 h. Fluorescence from intracellular propidium iodide and Fluo-4 was used to evaluate the degree of sonoporation and intracellular calcium fluctuation (ICF), respectively. Changes in cell morphology were used to assess the long-term cell fates (i.e., proliferation, arrest, or death). We found that heterogeneously sonoporated cells had different long-term fates. With increasing degree of sonoporation, the probability of normal (proliferation) and abnormal fates (arrest and death) in sonoporated cells decreased and increased, respectively. We identified ICF as an important early event for triggering different long-term fates. Reversibly sonoporated cells exhibited stronger proliferation and restoration at lower extents of ICF. We then regulated ICF dynamics in sonoporated cells using 2-APB or BAPTA treatment to reduce calcium release from intracellular organelles and enhance intracellular calcium clearance, respectively. This significantly enhanced the proliferation and restoration of sonoporated cells and reduced the occurrence of cell-cycle arrest and death. Finally, we found that the long-term fates of sonoporated cells at multiple sites and neighboring cells were also dependent on the extent of ICF, and that 2-APB significantly enhanced their viability and reduced death. Thus, using a single HeLa cell model, we demonstrated that regulating intracellular calcium can effectively enhance the proliferation and restoration capabilities of sonoporated cells, therefore rescuing the long-term viability of sonoporated cells. These findings add to our understanding of the biophysical process of sonoporation and help design new strategies for improving the efficiency and biosafety of sonoporation-based delivery.
Collapse
Affiliation(s)
- Jianmin Shi
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhang Ma
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruchuan Shi
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Peng Qin
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
5
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
6
|
Paranjape AN, D'Aiuto L, Zheng W, Chen X, Villanueva FS. A multicellular brain spheroid model for studying the mechanisms and bioeffects of ultrasound-enhanced drug penetration beyond the blood‒brain barrier. Sci Rep 2024; 14:1909. [PMID: 38253669 PMCID: PMC10803331 DOI: 10.1038/s41598-023-50203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
The blood‒brain barrier (BBB) acts as a hindrance to drug therapy reaching the brain. With an increasing incidence of neurovascular diseases and brain cancer metastases, there is a need for an ideal in vitro model to develop novel methodologies for enhancing drug delivery to the brain. Here, we established a multicellular human brain spheroid model that mimics the BBB both architecturally and functionally. Within the spheroids, endothelial cells and pericytes localized to the periphery, while neurons, astrocytes, and microglia were distributed throughout. Ultrasound-targeted microbubble cavitation (UTMC) is a novel noninvasive technology for enhancing endothelial drug permeability. We utilized our three-dimensional (3D) model to study the feasibility and mechanisms regulating UTMC-induced hyperpermeability. UTMC caused a significant increase in the penetration of 10 kDa Texas red dextran (TRD) into the spheroids, 100 µm beyond the BBB, without compromising cell viability. This hyperpermeability was dependent on UTMC-induced calcium (Ca2+) influx and endothelial nitric oxide synthase (eNOS) activation. Our 3D brain spheroid model, with its intact and functional BBB, offers a valuable platform for studying the bioeffects of UTMC, including effects occurring spatially distant from the endothelial barrier.
Collapse
Affiliation(s)
- Anurag N Paranjape
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Wenxiao Zheng
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Guo X, Lin J, Pan L, He K, Huang Z, Chen J, Lin C, Zeng B, Luo S, Wang M. Ultrasound-triggered release of miR-199a-3p from liposome nanobubbles for enhanced hepatocellular carcinoma treatment. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:560-571. [PMID: 37850395 DOI: 10.1080/21691401.2023.2268137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
This study was aimed to develop an efficient tumour-targeted liposome nanobubbles (LNBs) system using ultrasound-targeted nanobubble destruction for enhanced release and transfection of miRNA-199a-3p in hepatocellular carcinoma (HCC) therapy. The prepared LNBs comprised a polyethylene glycol-modified liposome shell and a perfluoropentane (PFP) core. MiRNA-199a-3p was attached to the nanocomposite surface via electrostatic adsorption, while RGD peptide functionalized the LNBs surface for enhanced HCC cell targeting, namely PFP@miR-RGD-LNBs. The LNBs were spherical with a narrow size distribution. The gene-loaded LNBs effectively condensed miR-199a-3p and protected it from enzymatic degradation. Low-intensity focused ultrasound (LIFU) promoted a fast release of miR-199a-3p from the prepared LNBs, thereby enhancing therapeutic effects. The combined application of PFP@miR-RGD-LNBs and LIFU exhibited a more potent inhibitory effect on HepG2 cells than the other groups, potentially due to LIFU promoting rapid and efficient gene release at the target site and increasing cell membrane permeability. Quantitative reverse transcription-polymerase chain reaction analysis revealed significantly increased mRNA expression levels of key apoptosis markers (Bad, Bax, Caspase-9 and Caspase-3) in the PFP@miR-RGD-LNBs + LIFU group compared to other groups. These findings suggest that the prepared LNBs are highly likely to be promising candidates for further exploration of HCC gene delivery and therapy.
Collapse
Affiliation(s)
- Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jianru Lin
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Liwen Pan
- Department of Endocrinology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Kun He
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhihui Huang
- Department of Nuclear Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jialin Chen
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Cuiyan Lin
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Baohui Zeng
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Sijia Luo
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Mengdie Wang
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Przystupski D, Ussowicz M. Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation. Int J Mol Sci 2022; 23:ijms231911222. [PMID: 36232532 PMCID: PMC9569453 DOI: 10.3390/ijms231911222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sonoporation is the process of transient pore formation in the cell membrane triggered by ultrasound (US). Numerous studies have provided us with firm evidence that sonoporation may assist cancer treatment through effective drug and gene delivery. However, there is a massive gap in the body of literature on the issue of understanding the complexity of biophysical and biochemical sonoporation-induced cellular effects. This study provides a detailed explanation of the US-triggered bioeffects, in particular, cell compartments and the internal environment of the cell, as well as the further consequences on cell reproduction and growth. Moreover, a detailed biophysical insight into US-provoked pore formation is presented. This study is expected to review the knowledge of cellular effects initiated by US-induced sonoporation and summarize the attempts at clinical implementation.
