1
|
Ishiko S, Koller A, Deng W, Huang A, Sun D. Liposomal nanocarriers of preassembled glycocalyx restore normal venular permeability and shear stress sensitivity in sepsis: assessed quantitatively with a novel microchamber system. Am J Physiol Heart Circ Physiol 2024; 327:H390-H398. [PMID: 38874615 PMCID: PMC11427114 DOI: 10.1152/ajpheart.00138.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The endothelial glycocalyx (EG), covering the luminal side of endothelial cells, regulates vascular permeability and senses wall shear stress. In sepsis, EG undergoes degradation leading to increased permeability and edema formation. We hypothesized that restoring EG integrity using liposomal nanocarriers of preassembled glycocalyx (LNPG) will restore normal venular permeability in lipopolysaccharide (LPS)-induced sepsis model of mice. To test this hypothesis, we designed a unique perfusion microchamber in which the permeability of isolated venules could be assessed by measuring the concentration of Evans blue dye (EBD) in microliter samples of extravascular solution (ES). Histamine-induced time- and dose-dependent increases in EBD in the ES could be measured, confirming the sensitivity of the microchamber system. Notably, the histamine-induced increase in permeability was significantly attenuated by histamine receptor (H1) antagonist, triprolidine hydrochloride. Subsequently, mice were treated with LPS or LPS + LNPG. When compared with control mice, venules from LPS-treated mice showed a significant increased permeability, which was significantly reduced by LNPG administration. Moreover, in the presence of wall shear stress, intraluminal administration of LNPG significantly reduced the permeability in isolated venules from LPS-treated mice. We have found no sex differences. In conclusion, our newly developed microchamber system allows us to quantitatively measure the permeability of isolated venules. LPS-induced sepsis increases permeability of mesenteric venules that is attenuated by in vivo LNPG administration, which also reestablished endothelial responses to shear stress. Thus, LNPG presents a promising therapeutic potential for restoring EG function and thereby mitigating vasogenic edema due to increased permeability in sepsis.NEW & NOTEWORTHY In sepsis, the degradation of the endothelial glycocalyx leads to increased venular permeability. In this study, we developed a potentially new therapeutic approach by in vivo administration of liposomal nanocarriers of preassembled glycocalyx to mice, which restored venular sensitivity to wall shear stress and permeability in lipopolysaccharide-induced sepsis, likely by restoring the integrity of the endothelial glycocalyx. Using a new microchamber system, the permeability of Evans blue dye could be quantitatively determined.
Collapse
Affiliation(s)
- Shinya Ishiko
- Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Akos Koller
- Department of Physiology, New York Medical College, Valhalla, New York, United States
- Institute of Translational Medicine, HUN-RES-SE, Cerebrovascular and Neurocognitive Disorders Research Group, Semmelweis University, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- Research Center for Sports Physiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
2
|
Maibier M, Reglin B, Nitzsche B, Xiang W, Rong WW, Hoffmann B, Djonov V, Secomb TW, Pries AR. Structure and hemodynamics of vascular networks in the chorioallantoic membrane of the chicken. Am J Physiol Heart Circ Physiol 2016; 311:H913-H926. [PMID: 27402670 DOI: 10.1152/ajpheart.00786.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/04/2016] [Indexed: 01/01/2023]
Abstract
The chick chorioallantoic membrane (CAM) is extensively used as an in vivo model. Here, structure and hemodynamics of CAM vessel trees were analyzed and compared with predictions of Murray's law. CAM microvascular networks of Hamburger-Hamilton stage 40 chick embryos were scanned by videomicroscopy. Three networks with ∼3,800, 580, and 480 segments were digitally reconstructed, neglecting the capillary mesh. Vessel diameters (D) and segment lengths were measured, and generation numbers and junctional exponents at bifurcations were derived. In selected vessels, flow velocities (v) and hematocrit were measured. Hemodynamic simulations, incorporating the branching of capillaries from preterminal vessels, were used to estimate v, volume flow, shear stress (τ), and pressure for all segments of the largest network. For individual arteriovenous flow pathways, terminal arterial and venous generation numbers are negatively correlated, leading to low variability of total topological and morphological pathway lengths. Arteriolar velocity is proportional to diameter (v∝D1.03 measured, v∝D0.93 modeling), giving nearly uniform τ levels (τ∝D0.05). Venular trees exhibit slightly higher exponents (v∝D1.3, τ∝D0.38). Junctional exponents at divergent and convergent bifurcations were 2.05 ± 1.13 and 1.97 ± 0.95 (mean ± SD) in contrast to the value 3 predicted by Murray's law. In accordance with Murray's law, τ levels are (nearly) maintained in CAM arterial (venular) trees, suggesting vascular adaptation to shear stress. Arterial and venous trees show an interdigitating arrangement providing homogeneous flow pathway properties and have preterminal capillary branches. These properties may facilitate efficient oxygen exchange in the CAM during rapid embryonic growth.
