1
|
Badea CT. Principles of Micro X-ray Computed Tomography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
2
|
Panetta D, Gabelloni M, Faggioni L, Pelosi G, Aringhieri G, Caramella D, Salvadori PA. Cardiac Computed Tomography Perfusion: Contrast Agents, Challenges and Emerging Methodologies from Preclinical Research to the Clinics. Acad Radiol 2021; 28:e1-e13. [PMID: 32220550 DOI: 10.1016/j.acra.2019.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022]
Abstract
Computed Tomography (CT) has long been regarded as a purely anatomical imaging modality. Recent advances on CT technology and Contrast Agents (CA) in both clinical and preclinical cardiac imaging offer opportunities for the use of CT in functional imaging. Combined with modern ECG-gating techniques, functional CT has now become a reality allowing a comprehensive evaluation of myocardial global and regional function, perfusion and coronary angiography. This article aims at reviewing the current status of cardiac CT perfusion and micro-CT perfusion with established and experimental scanners and contrast agents, from clinical practice to the experimental domain of investigations based on animal models of heart diseases.
Collapse
|
3
|
Saraste A, Ståhle M, Roivainen A. Evaluation of cardiac function by nuclear imaging in preclinical studies. J Nucl Cardiol 2020; 27:1328-1330. [PMID: 31292849 DOI: 10.1007/s12350-019-01784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- Heart Center, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland.
| | - Mia Ståhle
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| |
Collapse
|
4
|
Hess A, Nekolla SG, Meier M, Bengel FM, Thackeray JT. Accuracy of cardiac functional parameters measured from gated radionuclide myocardial perfusion imaging in mice. J Nucl Cardiol 2020; 27:1317-1327. [PMID: 31044402 DOI: 10.1007/s12350-019-01713-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/26/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Quantitative cardiac contractile function assessment is the primary indicator of disease progression and therapeutic efficacy in small animals. Operator dependency is a major challenge with commonly used echocardiography. Simultaneous assessment of cardiac perfusion and function in nuclear scans would reduce burden on the animal and facilitate longitudinal studies. We evaluated the accuracy of contractile function measurements obtained from electrocardiogram-gated nuclear perfusion imaging compared with anatomic imaging. METHODS AND RESULTS In healthy C57Bl/6N mice (n = 11), 99mTc-sestamibi SPECT and 13N-ammonia PET underestimated left ventricular volumes (23 to 28%, P = 0.02) compared to matched anatomic images, though ejection fraction (LVEF) was comparable (%, SPECT: 73 ± 8 vs CMR: 72 ± 6, P = 0.1). At 1 week after myocardial infarction (n = 13), LV volumes were significantly lower in perfusion images compared to CMR and contrast CT (P = 0.003), and LVEF was modestly overestimated (%, SPECT: 37 ± 8, vs CMR: 27 ± 7, P = 0.003). Nuclear images exhibited good intra- and inter-reader agreement. Perfusion SPECT accurately calculated infarct size compared to histology (r = 0.95, P < 0.001). CONCLUSIONS Cardiac function can be calculated by gated nuclear perfusion imaging in healthy mice. After infarction, perfusion imaging overestimates LVEF, which should be considered for comparison to other modalities. Combined functional and infarct size analysis may optimize imaging protocols and reduce anaesthesia duration for longitudinal studies.
Collapse
Affiliation(s)
- Annika Hess
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Martin Meier
- Imaging Center of the Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
5
|
El Ketara S, Ford NL. Time-course study of a gold nanoparticle contrast agent for cardiac-gated micro-CT imaging in mice. Biomed Phys Eng Express 2020; 6:035025. [PMID: 33438670 DOI: 10.1088/2057-1976/ab8741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although micro-computed tomography (micro-CT) images have high contrast for bone or air, between soft tissues the contrast is typically low. To overcome this inherent issue, attenuating exogenous contrast agents are used to provide contrast enhancement in the vasculature and abdominal organs. The aim of this study is to measure the contrast enhancement time course for a gold nanoparticle blood-pool contrast agent and use it to perform cardiac-gated 4D micro-CT scans of the heart. Six healthy female C57BL/6 mice were anesthetized and imaged after receiving an injected dose of MVivo gold nanoparticle blood-pool contrast agent. Following the injection, we performed micro-CT scans at 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 24, 48 and 72 h. The mean CT number was measured for 7 different organs. No contrast enhancement was noticed in the bladder, kidneys or muscle during the time-course study. However, it clearly appears that the contrast enhancement is high in both right ventricle and vena cava. To perform cardiac-gated imaging, either the gold nanoparticle agent (n = 3) or an iodine-based (n = 3) contrast agent was introduced and images representing 9 phases of the cardiac cycle were obtained in 6 additional mice. A few typical cardiac parameters were measured or calculated, with similar accuracy between the gold and iodinated agents, but better visualization of structures with the gold agent. The MVivo Au contrast agent can be used for investigations of cardiac or vascular disease with a single bolus injection, with an optimal cardiac imaging window identified during the first hour after injection, demonstrating similar image quality to iodinated contrast agents and excellent measurement accuracy. Furthermore, the long-lasting contrast enhancement of up to 8 h can be very useful for scanning protocols that require longer acquisition times.
Collapse
Affiliation(s)
- Samir El Ketara
- Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada. Université Grenobles Alpes, Grenoble, France
| | | |
Collapse
|
6
|
Philip JL, Murphy TM, Schreier DA, Stevens S, Tabima DM, Albrecht M, Frump AL, Hacker TA, Lahm T, Chesler NC. Pulmonary vascular mechanical consequences of ischemic heart failure and implications for right ventricular function. Am J Physiol Heart Circ Physiol 2019; 316:H1167-H1177. [PMID: 30767670 DOI: 10.1152/ajpheart.00319.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Left heart failure (LHF) is the most common cause of pulmonary hypertension, which confers an increase in morbidity and mortality in this context. Pulmonary vascular resistance has prognostic value in LHF, but otherwise the mechanical consequences of LHF for the pulmonary vasculature and right ventricle (RV) remain unknown. We sought to investigate mechanical mechanisms of pulmonary vascular and RV dysfunction in a rodent model of LHF to address the knowledge gaps in understanding disease pathophysiology. LHF was created using a left anterior descending artery ligation to cause myocardial infarction (MI) in mice. Sham animals underwent thoracotomy alone. Echocardiography demonstrated increased left ventricle (LV) volumes and decreased ejection fraction at 4 wk post-MI that did not normalize by 12 wk post-MI. Elevation of LV diastolic pressure and RV systolic pressure at 12 wk post-MI demonstrated pulmonary hypertension (PH) due to LHF. There was increased pulmonary arterial elastance and pulmonary vascular resistance associated with perivascular fibrosis without other remodeling. There was also RV contractile dysfunction with a 35% decrease in RV end-systolic elastance and 66% decrease in ventricular-vascular coupling. In this model of PH due to LHF with reduced ejection fraction, pulmonary fibrosis contributes to increased RV afterload, and loss of RV contractility contributes to RV dysfunction. These are key pathologic features of human PH secondary to LHF. In the future, novel therapeutic strategies aimed at preventing pulmonary vascular mechanical changes and RV dysfunction in the context of LHF can be tested using this model. NEW & NOTEWORTHY In this study, we investigate the mechanical consequences of left heart failure with reduced ejection fraction for the pulmonary vasculature and right ventricle. Using comprehensive functional analyses of the cardiopulmonary system in vivo and ex vivo, we demonstrate that pulmonary fibrosis contributes to increased RV afterload and loss of RV contractility contributes to RV dysfunction. Thus this model recapitulates key pathologic features of human pulmonary hypertension-left heart failure and offers a robust platform for future investigations.