Collapse
|
10
|
Yan K, Yang T, Xu J, Dong L, Wang J, Cai Y. Synergistic effect of low-frequency ultrasound and antibiotics on the treatment of Klebsiella pneumoniae pneumonia in mice. Microb Biotechnol 2022; 15:2819-2830. [PMID: 36001465 PMCID: PMC9618311 DOI: 10.1111/1751-7915.14134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
The antibiotic‐resistant Klebsiella pneumoniae (Kp) has become a significant crisis in treating pneumonia. Low‐frequency ultrasound (LFU) is promising to overcome the obstacles. Mice were infected with bioluminescent Kp Xen39 by intratracheal injection to study the therapeutic effect of LFU in combination with antibiotics. The counts per second (CPS) were assessed with an animal biophoton imaging system. Bacterial clearance, histopathology, and the concentrations of cytokines were determined to evaluate the therapeutic effect. LC–MS/MS was used to detect the distribution of antibiotics in the lung and plasma. LFU in combination with meropenem (MEM) or amikacin (AMK) significantly improved the behavioural state of mice. The CPS of the LFU combination group were more significantly decreased compared with those of the antibiotic alone groups. The average colony‐forming units of lung tissue in the LFU combination groups were also lower than those of the antibiotic groups. Although no significant changes of cytokines (IL‐6 and TNF‐α) in plasma and bronchoalveolar lavage fluid were observed, LFU in combination with antibiotics showed less inflammatory damage from histopathological results compared with the antibiotic‐alone groups. Moreover, 10 min of LFU treatment promoted the distribution of MEM and AMK in mouse lung tissue at 60 and 30 min, respectively, after dosage. LFU could enhance the effectiveness of MEM and AMK in the treatment of Kp‐induced pneumonia, which might be attributed to the fact that LFU could promote the distribution of antibiotics in lung tissue and reduce inflammatory injury.
Collapse
Affiliation(s)
- Kaicheng Yan
- Medical School of Chinese PLA, Beijing, China.,Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Tianli Yang
- Medical School of Chinese PLA, Beijing, China.,Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Juan Xu
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Liuhan Dong
- Medical School of Chinese PLA, Beijing, China.,Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Jin Wang
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Yun Cai
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
13
|
Ntentakis DP, Ntentaki AM, Delavogia E, Kalomoiris L, Venieri D, Arkadopoulos N, Kalogerakis N. Dissolved oxygen technologies as a novel strategy for non-healing wounds: A critical review. Wound Repair Regen 2021; 29:1062-1079. [PMID: 34655455 DOI: 10.1111/wrr.12972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Non-healing wounds are steadily becoming a global-health issue. Prolonged hypoxia propagates wound chronicity; yet, oxygenating treatments are considered inadequate to date. Dissolved oxygen (DO) in aqueous solutions introduces a novel approach to enhanced wound oxygenation, and is robustly evaluated for clinical applications. A systematic literature search was conducted, whereby experimental and clinical studies of DO technologies were categorized per engineering approach. Technical principles, methodology, endpoints and outcomes were analysed for both oxygenating and healing effects. Forty articles meeting our inclusion criteria were grouped as follows: DO solutions (17), oxygen (O2 ) dressings (9), O2 hydrogels (11) and O2 emulsions (3). All technologies improved wound oxygenation, each to a variable degree. They also achieved at least one statistically significant outcome related to wound healing, mainly in epithelialization, angiogenesis and collagen synthesis. Scarcity in clinical data and methodological variability precluded quantitative comparisons among the biotechnologies studied. DO technologies warrantee further evaluation for wound oxygenation in the clinical setting. Standardised methodologies and targeted research questions are pivotal to facilitate global integration in healthcare.
Collapse
Affiliation(s)
- Dimitrios P Ntentakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | | | - Eleni Delavogia
- Department of Paediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Loukas Kalomoiris
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Danae Venieri
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
14
|
Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13081135. [PMID: 34452096 PMCID: PMC8397943 DOI: 10.3390/pharmaceutics13081135] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.
Collapse
|
15
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
16
|
Yang Q, Zhang R, Tang P, Sun Y, Johnson C, Saredy J, Wu S, Wang J, Lu Y, Saaoud F, Shao Y, Drummer C, Xu K, Yu D, Li R, Ge S, Jiang X, Wang H, Yang X. Ultrasound May Suppress Tumor Growth, Inhibit Inflammation, and Establish Tolerogenesis by Remodeling Innatome via Pathways of ROS, Immune Checkpoints, Cytokines, and Trained Immunity/Tolerance. J Immunol Res 2021; 2021:6664453. [PMID: 33628851 PMCID: PMC7889351 DOI: 10.1155/2021/6664453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The immune mechanisms underlying low-intensity ultrasound- (LIUS-) mediated suppression of inflammation and tumorigenesis remain poorly determined. METHODS We used microarray datasets from the NCBI GEO DataSet repository and conducted comprehensive data-mining analyses, where we examined the gene expression of 1376 innate immune regulators (innatome genes (IGs) in cells treated with LIUS. RESULTS We made the following findings: (1) LIUS upregulates proinflammatory IGs and downregulates metastasis genes in cancer cells, and LIUS upregulates adaptive immunity pathways but inhibits danger-sensing and inflammation pathways and promote tolerogenic differentiation in bone marrow (BM) cells. (2) LIUS upregulates IGs encoded for proteins localized in the cytoplasm, extracellular space, and others, but downregulates IG proteins localized in nuclear and plasma membranes, and LIUS downregulates phosphatases. (3) LIUS-modulated IGs act partially via several important pathways of reactive oxygen species (ROS), reverse signaling of immune checkpoint receptors B7-H4 and BTNL2, inflammatory cytokines, and static or oscillatory shear stress and heat generation, among which ROS is a dominant mechanism. (4) LIUS upregulates trained immunity enzymes in lymphoma cells and downregulates trained immunity enzymes and presumably establishes trained tolerance in BM cells. (5) LIUS modulates chromatin long-range interactions to differentially regulate IGs expression in cancer cells and noncancer cells. CONCLUSIONS Our analysis suggests novel molecular mechanisms that are utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.
Collapse
Affiliation(s)
- Qian Yang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Ultrasonic Diagnosis and Treatment Center, XiAn International Medical Center Hospital, XiAn, China
- Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ruijing Zhang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Peng Tang
- Department of Orthopedics, Beijing Charity Hospital of China Rehabilitation Research Center, Beijing, China
| | - Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Susu Wu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jiwei Wang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rongshan Li
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Shuping Ge
- Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
17
|
Peng X, He W, Xin F, Genin GM, Lu TJ. The acoustic radiation force of a focused ultrasound beam on a suspended eukaryotic cell. ULTRASONICS 2020; 108:106205. [PMID: 32615366 DOI: 10.1016/j.ultras.2020.106205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Although ultrasound tools for manipulating and permeabilizing suspended cells have been available for nearly a century, accurate prediction of the distribution of acoustic radiation force (ARF) continues to be a challenge. We therefore developed an analytical model of the acoustic radiation force (ARF) generated by a focused Gaussian ultrasound beam incident on a eukaryotic cell immersed in an ideal fluid. The model had three layers corresponding to the nucleus, cytoplasm, and membrane, of a eukaryotic cell. We derived an exact expression for the ARF in relation to the geometrical and acoustic parameters of the model cell components. The mechanics of the cell membrane and nucleus, the relative width of the Gaussian beam, the size, position and aspect ratio of the cell had significant influence on the ARF. The model provides a theoretical basis for improved acoustic control of cell trapping, cell sorting, cell assembly, and drug delivery.
