1
|
Chaudhary N, Kasiewicz LN, Newby AN, Arral ML, Yerneni SS, Melamed JR, LoPresti ST, Fein KC, Strelkova Petersen DM, Kumar S, Purwar R, Whitehead KA. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat Biomed Eng 2024; 8:1483-1498. [PMID: 39363106 PMCID: PMC11863198 DOI: 10.1038/s41551-024-01256-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicle for RNA therapeutics, partly because of established lipid structure-activity relationships focused on formulation potency. Yet such knowledge has not extended to LNP immunogenicity. Here we show that the innate and adaptive immune responses elicited by LNPs are linked to their ionizable lipid chemistry. Specifically, we show that the amine headgroups in ionizable lipids drive LNP immunogenicity by binding to Toll-like receptor 4 and CD1d and by promoting lipid-raft formation. Immunogenic LNPs favour a type-1 T-helper-cell-biased immune response marked by increases in the immunoglobulins IgG2c and IgG1 and in the pro-inflammatory cytokines tumour necrosis factor, interferon γ and the interleukins IL-6 and IL-2. Notably, the inflammatory signals originating from these receptors inhibit the production of anti-poly(ethylene glycol) IgM antibodies, preventing the often-observed loss of efficacy in the LNP-mediated delivery of siRNA and mRNA. Moreover, we identified computational methods for the prediction of the structure-dependent innate and adaptive responses of LNPs. Our findings may help accelerate the discovery of well-tolerated ionizable lipids suitable for repeated dosing.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lisa N Kasiewicz
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexandra N Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mariah L Arral
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Jilian R Melamed
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Samuel T LoPresti
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Sushant Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Santana-Coelho D, Lugo JN. Hippocampal Upregulation of Complement Component C3 in Response to Lipopolysaccharide Stimuli in a Model of Fragile-X Syndrome. Curr Issues Mol Biol 2023; 45:9306-9315. [PMID: 37998759 PMCID: PMC10669955 DOI: 10.3390/cimb45110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The complement system is part of the innate immune system and has been shown to be altered in autism spectrum disorder (ASD). Fragile-X syndrome (FXS) is the main genetic cause of ASD and studies suggest a dysregulation in the immune system in patients with the disorder. To assess if an animal model of FXS presents with altered complement signaling, we treated male Fmr1 knockout (KO) mice with lipopolysaccharide (LPS) and collected the hippocampus 24 h later. Assessment of the expression of the complement genes C1q, C3, and C4 identified the upregulation of C3 in both wild-type (WT) and knockout mice. Levels of C3 also increased in both genotypes. Analysis of the correlation between the expression of C3 and the cytokines IL-6, IL-1β, and TNF-α identified a different relationship between the expression of the genes in Fmr1 KO when compared to WT mice. Our findings did not support our initial hypotheses that the lack of the FMR1 gene would alter complement system signaling, and that the induction of the complement system in response to LPS in Fmr1 KO mice differed from wild-type conspecifics.
Collapse
Affiliation(s)
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA;
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
3
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Phenethyl Isothiocyanate Suppresses the Proinflammatory Cytokines in Human Glioblastoma Cells through the PI3K/Akt/NF-κB Signaling Pathway In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2108289. [PMID: 35368876 PMCID: PMC8975692 DOI: 10.1155/2022/2108289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phenethyl isothiocyanate (PEITC), extracted from cruciferous vegetables, showed anticancer activity in many human cancer cells. Our previous studies disclosed the anticancer activity of PEITC in human glioblastoma multiforme (GBM) 8401 cells, including suppressing the cell proliferation, inducing apoptotic cell death, and suppressing cell migration and invasion. Furthermore, PEITC also inhibited the growth of xenograft tumors of human glioblastoma cells. We are the first to investigate PEITC effects on the receptor tyrosine kinase (RTK) signaling pathway and the effects of proinflammatory cytokines on glioblastoma. The cell viability was analyzed by flow cytometric assay. The protein levels and mRNA expressions of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), were determined by enzyme-linked immunosorbent assay (ELISA) reader and real-time polymerase chain reaction (PCR) analysis, respectively. Furthermore, nuclear factor-kappa B- (NF-κB-) associated proteins were evaluated by western blotting. NF-κB expression and nuclear translocation were confirmed by confocal laser microscopy. NF-κB binding to the DNA was examined by electrophoretic mobility shift assay (EMSA). Our results indicated that PEITC decreased the cell viability and inhibited the protein levels and expressions of IL-1β, IL-6, and TNF-α genes at the transcriptional level in GBM 8401 cells. PEITC inhibited the binding of NF-κB on promoter site of DNA in GBM 8401 cells. PEITC also altered the protein expressions of protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and NF-κB signaling pathways. The inflammatory responses in human glioblastoma cells may be suppressed by PEITC through the phosphoinositide 3-kinase (PI3K)/Akt/NF-κB signaling pathway. Thus, PEITC may have the potential to be an anti-inflammatory agent for human glioblastoma in the future.
Collapse
|
5
|
Tagashira A, Nishi K, Sugahara T. Lysozyme from hen egg white ameliorates lipopolysaccharide-induced systemic inflammation in mice. Cytotechnology 2019; 71:497-506. [PMID: 30721425 DOI: 10.1007/s10616-019-00296-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023] Open
Abstract
Lysozyme is an anti-bacterial protein that is widely distributed in nature. Our previous studies revealed that lysozyme shows anti-inflammatory effect on hyperinflammatory macrophages in vitro. The effect of lysozyme on lipopolysaccharide-induced inflammation model mice was examined in this study. Oral administration of lysozyme at 2250 mg/kg body weight/day (high-dose group) significantly suppressed interleukin (IL)-6 and tumor necrosis factor-α levels in the serum. IL-6 level in the spleen was significantly suppressed by lysozyme at 450 mg/kg body weight/day (middle-dose group) and high-dose group due to the suppression of gene expression level. The gene expression levels of IL-1β and IL-12 were also decreased by lysozyme in the high-dose group. In addition, lysozyme significantly suppressed IL-6 level in the liver in the high-dose group. Our findings suggest that lysozyme mitigates inflammatory condition in vivo by suppressing inflammatory cytokine levels in serum and organs from LPS-induced inflammation model mice.
Collapse
Affiliation(s)
- Ayuka Tagashira
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Kosuke Nishi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566, Japan.,Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan.,Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Takuya Sugahara
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566, Japan. .,Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan. .,Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan.
| |
Collapse
|
6
|
Hirano Y, Choi A, Tsuruta M, Jaw JE, Oh Y, Ngan D, Moritani K, Chen YWR, Tam S, Li Y, Vasilescu DM, Hogg JC, Francis G, Bernatchez P, Man SFP, Sin DD. Surfactant protein-D deficiency suppresses systemic inflammation and reduces atherosclerosis in ApoE knockout mice. Cardiovasc Res 2017; 113:1208-1218. [DOI: 10.1093/cvr/cvx067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/29/2017] [Indexed: 01/18/2023] Open
|
7
|
Liu W, Jiang HL, Cai LL, Yan M, Dong SJ, Mao B. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:5292346. [PMID: 27366191 PMCID: PMC4913016 DOI: 10.1155/2016/5292346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/21/2016] [Accepted: 05/12/2016] [Indexed: 02/05/2023]
Abstract
Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner.