Collapse
Affiliation(s)
- Jennifer L Philip
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering , Madison, Wisconsin.,Department of Surgery, University of Wisconsin-Madison , Madison, Wisconsin
| | - Thomas M Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering , Madison, Wisconsin
| | - David A Schreier
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering , Madison, Wisconsin
| | - Sydney Stevens
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering , Madison, Wisconsin
| | - Margie Albrecht
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Andrea L Frump
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin
| | - Tim Lahm
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center , Indianapolis, Indiana
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering , Madison, Wisconsin.,Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
7
|
Yao X, Gan Y, Ling Y, Marboe CC, Hendon CP. Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700204. [PMID: 29165902 PMCID: PMC6186148 DOI: 10.1002/jbio.201700204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 05/10/2023]
Abstract
A single-channel high-resolution cross-polarization (CP) optical coherence tomography (OCT) system is presented for multicontrast imaging of human myocardium in one-shot measurement. The intensity and functional contrasts, including the ratio between the cross- and co-polarization channels as well as the cumulative retardation, are reconstructed from the CP-OCT readout. By comparing the CP-OCT results with histological analysis, it is shown that the system can successfully delineate microstructures in the myocardium and differentiate the fibrotic myocardium from normal or ablated myocardium based on the functional contrasts provided by the CP-OCT system. The feasibility of using A-line profiles from the 2 orthogonal polarization channels to identify fibrotic myocardium, normal myocardium and ablated lesion is also discussed.
Collapse
Affiliation(s)
- Xinwen Yao
- Department of Electrical Engineering, Columbia University, New York, New York
| | - Yu Gan
- Department of Electrical Engineering, Columbia University, New York, New York
| | - Yuye Ling
- Department of Electrical Engineering, Columbia University, New York, New York
| | - Charles C. Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, New York, New York
| |
Collapse
|
8
|
Holbrook M, Clark DP, Badea CT. Low-dose 4D cardiac imaging in small animals using dual source micro-CT. Phys Med Biol 2018; 63:025009. [PMID: 29148430 DOI: 10.1088/1361-6560/aa9b45] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Micro-CT is widely used in preclinical studies, generating substantial interest in extending its capabilities in functional imaging applications such as blood perfusion and cardiac function. However, imaging cardiac structure and function in mice is challenging due to their small size and rapid heart rate. To overcome these challenges, we propose and compare improvements on two strategies for cardiac gating in dual-source, preclinical micro-CT: fast prospective gating (PG) and uncorrelated retrospective gating (RG). These sampling strategies combined with a sophisticated iterative image reconstruction algorithm provide faster acquisitions and high image quality in low-dose 4D (i.e. 3D + Time) cardiac micro-CT. Fast PG is performed under continuous subject rotation which results in interleaved projection angles between cardiac phases. Thus, fast PG provides a well-sampled temporal average image for use as a prior in iterative reconstruction. Uncorrelated RG incorporates random delays during sampling to prevent correlations between heart rate and sampling rate. We have performed both simulations and animal studies to validate these new sampling protocols. Sampling times for 1000 projections using fast PG and RG were 2 and 3 min, respectively, and the total dose was 170 mGy each. Reconstructions were performed using a 4D iterative reconstruction technique based on the split Bregman method. To examine undersampling robustness, subsets of 500 and 250 projections were also used for reconstruction. Both sampling strategies in conjunction with our iterative reconstruction method are capable of resolving cardiac phases and provide high image quality. In general, for equal numbers of projections, fast PG shows fewer errors than RG and is more robust to undersampling. Our results indicate that only 1000-projection based reconstruction with fast PG satisfies a 5% error criterion in left ventricular volume estimation. These methods promise low-dose imaging with a wide range of preclinical applications in cardiac imaging.
Collapse
Affiliation(s)
- M Holbrook
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, United States of America
| | | | | |
Collapse
|
9
|
Zhang X, Qiu B, Wei Z, Yan F, Shi C, Su S, Liu X, Ji JX, Xie G. Three-dimensional self-gated cardiac MR imaging for the evaluation of myocardial infarction in mouse model on a 3T clinical MR system. PLoS One 2017; 12:e0189286. [PMID: 29216303 PMCID: PMC5720776 DOI: 10.1371/journal.pone.0189286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/23/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose To develop and assess a three-dimensional (3D) self-gated technique for the evaluation of myocardial infarction (MI) in mouse model without the use of external electrocardiogram (ECG) trigger and respiratory motion sensor on a 3T clinical MR system. Methods A 3D T1-weighted GRE sequence with stack-of-stars sampling trajectories was developed and performed on six mice with MIs that were injected with a gadolinium-based contrast agent at a 3T clinical MR system. Respiratory and cardiac self-gating signals were derived from the Cartesian mapping of the k-space center along the partition encoding direction by bandpass filtering in image domain. The data were then realigned according to the predetermined self-gating signals for the following image reconstruction. In order to accelerate the data acquisition, image reconstruction was based on compressed sensing (CS) theory by exploiting temporal sparsity of the reconstructed images. In addition, images were also reconstructed from the same realigned data by conventional regridding method for demonstrating the advantageous of the proposed reconstruction method. Furthermore, the accuracy of detecting MI by the proposed method was assessed using histological analysis as the standard reference. Linear regression and Bland-Altman analysis were used to assess the agreement between the proposed method and the histological analysis. Results Compared to the conventional regridding method, the proposed CS method reconstructed images with much less streaking artifact, as well as a better contrast-to-noise ratio (CNR) between the blood and myocardium (4.1 ± 2.1 vs. 2.9 ± 1.1, p = 0.031). Linear regression and Bland-Altman analysis demonstrated that excellent correlation was obtained between infarct sizes derived from the proposed method and histology analysis. Conclusion A 3D T1-weighted self-gating technique for mouse cardiac imaging was developed, which has potential for accurately evaluating MIs in mice at 3T clinical MR system without the use of external ECG trigger and respiratory motion sensor.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
- * E-mail: (GX); (BQ)
| | - Zijun Wei
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Caiyun Shi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shi Su
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jim X. Ji
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Guoxi Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- * E-mail: (GX); (BQ)
| |
Collapse
|
10
|
Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies. Int J Mol Sci 2016; 17:ijms17101645. [PMID: 27690008 PMCID: PMC5085678 DOI: 10.3390/ijms17101645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/30/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022] Open
Abstract
The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems.