Collapse
Affiliation(s)
- Xiangjun Peng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Wei He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Fengxian Xin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Guy M Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; Nanjing Center for Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| |
Collapse
|
18
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [PMID: 32798742 DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
19
|
Beekers I, Mastik F, Beurskens R, Tang PY, Vegter M, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2017-2029. [PMID: 32402676 DOI: 10.1016/j.ultrasmedbio.2020.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble-cell interaction remains poorly understood. Because intracellular calcium (Cai2+) is a key cellular regulator, unraveling the Cai2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell-cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai2+ fluctuations, providing new insight into the microbubble-cell interaction to aid clinical translation.
Collapse
Affiliation(s)
- Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Phoei Ying Tang
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Merel Vegter
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Escoffre JM, Campomanes P, Tarek M, Bouakaz A. New insights on the role of ROS in the mechanisms of sonoporation-mediated gene delivery. ULTRASONICS SONOCHEMISTRY 2020; 64:104998. [PMID: 32062534 DOI: 10.1016/j.ultsonch.2020.104998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species (ROS) are hypothesized to play a role in the sonoporation mechanisms. Nevertheless, the acoustical phenomenon behind the ROS production as well as the exact mechanisms of ROS action involved in the increased cell membrane permeability are still not fully understood. Therefore, we investigated the key processes occurring at the molecular level in and around microbubbles subjected to ultrasound using computational chemistry methods. To confirm the molecular simulation predictions, we measured the ROS production by exposing SonoVue® microbubbles (MBs) to ultrasound using biological assays. To investigate the role of ROS in cell membrane permeabilization, cells were subjected to ultrasound in presence of MBs and plasmid encoding reporter gene, and the transfection level was assessed using flow cytometry. The molecular simulations showed that under sonoporation conditions, ROS can form inside the MBs. These radicals could easily diffuse through the MB shell toward the surrounding aqueous phase and participate in the permeabilization of nearby cell membranes. Experimental data confirmed that MBs favor spontaneous formation of a host of free radicals where HO was the main ROS species after US exposure. The presence of ROS scavengers/inhibitors during the sonoporation process decreased both the production of ROS and the subsequent transfection level without significant loss of cell viability. In conclusion, the exposure of MBs to ultrasound might be the origin of chemical effects, which play a role in the cell membrane permeabilization and in the in vitro gene delivery when generated in its proximity.
Collapse
Affiliation(s)
| | - Pablo Campomanes
- Laboratoire de Physique et Chimie Théoriques, UMR 7019, Université de Lorraine, CNRS, Nancy F-54000, France
| | - Mounir Tarek
- Laboratoire de Physique et Chimie Théoriques, UMR 7019, Université de Lorraine, CNRS, Nancy F-54000, France.
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
21
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
22
|
Yu GZ, Istvanic F, Chen X, Nouraie M, Shiva S, Straub AC, Pacella JJ. Ultrasound-Targeted Microbubble Cavitation with Sodium Nitrite Synergistically Enhances Nitric Oxide Production and Microvascular Perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:667-678. [PMID: 31810801 PMCID: PMC7010556 DOI: 10.1016/j.ultrasmedbio.2019.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microvascular obstruction is a common repercussion of percutaneous coronary intervention for distal microembolization, ischemia-reperfusion injury and inflammation, which increases post-myocardial infarction heart failure and mortality. Ultrasound-targeted microbubble cavitation (UTMC) may resolve microvascular obstruction while activating endothelial nitric oxide synthase (eNOS) and increasing endothelium-derived nitric oxide (NO) bioavailability. Nitrite, a cardioprotective agent, offers an additional source of NO and potential synergy with UTMC. UTMC and nitrite co-therapy increased microvascular perfusion and NO concentration in a rat hindlimb model. Using N-nitro-L-arginine methyl ester for eNOS blockade, we found a three-way interaction effect between nitrite, UTMC and eNOS on microvascular perfusion and NO production. Modulating ultrasound peak negative acoustic pressure (0.33-1.5 MPa) significantly affected outcomes, while microbubble dosage (2 × 108 bubbles/mL, 1.5 mL/h to 1 × 109 bubbles/mL, 3 mL/h) did not. Nitrite co-therapy also protected against oxidative stress. Comparison of nitrite to sodium nitroprusside with UTMC revealed synergistic effects were specific to nitrite. Synergy between UTMC and nitrite holds therapeutic potential for cardiovascular disease.
Collapse
Affiliation(s)
- Gary Z Yu
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Filip Istvanic
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
23
|
Lattwein KR, Shekhar H, Kouijzer JJP, van Wamel WJB, Holland CK, Kooiman K. Sonobactericide: An Emerging Treatment Strategy for Bacterial Infections. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:193-215. [PMID: 31699550 PMCID: PMC9278652 DOI: 10.1016/j.ultrasmedbio.2019.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Ultrasound has been developed as both a diagnostic tool and a potent promoter of beneficial bio-effects for the treatment of chronic bacterial infections. Bacterial infections, especially those involving biofilm on implants, indwelling catheters and heart valves, affect millions of people each year, and many deaths occur as a consequence. Exposure of microbubbles or droplets to ultrasound can directly affect bacteria and enhance the efficacy of antibiotics or other therapeutics, which we have termed sonobactericide. This review summarizes investigations that have provided evidence for ultrasound-activated microbubble or droplet treatment of bacteria and biofilm. In particular, we review the types of bacteria and therapeutics used for treatment and the in vitro and pre-clinical experimental setups employed in sonobactericide research. Mechanisms for ultrasound enhancement of sonobactericide, with a special emphasis on acoustic cavitation and radiation force, are reviewed, and the potential for clinical translation is discussed.