Collapse
Affiliation(s)
- Wei Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong-li Jiang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin-li Cai
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Yan
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shou-jin Dong
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bing Mao
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Starr ME, Saito M, Evers BM, Saito H. Age-Associated Increase in Cytokine Production During Systemic Inflammation-II: The Role of IL-1β in Age-Dependent IL-6 Upregulation in Adipose Tissue. J Gerontol A Biol Sci Med Sci 2014; 70:1508-15. [PMID: 25344820 DOI: 10.1093/gerona/glu197] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/19/2014] [Indexed: 12/23/2022] Open
Abstract
Expression of interleukin-6 (IL-6) upon acute inflammatory stress is significantly augmented by aging in adipose tissue, a major source of this cytokine. In the present study, we examined the mechanism of age-dependent IL-6 overproduction using visceral white adipose tissue from C57BL/6 mice. Upon treatment with lipopolysaccharide (LPS) in vitro, IL-6 was produced by adipose tissue explants, and secreted levels were significantly higher in cultures from aged (24 months) mice compared to young (4 months). Interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα), two inducers of IL-6, were mainly produced by the lungs and spleen rather than adipose tissue in mice after LPS injection. Treatment of adipose explants with physiological levels of IL-1β induced significant age-dependent secretion of IL-6, while treatment with TNFα had little effect, demonstrating an augmented response of adipose tissues to IL-1β in the aged. In vitro experiments utilizing a neutralizing antibody against IL-1β and in vivo experiments utilizing IL-1-receptor-1 deficient mice, confirmed that IL-6 overproduction in the aged is regulated by autocrine/paracrine action of IL-1β which specifically occurs in aged adipose tissues. These findings indicate an elevated inflammatory potential of adipose tissue in the aged and a unique IL-1β-mediated mechanism for IL-6 overproduction, which may impact age-associated vulnerability to acute inflammatory diseases such as sepsis.
Collapse
Affiliation(s)
| | | | - B Mark Evers
- Department of Surgery, Markey Cancer Center, and
| | - Hiroshi Saito
- Department of Surgery, Markey Cancer Center, and Department of Physiology, University of Kentucky, Lexington.
| |
Collapse
|
9
|
Starr ME, Saito H. Sepsis in old age: review of human and animal studies. Aging Dis 2014; 5:126-36. [PMID: 24729938 PMCID: PMC3966671 DOI: 10.14336/ad.2014.0500126] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a serious problem among the geriatric population as its incidence and mortality rates dramatically increase with advanced age. Despite a large number of ongoing clinical and basic research studies, there is currently no effective therapeutic strategy that rescues elderly patients with severe sepsis. Recognition of this problem is relatively low as compared to other age-associated diseases. The disparity between clinical and basic studies is a problem, and this is likely due, in part, to the fact that most laboratory animals used for sepsis research are not old while the majority of sepsis cases occur in the geriatric population. The objective of this article is to review recent epidemiological studies and clinical observations, and compare these with findings from basic laboratory studies which have used aged animals in experimental sepsis.
Collapse
Affiliation(s)
- Marlene E Starr
- Department of Surgery, Lexington, KY 40536, USA
- Markey Cancer Center University of Kentucky, Lexington, KY 40536, USA
| | - Hiroshi Saito
- Department of Surgery, Lexington, KY 40536, USA
- Department of Physiology, Lexington, KY 40536, USA
- Markey Cancer Center University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Park J, Miyakawa T, Shiokawa A, Nakajima-Adachi H, Tanokura M, Hachimura S. Splenic stromal cells from aged mice produce higher levels of IL-6 compared to young mice. Mediators Inflamm 2014; 2014:826987. [PMID: 24729663 PMCID: PMC3960767 DOI: 10.1155/2014/826987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 02/07/2023] Open
Abstract
Inflamm-aging indicates the chronic inflammatory state resulting from increased secretion of proinflammatory cytokines and mediators such as IL-6 in the elderly. Our principle objective was to identify cell types that were affected with aging concerning IL-6 secretion in the murine model. We compared IL-6 production in spleen cells from both young and aged mice and isolated several types of cells from spleen and investigated IL-6 mRNA expression and protein production. IL-6 protein productions in cultured stromal cells from aged mice spleen were significantly high compared to young mice upon LPS stimulation. IL-6 mRNA expression level of freshly isolated stromal cells from aged mice was high compared to young mice. Furthermore, stromal cells of aged mice highly expressed IL-6 mRNA after LPS injection in vivo. These results suggest that stromal cells play a role in producing IL-6 in aged mice and imply that they contribute to the chronic inflammatory condition in the elderly.
Collapse
Affiliation(s)
- Jihyun Park
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Aya Shiokawa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruyo Nakajima-Adachi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Welc SS, Clanton TL, Dineen SM, Leon LR. Heat stroke activates a stress-induced cytokine response in skeletal muscle. J Appl Physiol (1985) 2013; 115:1126-37. [DOI: 10.1152/japplphysiol.00636.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heat stroke (HS) induces a rapid elevation in a number of circulating cytokines. This is often attributed to the stimulatory effects of endotoxin, released from damaged intestine, on immune cells. However, parenchymal cells also produce cytokines, and skeletal muscle, comprising a large proportion of body mass, is thought to participate. We tested the hypothesis that skeletal muscle exhibits a cytokine response to HS that parallels the systemic response in conscious mice heated to a core temperature of 42.4°C (TcMax). Diaphragm and hindlimb muscles showed a rapid rise in interleukin-6 (IL-6) and interleuin-10 (IL-10) mRNA and transient inhibition of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) throughout early recovery, a pattern that parallels changes in circulating cytokines. IL-6 protein was transiently elevated in both muscles at ∼32 min after reaching TcMax. Other responses observed included an upregulation of toll-like receptor-4 (TLR-4) and heat shock protein-72 (HSP-72) mRNA but no change in TLR-2 or HSP25 mRNA. Furthermore, c-jun and c-fos mRNA increased. Together, c-jun/c-fos form the activator protein-1 (AP-1) transcription factor, critical for stress-induced regulation of IL-6. Interestingly, a second “late-phase” (24 h) cytokine response, with increases in IL-6, IL-10, IL-1β, and TNF-α protein, were observed in hindlimb but not diaphragm muscle. These results demonstrate that skeletal muscle responds to HS with a distinct “stress-induced immune response,” characterized by an early upregulation of IL-6, IL-10, and TLR-4 and suppression of IL-1β and TNF-α mRNA, a pattern discrete from classic innate immune cytokine responses.