Collapse
Affiliation(s)
- Martin Maibier
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Bettina Reglin
- Department of Physiology, Charité Berlin, Berlin, Germany
| | | | - Weiwei Xiang
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Wen Wei Rong
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Björn Hoffmann
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland; and
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Axel R Pries
- Department of Physiology, Charité Berlin, Berlin, Germany; Deutsches Herzzentrum Berlin, Berlin, Germany;
| |
Collapse
|
3
|
Pittman RN. Oxygen transport in the microcirculation and its regulation. Microcirculation 2013; 20:117-37. [PMID: 23025284 DOI: 10.1111/micc.12017] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/27/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen, which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. METHODS This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium, and cells. RESULTS Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. CONCLUSIONS Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand, and their regulation are decided.
Collapse
Affiliation(s)
- Roland N Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
4
|
Gaynes B, Teng PY, Wanek J, Shahidi M. Feasibility of conjunctival hemodynamic measurements in rabbits: reproducibility, validity, and response to acute hypotension. Microcirculation 2012; 19:521-9. [PMID: 22486988 PMCID: PMC3648337 DOI: 10.1111/j.1549-8719.2012.00182.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the feasibility of conjunctival hemodynamic measurements based on assessment of reproducibility, validity, and response to acute hypotension. METHODS Image sequences of the conjunctival microvasculature of rabbits were captured using a slit lamp biomicroscope under a steady-state condition, after topical administration of phenylephrine, and after intravenous administration of esmolol. Venous hemodynamic parameters (diameter, blood velocity, blood flow, and wall shear stress) were derived. RESULTS Conjunctival venous diameters ranged from 9 to 34 μm and blood velocities ranged from 0.08 to 0.95 mm/s. Coefficients of variation of venous diameter and blood velocity measurements were, on average, 6% and 14%, respectively. Automated and manual measurements of venous diameter and velocity were highly correlated (R = 0.97; p < 0.001; n = 16). With phenylephrine administration, diameter and velocity were reduced by 21% and 69%, respectively. Following esmolol administration, blood pressure was reduced with a concomitant decrease in velocity, followed by recovery to baseline. Venous blood velocity, flow, and WSS were correlated with blood pressure (R ≥ 0.52; p ≤ 0.01). CONCLUSIONS The feasibility of quantifying alterations in microvascular hemodynamics in the bulbar conjunctiva was established. The method is of potential value in evaluating microcirculatory hemodynamics related to cardiovascular function.
Collapse
Affiliation(s)
- Bruce Gaynes
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | |
Collapse
|
5
|
Chatpun S, Cabrales P. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution. Asian J Transfus Sci 2011; 4:102-8. [PMID: 20859509 PMCID: PMC2937285 DOI: 10.4103/0973-6247.67034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Previous studies have found that increasing plasma viscosity as whole blood viscosity decrease has beneficial effects in microvascular hemodynamics. As the heart couples with systemic vascular network, changes in plasma and blood viscosity during hemodilution determine vascular pressure drop and flow rate, which influence cardiac function. This study aimed to investigate how changes in plasma viscosity affect on cardiac function during acute isovolemic hemodilution. Materials and Methods Plasma viscosity was modulated by hemodilution of 40% of blood volume with three different plasma expanders (PEs). Dextran 2000 kDa (Dx2M, 6.3 cP) and dextran 70 kDa (Dx70, 3.0 cP) were used as high and moderate viscogenic PEs, respectively. Polyethylene glycol conjugated with human serum albumin (PEG-HSA, 2.2 cP) was used as low viscogenic PE. The cardiac function was assessed using a miniaturized pressure-volume conductance catheter. Results After hemodilution, pressure dropped to 84%, 79%, and 78% of baseline for Dx2M, Dx70 and PEG-HSA, respectively. Cardiac output markedly increased for Dx2M and PEG-HSA. Dx2M significantly produced higher stroke work relative to baseline and compared to Dx70. Conclusion Acute hemodilution with PEG-HSA without increasing plasma viscosity provided beneficial effects on cardiac function compared to Dx70, and similar to those measured with Dx2M. Potentially negative effects of increasing peripheral vascular resistance due to the increase in plasma viscosity were prevented.