Collapse
Affiliation(s)
- Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joop J P Kouijzer
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Silvani G, Scognamiglio C, Caprini D, Marino L, Chinappi M, Sinibaldi G, Peruzzi G, Kiani MF, Casciola CM. Reversible Cavitation-Induced Junctional Opening in an Artificial Endothelial Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905375. [PMID: 31762158 DOI: 10.1002/smll.201905375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Targeting pharmaceuticals through the endothelial barrier is crucial for drug delivery. In this context, cavitation-assisted permeation shows promise for effective and reversible opening of intercellular junctions. A vessel-on-a-chip is exploited to investigate and quantify the effect of ultrasound-excited microbubbles-stable cavitation-on endothelial integrity. In the vessel-on-a-chip, the endothelial cells form a complete lumen under physiological shear stress, resulting in intercellular junctions that exhibit barrier functionality. Immunofluorescence microscopy is exploited to monitor vascular integrity following vascular endothelial cadherin staining. It is shown that microbubbles amplify the ultrasound effect, leading to the formation of interendothelial gaps that cause barrier permeabilization. The total gap area significantly increases with pressure amplitude compared to the control. Gap opening is fully reversible with gap area distribution returning to the control levels 45 min after insonication. The proposed integrated platform allows for precise and repeatable in vitro measurements of cavitation-enhanced endothelium permeability and shows potential for validating irradiation protocols for in vivo applications.
Collapse
Affiliation(s)
- Giulia Silvani
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Davide Caprini
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| | - Mauro Chinappi
- Department of Industrial Engineering, Università di Roma Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Giorgia Sinibaldi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Mohammad F Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Carlo M Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
25
|
Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front Bioeng Biotechnol 2019; 7:324. [PMID: 31824930 PMCID: PMC6883936 DOI: 10.3389/fbioe.2019.00324] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
While ultrasound is most widely known for its use in diagnostic imaging, the energy carried by ultrasound waves can be utilized to influence cell function and drug delivery. Consequently, our ability to use ultrasound energy at a given intensity unlocks the opportunity to use the ultrasound for therapeutic applications. Indeed, in the last decade ultrasound-based therapies have emerged with promising treatment modalities for several medical conditions. More recently, ultrasound in combination with nanomedicines, i.e., nanoparticles, has been shown to have substantial potential to enhance the efficacy of many treatments including cancer, Alzheimer disease or osteoarthritis. The concept of ultrasound combined with drug delivery is still in its infancy and more research is needed to unfold the mechanisms and interactions of ultrasound with different nanoparticles types and with various cell types. Here we present the state-of-art in ultrasound and ultrasound-assisted drug delivery with a particular focus on cancer treatments. Notably, this review discusses the application of high intensity focus ultrasound for non-invasive tumor ablation and immunomodulatory effects of ultrasound, as well as the efficacy of nanoparticle-enhanced ultrasound therapies for different medical conditions. Furthermore, this review presents safety considerations related to ultrasound technology and gives recommendations in the context of system design and operation.
Collapse
Affiliation(s)
- Priyanka Tharkar
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ramya Varanasi
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Wu Shun Felix Wong
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Craig T Jin
- Faculty of Engineering, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Wojciech Chrzanowski
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
26
|
Xu W, Zhang X, Hu X, Zhiyi C, Huang P. Translational Prospects of ultrasound-mediated tumor immunotherapy: Preclinical advances and safety considerations. Cancer Lett 2019; 460:86-95. [DOI: 10.1016/j.canlet.2019.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
|
27
|
Juang EK, De Cock I, Keravnou C, Gallagher MK, Keller SB, Zheng Y, Averkiou M. Engineered 3D Microvascular Networks for the Study of Ultrasound-Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10128-10138. [PMID: 30540481 DOI: 10.1021/acs.langmuir.8b03288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localized and targeted drug delivery can be achieved by the combined action of ultrasound and microbubbles on the tumor microenvironment, likely through sonoporation and other therapeutic mechanisms that are not well understood. Here, we present a perfusable in vitro model with a realistic 3D geometry to study the interactions between microbubbles and the vascular endothelium in the presence of ultrasound. Specifically, a three-dimensional, endothelial-cell-seeded in vitro microvascular model was perfused with cell culture medium and microbubbles while being sonicated by a single-element 1 MHz focused transducer. This setup mimics the in vivo scenario in which ultrasound induces a therapeutic effect in the tumor vasculature in the presence of flow. Fluorescence and bright-field microscopy were employed to assess the microbubble-vessel interactions and the extent of drug delivery and cell death both in real time during treatment as well as after treatment. Propidium iodide was used as the model drug while calcein AM was used to evaluate cell viability. There were two acoustic parameter sets chosen for this work: (1) acoustic pressure: 1.4 MPa, pulse length: 500 cycles, duty cycle: 5% and (2) acoustic pressure: 0.4 MPa, pulse length: 1000 cycles, duty cycle: 20%. Enhanced drug delivery and cell death were observed in both cases while the higher pressure setting had a more pronounced effect. By introducing physiological flow to the in vitro microvascular model and examining the PECAM-1 expression of the endothelial cells within it, we demonstrated that our model is a good mimic of the in vivo vasculature and is therefore a viable platform to provide mechanistic insights into ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ine De Cock
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Christina Keravnou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Madison K Gallagher
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Sara B Keller
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ying Zheng
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Michalakis Averkiou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
28
|
Escoffre JM, Bouakaz A. Minireview: Biophysical Mechanisms of Cell Membrane Sonopermeabilization. Knowns and Unknowns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10151-10165. [PMID: 30525655 DOI: 10.1021/acs.langmuir.8b03538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbubble-assisted ultrasound has emerged as a promising method for the delivery of low-molecular-weight chemotherapeutic molecules, nucleic acids, therapeutic peptides, and antibodies in vitro and in vivo. Its clinical applications are under investigation for local delivery drug in oncology and neurology. However, the biophysical mechanisms supporting the acoustically mediated membrane permeabilization are not fully established. This review describes the present state of the investigations concerning the acoustically mediated stimuli (i.e., mechanical, chemical, and thermal stimuli) as well as the molecular and cellular actors (i.e., membrane pores and endocytosis) involved in the reversible membrane permeabilization process. The different hypotheses, which were proposed to give a biophysical description of the membrane permeabilization, are critically discussed.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| |
Collapse
|
29
|
Yusof F, Sha’ban M, Azhim A. Development of decellularized meniscus using closed sonication treatment system: potential scaffolds for orthopedics tissue engineering applications. Int J Nanomedicine 2019; 14:5491-5502. [PMID: 31410000 PMCID: PMC6650458 DOI: 10.2147/ijn.s207270] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Meniscus is a fibrocartilagenous tissue that cannot effectively heal due to its complex structure and presence of avascular zone. Thus, tissue engineering and regenerative medicine offer an alternative for the regeneration of meniscus tissues using bioscaffolds as a replacement for the damaged one. The aim of this study was to prepare an ideal meniscus bioscaffold with minimal adverse effect on extracellular matrix components (ECMs) using a sonication treatment system. METHODS The decellularization was achieved using a developed closed sonication treatment system for 10 hrs, and continued with a washing process for 5 days. For the control, a simple immersion treatment was set as a benchmark to compare the decellularization efficiency. Histological and biochemical assays were conducted to investigate the cell removal and retention of the vital extracellular matrix. Surface ultrastructure of the prepared scaffolds was evaluated using scanning electron microscope at 5,000× magnification viewed from cross and longitudinal sections. In addition, the biomechanical properties were investigated through ball indentation testing to study the stiffness, residual forces and compression characteristics. Statistical significance between the samples was determined with p-value =0.05. RESULTS Histological and biochemical assays confirmed the elimination of antigenic cellular components with the retention of the vital extracellular matrix within the sonicated scaffolds. However, there was a significant removal of sulfated glycosaminoglycans. The surface histoarchitecture portrayed the preserved collagen fibril orientation and arrangement. However, there were minor disruptions on the structure, with few empty micropores formed which represented cell lacunae. The biomechanical properties of bioscaffolds showed the retention of viscoelastic behavior of the scaffolds which mimic native tissues. After immersion treatment, those scaffolds had poor results compared to the sonicated scaffolds due to the inefficiency of the treatment. CONCLUSION In conclusion, this study reported that the closed sonication treatment system had high capabilities to prepare ideal bioscaffolds with excellent removal of cellular components, and retained extracellular matrix and biomechanical properties.