Collapse
|
11
|
Yao X, Gan Y, Marboe CC, Hendon CP. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61006. [PMID: 27001162 PMCID: PMC4814547 DOI: 10.1117/1.jbo.21.6.061006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/29/2016] [Indexed: 05/17/2023]
Abstract
We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 800 nm with a low-noise supercontinuum source (SC) optimized for myocardial imaging. The system was demonstrated to have an axial resolution of 2.72 μm with a large imaging depth of 1.78 mm and a 6-dB falloff range of 0.89 mm. The lateral resolution (5.52 μm) was compromised to enhance the image penetration required for myocardial imaging. The noise of the SC source was analyzed extensively and an imaging protocol was proposed for SC-based OCT imaging with appreciable contrast. Three-dimensional datasets were acquired ex vivo on the endocardium side of tissue specimens from different chambers of fresh human and swine hearts. With the increased resolution and contrast, features such as elastic fibers, Purkinje fibers, and collagen fiber bundles were observed. The correlation between the structural information revealed in the OCT images and tissue pathology was discussed as well.
Collapse
Affiliation(s)
- Xinwen Yao
- Columbia University, Department of Electrical Engineering, 500 West 120th Street, New York, New York 10027, United States
| | - Yu Gan
- Columbia University, Department of Electrical Engineering, 500 West 120th Street, New York, New York 10027, United States
| | - Charles C Marboe
- Columbia University Medical Center, Department of Pathology and Cell Biology, 630 West 168th Street, New York, New York 10032, United States
| | - Christine P Hendon
- Columbia University, Department of Electrical Engineering, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
12
|
Hendrikx G, Bauwens M, Wierts R, Mottaghy FM, Post MJ. Left ventricular function measurements in a mouse myocardial infarction model. Comparison between 3D-echocardiography and ECG-gated SPECT. Nuklearmedizin 2016; 55:115-22. [PMID: 27046440 DOI: 10.3413/nukmed-0776-15-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
AIM To assess the accuracy of ECG-gated micro (µ)-SPECT in a mouse myocardial infarction (MI) model in comparison to 3D-echocardiography. ANIMALS, METHODS In a mouse (Swiss mice) MI model we compared the accuracy of technetium-99m sestamibi (99mTc-sestamibi) myocardial perfusion, electrocardiogram (ECG) gated µSPECT to 3D-echocardiography in determining left ventricular function. 3D-echocardiography and myocardial perfusion ECG-gated µSPECT data were acquired in the same animal at baseline (n = 11) and 7 (n = 8) and 35 (n = 9) days post ligation of the left anterior descending coronary artery (LAD). Sham operated mice were used as a control (8, 6 and 7 mice respectively). Additionally, after day 35 µSPECT scans, hearts were harvested and 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining and autoradiography was performed to determine infarct size. RESULTS In both infarcted and sham-operated mice we consistently found comparable values for the end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) obtained by 3D-echocardiography and ECG-gated µSPECT. Excellent correlations between measurements from 3D-echocardiography and ECG-gated µSPECT were found for EDV, ESV and EF (r = 0.9532, r = 0.9693 respectively and r = 0.9581) in infarcted mice. Furthermore, comparable infarct size values were found at day 35 post MI by TTC staining and autoradiography (27.71 ± 1.80% and 29.20 ± 1.18% with p = 0.43). CONCLUSION We have demonstrated that ECG-gated µSPECT imaging provides reliable left ventricular function measurements in a mouse MI model. Obtained results were comparable to the highly accurate 3D-echocardiography. This, in addition to the opportunity to simultaneously image multiple biological processes during a single acquisition makes µSPECT imaging a serious option for studying cardiovascular disease in small animals.
Collapse
Affiliation(s)
| | | | | | - Felix M Mottaghy
- Prof. Dr. Felix M. Mottaghy, Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands, Tel. +31/433 87 49 11,
| | | |
Collapse
|
13
|
van Deel E, Ridwan Y, van Vliet JN, Belenkov S, Essers J. In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography. J Vis Exp 2016:53603. [PMID: 26967592 PMCID: PMC4828165 DOI: 10.3791/53603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD).
Collapse
Affiliation(s)
- Elza van Deel
- Department of Genetics, Erasmus MC, Rotterdam; Department of Experimental Cardiology, Erasmus MC, Rotterdam
| | | | | | | | - Jeroen Essers
- Department of Genetics, Erasmus MC, Rotterdam; Department of Vascular Surgery, Erasmus MC, Rotterdam; Department of Radiation Oncology, Erasmus MC, Rotterdam;
| |
Collapse
|
14
|
Grover SP, Evans CE, Patel AS, Modarai B, Saha P, Smith A. Assessment of Venous Thrombosis in Animal Models. Arterioscler Thromb Vasc Biol 2015; 36:245-52. [PMID: 26681755 DOI: 10.1161/atvbaha.115.306255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022]
Abstract
Deep vein thrombosis and common complications, including pulmonary embolism and post-thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here, we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro-computed tomography, and high-frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition.
Collapse
Affiliation(s)
- Steven P Grover
- From the Cardiovascular Division, Academic Department of Vascular Surgery, Kings College London, BHF Centre of Research Excellence and NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Colin E Evans
- From the Cardiovascular Division, Academic Department of Vascular Surgery, Kings College London, BHF Centre of Research Excellence and NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Ashish S Patel
- From the Cardiovascular Division, Academic Department of Vascular Surgery, Kings College London, BHF Centre of Research Excellence and NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Bijan Modarai
- From the Cardiovascular Division, Academic Department of Vascular Surgery, Kings College London, BHF Centre of Research Excellence and NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Prakash Saha
- From the Cardiovascular Division, Academic Department of Vascular Surgery, Kings College London, BHF Centre of Research Excellence and NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom.