Collapse
Affiliation(s)
- Surapong Chatpun
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
6
|
Cui J, McQuillan P, Moradkhan R, Pagana C, Sinoway LI. Sympathetic responses during saline infusion into the veins of an occluded limb. J Physiol 2009; 587:3619-28. [PMID: 19470776 DOI: 10.1113/jphysiol.2009.173237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Animal studies have shown that the increased intravenous pressure stimulates the group III and IV muscle afferent fibres, and in turn induce cardiovascular responses. However, this pathway of autonomic regulation has not been examined in humans. The aim of this study was to examine the hypothesis that infusion of saline into the venous circulation of an arterially occluded vascular bed evokes sympathetic activation in healthy individuals. Blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) responses were assessed in 19 young healthy subjects during local infusion of 40 ml saline into a forearm vein in the circulatory arrested condition. From baseline (11.8 +/- 1.2 bursts min(-1)), MSNA increased significantly during the saline infusion (22.5 +/- 2.6 bursts min(-1), P < 0.001). Blood pressure also increased significantly during the saline infusion. Three control trials were performed during separate visits. The results from the control trial show that the observed MSNA and blood pressure responses were not due to muscle ischaemia. The present data show that saline infusion into the venous circulation of an arterially occluded vascular bed induces sympathetic activation and an increase in blood pressure. We speculate that the infusion under such conditions stimulates the afferent endings near the vessels, and evokes the sympathetic activation.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Heart & Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
7
|
Racz A, Veresh Z, Erdei N, Bagi Z, Koller A. Thromboxane A(2) contributes to the mediation of flow-induced responses of skeletal muscle venules: role of cyclooxygenases 1 and 2. J Vasc Res 2009; 46:397-405. [PMID: 19155631 DOI: 10.1159/000194270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 07/29/2008] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND It has been shown that increases in intraluminal flow elicit dilation in venules, but the mediation of response is not yet clarified. We hypothesized that - in addition to nitric oxide (NO) and dilator prostaglandins (PGI(2)/ PGE(2)) - thromboxane A(2) (TxA(2)) contributes to the mediation of flow-induced responses of venules. METHODS AND RESULTS Isolated rat gracilis muscle venules (259 +/- 11 microm at 10 mm Hg) dilated as a function of intraluminal flow, which was augmented in the presence of the TxA(2) receptor antagonist SQ 29,548 or the TxA(2) synthase inhibitor ozagrel. In the presence of SQ 29,548, indomethacin or Nomega-nitro-L-arginine methyl-ester decreased flow-induced dilations, whereas in their simultaneous presence dilations were abolished. The selective cyclooxygenase (COX) 1 inhibitor SC 560 reduced, whereas the selective COX-2 inhibitor NS 398 enhanced flow-induced dilations. Immunohistochemistry showed that both COX-1 and COX-2 are present in the wall of venules. CONCLUSION In skeletal muscle venules, increases in intraluminal flow elicit production of constrictor TxA(2), in addition to the dilator NO and PGI(2)/PGE(2), with an overall effect of limited dilation. These mediators are likely to have important roles in the multiple feedback regulation of wall shear stress in venules during changes in blood flow velocity and/or viscosity.
Collapse
Affiliation(s)
- A Racz
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
8
|
Sud N, Kumar S, Wedgwood S, Black SM. Modulation of PKCdelta signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. Am J Physiol Lung Cell Mol Physiol 2008; 296:L519-26. [PMID: 19118090 DOI: 10.1152/ajplung.90534.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that the regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells isolated from fetal lamb under static conditions is positively regulated by PKCdelta. In this study, we explore the role of PKCdelta in regulating shear-induced upregulation of eNOS. We found that shear caused a decrease in PKCdelta activation. Modulation of PKCdelta before shear with a dominant negative mutant of PKCdelta (DN PKCdelta) or bryostatin (a known PKCdelta activator) demonstrated that PKCdelta inhibition potentiates the shear-mediated increases in eNOS expression and activity, while PKCdelta activation inhibited these events. To gain insight into the mechanism by which PKCdelta inhibits shear-induced eNOS expression, we examined activation of STAT3, a known target for PKCdelta phosphorylation. We found that shear decreased the phosphorylation of STAT3. Further the transfection of cells with DN PKCdelta reduced, while PKCdelta activation enhanced, STAT3 phosphorylation in the presence of shear. Transfection of cells with a dominant negative mutant of STAT3 enhanced eNOS promoter activity and nitric oxide production in response to shear. Finally, we found that mutating the STAT3 binding site sequence within the eNOS promoter increased promoter activity in response to shear and that this was no longer inhibited by bryostatin. In conclusion, shear decreases PKCdelta activity and, subsequently, reduces STAT3 binding to the eNOS promoter. This signaling pathway plays a previously unidentified role in the regulation of eNOS expression by shear stress.
Collapse
Affiliation(s)
- Neetu Sud
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
9
|
|
10
|
Carlson BE, Arciero JC, Secomb TW. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol 2008; 295:H1572-9. [PMID: 18723769 DOI: 10.1152/ajpheart.00262.2008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The autoregulation of blood flow, the maintenance of almost constant blood flow in the face of variations in arterial pressure, is characteristic of many tissue types. Here, contributions to the autoregulation of pressure-dependent, shear stress-dependent, and metabolic vasoactive responses are analyzed using a theoretical model. Seven segments, connected in series, represent classes of vessels: arteries, large arterioles, small arterioles, capillaries, small venules, large venules, and veins. The large and small arterioles respond actively to local changes in pressure and wall shear stress and to the downstream metabolic state communicated via conducted responses. All other segments are considered fixed resistances. The myogenic, shear-dependent, and metabolic responses of the arteriolar segments are represented by a theoretical model based on experimental data from isolated vessels. To assess autoregulation, the predicted flow at an arterial pressure of 130 mmHg is compared with that at 80 mmHg. If the degree of vascular smooth muscle activation is held constant at 0.5, there is a fivefold increase in blood flow. When myogenic variation of tone is included, flow increases by a factor of 1.66 over the same pressure range, indicating weak autoregulation. The inclusion of both myogenic and shear-dependent responses results in an increase in flow by a factor of 2.43. A further addition of the metabolic response produces strong autoregulation with flow increasing by a factor of 1.18 and gives results consistent with experimental observation. The model results indicate that the combined effects of myogenic and metabolic regulation overcome the vasodilatory effect of the shear response and lead to the autoregulation of blood flow.