Collapse
Affiliation(s)
- Fatihah Yusof
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Munirah Sha’ban
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Azran Azhim
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| |
Collapse
|
30
|
Wang J, Lai B, Nanayakkara G, Yang Q, Sun Y, Lu Y, Shao Y, Yu D, Yang WY, Cueto R, Fu H, Zeng H, Shen W, Wu S, Zhang C, Liu Y, Choi ET, Wang H, Yang X. Experimental Data-Mining Analyses Reveal New Roles of Low-Intensity Ultrasound in Differentiating Cell Death Regulatome in Cancer and Non-cancer Cells via Potential Modulation of Chromatin Long-Range Interactions. Front Oncol 2019; 9:600. [PMID: 31355136 PMCID: PMC6640725 DOI: 10.3389/fonc.2019.00600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background: The mechanisms underlying low intensity ultrasound (LIUS) mediated suppression of inflammation and tumorigenesis remain poorly determined. Methods: We used microarray datasets from NCBI GEO Dataset databases and conducted a comprehensive data mining analyses, where we studied the gene expression of 299 cell death regulators that regulate 13 different cell death types (cell death regulatome) in cells treated with LIUS. Results: We made the following findings: (1) LIUS exerts a profound effect on the expression of cell death regulatome in cancer cells and non-cancer cells. Of note, LIUS has the tendency to downregulate the gene expression of cell death regulators in non-cancer cells. Most of the cell death regulator genes downregulated by LIUS in non-cancer cells are responsible for mediating inflammatory signaling pathways; (2) LIUS activates different cell death transcription factors in cancer and non-cancer cells. Transcription factors TP-53 and SRF- were induced by LIUS exposure in cancer cells and non-cancer cells, respectively; (3) As two well-accepted mechanisms of LIUS, mild hyperthermia and oscillatory shear stress induce changes in the expression of cell death regulators, therefore, may be responsible for inducing LIUS mediated changes in gene expression patterns of cell death regulators in cells; (4) LIUS exposure may change the redox status of the cells. LIUS may induce more of antioxidant effects in non-cancer cells compared to cancer cells; and (5) The genes modulated by LIUS in cancer cells have distinct chromatin long range interaction (CLRI) patterns to that of non-cancer cells. Conclusions: Our analysis suggests novel molecular mechanisms that may be utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Lai
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gayani Nanayakkara
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Qian Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yu Sun
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yifan Lu
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Ying Shao
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y. Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Ramon Cueto
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Hangfei Fu
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Huihong Zeng
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Wen Shen
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Susu Wu
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Chunquan Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanna Liu
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Eric T. Choi
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Microbiology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
- Department of Immunology, Centers for Metabolic Disease Research, Inflammation, Translational and Clinical Lung Research, Cardiovascular Research, Thrombosis Research, Philadelphia, PA, United States
| |
Collapse
|
31
|
Beguin E, Shrivastava S, Dezhkunov NV, McHale AP, Callan JF, Stride E. Direct Evidence of Multibubble Sonoluminescence Using Therapeutic Ultrasound and Microbubbles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19913-19919. [PMID: 31074968 PMCID: PMC7006998 DOI: 10.1021/acsami.9b07084] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 05/08/2023]
Abstract
The intense conditions generated in the core of a collapsing bubble have been the subject of intense scrutiny from fields as diverse as marine biology and nuclear fusion. In particular, the phenomenon of sonoluminescence, whereby a collapsing bubble emits light, has received significant attention. Sonoluminescence has been associated predominantly with millimeter-sized bubbles excited at low frequencies and under conditions far removed from those associated with the use of ultrasound in medicine. In this study, however, we demonstrate that sonoluminescence is produced under medically relevant exposure conditions by microbubbles commonly used as contrast agents for ultrasound imaging. This provides a mechanistic explanation for the somewhat controversial reports of "sonodynamic" therapy, in which light-sensitive drugs have been shown to be activated by ultrasound-induced cavitation. To illustrate this, we demonstrate the activation of a photodynamic therapy agent using microbubbles and ultrasound. Since ultrasound can be accurately focused at large tissue depths, this opens up the potential for generating light at locations that cannot be reached by external sources. This could be exploited both for diagnostic and therapeutic applications, significantly increasing the range of applications that are currently restricted by the limited penetration of light in the tissue.
Collapse
Affiliation(s)
- Estelle Beguin
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Shamit Shrivastava
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Anthony P. McHale
- Biomedical
Sciences Research Institute, Ulster University, Coleraine BT52 1SA, United Kingdom
| | - John F. Callan
- Biomedical
Sciences Research Institute, Ulster University, Coleraine BT52 1SA, United Kingdom
| | - Eleanor Stride
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
32
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
33
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
34
|
Jia C, Xu L, Han T, Cai P, Yu ACH, Qin P. Generation of Reactive Oxygen Species in Heterogeneously Sonoporated Cells by Microbubbles with Single-Pulse Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1074-1085. [PMID: 29499918 DOI: 10.1016/j.ultrasmedbio.2018.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 06/08/2023]
Abstract
To develop and realize sonoporation-based macromolecule delivery, it is important to understand the underlying cellular bioeffects involved. It is known that an appropriate level of reactive oxygen species (ROS) is necessary to maintain normal physiologic function, but excessive ROS triggers adverse downstream bioeffects. However, it is still unclear whether a relationship exists between intracellular ROS levels and sonoporation. Using a customized platform for 1.5-MHz ultrasound exposure (13.33 µs duration and 0.70 MPa peak negative pressure) and imaging the dynamics of sonoporation and intracellular ROS at the single-cell level, we quantified the exogenous molecular uptake and the concentration of intracellular ROS indicator to evaluate the extent of sonoporation and ROS change, respectively. Our results revealed that the intracellular ROS level was correlated with the degree of the sonoporation. (i) Within ~120 s of the onset of ultrasound, during which membrane perforation and complete membrane resealing occurred, intracellular ROS rapidly decreased because of extracellular diffusion of dichlorofluorescein through the perforated membrane and positively correlated with the degree of the sonoporation. (ii) In the following 270 s (120-390 s post-exposure), ROS generation in reversibly sonoporated cells gradually increased and was positively correlated with the degree of the sonoporation. (iii) The ROS level in irreversibly sonoporated cells reduced to depletion during this time interval. It is possible that ROS generation in reversibly sonoporated cells can impact their long-term fate. These results thus provide new insight into the biological response to sonoporation.