Collapse
Affiliation(s)
- Steven S. Welc
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Shauna M. Dineen
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa R. Leon
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
12
|
Sorg H, Schulz T, Krueger C, Vollmar B. Consequences of surgical stress on the kinetics of skin wound healing: partial hepatectomy delays and functionally alters dermal repair. Wound Repair Regen 2009; 17:367-77. [PMID: 19660045 DOI: 10.1111/j.1524-475x.2009.00490.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective was to determine the significance of surgical trauma in dermal wound healing. Using intravital microscopy, we analyzed the healing kinetics of full-thickness dermal wounds in the ears of SKH1 mice. Partial hepatectomy (pHx) simulated major surgical trauma, while laparotomy only served as a sham operation (sham). Animals without abdominal surgery served as controls (control). Laparotomy wounds were analyzed for biomechanical qualities and collagen deposition. Morphological characterization of skin repair was performed by histology/immunohistochemistry. In vitro cell assays assessed the paracrine effects of surgical stress. PHx caused a transient increase in tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 levels and led to weight loss, reflecting the host's overall response to surgery. Wound closure in pHx animals was delayed vs. control and sham animals, as indicated by significantly lower values of epithelialization and neovascularization over 10 days. Ear wound histology further revealed a provisional wound matrix with a reduced microvessel density. Moreover, pHx-laparotomy wounds showed a reduced bursting strength coexisting with significantly decreased collagen content. PHx and sham serum caused a significant alteration in in vitro fibroblast viability. Skin healing is dependent on the extent of surgery and is influenced by its paracrine effects. Therefore, considerable effort should be focused on the development of strategies limiting surgery-associated perturbations of dermal repair.
Collapse
Affiliation(s)
- Heiko Sorg
- Institute for Experimental Surgery, University of Rostock, 18055 Rostock, Germany
| | | | | | | |
Collapse
|
13
|
Starr ME, Evers BM, Saito H. Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol A Biol Sci Med Sci 2009; 64:723-30. [PMID: 19377014 DOI: 10.1093/gerona/glp046] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increased mortality and overexpression of interleukin-6 (IL-6) during inflammatory stress are well-documented age-associated phenomena; however, the site of IL-6 overexpression is not entirely known. Here, we report that white adipose tissue is a major source of IL-6 in aged animals during lipopolysaccharide (LPS)-induced systemic inflammation. Among the various tissues examined, white adipose tissue from the epididymal fat pad (located in the abdominal cavity) expressed the highest level of IL-6 messenger RNA in both young and aged mice with a 5.5-fold higher level in the aged. Immunohistochemistry revealed that, within the adipose tissue, LPS-induced IL-6 expression is localized to both the adipocytes and stromal cells. Compared with age-matched wild-type mice, aged IL-6((-/-)) mice exhibited reduced mortality to LPS suggesting a deleterious effect of IL-6 overexpression in the aged. These results demonstrate that increased vulnerability to systemic inflammation with age is due in part, to augmented IL-6 production by the adipose tissue.
Collapse
Affiliation(s)
- Marlene E Starr
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555-0828, USA
| | | | | |
Collapse
|
14
|
Forte A, Finicelli M, De Luca P, Nordström I, Onorati F, Quarto C, Santè P, Renzulli A, Galderisi U, Berrino L, De Feo M, Hellstrand P, Rossi F, Cotrufo M, Cascino A, Cipollaro M. Injury to rat carotid arteries causes time-dependent changes in gene expression in contralateral uninjured arteries. Clin Sci (Lond) 2009; 116:125-136. [PMID: 18522534 DOI: 10.1042/cs20080080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Vascular surgery aimed at stenosis removal induces local reactions often leading to restenosis. Although extensive analysis has been focused on pathways activated in injured arteries, little attention has been devoted to associated systemic vascular reactions. The aim of the present study was to analyse changes occurring in contralateral uninjured rat carotid arteries in the acute phase following unilateral injury. WKY (Wistar-Kyoto) rats were subjected to unilateral carotid arteriotomy. Contralateral uninjured carotid arteries were harvested from 4 h to 7 days after injury. Carotid arteries were also harvested from sham-operated rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT-PCR (reverse transcription-PCR) and verified at the protein level by Western blotting. A total of 1011 genes were differentially regulated in contralateral uninjured carotid arteries from 4 h to 7 days after arteriotomy (P<0.0001; fold change, >or=2) and were classified into 19 gene ontology functional categories. To a lesser extent, mRNA variations also occurred in carotid arteries of sham-operated rats. Among the changes, up-regulation of members of the RAS (renin-angiotensin system) was detected, with possible implications for vasocompensative mechanisms induced by arteriotomy. In particular, a selective increase in the 69 kDa isoform of the N-domain of ACE (angiotensin-converting enzyme), and not the classical somatic 195 kDa isoform, was observed in contralateral uninjured carotid arteries, suggesting that this 69 kDa isoenzyme could influence local AngII (angiotensin II) production. In conclusion, systemic reactions to injury occur in the vasculature, with potential clinical relevance, and suggest that caution is needed in the choice of controls during experimental design in vivo.
Collapse
Affiliation(s)
- Amalia Forte
- Excellence Research Centre for Cardiovascular Diseases, Department of Experimental Medicine, Second University of Naples, 80138 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ueda J, Starr ME, Takahashi H, Du J, Chang LY, Crapo JD, Evers BM, Saito H. Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radic Biol Med 2008; 45:897-904. [PMID: 18640266 PMCID: PMC2953464 DOI: 10.1016/j.freeradbiomed.2008.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/06/2008] [Accepted: 06/17/2008] [Indexed: 01/09/2023]
Abstract
Oxidative damage is a major cause of lung injury during systemic inflammatory response syndrome. In this study, the expression of an antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), and its protective role against pulmonary oxidative damage were investigated using mouse models of systemic inflammation. Intraperitoneal injection with bacterial endotoxin lipopolysaccharides (LPS; 20 mg/kg) caused oxidative damage in lungs as assessed by increased tyrosine nitration in proteins. LPS administration also resulted in a rapid and significant loss of more than 80% of pulmonary EC-SOD in a time- and dose-dependent manner, but other types of SODs, cytoplasmic CuZn-SOD and mitochondrial Mn-SOD, were not affected. EC-SOD protein is most abundant in lungs but also present at high levels in other tissues such as heart and white fat; however, the LPS-mediated decrease in this enzyme was most apparent in the lungs. Intravenous injection of mice with tumor necrosis factor alpha (10 microg per mouse) also caused a 60% decrease in EC-SOD in the lungs, suggesting that the EC-SOD down-regulation is mediated by this LPS-inducible inflammatory cytokine. A protective role for EC-SOD against LPS-mediated systemic inflammation was shown by an increased survival rate (75% vs 29% in 5 days) and decreased pulmonary oxidative damage in EC-SOD transgenic mice that overexpress the human EC-SOD gene. These results demonstrate that the inflammation-mediated EC-SOD down-regulation has a major pathophysiological impact during the systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Junji Ueda
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Marlene E. Starr
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Hitoshi Takahashi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Jie Du
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Ling Yi Chang
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206
| | - James D. Crapo
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206
| | - B. Mark Evers
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Hiroshi Saito
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
16
|
Gomez CR, Nomellini V, Faunce DE, Kovacs EJ. Innate immunity and aging. Exp Gerontol 2008; 43:718-28. [PMID: 18586079 PMCID: PMC2564282 DOI: 10.1016/j.exger.2008.05.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/16/2022]
Abstract
Advanced age is associated with defects in all of the cells of the innate immune system, including numbers, function, and early stages of activation. This review, presents the current state of the field on the impact of age on the innate immune system. The analysis of the literature suggests that a dysfunctional innate immune system is a contributing factor to aberrant outcomes after injury or infection and to the development of many of the diseases observed in the elderly. Gaining an understanding of the nature of the defects in innate immune cells may allow the development of therapeutic strategies aimed to restore innate immune function in aged individuals.