Collapse
Affiliation(s)
- Brian E Carlson
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
11
|
Xiang L, Naik JS, Hester RL. Functional vasodilation in the rat spinotrapezius muscle: role of nitric oxide, prostanoids and epoxyeicosatrienoic acids. Clin Exp Pharmacol Physiol 2008; 35:617-24. [PMID: 18215183 DOI: 10.1111/j.1440-1681.2007.04864.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The present study was designed to determine the mechanisms responsible for functional vasodilation of arterioles paired and unpaired with venules in the rat spinotrapezius muscle. 2. The spinotrapezius muscle (from Sprague-Dawley rats) was treated with combinations of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L), the cyclo-oxygenase inhibitor indomethacin (10 micromol/L) and the epoxygenase inhibitor 6-(2-propargyloxyphenyl) hexanoic acid (PPOH; 30 micromol/L) to determine vascular responses to muscle stimulation. Both paired and unpaired arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following 2 min muscle stimulation before and 30 min after subsequent application of each inhibitor. 3. In all cases, L-NAME treatment resulted in decreased basal diameter that was restored to control levels by the addition of sodium nitroprusside (0.01-0.1 micromol/L) to the superfusion solution. N(G)-Nitro-L-arginine methyl ester significantly inhibited the functional dilation in both paired (-20 +/- 3%) and unpaired (-29 +/- 3%) arterioles, whereas these inhibitory effects of L-NAME were diminished after pretreatment with indomethacin and PPOH. Indomethacin treatment attenuated the dilation in paired (-33 +/- 5%) but not unpaired (-6 +/- 4%) arterioles. Treatment with PPOH had no effect on the functional dilation in either set of arterioles. Approximately 50% of the vasodilatory responses remained in the presence of L-NAME, indomethacin and PPOH. 4. These results suggest that both nitric oxide and vasodilator prostanoid(s) are involved in mediating functional vasodilation in the rat spinotrapezius. The vasodilator prostanoid(s) released from venules is responsible for a portion of the vasodilation of the paired arteriole. The results also suggest possible interactions between the synthesis of nitric oxide and prostaglandin or epoxyeicosatrienoic acids during muscle contraction.
Collapse
Affiliation(s)
- Lusha Xiang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | |
Collapse
|
12
|
Nithipatikom K, Holmes BB, McCoy MJ, Hillard CJ, Campbell WB. Chronic administration of nitric oxide reduces angiotensin II receptor type 1 expression and aldosterone synthesis in zona glomerulosa cells. Am J Physiol Endocrinol Metab 2004; 287:E820-7. [PMID: 15198935 DOI: 10.1152/ajpendo.00183.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute nitric oxide (NO) inhibits angiotensin II (ANG II)-stimulated aldosterone synthesis in zona glomerulosa (ZG) cells. In this study, we investigated the effects of chronic administration of NO on the ANG II receptor type 1 (AT1) expression and aldosterone synthesis. ZG cells were treated daily with DETA NONOate (10(-4) M), an NO donor, for 0, 12, 24, 48, 72, and 96 h. Chinese hamster ovary (CHO) cells, stably transfected with the AT1B receptor, were used as a positive control. Western blot analysis indicated that AT1 receptor expression was decreased as a function of time of NO administration in both CHO and ZG cells. ANG II binding to its receptors was determined by radioligand binding. NO treatment of ZG cells for 96 h resulted in a decrease in ANG II binding compared with control. The receptor density was decreased to 1,864 +/- 129 fmol/mg protein from 3,157 +/- 220 fmol/mg protein (P < 0.005), but the affinity was not changed (1.95 +/- 0.22 vs. 1.88 +/- 0.21 nM). Confocal Raman microspectroscopy and immunocytochemistry both confirmed that the expression of AT1 receptors in ZG cells decreased with chronic NO administration. In addition, chronic NO administration also decreased the expression of cholesterol side-chain cleavage enzyme in ZG cells and inhibited ANG II- and 25-hydroxycholesterol-stimulated aldosterone synthesis in ZG cells. This study demonstrates that chronic administration of NO inhibits aldosterone synthesis in ZG cells by downregulation of the expression of both AT1 receptors and cholesterol side-chain cleavage enzyme.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
13
|
Lockwood JM, Pricher MP, Wilkins BW, Holowatz LA, Halliwill JR. Postexercise hypotension is not explained by a prostaglandin-dependent peripheral vasodilation. J Appl Physiol (1985) 2004; 98:447-53. [PMID: 15465887 DOI: 10.1152/japplphysiol.00787.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In normally active individuals, postexercise hypotension after a single bout of aerobic exercise occurs due to an unexplained peripheral vasodilation. Prostaglandin production has been suggested to contribute to the increases in blood flow during and after exercise; however, its potential contribution to postexercise hypotension has not been assessed. The purpose of this study was to determine the potential contribution of a prostaglandin-dependent vasodilation to changes in systemic vascular conductance underlying postexercise hypotension; this was done by inhibiting production of prostaglandins with the cyclooxygenase inhibitor ibuprofen. We studied 11 healthy normotensive men (aged 23.7 +/- 4.2 yr) before and during the 90 min after a 60-min bout of cycling at 60% peak O(2) uptake on a control and a cyclooxygenase inhibition day (randomized). Subjects received 10 mg/kg of oral ibuprofen on the cyclooxygenase inhibition day. On both study days, arterial blood pressure (automated auscultation) and cardiac output (acetylene uptake) were measured, and systemic vascular conductance was calculated. Inhibition of cyclooxygenase had no effect on baseline values of mean arterial pressure or systemic vascular conductance (P > 0.2). After exercise on both days, mean arterial pressure was reduced (-2.2 +/- 1.0 mmHg change with the control condition and -3.8 +/- 1.5 mmHg change with the ibuprofen condition, both P < 0.05 vs. preexercise) and systemic vascular conductance was increased (5.2 +/- 5.0% change with the control condition and 8.7 +/- 4.1% change with the ibuprofen condition, both P < 0.05 vs. preexercise). There were no differences between study days (P > 0.6). These data suggest that prostaglandin-dependent vasodilation does not contribute to the increased systemic vascular conductance underlying postexercise hypotension.