| | - Alberto Smith
- From the Cardiovascular Division, Academic Department of Vascular Surgery, Kings College London, BHF Centre of Research Excellence and NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
15
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
16
|
Grover SP, Saha P, Jenkins J, Mukkavilli A, Lyons OT, Patel AS, Sunassee K, Modarai B, Smith A. Quantification of experimental venous thrombus resolution by longitudinal nanogold-enhanced micro-computed tomography. Thromb Res 2015; 136:1285-90. [PMID: 26489729 PMCID: PMC4697135 DOI: 10.1016/j.thromres.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 01/10/2023]
Abstract
Introduction The assessment of thrombus size following treatments directed at preventing thrombosis or enhancing its resolution has generally relied on physical or histological methods. This cross-sectional design imposes the need for increased numbers of animals for experiments. Micro-computed tomography (microCT) has been used to detect the presence of venous thrombus in experimental models but has yet to be used in a quantitative manner. In this study, we investigate the use of contrast-enhanced microCT for the longitudinal assessment of experimental venous thrombus resolution. Materials and methods Thrombi induced by stenosis of the inferior vena cava in mice were imaged by contrast-enhanced microCT at 1, 7 and 14 days post-induction (n = 18). Thrombus volumes were determined longitudinally by segmentation and 3D volume reconstruction of microCT scans and by standard end-point histological analysis at day 14. An additional group of thrombi were analysed solely by histology at 1, 7 and 14 days post-induction (n = 15). Results IVC resident thrombus was readily detectable by contrast-enhanced microCT. MicroCT-derived measurements of thrombus volume correlated well with time-matched histological analyses (ICC = 0.75, P < 0.01). Thrombus volumes measured by microCT were significantly greater than those derived from histological analysis (P < 0.001). Intra- and inter-observer analyses were highly correlated (ICC = 0.99 and 0.91 respectively, P < 0.0001). Further histological analysis revealed noticeable levels of contrast agent extravasation into the thrombus that was associated with the presence of neovascular channels, macrophages and intracellular iron deposits. Conclusion Contrast-enhanced microCT represents a reliable and reproducible method for the longitudinal assessment of venous thrombus resolution providing powerful paired data. Contrast-enhanced microCT allows longitudinal measurements of experimental venous thrombi. Measurements of thrombus volume by microCT are highly reproducible. Aurovist nano-gold contrast accumulates in highly organised regions of the resolving thrombus.
Collapse
Affiliation(s)
- Steven P Grover
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK
| | - Prakash Saha
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK
| | - Julia Jenkins
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK
| | - Arun Mukkavilli
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK
| | - Oliver T Lyons
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK
| | - Ashish S Patel
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK
| | - Kavitha Sunassee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, Wellcome Trust - EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, UK
| | - Bijan Modarai
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK
| | - Alberto Smith
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, UK.
| |
Collapse
|
17
|
Burk LM, Wang KH, Wait JM, Kang E, Willis M, Lu J, Zhou O, Lee YZ. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT. PLoS One 2015; 10:e0115607. [PMID: 25635838 PMCID: PMC4312037 DOI: 10.1371/journal.pone.0115607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/30/2014] [Indexed: 11/24/2022] Open
Abstract
We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8–12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate the ability to consistently identify areas of myocardial infarct in mice and provide functional cardiac information using a delayed contrast enhancement technique.
Collapse
Affiliation(s)
- Laurel M. Burk
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- * E-mail:
| | - Ko-Han Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - John Matthew Wait
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Eunice Kang
- Division of Cardiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Monte Willis
- Division of Cardiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- Curriculum in Applied Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- Curriculum in Applied Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Yueh Z. Lee
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
18
|
Maier J, Sawall S, Kachelrieß M. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure. Med Phys 2014; 41:051908. [PMID: 24784387 DOI: 10.1118/1.4870983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. METHODS Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. RESULTS Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. CONCLUSIONS LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.
Collapse
Affiliation(s)
- Joscha Maier
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Sawall
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Medical Physics, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Medical Physics, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE The objective of this study was to compare a new generation of four-dimensional micro-single photon emission computed tomography (microSPECT) with microCT for the quantitative in vivo assessment of murine cardiac function. PROCEDURES Four-dimensional isotropic cardiac images were acquired from anesthetized normal C57BL/6 mice with either microSPECT (n = 6) or microCT (n = 6). One additional mouse with myocardial infarction (MI) was scanned with both modalities. Prior to imaging, mice were injected with either technetium tetrofosmin for microSPECT or a liposomal blood pool contrast agent for microCT. Segmentation of the left ventricle (LV) was performed using Vitrea (Vital Images) software, to derive global and regional function. RESULTS Measures of global LV function between microSPECT and microCT groups were comparable (e.g., ejection fraction = 71 ± 6 % microSPECT and 68 ± 4 % microCT). Regional functional indices (wall motion, wall thickening, regional ejection fraction) were also similar for the two modalities. In the mouse with MI, microSPECT identified a large perfusion defect that was not evident with microCT. CONCLUSIONS Despite lower spatial resolution, microSPECT was comparable to microCT in the quantitative evaluation of cardiac function. MicroSPECT offers an advantage over microCT in the ability to evaluate simultaneously myocardial radiotracer distribution and function, simultaneously. MicroSPECT should be considered as an alternative to microCT and magnetic resonance for preclinical cardiac imaging in the mouse.
Collapse
|
20
|
Ashton JR, Befera N, Clark D, Qi Y, Mao L, Rockman HA, Johnson GA, Badea CT. Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:161-8. [PMID: 24523061 DOI: 10.1002/cmmi.1557] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/10/2013] [Accepted: 06/17/2013] [Indexed: 11/09/2022]
Abstract
Noninvasive small animal imaging techniques are essential for evaluation of cardiac disease and potential therapeutics. A novel preclinical iodinated contrast agent called eXIA 160 has recently been developed, which has been evaluated for micro-CT cardiac imaging. eXIA 160 creates strong contrast between blood and tissue immediately after its injection and is subsequently taken up by the myocardium and other metabolically active tissues over time. We focus on these properties of eXIA and show its use in imaging myocardial infarction in mice. Five C57BL/6 mice were imaged ~2 weeks after left anterior descending coronary artery ligation. Six C57BL/6 mice were used as controls. Immediately after injection of eXIA 160, an enhancement difference between blood and myocardium of ~340 HU enabled cardiac function estimation via 4D micro-CT scanning with retrospective gating. Four hours post-injection, the healthy perfused myocardium had a contrast difference of ~140 HU relative to blood while the infarcted myocardium showed no enhancement. These differences allowed quantification of infarct size via dual-energy micro-CT. In vivo micro-SPECT imaging and ex vivo triphenyl tetrazolium chloride (TTC) staining provided validation for the micro-CT findings. Root mean squared error of infarct measurements was 2.7% between micro-CT and SPECT, and 4.7% between micro-CT and TTC. Thus, micro-CT with eXIA 160 can be used to provide both morphological and functional data for preclinical studies evaluating myocardial infarction and potential therapies. Further studies are warranted to study the potential use of eXIA 160 as a CT molecular imaging tool for other metabolically active tissues in the mouse.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 2014; 30:619-34. [PMID: 24974176 PMCID: PMC4138257 DOI: 10.1016/j.ejmp.2014.05.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g., measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.