Collapse
Affiliation(s)
- Christian R. Gomez
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Facultad de Ciencias de la Salud, Universidad Diego Portales, Ejército 141, Santiago, Chile
| | - Vanessa Nomellini
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Douglas E. Faunce
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Elizabeth J. Kovacs
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Immunology and Aging Program, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
17
|
Staikos L, Malellari L, Chang SL. Lipopolysaccharide-induced pro-inflammatory cytokines in the brain of rats in the morphine-tolerant state. J Neuroimmune Pharmacol 2008; 3:236-40. [PMID: 18584332 DOI: 10.1007/s11481-008-9111-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/09/2008] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharide (LPS) induces the production of inflammatory cytokines in the serum and brain; morphine has been shown to be immunosuppressive. However, we previously reported that serum levels of LPS-induced tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) are potentiated during morphine tolerance due to the HPA axis desensitization. In this study, we examined LPS-induced cytokine production in the brain of morphine-tolerant rats. The animals were implanted with two and four morphine (75 mg) pellets on days 1 and 2, respectively. On either day 4 or 5, 250 microg/kg LPS was administered (i.p.). Animals implanted with placebo and injected with saline were used as the control. The animals were sacrificed either 16 or 2 h post-injection, respectively, and TNF-alpha, IL-1beta, and IL-6 mRNA levels in the brain were determined by reverse transcriptase polymerase chain reaction. IL-1beta mRNA increased 2 h post-LPS treatment, whereas IL-6 decreased. At 16 h, TNF-alpha expression mRNA increased. These data suggest that the inflammatory response in the brain is heightened during morphine tolerance.
Collapse
Affiliation(s)
- Linda Staikos
- Institute of NeuroImmune Pharmacology, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079, USA
| | | | | |
Collapse
|
18
|
Sainsbury A, Goodlad RA, Perry SL, Pollard SG, Robins GG, Hull MA. Increased colorectal epithelial cell proliferation and crypt fission associated with obesity and roux-en-Y gastric bypass. Cancer Epidemiol Biomarkers Prev 2008; 17:1401-10. [PMID: 18559555 DOI: 10.1158/1055-9965.epi-07-2874] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIMS The relationship between obesity, weight reduction, and future risk of colorectal cancer is not well understood. Therefore, we compared mucosal biomarkers in normal weight individuals [body mass index (BMI), 18.5-24.9 kg/m(2)] with those in morbidly obese patients (BMI >40 kg/m(2)) before and 6 months after Roux-en-Y gastric bypass (RYGB). METHODS Rectal epithelial cell mitosis, crypt area, and crypt branching were measured following whole crypt microdissection. Apoptosis was measured by immunohistochemistry for neo-cytokeratin 18 on fixed tissue sections. Serum levels of C-reactive protein and cytokines were assayed in combination with quantification of mucosal proinflammatory gene expression by real-time RT-PCR. RESULTS Twenty-six morbidly obese patients (mean BMI, 54.4 kg/m(2)) had significantly increased mitosis, crypt area, and crypt branching (all P < 0.01) compared with 21 age- and sex-matched normal weight individuals (mean BMI, 22.5 kg/m(2)). Morbidly obese patients underwent a mean excess weight loss of 41.7% at a mean of 26 weeks after RYGB. Surprisingly, this was associated with a further increase in mitosis and decreased apoptosis of epithelial cells. At the same time, lower levels of serum C-reactive protein and interleukin-6 following RYGB were accompanied by a reduction in mucosal IL-6 protein content but elevated mucosal expression of other proinflammatory genes such as cyclooxygenase-1 and cyclooxygenase-2. CONCLUSIONS Mucosal biomarkers, accepted as indicators of future colorectal cancer risk, are increased in morbidly obese patients compared with normal weight controls. The hyperproliferative state that exists 6 months after RYGB may have important implications for long-term colorectal cancer risk in bariatric surgery patients.
Collapse
Affiliation(s)
- Anita Sainsbury
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Meador BM, Krzyszton CP, Johnson RW, Huey KA. Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. J Appl Physiol (1985) 2008; 104:991-7. [PMID: 18218915 DOI: 10.1152/japplphysiol.01079.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated proinflammatory cytokine responses can be observed with aging, and reduced levels of the anti-inflammatory cytokine IL-10 may contribute to these responses. IL-10 can reduce IL-6, IL-1beta, and TNF-alpha expression in nonmuscle tissues; however, no studies have examined the combined effects of IL-10 and age on cytokine responses in skeletal and cardiac muscle. These experiments tested the hypothesis that the absence of IL-10, in vivo, is associated with greater IL-6, TNF-alpha, and IL-1beta responses to an inflammatory challenge in skeletal and cardiac muscle and that aging exaggerates these responses. We compared IL-6, IL-1beta, and TNF-alpha mRNA and protein levels in skeletal and cardiac muscle of young (4 mo) and mature (10-11 mo) wild-type (IL-10(+/+)) and IL-10 deficient (IL-10(-/-)) mice following LPS. Skeletal and cardiac IL-6 mRNA and protein were elevated by LPS for IL-10(+/+) and IL-10(-/-) mice with greater responses in the IL-10(-/-) mice (P < 0.01). In skeletal muscle these effects were greater in mature than young mice (P < 0.01). IL-1beta mRNA and protein responses to LPS were greater in cardiac muscle of young but not mature IL-10(-/-) mice compared with IL-10(+/+) (P < 0.01). However, IL-1beta responses were greater in mature than young mice, but only in IL-10(+/+) groups (P < 0.05). The absence of IL-10 was associated with higher TNF-alpha protein levels in cardiac muscle (P < 0.05). The results provide the first in vivo evidence that the absence of IL-10 is associated with a greater IL-6 response to LPS in skeletal and cardiac muscles, and in skeletal muscle aging further exaggerates these responses.