Collapse
Affiliation(s)
- Jennifer M Lockwood
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403-1240, USA
| | | | | | | | | |
Collapse
|
14
|
Schrage WG, Joyner MJ, Dinenno FA. Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. J Physiol 2004; 557:599-611. [PMID: 15047770 PMCID: PMC1665102 DOI: 10.1113/jphysiol.2004.061283] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We tested the hypothesis that inhibition of synthesis of either nitric oxide (NO) or vasodilating prostaglandins (PGs) would not alter exercise hyperaemia significantly, but combined inhibition would synergistically reduce the hyperaemia. Fourteen subjects performed 20 min of moderate rhythmic forearm exercise (10% maximal voluntary contraction). Forearm blood flow (FBF) was measured by Doppler ultrasound. Saline or study drugs were infused (2 ml x min(-1)) into the forearm via a brachial artery catheter to locally inhibit synthesis of NO and PGs during steady state exercise (N(G)-nitro-L-arginine methyl ester (L-NAME), 25 mg over 5 min to inhibit NO synthase (NOS); and ketorolac, 3 mg over 5 min to inhibit cyclooxygenase (COX)). After achieving steady state exercise over 5 min (control), L-NAME was infused for 5 min, followed by 2 min saline, then by a 5 min infusion of ketorolac, and finally by 3 min of saline (n= 7). Drug order was reversed in seven additional subjects, such that single inhibition of NOS or COX was followed by combined inhibition. FBF during exercise decreased to 83 +/- 2% of control exercise (100%) with NOS inhibition, followed by a transient decrease to 68 +/- 2% of control during COX inhibition. However, FBF returned to levels similar to those achieved during NOS inhibition within 2 min (80 +/- 3% of control) and remained stable through the final 3 min of exercise. When COX inhibition was performed first, FBF decreased transiently to 88 +/- 4% of control (P < 0.01), and returned to control saline levels by the end of ketorolac infusion. Addition of L-NAME reduced FBF to 83 +/- 3% of control, and it remained stable through to the end of exercise. Regardless of drug order, FBF was approximately 80% of steady state control exercise (P < 0.01) during the last 30 s of exercise. We conclude that (1). NO provides a significant, consistent contribution to hyperaemia, (2). PGs contribute modestly and transiently, suggesting a redundant signal compensates for the loss of vasodilating PGs, and (3). NO and PG signals appear to contribute independently to forearm exercise hyperaemia.
Collapse
|
15
|
Cicha I, Suzuki Y, Tateishi N, Maeda N. Changes of RBC aggregation in oxygenation-deoxygenation: pH dependency and cell morphology. Am J Physiol Heart Circ Physiol 2003; 284:H2335-42. [PMID: 12742832 DOI: 10.1152/ajpheart.01030.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the oxygenation-deoxygenation process on red blood cell (RBC) aggregation were examined in relation to morphological changes in RBCs and the contribution of CO(2). A low-shear rheoscope was used to measure the rate of rouleaux (one-dimensional aggregate) formation in diluted autologous plasma exposed to gas mixtures with different Po(2) and Pco(2). RBC indexes and RBC suspension pH were measured for the oxygenated or the deoxygenated condition, and the cell shape was observed with a scanning electron microscope. In the oxygenation-deoxygenation process, the rate of rouleaux formation increased with rising pH of the RBC suspension, which was lowered in the presence of CO(2). The rate increased with increasing mean corpuscular hemoglobin concentration (thus the cells shrank), which increased with rising pH and decreased in the presence of CO(2). With rising pH, cell diameter increased and cell thickness decreased (thus the cell flattened). In addition, slight echinocytosis was induced in the presence of CO(2), and the aggregation was reduced by the morphological change. In conclusion, RBC aggregation in the oxygenation-deoxygenation process is mainly influenced by the pH-dependent change in the surface area-to-volume ratio of the cells, and the aggregation is modified by CO(2)-induced acidification and the accompanying changes in mean corpuscular hemoglobin concentration and cell shape.