Collapse
Affiliation(s)
- D P Clark
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA
| | - C T Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Cardiac Micro-PET-CT. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Sawall S, Kuntz J, Socher M, Knaup M, Hess A, Bartling S, Kachelrieß M. Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT. Med Phys 2013; 39:7499-506. [PMID: 23231299 DOI: 10.1118/1.4762685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Mouse models of cardiac diseases have proven to be a valuable tool in preclinical research. The high cardiac and respiratory rates of free breathing mice prohibit conventional in vivo cardiac perfusion studies using computed tomography even if gating methods are applied. This makes a sacrification of the animals unavoidable and only allows for the application of ex vivo methods. METHODS To overcome this issue the authors propose a low dose scan protocol and an associated reconstruction algorithm that allows for in vivo imaging of cardiac perfusion and associated processes that are retrospectively synchronized to the respiratory and cardiac motion of the animal. The scan protocol consists of repetitive injections of contrast media within several consecutive scans while the ECG, respiratory motion, and timestamp of contrast injection are recorded and synchronized to the acquired projections. The iterative reconstruction algorithm employs a six-dimensional edge-preserving filter to provide low-noise, motion artifact-free images of the animal examined using the authors' low dose scan protocol. RESULTS The reconstructions obtained show that the complete temporal bolus evolution can be visualized and quantified in any desired combination of cardiac and respiratory phase including reperfusion phases. The proposed reconstruction method thereby keeps the administered radiation dose at a minimum and thus reduces metabolic inference to the animal allowing for longitudinal studies. CONCLUSIONS The authors' low dose scan protocol and phase-correlated dynamic reconstruction algorithm allow for an easy and effective way to visualize phase-correlated perfusion processes in routine laboratory studies using free-breathing mice.
Collapse
Affiliation(s)
- Stefan Sawall
- Institute of Medical Physics, Friedrich-Alexander-University, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Greco A, Fiumara G, Gargiulo S, Gramanzini M, Brunetti A, Cuocolo A. High-resolution positron emission tomography/computed tomography imaging of the mouse heart. Exp Physiol 2012; 98:645-51. [PMID: 23118016 DOI: 10.1113/expphysiol.2012.068643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Different animal models have been used to reproduce coronary heart disease, but in recent years mice have become the animals of choice, because of their short life cycle and the possibility of genetic manipulation. Various techniques are currently used for cardiovascular imaging in mice, including high-resolution ultrasound, X-ray computed tomography (CT), magnetic resonance imaging and nuclear medicine procedures. In particular, molecular imaging with cardiac positron emission tomography (PET) allows non-invasive evaluation of changes in myocardial perfusion, metabolism, apoptosis, inflammation and gene expression or measurement of changes in left ventricular functional parameters. With technological advances, dedicated small laboratory PET/CT imaging has emerged in cardiovascular research, providing in vivo a non-invasive, serial and quantitative assessment of left ventricular function, myocardial perfusion and metabolism at a molecular level. This non-invasive methodology might be useful in longitudinal studies to monitor cardiac biochemical parameters and might facilitate studies to assess the effect of different interventions after acute myocardial ischaemia.
Collapse
Affiliation(s)
- Adelaide Greco
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, Naples 80131, Italy
| | | | | | | | | | | |
Collapse
|
25
|
FRIEDRICHS L, MAIER M, HAMM C. A new method for exact three-dimensional reconstructions of diatom frustules. J Microsc 2012; 248:208-17. [DOI: 10.1111/j.1365-2818.2012.03664.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Constantinesco A, Choquet P, Goetz C, Monassier L. PET, SPECT, CT, and MRI in Mouse Cardiac Phenotyping: An Overview. ACTA ACUST UNITED AC 2012; 2:129-44. [DOI: 10.1002/9780470942390.mo110225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- André Constantinesco
- Laboratoire d'Imagerie Préclinique, Service de Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg; Strasbourg France
| | - Philippe Choquet
- Laboratoire d'Imagerie Préclinique, Service de Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg; Strasbourg France
| | - Christian Goetz
- Laboratoire d'Imagerie Préclinique, Service de Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg; Strasbourg France
| | - Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Université de Strasbourg; Strasbourg France
| |
Collapse
|
27
|
PET/CT imaging in mouse models of myocardial ischemia. J Biomed Biotechnol 2012; 2012:541872. [PMID: 22505813 PMCID: PMC3312322 DOI: 10.1155/2012/541872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/16/2011] [Accepted: 12/30/2011] [Indexed: 01/06/2023] Open
Abstract
Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT), high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET) allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.
Collapse
|
28
|
Redfors B, Shao Y, Omerovic E. Myocardial infarct size and area at risk assessment in mice. Exp Clin Cardiol 2012; 17:268-272. [PMID: 23592952 PMCID: PMC3627291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mouse models of myocardial ischemia and infarction are important in cardiovascular research. Reliable and reproducible assessment of the area at risk (AAR) and infarct size (IS) in mice is vital for deciphering mechanisms behind these common diseases, and for developing and evaluating treatment strategies. The present review will briefly describe and discuss the most common methods for determining the AAR and IS in mouse models of cardiovascular disease. Several methods exist for ex vivo assessment of IS. Conventional histological stains target the fibrous scar and require several days to pass from the time of infarct induction until the animal is euthanized, whereas triphenyltetrazolium-based techniques stain the viable tissue surrounding the infarct and can be performed on tissue harvested within a few hours after infarction. The AAR is usually stained by injecting a dye into the circulation. This dye subsequently distributes to perfused tissue but leaves the AAR unstained. In vivo assessment enables serial measurements of the IS and/or AAR and is sometimes preferable to ex vivo techniques. Echocardiography is usually the method of choice but magnetic resonance imaging-based techniques are also used. The aim of the present review was to provide basic researchers with an introduction to the various techniques used to assess and quantify the IS and AAR in experimental mouse models of myocardial ischemia-reperfusion and infarction.
Collapse
Affiliation(s)
- Bjorn Redfors
- Correspondence: Dr Bjorn Redfors, Wallenberg Laboratory, Department of Molecular and Clinical Medicine/C, Sahlgrenska Academy at University of Gothenburg, Bruna stråket 16, 413 45 Gothenburg, Sweden. Telephone 46-31-3427560, fax 46-31-823672, e-mail
| | | | | |
Collapse
|
29
|
Perperidis D, Bucholz E, Johnson GA, Constantinides C. Morphological studies of the murine heart based on probabilistic and statistical atlases. Comput Med Imaging Graph 2011; 36:119-29. [PMID: 21820867 DOI: 10.1016/j.compmedimag.2011.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/24/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022]
Abstract
This study directly compares morphological features of the mouse heart in its end-relaxed state based on constructed morphometric maps and atlases using principal component analysis in C57BL/6J (n=8) and DBA (n=5) mice. In probabilistic atlases, a gradient probability exists for both strains in longitudinal locations from base to apex. Based on the statistical atlases, differences in size (49.8%), apical direction (15.6%), basal ventricular blood pool size (13.2%), and papillary muscle shape and position (17.2%) account for the most significant modes of shape variability for the left ventricle of the C57BL/6J mice. For DBA mice, differences in left ventricular size and direction (67.4%), basal size (15.7%), and position of papillary muscles (16.8%) account for significant variability.