Collapse
Affiliation(s)
- B M Meador
- Departments of Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
20
|
Mikaelian I, Coluccio D, Morgan KT, Johnson T, Ryan AL, Rasmussen E, Nicklaus R, Kanwal C, Hilton H, Frank K, Fritzky L, Wheeldon EB. Temporal Gene Expression Profiling Indicates Early Up-regulation of Interleukin-6 in Isoproterenol-induced Myocardial Necrosis in Rat. Toxicol Pathol 2008; 36:256-64. [DOI: 10.1177/0192623307312696] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gene expression was evaluated in the myocardium of male Wistar rats after a single subcutaneous administration of 0.5 mg of isoproterenol, a β-adrenergic agonist that causes acute tachycardia with subsequent myocardial necrosis. Histology of the heart, clinical chemistry, and hematology were evaluated at 9 time points (0.5 hours to 14 days postinjection). Myocardial gene expression was evaluated at 4 time points (1 hour to 3 days). Contraction bands and loss of cross-striation were identified on phosphotungstic acid-hematoxylin-stained sections 0.5 hours postdosing. Plasma troponin I elevation was detected at 0.5 hours, peaked at 3 hours, and returned to baseline values at 3 days postdosing. Interleukin 6 (Il6) expression spiked at 1 to 3 hours and was followed by a short-lived, time-dependent dysregulation of its downstream targets. Concurrently and consistent with the kinetics of the histologic findings, many pathways indicative of necrosis/apoptosis (p38 mitogen-activated protein kinase [MAPK] signaling, NF-κB signaling) and adaptation to hypertension (PPAR signaling) were overrepresented at 3 hours. The 1-day and 3-day time points indicated an adaptive response, with down-regulation of the fatty acid metabolism pathway, up-regulation of the fetal gene program, and superimposed inflammation and repair at 3 days. These results suggest early involvement of Il6 in isoproterenol-induced myocardial necrosis and emphasize the value of early time points in transcriptomic studies.
Collapse
Affiliation(s)
- Igor Mikaelian
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Denise Coluccio
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | | | - Teona Johnson
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Amber L. Ryan
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Erik Rasmussen
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Rosemary Nicklaus
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Charu Kanwal
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Holly Hilton
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Karl Frank
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Luke Fritzky
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| | - Eric B. Wheeldon
- Hoffmann-La Roche Inc., Non-Clinical Drug Safety, Nutley, New Jersey, USA and
| |
Collapse
|
21
|
Wen JJ, Bhatia V, Popov VL, Garg NJ. Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas' disease. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:1953-64. [PMID: 17148660 PMCID: PMC1762476 DOI: 10.2353/ajpath.2006.060475] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we investigated the mechanism(s) of mitochondrial functional decline in acute Chagas' disease. Our data show a substantial decline in respiratory complex activities (39 to 58%) and ATP (38%) content in Trypanosoma cruzi-infected murine hearts compared with normal controls. These metabolic alterations were associated with an approximately fivefold increase in mitochondrial reactive oxygen species production rate, substantial oxidative insult of mitochondrial membranes and respiratory complex subunits, and >60% inhibition of mtDNA-encoded transcripts for respiratory complex subunits in infected myocardium. The antioxidant phenyl-alpha-tert-butyl nitrone (PBN) arrested the oxidative damage-mediated loss in mitochondrial membrane integrity, preserved redox potential-coupled mitochondrial gene expression, and improved respiratory complex activities (47 to 95% increase) and cardiac ATP level (>or=40% increase) in infected myocardium. Importantly, PBN resulted twofold decline in mitochondrial reactive oxygen species production rate in infected myocardium. Taken together, our data demonstrate the pathological significance of oxidative stress in metabolic decay and energy homeostasis in acute chagasic myocarditis and further suggest that oxidative injuries affecting mitochondrial integrity-dependent expression and activity of the respiratory complexes initiate a feedback cycle of electron transport chain inefficiency, increased reactive oxygen species production, and energy homeostasis in acute chagasic hearts. PBN and other mitochondria-targeted antioxidants may be useful in altering mitochondrial decay and oxidative pathology in Chagas' disease.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology, 3.142C Medical Research Building, University of Texas Medical Branch, 301 University Blvd., Galveston TX 77555, USA
| | | | | | | |
Collapse
|
22
|
Li YY, Wong LYF, Cheung BMY, Hwang ISS, Tang F. Differential induction of adrenomedullin, interleukins and tumour necrosis factor-alpha by lipopolysaccharide in rat tissues in vivo. Clin Exp Pharmacol Physiol 2006; 32:1110-8. [PMID: 16445578 DOI: 10.1111/j.1440-1681.2005.04307.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to determine the temporal changes in tissue adrenomedullin (AM) and cytokine contents and cytokine and preproAM mRNA levels in the kidney, liver, adrenal gland and spleen of lipopolysaccharide (LPS)-treated rats. Rats were injected with LPS (10 mg/kg, i.p.). Radioimmunoassay and solution hybridization-RNase protection assays were used to follow the changes in AM and its mRNA levels, respectively; ELISA and reverse transcription-polymerase chain reaction were used to follow the changes in cytokines and their mRNA levels, respectively. In the kidney, the preproAM mRNA levels were increased 1 and 3 h after LPS treatment, whereas AM levels were decreased at 3 h. Interleukin (IL)-6 and IL-1beta levels were increased at 3 and 6 h, respectively. The preproAM mRNA levels were elevated in the liver 3 h after LPS injection. Concentrations of tumour necrosis factor (TNF)-alpha and IL-1beta were increased at l and 6 h, respectively. There were no changes in the levels of either preproAM mRNA or AM in the adrenal gland and the spleen. In the spleen, TNF-alpha levels were elevated at 1 and 3 h after LPS injection and IL-1beta was elevated at 1 and 6 h after LPS injection, whereas in the adrenal gland IL-1beta was elevated at 6 h after injection. The mRNA levels of the three cytokines were elevated at all three time intervals examined in the kidney, liver, adrenal gland and spleen, with the exception that TNF-alpha mRNA was not elevated in the adrenal gland at 6 h after LPS injection and IL-1beta mRNA was not elevated in the spleen at 3 and 6 h. The plasma concentrations of TNF-alpha were increased at 1 and 3 h after LPS injection, whereas plasma concentration of IL-1beta and IL-6 were elevated at 3 and 6 h for both. The present results suggest that the biosynthesis and secretion of AM may be differentially regulated in various tissues of rats injected with LPS and that AM may interact with cytokines during inflammation.