Collapse
Affiliation(s)
- Iwona Cicha
- Department of Physiology, School of Medicine, Ehime University, Japan
| | | | | | | |
Collapse
|
16
|
Tschakovsky ME, Hughson RL. Rapid blunting of sympathetic vasoconstriction in the human forearm at the onset of exercise. J Appl Physiol (1985) 2003; 94:1785-92. [PMID: 12524374 DOI: 10.1152/japplphysiol.00680.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to test the hypothesis that sympathetic vasoconstriction is rapidly blunted at the onset of forearm exercise. Nine healthy subjects performed 5 min of moderate dynamic forearm handgrip exercise during -60 mmHg lower body negative pressure (LBNP) vs. without (control). Beat-by-beat forearm blood flow (Doppler ultrasound), arterial blood pressure (finger photoplethysmograph), and heart rate were collected. LBNP elevated resting heart rate by approximately 45%. Mean arterial blood pressure was not significantly changed (P = 0.196), but diastolic blood pressure was elevated by approximately 10% and pulse pressure was reduced by approximately 20%. At rest, there was a 30% reduction in forearm vascular conductance (FVC) during LBNP (P = 0.004). The initial rapid increase in FVC with exercise onset reached a plateau between 10 and 20 s of 126.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in control vs. only 101.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in LBNP (main effect of condition, P = 0.003). This difference was quickly abolished during the second, slower phase of adaptation in forearm vascular tone to steady state. These data are consistent with a rapid onset of functional sympatholysis, in which local substances released with the onset of muscle contractions impair sympathetic neural vasoconstrictor effectiveness.
Collapse
Affiliation(s)
- M E Tschakovsky
- School of Physical and Health Education and Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, UK.
| | | |
Collapse
|
17
|
Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK. Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care 2003; 26:899-904. [PMID: 12610056 DOI: 10.2337/diacare.26.3.899] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetic individuals have impaired endothelium-dependent forearm vasodilatory responses to ischemia, acetylcholine, and other endothelium-dependent agonists. The functional significance of impaired endothelium-dependent dilation in diabetic individuals is uncertain but is most likely to be manifest during leg muscle exercise and may have relevance to peripheral vascular disease and leg ischemia, which is prevalent in diabetic individuals. The current study aimed to determine the relationship between leg blood flow (LBF) responses to endothelium-dependent vasodilation and dynamic large muscle exercise. RESEARCH DESIGN AND METHODS LBF responses (thermodilution) to intrafemoral arterial infusions of an endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) vasodilator and a standardized 25-min cycling bout at 60% VO(2peak) were compared in nine male type 2 diabetic subjects and nine age-, sex-, VO(2peak)-, and weight-matched control subjects. RESULTS LBF responses to acetylcholine and exercise but not sodium nitroprusside were significantly (P < 0.05) attenuated in patients with diabetes compared with healthy control subjects. The percentage increase in LBF in response to exercise and acetylcholine were significantly correlated (r = 0.54, P = 0.02). Furthermore, resting plasma glucose was significantly related to the LBF response to exercise (r = -0.66, P = 0.003) independently of insulin, HbA(1c), lipids, BMI, and blood pressure. CONCLUSIONS The increase in LBF during exercise is substantially attenuated in type 2 diabetic compared with matched control subjects. Impaired endothelium-dependent vasodilation secondary to elevated plasma glucose may underlie this observation. This mechanism may be of importance in determining the leg ischemic threshold in diabetic individuals with peripheral vascular disease.
Collapse
Affiliation(s)
- Bronwyn A Kingwell
- Alfred and Baker Medical Unit, Wynn Domain, Baker Heart Research Institute, Prahran, Victoria, Australia.