Collapse
Affiliation(s)
- Dimitrios Perperidis
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Cyprus, Nicosia, Cyprus
| | | | | | | |
Collapse
|
30
|
Badea CT, Hedlund LW, Qi Y, Berridge B, Johnson GA. In vivo imaging of rat coronary arteries using bi-plane digital subtraction angiography. J Pharmacol Toxicol Methods 2011; 64:151-7. [PMID: 21683146 DOI: 10.1016/j.vascn.2011.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/19/2011] [Accepted: 05/31/2011] [Indexed: 12/14/2022]
Abstract
INTRODUCTION X-ray based digital subtraction angiography (DSA) is a common clinical imaging method for vascular morphology and function. Coronary artery characterization is one of its most important applications. We show that bi-plane DSA of rat coronary arteries can provide a powerful imaging tool for translational safety assessment in drug discovery. METHODS A novel, dual tube/detector system, constructed explicitly for preclinical imaging, supports image acquisition at 10 frames/s with 88-micron spatial resolution. Ventilation, x-ray exposure, and contrast injection are all precisely synchronized using a biological sequence controller implemented as a LabVIEW application. A set of experiments were performed to test and optimize the sampling and image quality. We applied the DSA imaging protocol to record changes in the visualization of coronaries and myocardial perfusion induced by a vasodilator drug, nitroprusside. The drug was infused into a tail vein catheter using a peristaltic infusion pump at a rate of 0.07 mL/h for 3 min (dose: 0.0875 mg). Multiple DSA sequences were acquired before, during, and up to 25 min after drug infusion. Perfusion maps of the heart were generated in MATLAB to compare the drug effects over time. RESULTS The best trade-off between the injection time, pressure, and image quality was achieved at 60 PSI, with the injection of 150 ms occurring early in diastole (60 ms delay) and resulting in the delivery of 113 μL of contrast agent. DSA images clearly show the main branches of the coronary arteries in an intact, beating heart. The drug test demonstrated that DSA can detect relative changes in coronary circulation via perfusion maps. CONCLUSIONS The methodology for DSA imaging of rat coronary arteries can serve as a template for future translational studies to assist in safety evaluation of new pharmaceuticals. Although x-ray imaging involves radiation, the associated dose (0.4 Gy) is not a major limitation.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Murine models have been utilized with increasing frequency mainly due to availability of genetically engineered models. With advancement in high spatial and temporal resolution, echocardiography is used extensively for the evaluation of cardiovascular function in murine models of cardiovascular disease. This review summarizes the general applications and methods involved in echocardiography used to study mouse models for cardiovascular research, based on 20 years of experience in our laboratory. The goal of this article is to provide a practical guide to the use of echo techniques in mice to evaluate cardiac systolic and diastolic function.
Collapse
Affiliation(s)
- Shumin Gao
- Department of Cell Biology & Molecular Medicine and The Cardiovascular Research Institute at the University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G609, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
32
|
High-Resolution Echocardiographic Assessment of Infarct Size and Cardiac Function in Mice with Myocardial Infarction. J Am Soc Echocardiogr 2011; 24:219-26. [DOI: 10.1016/j.echo.2010.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Indexed: 12/22/2022]
|
33
|
Choquet P, Goetz C, Aubertin G, Hubele F, Sannié S, Constantinesco A. Carbon tube electrodes for electrocardiography-gated cardiac multimodality imaging in mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2011; 50:61-64. [PMID: 21333165 PMCID: PMC3035405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/28/2010] [Accepted: 07/07/2010] [Indexed: 05/30/2023]
Abstract
This report describes a simple design of noninvasive carbon tube electrodes that facilitates electrocardiography (ECG) in mice during cardiac multimodality preclinical imaging. Both forepaws and the left hindpaw, covered by conductive gel, of mice were placed into the openings of small carbon tubes. Cardiac ECG-gated single-photon emission CT, X-ray CT, and MRI were tested (n = 60) in 20 mice. For all applications, electrodes were used in a warmed multimodality imaging cell. A heart rate of 563 ± 48 bpm was recorded from anesthetized mice regardless of the imaging technique used, with acquisition times ranging from 1 to 2 h.
Collapse
Affiliation(s)
- Philippe Choquet
- Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christian Goetz
- Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gaelle Aubertin
- Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fabrice Hubele
- Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - André Constantinesco
- Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
34
|
Sheikh AY, van der Bogt KEA, Doyle TC, Sheikh MK, Ransohoff KJ, Ali ZA, Palmer OP, Robbins RC, Fischbein MP, Wu JC. Micro-CT for characterization of murine CV disease models. JACC Cardiovasc Imaging 2010; 3:783-5. [PMID: 20633858 DOI: 10.1016/j.jcmg.2010.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/20/2010] [Indexed: 11/27/2022]
|
35
|
Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 2010; 107:1364-73. [PMID: 20930148 DOI: 10.1161/circresaha.110.227454] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Monocytes recruited to ischemic myocardium originate from a reservoir in the spleen, and the release from their splenic niche relies on angiotensin (Ang) II signaling. OBJECTIVE Because monocytes are centrally involved in tissue repair after ischemia, we hypothesized that early angiotensin-converting enzyme (ACE) inhibitor therapy impacts healing after myocardial infarction partly via effects on monocyte traffic. METHODS AND RESULTS In a mouse model of permanent coronary ligation, enalapril arrested the release of monocytes from the splenic reservoir and consequently reduced their recruitment into the healing infarct by 45%, as quantified by flow cytometry of digested infarcts. Time-lapse intravital microscopy revealed that enalapril reduces monocyte motility in the spleen. In vitro migration assays and Western blotting showed that this was caused by reduced signaling through the Ang II type 1 receptor. We then studied the long-term consequences of blocked splenic monocyte release in atherosclerotic apolipoprotein (apo)E(-/-) mice, in which infarct healing is impaired because of excessive inflammation in the cardiac wound. Enalapril improved histologic healing biomarkers and reduced inflammation in infarcts measured by FMT-CT (fluorescence molecular tomography in conjunction with x-ray computed tomography) of proteolytic activity. ACE inhibition improved MRI-derived ejection fraction by 14% on day 21, despite initially comparable infarct size. In apoE(-/-) mice, ischemia/reperfusion injury resulted in larger infarct size and enhanced monocyte recruitment and was reversible by enalapril treatment. Splenectomy reproduced antiinflammatory effects of enalapril. CONCLUSION This study suggests that benefits of early ACE inhibition after myocardial infarction can partially be attributed to its potent antiinflammatory impact on the splenic monocyte reservoir.