Collapse
Affiliation(s)
- Yuk-Yin Li
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
23
|
Szczesny B, Mitra S. Effect of aging on intracellular distribution of abasic (AP) endonuclease 1 in the mouse liver. Mech Ageing Dev 2006; 126:1071-8. [PMID: 15951004 DOI: 10.1016/j.mad.2005.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 03/01/2005] [Accepted: 04/11/2005] [Indexed: 11/26/2022]
Abstract
The abasic (AP) endonuclease (APE1) plays a central role in the base excision repair (BER) pathway for repairing oxidatively damaged bases and abasic sites in mammalian genomes. We have investigated age-dependent changes in APE activity, contributed primarily by APE1, in total extracts as well as in nuclear, mitochondrial, and cytoplasmic compartments of mouse hepatocytes. The APE1 protein and mRNA levels did not differ significantly between the livers of 4-mo (young), 10-mo (middle-aged), and 20-mo (old) mice, and corresponds with similar APE activity. However, we observed a 2-fold increase in specific activity of APE1 in the nucleus, a 2-fold decrease in the cytoplasm, and a 6-fold increase in the mitochondrial matrix of hepatocytes of the old relative to the young animals. Surprisingly, in the middle-age animals we observed 30% increase in APE activity in the nucleus but 6-fold in the mitochondrial matrix. These results indicate age-dependent accumulation of APE1 in the nucleus and mitochondria. Such redistribution occurred early in the mitochondria during the aging process and preferential accumulation of APE in the nucleus was more gradual which may reflect distinct levels of oxidative stress in these organelles.
Collapse
Affiliation(s)
- Bartosz Szczesny
- University of Texas Medical Branch, Sealy Center for Molecular Science, Department of Human Biological Chemistry and Genetics, Galveston, TX 77555, USA
| | | |
Collapse
|
24
|
Yu XW, Chen Q, Kennedy RH, Liu SJ. Inhibition of sarcoplasmic reticular function by chronic interleukin-6 exposure via iNOS in adult ventricular myocytes. J Physiol 2005; 566:327-40. [PMID: 15845578 PMCID: PMC1464756 DOI: 10.1113/jphysiol.2005.086686] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin (IL)-6 has been shown to decrease cardiac contractility via a nitric oxide synthase (NOS)-dependent pathway during acute exposure. We previously reported that IL-6 decreases contractility and increases inducible NOS (iNOS) in adult rat ventricular myocytes (ARVM) after 2 h exposure. The goal of this study was to investigate the cellular mechanism underlying this chronic IL-6-induced negative inotropy and the role of iNOS. Pretreatment for 2 h with 10 ng ml-1 IL-6 decreased the kinetics of cell shortening (CS) and contractile responsiveness to Ca2+o ([Ca2+]o from(0) to 2 mM) in ARVM. We first examined whether IL-6 reduced Ca2+ influx via L-type Ca2+ -channel current (ICa,L). Whole-cell ICa,L in ARVM was measured under conditions similar to those used for CS measurements, and it was found to be unaltered by IL-6. The sarcoplasmic reticular (SR) function was then assessed by examining postrest potentiation (PRP) and caffeine responsiveness of CS. Results showed that treatment with IL-6 for 2 h significantly decreased PRP, which was concomitant with a decrease in the phosphorylation of phospholamban. Following removal of IL-6, PRP and responsiveness to 10 mM caffeine were also reduced. Meanwhile, the IL-6-induced increase in nitric oxide (NO) production after 2 h (but not 1 h) was abolished by NG-monomethyl-l-arginine (l-NMMA) and 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT; a selective inhibitor of iNOS). Furthermore, IL-6-elicited suppressions of PRP and responsiveness to caffeine and Ca2+o were abolished by L-NMMA and AMT. Thus, these results suggest that activation of iNOS mediates IL-6-induced inhibition of SR function in ARVM during chronic exposure.
Collapse
Affiliation(s)
- Xin-Wen Yu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street , Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
25
|
Li YY, Cheung BMY, Wong LYF, Hwang ISS, Kumana CR, Tang F. Adrenomedullin gene expression and levels in the cardiovascular system after treatment with lipopolysaccharide. Neuropeptides 2005; 39:73-80. [PMID: 15752540 DOI: 10.1016/j.npep.2004.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 09/30/2004] [Accepted: 11/06/2004] [Indexed: 12/22/2022]
Abstract
To study the effect of septicaemia, the temporal changes in tissue adrenomedullin (AM) and preproAM mRNA levels were studied in the heart and blood vessels after lipopolysaccharide (LPS) injection. Radioimmunoassay and solution hybridization-RNase protection assays were used to follow the changes in AM and its mRNA levels respectively after intraperitoneal injection of 10 mg/kg LPS in rats. The preproAM mRNA levels increased at 1 h in the right atrium after LPS injection, while the AM contents decreased at 1 h in the left atrium. The preproAM mRNA levels increased at 3 and 6 h in the left ventricle, whereas it increased at 6 h in the right ventricles after LPS injection. There was an increase in preproAM mRNA levels at 1 and 3 h in the mesenteric artery, while AM levels were increased at 1, 3 and 6 h. However, there were no such changes in the thoracic aorta. There were also increases in tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta and IL-6 in the heart, and in the mesenteric artery (TNF-alpha and IL-1beta) and in thoracic aorta (IL-1beta and IL-6). The present results suggest that the biosynthesis and secretion of AM may be increased in cardiovascular tissues of rats injected with LPS, and that AM may play multiple roles in inflammation.
Collapse
Affiliation(s)
- Yuk-Yin Li
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Dai RP, Dheen ST, He BP, Tay SSW. Differential expression of cytokines in the rat heart in response to sustained volume overload. Eur J Heart Fail 2005; 6:693-703. [PMID: 15542404 DOI: 10.1016/j.ejheart.2003.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 06/09/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate whether sustained volume overload is capable of inducing persistent upregulation of cardiac cytokines including tumor necrosis factor alpha (TNF)-alpha, interleukin (IL)-1beta, interleukin (IL)-6 and transforming growth factor (TGF)-beta(1). METHODS AND RESULTS Volume overload-induced heart hypertrophy in rats was established by aortacaval fistula, and the cardiac cytokines were measured in the myocardium from 1 to 4 weeks after operation. In the post-fistula rats, cardiac IL-1beta and IL-6 gene and protein levels were upregulated throughout the time of measurement. Immunohistochemistry demonstrated that IL-1beta and IL-6 immunoreactive cells were widely distributed in the myocardium in the earlier time intervals, and mainly localized in the regions close to the endocardium in the later time intervals. The cardiac IL-1beta immunoreactive cells were mainly localized in the blood vessels whereas the IL-6 positive cells were composed of non-myocytes and cardiomyocytes. TGF-beta(1) positive staining was increased in the myocardium up to 3 weeks after aortacaval fistula and then decreased to basal levels thereafter. In contrast to the activation of cardiac IL-1beta and IL-6 in response to volume overload, TNF-alpha expression appeared unaltered in response to sustained volume overload in the transcription and protein levels. CONCLUSION The results of the present study indicate that sustained volume overload is capable of inducing persistent upregulation of some cardiac cytokines. In addition, the differential expressions of TNF-alpha, IL-1beta and IL-6 suggest that the induction of IL-6 and IL-1beta is independent of TNF-alpha mediated pathways in this animal model.