Collapse
Affiliation(s)
- Caixia Jia
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Cai
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. SCIENCE CHINA-LIFE SCIENCES 2018; 61:415-426. [PMID: 29666990 DOI: 10.1007/s11427-017-9262-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022]
Abstract
Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality. Compared to photo-inspired therapy, SDT provides many opportunities and benefits, including deeper tissue penetration, high precision, less side effects, and good patient compliance. Thanks to the facile engineerable nature of nanotechnology, nanoparticles-based sonosensitizers exhibit predominant advantages, such as increased SDT efficacy, binding avidity, and targeting specificity. This review aims to summarize the possible mechanisms of SDT, which can be expected to provide the theoretical basis for SDT development in the future. We also extensively discuss nanoparticle-assisted sonosensitizers to enhance the outcome of SDT. Additionally, we focus on the potential strategy of combinational SDT with other therapeutic modalities and discuss the limitations and challenges of SDT toward clinical applications.
Collapse
|
36
|
Khayamian MA, Baniassadi M, Abdolahad M. Monitoring the effect of sonoporation on the cells using electrochemical approach. ULTRASONICS SONOCHEMISTRY 2018; 41:619-625. [PMID: 29137794 DOI: 10.1016/j.ultsonch.2017.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Sonoporation is applied to enhance the permeability of the cell to bioactive materials by employing the acoustic cavitation of microbubbles. This phenomena would be helpful in molecular biology, delivery of large molecules into the cells and gene therapy. Many methods have been applied to monitor the biological effects and trace of sonoporation on the cells such as scanning/transmission electron microscopy, confocal imaging and flow cytometry. Here, we monitored the effect of sonoporation on the cells using electrochemical method with an integrated three electrode system. Electrochemical responses of stimulated cells, compared to flow cytometry and electron microscopy results, presented different patterns of sonoporation in the cells detectable by cyclic voltammetry. In addition, confocal microscopy from actin stress fibers and young's modulus measured by AFM revealed the correlation of cell mechanics and amount of induced sonopores in the cells. This method could be applied as a new trend in cellular mechanochemical studies.
Collapse
Affiliation(s)
- Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
| |
Collapse
|
37
|
Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, Choy J, Gaibazzi N, Gillam LD, Janardhanan R, Kutty S, Leong-Poi H, Lindner JR, Main ML, Mathias W, Park MM, Senior R, Villanueva F. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr 2018; 31:241-274. [DOI: 10.1016/j.echo.2017.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Peruzzi G, Sinibaldi G, Silvani G, Ruocco G, Casciola CM. Perspectives on cavitation enhanced endothelial layer permeability. Colloids Surf B Biointerfaces 2018; 168:83-93. [PMID: 29486912 DOI: 10.1016/j.colsurfb.2018.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
Abstract
Traditional drug delivery systems, where pharmaceutical agents are conveyed to the target tissue through the blood circulation, suffer of poor therapeutic efficiency and limited selectivity largely due to the low permeability of the highly specialised biological interface represented by the endothelial layer. Examples concern cancer therapeutics or degenerative disorders where drug delivery is inhibited by the blood-brain barrier (BBB). Microbubbles injected into the bloodstream undergo volume oscillations under localised ultrasound irradiation and possibly collapse near the site of interest, with no effect on the rest of the endothelium. The resulting mechanical action induces a transient increase of the inter-cellular spaces and facilitates drug extravasation. This approach, already pursed in in vivo animal models, is extremely expensive and time-consuming. On the other hand in vitro studies using different kinds of microfluidic networks are firmly established in the pharmaceutical industry for drug delivery testing. The combination of the in vitro approach with ultrasound used to control microbubbles oscillations is expected to provide crucial information for developing cavitation enhanced drug delivery protocols and for screening the properties of the biological interface in presence of healthy or diseased tissues. Purpose of the present review is providing the state of the art in this rapidly growing field where cavitation is exploited as a viable technology to transiently modify the permeability of the biological interface. After describing current in vivo studies, particular emphasis will be placed on illustrating characteristics of micro-devices, biological functionalisation, properties of the artificial endothelium and ultrasound irradiation techniques.
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgia Sinibaldi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| | - Giulia Silvani
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physics, Sapienza University of Rome, Italy.
| | - Carlo Massimo Casciola
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| |
Collapse
|
39
|
Ma J, Shen M, Xu CS, Sun Y, Duan YR, Du LF. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound contrast enhanced imaging and antitumor therapy in vitro. Oncotarget 2018; 7:80008-80018. [PMID: 27835907 PMCID: PMC5346767 DOI: 10.18632/oncotarget.13243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/19/2016] [Indexed: 11/25/2022] Open
Abstract
A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Songjiang Hospital Affiliated to The First People's Hospital of Shanghai Jiao tong University, Shanghai 201600, China.,Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, China.,Department of Ultrasound, Shanghai East Hospital Affiliated to Tong ji University, Shanghai 200120, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Chang Song Xu
- Huai'an First People's Hospital, Nanjing Medical University, Jiangsu 223001, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - You Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
40
|
Qin P, Han T, Yu ACH, Xu L. Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery. J Control Release 2018; 272:169-181. [PMID: 29305924 DOI: 10.1016/j.jconrel.2018.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Ultrasound-driven microbubbles can trigger reversible membrane perforation (sonoporation), open interendothelial junctions and stimulate endocytosis, thereby providing a temporary and reversible time-window for the delivery of macromolecules across biological membranes and endothelial barriers. This time-window is related not only to cavitation events, but also to biological regulatory mechanisms. Mechanistic understanding of the interaction between cavitation events and cells and tissues, as well as the subsequent cellular and molecular responses will lead to new design strategies with improved efficacy and minimized side effects. Recent important progress on the spatiotemporal characteristics of sonoporation, cavitation-induced interendothelial gap and endocytosis, and the spatiotemporal bioeffects and the preliminary biological mechanisms in cavitation-enhanced permeability, has been made. On the basis of the summary of this research progress, this Review outlines the underlying bioeffects and the related biological regulatory mechanisms involved in cavitation-enhanced permeability; provides a critical commentary on the future tasks and directions in this field, including developing a standardized methodology to reveal mechanism-based bioeffects in depth, and designing biology-based treatment strategies to improve efficacy and safety. Such mechanistic understanding the bioeffects that contribute to cavitation-enhanced delivery will accelerate the translation of this approach to the clinic.