Collapse
Affiliation(s)
- Florian Leuschner
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ratering D, Baltes C, Dörries C, Rudin M. Accelerated cardiovascular magnetic resonance of the mouse heart using self-gated parallel imaging strategies does not compromise accuracy of structural and functional measures. J Cardiovasc Magn Reson 2010; 12:43. [PMID: 20663156 PMCID: PMC2918602 DOI: 10.1186/1532-429x-12-43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Self-gated dynamic cardiovascular magnetic resonance (CMR) enables non-invasive visualization of the heart and accurate assessment of cardiac function in mouse models of human disease. However, self-gated CMR requires the acquisition of large datasets to ensure accurate and artifact-free reconstruction of cardiac cines and is therefore hampered by long acquisition times putting high demands on the physiological stability of the animal. For this reason, we evaluated the feasibility of accelerating the data collection using the parallel imaging technique SENSE with respect to both anatomical definition and cardiac function quantification. RESULTS Findings obtained from accelerated data sets were compared to fully sampled reference data. Our results revealed only minor differences in image quality of short- and long-axis cardiac cines: small anatomical structures (papillary muscles and the aortic valve) and left-ventricular (LV) remodeling after myocardial infarction (MI) were accurately detected even for 3-fold accelerated data acquisition using a four-element phased array coil. Quantitative analysis of LV cardiac function (end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF) and LV mass) in healthy and infarcted animals revealed no substantial deviations from reference (fully sampled) data for all investigated acceleration factors with deviations ranging from 2% to 6% in healthy animals and from 2% to 8% in infarcted mice for the highest acceleration factor of 3.0. CNR calculations performed between LV myocardial wall and LV cavity revealed a maximum CNR decrease of 50% for the 3-fold accelerated data acquisition when compared to the fully-sampled acquisition. CONCLUSIONS We have demonstrated the feasibility of accelerated self-gated retrospective CMR in mice using the parallel imaging technique SENSE. The proposed method led to considerably reduced acquisition times, while preserving high spatial resolution at sufficiently high CNR. The accuracy of measurements of both structural and functional parameters of the mouse heart was not compromised by the application of the proposed accelerated data acquisition method.
Collapse
Affiliation(s)
- David Ratering
- Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich, 8093, Switzerland
| | - Christof Baltes
- Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich, 8093, Switzerland
| | - Carola Dörries
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University Zurich and Cardiology University Hospital Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich, 8093, Switzerland
- Institute of Pharmacology & Toxicology, University Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
37
|
Bucholz E, Ghaghada K, Qi Y, Mukundan S, Rockman HA, Johnson GA. Cardiovascular phenotyping of the mouse heart using a 4D radial acquisition and liposomal Gd-DTPA-BMA. Magn Reson Med 2010; 63:979-87. [PMID: 20373399 DOI: 10.1002/mrm.22259] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MR microscopy has enormous potential for small-animal cardiac imaging because it is capable of producing volumetric images at multiple time points to accurately measure cardiac function. MR has not been used as frequently as ultrasound to measure cardiac function in the small animal because the MR methods required relatively long scan times, limiting throughput. Here, we demonstrate four-dimensional radial acquisition in conjunction with a liposomal blood pool agent to explore functional differences in three populations of mice: six C57BL/6J mice, six DBA/2J mice, and six DBA/2J CSQ+ mice, all with the same gestational age and approximately the same weight. Cardiovascular function was determined by measuring both left ventricular and right ventricular end diastolic volume, end systolic volume, stroke volume, and ejection fraction. Statistical significance was observed in end diastolic volume, end systolic volume, and ejection fraction for left ventricular measurements between all three populations of mice. No statistically significant difference was observed in stroke volume in either the left or right ventricle for any of the three populations of mice. This study shows that MRI is capable of efficient, high-throughput, four-dimensional cardiovascular phenotyping of the mouse.
Collapse
Affiliation(s)
- Elizabeth Bucholz
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
38
|
Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging 2010; 37:1766-77. [PMID: 20069298 PMCID: PMC2918793 DOI: 10.1007/s00259-009-1321-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022]
Abstract
Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease.
Collapse
|
39
|
Abstract
Because of the development of gene knockout and transgenic technologies, small animals, such as mice and rats, have become the most widely used animals for cardiovascular imaging studies. Imaging can provide a method to serially evaluate the effect of a particular genetic mutation or pharmacologic therapy (1). In addition, imaging can be used as a noninvasive screening tool for particular cardiovascular phenotypes. Outcome measures of therapeutic efficacy, such as ejection fraction, left ventricular mass, and ventricular volume, can be determined noninvasively as well. Furthermore, small-animal imaging can be used to develop and test new molecular imaging probes (2,3). However, the small size of the heart and rapid heart rate of murine models create special challenges for cardiovascular imaging.
Collapse
Affiliation(s)
- Benjamin M W Tsui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
40
|
Cao G, Lee YZ, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush DS, Lu JP, Zhou O. A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source. Phys Med Biol 2009; 54:2323-40. [PMID: 19321922 DOI: 10.1088/0031-9155/54/8/005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Current commercial micro-CT scanners have the capability of imaging objects ex vivo with high spatial resolution, but performing in vivo micro-CT on free-breathing small animals is still challenging because their physiological motions are non-periodic and much faster than those of humans. In this paper, we present a prototype physiologically gated micro-computed tomography (micro-CT) scanner based on a carbon nanotube field emission micro-focus x-ray source. The novel x-ray source allows x-ray pulses and imaging sequences to be readily synchronized and gated to non-periodic physiological signals from small animals. The system performance is evaluated using phantoms and sacrificed and anesthetized mice. Prospective respiratory-gated micro-CT images of anesthetized free-breathing mice were collected using this scanner at 50 ms temporal resolution and 6.2 lp mm(-1) at 10% system MTF. The high spatial and temporal resolutions of the micro-CT scanner make it well suited for high-resolution imaging of free-breathing small animals.