| | | | | | | | | |
Collapse
|
18
|
Dzeka TN, Arnold JMO. Prostaglandin modulation of venoconstriction to physiological stress in normals and heart failure patients. Am J Physiol Heart Circ Physiol 2003; 284:H790-7. [PMID: 12578811 DOI: 10.1152/ajpheart.00572.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandins released from blood vessels modulate vascular tone, and inhibition of their production during exogenous infusions of catecholamines causes increased venoconstriction. To determine the influence of prostaglandin production on venoconstriction during physiological stimuli known to cause sympathetic activation, and to assess its importance in chronic heart failure (CHF), we studied 11 normal subjects (62 +/- 4 yr) and 14 patients with CHF (64 +/- 2 yr, left ventricular ejection fraction 23 +/- 1%, New York Heart Association classes II and III) (means +/- SE). Dorsal hand vein distension was measured during mental arithmetic (MA), cold pressor test (CPT), and lower body negative pressure (LBNP; -10 and -40 mmHg), with saline infusion in one hand and local indomethacin (cyclooxygenase inhibitor) infusion (3 microg/min) in the other. Acetylcholine (0.01-1 nmol/min) dilated veins preconstricted with PGF(2alpha) in normals but, consistent with endothelial dysfunction, barely did so in CHF patients (P = 0.001). Nonendothelial venodilation to sodium nitroprusside (0.3-10 nmol/min) was not different between normals and CHF patients. Resting venous norepinephrine levels were higher in CHF patients (2,812 +/- 420 pmol/l) than normals (1,418 +/- 145 pmol/l, P = 0.007). In normals, indomethacin caused increased venoconstriction to MA (from 4.9 +/- 1.5 to 19.2 +/- 4.5%, P = 0.022) and CPT (from 2.9 +/- 3.8 to 17.6 +/- 4.2%, P = 0.007). In CHF, indomethacin caused increased venoconstriction to MA (from 6.6 +/- 3.9% to 19.0 +/- 4.5%, P = 0.014), CPT (from 9.6 +/- 2.1% to 20.1 +/- 3.7%, P = 0.001), and -40 mmHg LBNP (from 10.7 +/- 3.0% to 23.2 +/- 3.8%, P = 0.041). Control responses for all tests were not different between normals and CHF patients. The effects of indomethacin on venoconstriction to MA and CPT were not different between normals and CHF patients, but venoconstriction to -40 mmHg LBNP was accentuated in CHF patients (P = 0.036). Inhibition of prostaglandins by indomethacin significantly enhances hand vein constriction to physiological stimuli in both normals and CHF patients, although a differential effect exists for LBNP.
Collapse
Affiliation(s)
- T Nancy Dzeka
- Department of Physiology, The University of Western Ontario, London, Ontario, Canada N6A 4G5
| | | |
Collapse
|
19
|
Hester RL, Hammer LW. Venular-arteriolar communication in the regulation of blood flow. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1280-5. [PMID: 11959667 DOI: 10.1152/ajpregu.00744.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle blood flow is regulated to meet the metabolic needs of the tissue. With the vasculature arranged as a successive branching of arterioles and the larger, >50 microm, arterioles providing the major site of resistance, an increasing metabolic demand requires the vasodilation of the small arterioles first then the vasodilation of the more proximal, larger arterioles. The mechanism(s) for the coordination of this ascending vasodilation are not clear and may involve a conducted vasodilation and/or a flow-dependent response. The close arteriolar-venular pairing provides an additional mechanism by which the arteriolar diameter can be increased due to the diffusion of vasoactive substances from the venous blood. Evidence is presented that the venular endothelium releases a relaxing factor, a metabolite of arachidonic acid, that will vasodilate the adjacent arteriole. The stimulus for this release is not known, but it is hypothesized that hypoxia-induced ATP release from red blood cells may be responsible for the stimulation of arachidonic release from the venular endothelial cells. Thus the venous circulation is in an optimal position to monitor the overall metabolic state of the tissue and thus provide a feedback regulation of arteriolar diameter.
Collapse
Affiliation(s)
- Robert L Hester
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | |
Collapse
|
20
|
Schrage WG, Woodman CR, Laughlin MH. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting. J Appl Physiol (1985) 2002; 92:901-11. [PMID: 11842020 DOI: 10.1152/japplphysiol.00642.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.
Collapse
Affiliation(s)
- William G Schrage
- Department of Physiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
21
|
Jagger JE, Bateman RM, Ellsworth ML, Ellis CG. Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 2001; 280:H2833-9. [PMID: 11356642 DOI: 10.1152/ajpheart.2001.280.6.h2833] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The release of ATP from red blood cells (RBC) in response to low O2 levels is linked to ATP production and the oxygenation state of hemoglobin. Because O2 is unloaded from the RBC, the concentration of deoxygenated hemoglobin increases, displacing phosphofructokinase from the cytoplasmic domain of band 3. We hypothesize that the ATP molecules produced through this glycolytic stimulation at the membrane surface result in the release of ATP from the RBC. Rat whole blood exposed to 5 min of low PO2 in vitro increased plasma [ATP] by 1.0 miccroM (+45%). This increase was reduced to 0.1 microM (+12%, P < 0.05) after citrate incubation and reversed after fluoride treatment (both glycolytic inhibitors) by -0.2 microM (-23%, P < 0.05). Plasma [ATP] of control RBC decreased -0.3 microM (-12%) when 8% CO (P < 0.05) was added to the chamber. Because CO and O2 bind competitively to heme, these results support our hypothesis that the release of ATP from RBC is linked to ATP production through the oxygenation state of the hemoglobin molecule.