Collapse
Affiliation(s)
- Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
41
|
Yang Q, Nanayakkara GK, Drummer C, Sun Y, Johnson C, Cueto R, Fu H, Shao Y, Wang L, Yang WY, Tang P, Liu LW, Ge S, Zhou XD, Khan M, Wang H, Yang X. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking. Front Physiol 2017; 8:818. [PMID: 29109687 PMCID: PMC5660123 DOI: 10.3389/fphys.2017.00818] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, China.,Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gayani K Nanayakkara
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hangfei Fu
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Luqiao Wang
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiovascular Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - William Y Yang
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Peng Tang
- Department of Orthopedics, Beijing Charity Hospital of China Rehabilitation Research Center, Beijing, China
| | - Li-Wen Liu
- Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, China
| | - Shuping Ge
- Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, United States.,Deborah Heart and Lung Center, Browns Mills, NJ, United States
| | - Xiao-Dong Zhou
- Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, China
| | - Mohsin Khan
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Departments of Pharmacology, Microbiology and Immunology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
42
|
Shannon EK, Stevens A, Edrington W, Zhao Y, Jayasinghe AK, Page-McCaw A, Hutson MS. Multiple Mechanisms Drive Calcium Signal Dynamics around Laser-Induced Epithelial Wounds. Biophys J 2017; 113:1623-1635. [PMID: 28978452 PMCID: PMC5627067 DOI: 10.1016/j.bpj.2017.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/16/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial wound healing is an evolutionarily conserved process that requires coordination across a field of cells. Studies in many organisms have shown that cytosolic calcium levels rise within a field of cells around the wound and spread to neighboring cells, within seconds of wounding. Although calcium is a known potent second messenger and master regulator of wound-healing programs, it is unknown what initiates the rise of cytosolic calcium across the wound field. Here we use laser ablation, a commonly used technique for the precision removal of cells or subcellular components, as a tool to investigate mechanisms of calcium entry upon wounding. Despite its precise ablation capabilities, we find that this technique damages cells outside the primary wound via a laser-induced cavitation bubble, which forms and collapses within microseconds of ablation. This cavitation bubble damages the plasma membranes of cells it contacts, tens of microns away from the wound, allowing direct calcium entry from extracellular fluid into damaged cells. Approximately 45 s after this rapid influx of calcium, we observe a second influx of calcium that spreads to neighboring cells beyond the footprint of cavitation. The occurrence of this second, delayed calcium expansion event is predicted by wound size, indicating that a separate mechanism of calcium entry exists, corresponding to cell loss at the primary wound. Our research demonstrates that the damage profile of laser ablation is more similar to a crush injury than the precision removal of individual cells. The generation of membrane microtears upon ablation is consistent with studies in the field of optoporation, which investigate ablation-induced cellular permeability. We conclude that multiple types of damage, including microtears and cell loss, result in multiple mechanisms of calcium influx around epithelial wounds.
Collapse
Affiliation(s)
- Erica K Shannon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Aaron Stevens
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Westin Edrington
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Yunhua Zhao
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Aroshan K Jayasinghe
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| | - M Shane Hutson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
43
|
Slikkerveer J, Juffermans LJ, van Royen N, Appelman Y, Porter TR, Kamp O. Therapeutic application of contrast ultrasound in ST elevation myocardial infarction: Role in coronary thrombosis and microvascular obstruction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 8:45-53. [PMID: 28868906 PMCID: PMC6376593 DOI: 10.1177/2048872617728559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the past few decades, cardiac ultrasound has become a widely available, easy-to-use diagnostic tool in many scenarios in acute cardiac care. The introduction of microbubbles extended its diagnostic value. Not long thereafter, several investigators explored the therapeutic potential of contrast ultrasound on thrombus dissolution. Despite large improvements in therapeutic options, acute ST elevation myocardial infarction remains one of the main causes of mortality and morbidity in the western world. The therapeutic effect of contrast ultrasound on thrombus dissolution might prove to be a new, effective treatment strategy in this group of patients. With the recent publication of human studies scrutinising the therapeutic options of ultrasound and microbubbles in ST elevation myocardial infarction, we have entered a new stage in this area of research. This therapeutic effect is based on biochemical effects both at macrovascular and microvascular levels, of which the exact working mechanisms remain to be elucidated in full. This review will give an up-to-date summary of our current knowledge of the therapeutic effects of contrast ultrasound and its potential application in the field of ST elevation myocardial infarction, along with its future developments.
Collapse
Affiliation(s)
- Jeroen Slikkerveer
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lynda Jm Juffermans
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.,3 Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Yolande Appelman
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas R Porter
- 4 University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Otto Kamp
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Hussein F, Antonescu C, Karshafian R. Ultrasound and microbubble induced release from intracellular compartments. BMC Biotechnol 2017; 17:45. [PMID: 28521780 PMCID: PMC5437622 DOI: 10.1186/s12896-017-0364-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ultrasound and microbubbles (USMB) have been shown to enhance the intracellular uptake of molecules, generally thought to occur as a result of sonoporation. The underlying mechanism associated with USMB-enhanced intracellular uptake such as membrane disruption and endocytosis may also be associated with USMB-induced release of cellular materials to the extracellular milieu. This study investigates USMB effects on the molecular release from cells through membrane-disruption and exocytosis. Results USMB induced the release of 19% and 67% of GFP from the cytoplasm in viable and non-viable cells, respectively. Tfn release from early/recycling endosomes increased by 23% in viable cells upon USMB treatment. In addition, the MFI of LAMP-1 antibody increased by 50% in viable cells, suggesting USMB-stimulated lysosome exocytosis. In non-viable cells, labeling of LAMP-1 intracellular structures in the absence of cell permeabilization by detergents suggests that USMB-induced cell death correlates with lysosomal permeabilization. Conclusions In conclusion, USMB enhanced the molecular release from the cytoplasm, lysosomes, and early/recycling endosomes. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0364-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Hussein
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada. .,Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada. .,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
45
|
Bubulis A, Garalienė V, Jurėnas V, Navickas J, Giedraitis S. Effect of Low-Intensity Cavitation on the Isolated Human Thoracic Artery In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1040-1047. [PMID: 28196770 DOI: 10.1016/j.ultrasmedbio.2016.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 12/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Reported here are the results of an experimental study on the response to low-intensity cavitation induced by low-frequency (4-6 W/cm2, 20 kHz and 32.6 kHz) ultrasound of isolated human arterial samples taken during conventional myocardial revascularization operations. Studies have found that low-frequency ultrasound results in a significant (48%-54%) increase in isometric contraction force and does not depend on the number of exposures (10 or 20) or the time passed since the start of ultrasound (0, 10 and 20 min), but does depend on the frequency and location (internal or external) of the blood vessels for the application of ultrasound. Diltiazem (an inhibitor of slow calcium channels) and carbachol (an agonist of muscarinic receptors) used in a concentration-dependent manner did not modify the relaxation dynamics of smooth muscle affected by ultrasound. Thus, ultrasound conditioned to the augmentation of the isometric contraction force the smooth muscle of blood vessels and did not improve endothelial- and calcium channel blocker-dependent relaxation.