Collapse
Affiliation(s)
- G Cao
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bucholz E, Ghaghada K, Qi Y, Mukundan S, Johnson GA. Four-dimensional MR microscopy of the mouse heart using radial acquisition and liposomal gadolinium contrast agent. Magn Reson Med 2008; 60:111-8. [PMID: 18581419 DOI: 10.1002/mrm.21618] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Magnetic resonance microscopy (MRM) has become an important tool for small animal cardiac imaging. In relation to competing technologies (microCT and ultrasound), MR is limited by spatial resolution, temporal resolution, and acquisition time. All three of these limitations have been addressed by developing a four-dimensional (4D) (3D plus time) radial acquisition (RA) sequence. The signal-to-noise ratio (SNR) has been optimized by minimizing the echo time (TE) (300 us). The temporal resolution and throughput have been improved by center-out trajectories resulting in repetition time (TR) <2.5 ms. The contrast has been enhanced through the use of a liposomal blood pool agent that reduces the T(1) of the blood to <400 ms. We have developed protocols for three specific applications: 1) high-throughput with spatial resolution of 87 x 87 x 352 um(3) (voxel volume = 2.7 nL) and acquisition time of 16 min; 2) high-temporal resolution with spatial resolution of 87 x 87 x 352 um(3) (voxel volume = 2.7 nL) and temporal resolution at 4.8 ms and acquisition time of 32 minutes; and 3) high-resolution isotropic imaging at 87 x 87 x 87 um(3) (voxel volume = 0.68 nL) and acquisition time of 31 min. The 4D image arrays allow direct measure of cardiac functional parameters dependent on chamber volumes, e.g., ejection fraction (EF), end diastolic volume (EDV), and end systolic volume (ESV).
Collapse
Affiliation(s)
- Elizabeth Bucholz
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
42
|
Assessment of right and left ventricular function in healthy mice by blood-pool pinhole gated SPECT. C R Biol 2008; 331:637-47. [PMID: 18722982 DOI: 10.1016/j.crvi.2008.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/03/2008] [Indexed: 11/20/2022]
Abstract
The feasibility of blood-pool pinhole ECG gated SPECT was investigated in healthy mice to assess right and left ventricular function analysis. Anaesthetized (isoflurane 1-1.5%) adult CD1 mice (n=11) were analyzed after intravenous administration of 0.2 ml of 550 MBq of (99m)Tc human albumin. For blood-pool gated SPECT imaging, 48 ventral step and shoot projections with eight time bins per RR over 180 degrees with 64 x 64 word images were acquired with a small animal gamma camera equipped with a pinhole collimator of 12 cm in focal length and 1.5 mm in diameter. For appropriate segmentation of right and left ventricular volumes, a 4D Fourier analysis was performed after reconstruction and reorientation of blood-pool images with a voxel size of 0.55 x 0.55 x 0.55 mm(3). Average right and left ejection fractions were respectively 52+/-4.7% and 65+/-5.2%. Right end diastolic and end systolic volumes were significantly higher compared with the corresponding left ventricular volumes (P<0.0001 each). A linear correlation between right and left stroke volumes (r=0.9, P<0.0001) was obtained and right and left cardiac outputs were not significantly different 14.2+/-1.9 and 14.1+/-2 ml/min, respectively.
Collapse
|
43
|
Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 2008; 53:R319-50. [PMID: 18758005 DOI: 10.1088/0031-9155/53/19/r01] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Small-animal imaging has a critical role in phenotyping, drug discovery and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo x-ray based small-animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging.
Collapse
Affiliation(s)
- C T Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
44
|
Longitudinal Follow-up of Cardiac Structure and Functional Changes in an Infarct Mouse Model Using Retrospectively Gated Micro-Computed Tomography. Invest Radiol 2008; 43:520-9. [DOI: 10.1097/rli.0b013e3181727519] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Vasquez SX, Hansen MS, Bahadur AN, Hockin MF, Kindlmann GL, Nevell L, Wu IQ, Grunwald DJ, Weinstein DM, Jones GM, Johnson CR, Vandeberg JL, Capecchi MR, Keller C. Optimization of volumetric computed tomography for skeletal analysis of model genetic organisms. Anat Rec (Hoboken) 2008; 291:475-87. [PMID: 18286615 DOI: 10.1002/ar.20670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Forward and reverse genetics now allow researchers to understand embryonic and postnatal gene function in a broad range of species. Although some genetic mutations cause obvious morphological change, other mutations can be more subtle and, without adequate observation and quantification, might be overlooked. For the increasing number of genetic model organisms examined by the growing field of phenomics, standardized but sensitive methods for quantitative analysis need to be incorporated into routine practice to effectively acquire and analyze ever-increasing quantities of phenotypic data. In this study, we present platform-independent parameters for the use of microscopic x-ray computed tomography (microCT) for phenotyping species-specific skeletal morphology of a variety of different genetic model organisms. We show that microCT is suitable for phenotypic characterization for prenatal and postnatal specimens across multiple species.
Collapse
Affiliation(s)
- Sergio X Vasquez
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Badea CT, Johnston S, Johnson B, Lin M, Hedlund LW, Johnson GA. A dual micro-CT system for small animal imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2008; 6913:691342. [PMID: 22049304 DOI: 10.1117/12.772303] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Micro-CT is a non-invasive imaging modality usually used to assess morphology in small animals. In our previous work, we have demonstrated that functional micro-CT imaging is also possible. This paper describes a dual micro-CT system with two fixed x-ray/detectors developed to address such challenging tasks as cardiac or perfusion studies in small animals. A two-tube/detector system ensures simultaneous acquisition of two projections, thus reducing scanning time and the number of contrast injections in perfusion studies by a factor of two. The system is integrated with software developed in-house for cardio-respiratory monitoring and gating. The sampling geometry was optimized for 88 microns in such a way that the geometric blur of the focal spot matches the Nyquist sample at the detector. A geometric calibration procedure allows one to combine projection data from the two chains into a single reconstructed volume. Image quality was measured in terms of spatial resolution, uniformity, noise, and linearity. The modulation transfer function (MTF) at 10% is 3.4 lp/mm for single detector reconstructions and 2.3 lp/mm for dual tube/detector reconstructions. We attribute this loss in spatial resolution to the compounding of slight errors in the separate single chain calibrations. The dual micro-CT system is currently used in studies for morphological and functional imaging of both rats and mice.
Collapse
Affiliation(s)
- C T Badea
- Center for In Vivo Microscopy, Dept. of Radiology, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | | | |
Collapse
|
47
|
Greenberg JI, Suliman A, Barillas S, Angle N. Chapter 7. Mouse models of ischemic angiogenesis and ischemia-reperfusion injury. Methods Enzymol 2008; 444:159-74. [PMID: 19007664 DOI: 10.1016/s0076-6879(08)02807-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemia and ischemia-reperfusion (I/R) events are distinct but interrelated processes etiologic to the most prevalent human diseases. A delicate balance exists whereby ischemic injury can result in beneficial angiogenesis or in detrimental reperfusion injury overwhelming the organism. Here, we describe in vivo models of ischemia and ischemia-reperfusion injury with emphasis on murine hindlimb ischemia models. We also provide a brief introduction to murine myocardial ischemia experiments. Each model is described in the context of human disease. Emphasis is made on the strengths and weaknesses of the available techniques, particularly as it relates to data analysis, interpretation, and translational relevance.
Collapse
Affiliation(s)
- Joshua I Greenberg
- Section of Vascular and Endovascular Surgery, Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, USA
| | | | | | | |
Collapse
|