Collapse
Affiliation(s)
- J E Jagger
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
22
|
Hammer LW, Ligon AL, Hester RL. ATP-mediated release of arachidonic acid metabolites from venular endothelium causes arteriolar dilation. Am J Physiol Heart Circ Physiol 2001; 280:H2616-22. [PMID: 11356617 DOI: 10.1152/ajpheart.2001.280.6.h2616] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to test the hypothesis that venular administration of ATP resulted in endothelium-dependent dilation of adjacent arterioles through a mechanism involving cyclooxygenase products. Forty-three male golden hamsters were anesthetized with pentobarbital sodium (60 mg/kg ip), and the cremaster muscle was prepared for in vivo microscopy. ATP (100 microM) injected into venules dilated adjacent arterioles from a mean diameter of 51 +/- 4 to 76 +/- 6 microm (P < 0.05, n = 6). To remove the source of endothelial-derived relaxing factors, the venules were then perfused with air bubbles to disrupt the endothelium. Resting arteriolar diameter was not altered after disruption of the venular endothelium (51 +/- 5 microm), and the responses to venular ATP infusions were significantly attenuated (59 +/- 4 microm, P < 0.05). To determine whether the relaxing factor was a cyclooxygenase product, ATP infusion studies were repeated in the absence and presence of indomethacin (28 microM). Under control conditions, ATP (100 microM) infusion into the venule caused an increase in mean arteriolar diameter from 55 +/- 4 to 78 +/- 3 microm (P < 0.05, n = 6). In the presence of indomethacin, mean resting arteriolar tone was not significantly altered (49 +/- 4 microm), and the response to ATP was significantly attenuated (54 +/- 4 microm, P < 0.05, n = 6). These studies show that increases in venular ATP concentrations stimulate the release of cyclooxygenase products, possibly from the venular endothelium, to vasodilate the adjacent arteriole.
Collapse
Affiliation(s)
- L W Hammer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | | | |
Collapse
|
23
|
Fromy B, Merzeau S, Abraham P, Saumet JL. Mechanisms of the cutaneous vasodilator response to local external pressure application in rats: involvement of CGRP, neurokinins, prostaglandins and NO. Br J Pharmacol 2000; 131:1161-71. [PMID: 11082124 PMCID: PMC1572441 DOI: 10.1038/sj.bjp.0703685] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Local pressure-induced vasodilation (PIV) is a neural vasodilator response to non-nociceptive externally applied pressure in the skin, previously described in humans. We first determined whether PIV exists in rats and depends on capsaicin-sensitive fibres as it does in humans. We then examined the mediators involved in the efferent pathway of PIV. 2. Cutaneous blood flow was measured by laser Doppler flowmetry during 11.1 Pa s(-1) increases in local applied pressure in anaesthetized rats. The involvement of capsaicin-sensitive fibres in PIV was tested in rats treated neonatally with capsaicin. To antagonize CGRP, neurokinin-1, -2, or -3 receptors, different groups of rats were treated with CGRP(8 - 37), SR140333, SR48968 or SR142801, respectively. Prostaglandins involvement was tested with indomethacin treatment. To inhibit nitric oxide synthase (NOS) activity or specific neuronal NOS, rats were treated with N(G)-nitro-L-arginine or 7-nitroindazole, respectively. 3. PIV was found in rats, as in humans. PIV was abolished by neonatal treatment with capsaicin and by administration of CGRP(8 - 37) but remained unchanged with SR140333, SR48968 and SR142801 treatments. Prostaglandin inhibition resulted in a significant decrease in PIV. Inhibition of NOS abolished PIV, whereas inhibition of neuronal NOS caused a diminution of PIV. 4. These data suggest that PIV depends on capsaicin-sensitive fibres in rats, as in humans. It appears that CGRP plays a major role in the PIV, whereas neurokinins have no role. Furthermore, PIV involves a contribution from prostaglandins and depends on endothelial NO, whereas neuronal NO has a smaller role.
Collapse
Affiliation(s)
- Bérengère Fromy
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
| | - Sandra Merzeau
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
| | - Pierre Abraham
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
| | - Jean-Louis Saumet
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
- Author for correspondence:
| |
Collapse
|
24
|
Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC. Diameter changes in skeletal muscle venules during arterial pressure reduction. Am J Physiol Heart Circ Physiol 2000; 279:H47-57. [PMID: 10899040 DOI: 10.1152/ajpheart.2000.279.1.h47] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies in skeletal muscle have shown a substantial (>100%) increase in venous vascular resistance with arterial pressure reduction to 40 mmHg, but a microcirculatory study showed no significant venular diameter changes in the horizontal direction during this procedure. To examine the possibility of venular collapse in the vertical direction, a microscope was placed horizontally to view a vertically mounted rat spinotrapezius muscle preparation. We monitored the diameters of venules (mean diameter 73. 8 +/- 37.0 microm, range 13-185 microm) oriented horizontally and vertically with a video system during acute arterial pressure reduction by hemorrhage. Our analysis showed small but significant (P < 0.0001) diameter reductions of 1.0 +/- 2.5 microm and 1.8 +/- 3. 1 microm in horizontally and vertically oriented venules, respectively, upon reduction of arterial pressure from 115.0 +/- 26. 3 to 39.8 +/- 12.3 mmHg. The venular responses were not different after red blood cell aggregation was induced by Dextran 500 infusion. We conclude that diameter changes in venules over this range of arterial pressure reduction are isotropic and would likely increase venous resistance by <10%.
Collapse
Affiliation(s)
- J J Bishop
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|