Collapse
|
46
|
Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Cham) 2017; 375:27. [DOI: 10.1007/s41061-017-0119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
47
|
Maciulevičius M, Tamošiūnas M, Jakštys B, Jurkonis R, Venslauskas MS, Šatkauskas S. Investigation of Microbubble Cavitation-Induced Calcein Release from Cells In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2990-3000. [PMID: 27637933 DOI: 10.1016/j.ultrasmedbio.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
In the present study, microbubble (MB) cavitation signal analysis was performed together with calcein release evaluation in both pressure and exposure duration domains of the acoustic field. A passive cavitation detection system was used to simultaneously measure MB scattering and attenuation signals for subsequent extraction efficiency relative to MB cavitation activity. The results indicate that the decrease in the efficiency of extraction of calcein molecules from Chinese hamster ovary cells, as well as cell viability, is associated with MB cavitation activity and can be accurately predicted using inertial cavitation doses up to 0.18 V × s (R2 > 0.9, p < 0.0001). No decrease in additional calcein release or cell viability was observed after complete MB sonodestruction was achieved. This indicates that the optimal exposure duration within which maximal sono-extraction efficiency is obtained coincides with the time necessary to achieve complete MB destruction. These results illustrate the importance of MB inertial cavitation in the sono-extraction process. To our knowledge, this study is the first to (i) investigate small molecule extraction from cells via sonoporation and (ii) relate the extraction process to the quantitative characteristics of MB cavitation acoustic spectra.
Collapse
Affiliation(s)
| | | | | | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania.
| |
Collapse
|
48
|
Guirro ECDO, Angelis DDFD, Sousa NTAD, Guirro RRDJ. Combination of therapeutic ultrasound with antibiotics interfere with the growth of bacterial culture that colonizes skin ulcers: An in-vitro study. ULTRASONICS SONOCHEMISTRY 2016; 32:284-289. [PMID: 27150772 DOI: 10.1016/j.ultsonch.2016.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Staphylococcus aureus and Escherichia coli are among the major bacterial species that colonize skin ulcers. Therapeutic ultrasound (TUS) produces biophysical effects that are relevant to wound healing; however, its application over a contaminated injury is not evidence-based. The objective of this research was to analyze the effect of TUS on in vitro-isolated S. aureus and E. coli, including the combination of ultrasound and antibiotics, in order to assess their antibiotic action on bacterial susceptibility. For the experiments, the bacterial strains were suspended in saline, then diluted (10(4)CFU/mL) for irradiation (at 1 and 3MHz, 0.5 and 0.8W/cm(2) for 0 and 15min) and the combination treatment of ultrasonication and antibiotics was administered by adding nalidixic acid (S. aureus) and tetracycline (E. coli) at concentrations equivalent to 50% of the minimum inhibitory concentration (MIC). The experiments were carried out in duplicate with six repetitions. The suspensions were inoculated on to Petri plates and incubated at 37°C and the colony forming units (CFUs) were counted after 24h. The results were subjected to the Shapiro-Wilk normality test, followed by parametric ANOVA and Tukey's post hoc test at a significance level of 1%. The results demonstrated that the action of TUS at 1MHz inhibited bacterial growth while at 3MHz, bacterial growth was observed in both species. However, the synergistic combination of ultrasound and antibiotics was able to inhibit the growth of both bacteria completely after 15min of ultrasonication. The results suggest that the action of ultrasound on S. aureus and E. coli are dependent on the oscillation frequency as well as the intensity and time of application. The combination of ultrasound with antibiotics was able to inhibit bacterial growth fully at all frequencies and doses in both species.
Collapse
Affiliation(s)
- Elaine Caldeira de Oliveira Guirro
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Laboratory of Physiotherapeutic Resources, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Dejanira de Franceschi de Angelis
- Department of Biochemistry and Microbiology, Institute of Biosciences of Rio Claro of Paulista State University, Rio Claro, SP, Brazil
| | - Natanael Teixeira Alves de Sousa
- Post-Graduation Program in Rehabilitation and Performance Functional, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rinaldo Roberto de Jesus Guirro
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Laboratory of Physiotherapeutic Resources, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
49
|
Prieur F, Pillon A, Mestas JL, Cartron V, Cèbe P, Chansard N, Lafond M, Lafon C. Enhancement of Fluorescent Probe Penetration into Tumors In Vivo Using Unseeded Inertial Cavitation. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1706-1713. [PMID: 27087691 DOI: 10.1016/j.ultrasmedbio.2016.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Ultrasound-induced cavitation has found many applications in the field of cancer therapy. One of its beneficial effects is the enhancement of drug intake by tumor cells. Our group has developed a device that can create and control unseeded cavitation in tissue using ultrasound. We conducted experiments on tumor-bearing mice using our device to assess the impact of sonication on the penetration of fluorescent probes into tumor cells. We studied the influence of pressure level, timing of sonication and sonication duration on treatment efficiency. Our results indicate that fluorescent probes penetrate better into tumors exposed to ultrasound. The best results revealed an increase in penetration of 61% and were obtained when sonicating the tumor in presence of the probes with a peak negative pressure at focus of 19 MPa. At this pressure level, the treatment generated only minor skin damage. Treatments could be significantly accelerated as equivalent enhanced penetration of probes was achieved when multiplying the initial raster scan speed by a factor of four.
Collapse
Affiliation(s)
- Fabrice Prieur
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France.
| | - Arnaud Pillon
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Jean-Louis Mestas
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France; Caviskills SAS, Vaulx-en-Velin, France
| | - Valérie Cartron
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Patrick Cèbe
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Nathalie Chansard
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Maxime Lafond
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France
| | - Cyril Lafon
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France; Caviskills SAS, Vaulx-en-Velin, France
| |
Collapse
|
50
|
Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16:815-26. [DOI: 10.1517/14712598.2016.1169268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|