Collapse
Affiliation(s)
- R P Dai
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Lower Kent Ridge Road, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
27
|
Saito H, Sherwood ER, Varma TK, Evers BM. Effects of aging on mortality, hypothermia, and cytokine induction in mice with endotoxemia or sepsis. Mech Ageing Dev 2004; 124:1047-58. [PMID: 14659593 DOI: 10.1016/j.mad.2003.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aging is accompanied by an altered stress response that underlies increased susceptibility of the elderly patients to physiological stress such as infection and sepsis. In the present study, we investigated the effects of aging on mortality, hypothermia, and cytokine induction in mouse models of intra-abdominal sepsis and endotoxemia. Systemic inflammation associated with either cecal ligation/puncture (CLP) or injection with bacterial endotoxin, lipopolysaccharide (LPS), resulted in a significantly elevated mortality rate in aged (24 months) compared to young (4 months) mice. The aged mice also showed profound hypothermia during these inflammatory stresses; the severity of hypothermia at the early phase of sepsis or endotoxemia could predict the mortality of individual animals. The stress-mediated induction of interleukin-1beta, interleukin-6, and interleukin-10 (IL-1beta, IL-6, and IL-10) in the circulating blood tended to be higher with aging in both CLP and LPS models, and in particular, the induction of IL-6 was significantly augmented with aging. The serum level of IL-6 showed a strong correlation with degrees of hypothermia. In the heart and lungs, the induction of mRNA for IL-6 and IL-10 was also significantly enhanced with aging. These results clearly demonstrate an age-associated increase in mortality, hypothermia, and induction of IL-6 during endotoxemia and sepsis.
Collapse
Affiliation(s)
- Hiroshi Saito
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
28
|
Ferrucci L, Ble A, Bandinelli S, Lauretani F, Suthers K, Guralnik JM. A flame burning within. Aging Clin Exp Res 2004; 16:240-3. [PMID: 15462468 DOI: 10.1007/bf03327390] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inflammation is a human being's primary defense against threats to homeostasis that are encountered every day. Especially in old age, when regulatory mechanisms responsible for inflammatory responses may be ineffective or damaged, the result can be adverse pathological conditions, and an increased risk of morbidity and mortality. The inflammation response is a plastic network composed of redundant signaling among several different mediators. These mediators have a reciprocal relationship with other biological sub-systems, including hormone regulation, the autonomic nervous system, and oxidative/anti-oxidant balance. Studying this complex architecture requires parallel and multiple research strategies from epidemiological to biochemical level, from observational studies to innovative intervention approaches. Given that the inflammatory response is a critical age-related process, understanding its regulatory action is essential in avoiding hazardous consequences in old age.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Jeron A, Kaiser T, Straub RH, Weil J, Riegger GAJ, Muders F. Myocardial IL-6 regulation by neurohormones--an in vitro superfusion study. Brain Behav Immun 2003; 17:245-50. [PMID: 12831826 DOI: 10.1016/s0889-1591(03)00053-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is expressed in the myocardium and has been implicated in cell proliferation, negative inotropic effects and myocardial hypertrophy. To determine whether myocardial IL-6 is modified by neurohumoral and immunoregulatory stimuli, we studied the effects of lipopolysaccharide (LPS), corticosterone (CS), isoproterenol and angiotensin II on myocardial IL-6 secretion in superfused myocardium. METHODS Slices of rat left ventricular myocardium were superfused in 80 microl chambers for up to 5h. LPS (1, 50, and 100 microg/ml), CS (10(-7), 10(-6), and 10(-5)M, DSMO as vehicle), isoproterenol (10(-6), 10(-7), and 10(-8)M) and angiotensin II (10(-5), 10(-7), and 10(-9)M) were added to the culture medium at hour 2. IL-6 was measured in the perfusate by ELISA. RESULTS Physiological corticosterone concentrations (10(-7)M) resulted in an increase in IL-6 concentration (142%) while high doses of steroid decreased IL-6 significantly (CS 10(-6)M: 88+/-14%,p<.05; CS 10(-5): 91+/-9%,p<.05) after 5h. Left ventricular IL-6 secretion was significantly stimulated by LPS 50 microg/ml (3262+/-1684% vs. CTRL: 116+/-34%, p<.01). Isoproterenol treatment increased in IL-6 secretion compared to controls with and without CS, while angiotensin II reduced IL-6 concentration only in combination with CS. CONCLUSION Myocardial IL-6 secretion is modulated by physiological concentrations of corticosterone or angiotensin II and can be induced by LPS or isoproterenol, indicating a tight regulation of this cytokine. Suppression of cytokine expression within the heart might be a potential therapeutic goal in the treatment of various cardiovascular diseases.
Collapse
Affiliation(s)
- Andreas Jeron
- Klinik und Poliklinik für Innere Medizin II, Klinikum der Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Garg N, Popov VL, Papaconstantinou J. Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:106-20. [PMID: 12853116 DOI: 10.1016/s0925-4439(03)00060-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we report the host genetic responses that characterize Trypanosoma cruzi-induced myocarditis in a murine model of infection and disease development. The mRNA species from the myocardium of infected mice were assessed using cDNA microarray technology at immediate early, acute, and chronic stages of infection. The immediate early reaction of the host to T. cruzi infection was marked by up-regulation of transcripts indicative of proinflammatory and interferon-induced immune responses. Following acute infection, overexpression of transcripts for extracellular matrix (ECM) proteins, possibly initiated in response to myocardial injuries by invading and replicating parasites, was suggestive of active reparative and remodeling reactions. Surprisingly, progression to the cardiac disease phase was associated with coordinated down-regulation of a majority (>70%) of the differentially expressed genes. Among the most repressed genes were the troponins, essential for contractile function of the myofibrils, and the genes encoding components of oxidative phosphorylation (OXPHOS) pathways. Reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and biochemical assays confirmed the microarray results and provided evidence for the deficiency of OXPHOS complex IV in the chagasic murine heart. We discuss the apparent role of OXPHOS dysfunction in the cardiac hypertrophic and remodeling processes with the development of chagasic cardiomyopathy (CCM).
Collapse
Affiliation(s)
- Nisha Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
31
|
Hsieh CC, Rosenblatt JI, Papaconstantinou J. Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acid. Mech Ageing Dev 2003; 124:733-46. [PMID: 12782417 DOI: 10.1016/s0047-6374(03)00083-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial dysfunction has been identified as a major source of oxidative stress in aged tissues. In this study we asked whether activities of components of the SAPK/JNK and p38 MAPK stress response signaling pathways are indicative of oxidative stress in aged mouse livers and whether these pathways are responsive to oxidative stress generated by 3-nitropropionic acid (3-NPA), an inhibitor of complex II (succinic dehydrogenase). We asked whether (a) aging affects the basal activity of the SAPK/JNK stress signaling pathway; (b) specific isoforms of JNK, i.e. 46 or 54 kDa JNKs are activated by 3-NPA; (c) aging affects the response of this signaling pathway to 3-NPA; (d) there is a cross pathway activation of JNK or p38 MAPK by upstream activators. Our studies have shown that although their protein pool levels are not altered, the basal JNK activities using c-Jun as substrate is elevated. Furthermore, in aged livers, JNK activity is induced to a greater extent and takes longer to recover from 3-NPA treatment. The activities of the upstream activators of JNKs, MAP kinase kinase (MKK) 4 and 7, are also elevated in livers of aged C57BL/6 male mice. These activator kinases, which are induced (phosphorylated) by 3-NPA in young livers, are not inducible by this inhibitor in aged livers. In fact, these proteins are highly phosphorylated in the control aged livers and are dephosphorylated in response to 3-NPA. Finally, we demonstrate for the first time that MKK7 serves as an upstream activator of p38 MAPK and that MKK3 and MKK6 activates 54 kDa JNK2 in aged liver. Our studies suggest that failure to respond to 3-NPA may be indicative of the susceptibility of aged tissue to oxidative stress, supporting our hypothesis that aged tissues (especially liver) develop a state of chronic stress even in the absence of a challenge.
Collapse
Affiliation(s)
- Ching-Chyuan Hsieh
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 613 Basic Science Building, Rt. 0643, Galveston, TX 77555-0643, USA
| | | | | |
Collapse
|
32
|
Vona-Davis L, Zhu X, Yu AK, McFadden DW. Modulation of interleukin-6 in cardiac myoblasts during endotoxemia. J Surg Res 2003; 112:91-6. [PMID: 12873439 DOI: 10.1016/s0022-4804(03)00152-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Interleukin (IL)-6 is induced in the heart during endotoxemia. We investigated endotoxin-induced IL-6 in vitro and its modulation by IL-1beta and tumor necrosis factor (TNF)-alpha. Whether lipopolysaccharide (LPS) would stimulate nuclear factor (NF)-kappaB intranuclear translocation was also examined. We hypothesized that IL-6 production is enhanced with LPS and cytokine challenge and that LPS stimulates NF-kappaB intranuclear translocation in a myogenic cell line. METHODS Rat H9c2 cardiac myoblasts were grown in culture. IL-6 protein was determined by enzyme-linked immunosorbent assay after LPS (10 microg/ml) and in the presence of TNF-alpha or IL-1beta. IL-6 mRNA was amplified using reverse-transcription polymerase chain reaction. Myoblasts were treated with LPS and stained for the p65 subunit of NF-kappaB. RESULTS LPS stimulated IL-6 protein and mRNA expression (P < 0.05). IL-1beta increased IL-6 when combined with TNF-alpha (P < 0.05). In the presence of LPS, TNF-alpha lowered IL-6 production, which was further reduced upon addition of IL-1beta. LPS activated NF-kappaB showing p65 subunit cellular localization within 30 min. CONCLUSIONS In cardiac myoblasts, IL-6 is either enhanced or reduced depending on interactions between LPS and cytokine challenge. Enhanced nuclear translocation of NF-kappaB in response to LPS was evident in a myogenic cell line.
Collapse
Affiliation(s)
- Linda Vona-Davis
- Department of Surgery, West Virginia University Morgantown, West Virginia 26506, USA
| | | | | | | |
Collapse
|
33
|
Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:323-43. [PMID: 12421676 DOI: 10.1016/s0167-4889(02)00325-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of cells that do not express the membrane bound interleukin-6 6 receptor (IL-6R) by IL-6 and the soluble IL-6 receptor (sIL-6R) is termed transsignalling. Transsignalling may be an pathogenetic factor in human diseases as diverse as multiple myeloma (MM), Castleman's disease, prostate carcinoma, Crohn's disease, systemic sclerosis, Still's disease, osteoporosis and cardiovascular diseases. IL-6 and sIL-6R may directly or indirectly enhance their own production on endothelial or bone marrow stromal cells. Positive feedback autocrine loops thus created in affected organs may either cause or maintain disease progression. In autoimmune or vasculitic disease, the ability of the IL-6/sIL-6R complex to inhibit apoptosis of autoreactive T-cells may be central to the development of tissue specific autoimmunity. The anti-apoptotic effect of the IL-6/sIL-6R complex may be involved in tumour genesis and resistance to chemotherapy. Only in rare cases, where counterregulation has failed, there is a notable systemic effect of IL-6/sIL-6R. Appropriate animal models are necessary to establish the pathogenetic role of the IL-6/sIL-6R complex. A specific treatment option for diseases influenced by the sIL-6R could be based on gp130-Fc, a soluble gp130 (sgp130) linked to the Fc-fragment of IgG1. gp130-Fc has shown efficacy in vivo in animal models of Crohn's disease.
Collapse
Affiliation(s)
- Karl-Josef Kallen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Germany.
| |
Collapse
|
34
|
Haddad JJ, Fahlman CS. Nuclear factor-kappa B-independent regulation of lipopolysaccharide-mediated interleukin-6 biosynthesis. Biochem Biophys Res Commun 2002; 291:1045-51. [PMID: 11866471 DOI: 10.1006/bbrc.2002.6556] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible involvement of nuclear factor (NF)-kappa B in mediating the regulation of interleukin (IL)-6 biosynthesis in response to E. coli-derived lipopolysaccharide-endotoxin (LPS) was investigated in vitro. In alveolar epithelial cells, irreversible inhibition of the proteasome complex by carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132; 1-50 muM) did not affect LPS-mediated IL-6 secretion. Whereas the selective inhibition of the NF-kappa B pathway by the action of caffeic acid phenyl ethyl ester (CAPE; 1-100 microM) attenuated LPS-dependent IL-6 production at 100 muM, sulfasalazine (SSA; 0.1--10 mM), a potent and irreversible inhibitor of NF-kappa B, did not inhibit LPS-dependent IL-6 secretion. Incorporation of a selectively permeant inhibitor of NF-kappa B, SN-50 (1-20 microM), a peptide which contains the nuclear localization sequence (NLS) for the p50 NF-kappa B subunit and the amino-terminal sequence of Kaposi fibroblast growth factor to promote cell permeability, did not reduce LPS-mediated release of IL-6. These data indicate a NF-kappa B-independent pathway mediating LPS-dependent regulation of IL-6 biosynthesis in the airway epithelium.
Collapse
Affiliation(s)
- John J Haddad
- Oxygen Signaling Group, Center for Research into Human Development, Tayside Institute of Child Health, Faculty of Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK [corrected].
| | | |
Collapse
|
35
|
Abstract
Interleukin-6 (IL-6) is produced locally in working skeletal muscle and can account for the increase in plasma IL-6 during exercise. The production of IL-6 during exercise is related to the intensity and duration of the exercise, and low muscle glycogen content stimulates the production. Muscle-derived IL-6 is released into the circulation during exercise in high amounts and is likely to work in a hormone-like fashion, exerting an effect on the liver and adipose tissue, thereby contributing to the maintenance of glucose homeostasis during exercise and mediating exercise-induced lipolysis. Muscle-derived IL-6 may also work to inhibit the effects of pro-inflammatory cytokines such as tumour necrosis factor alpha. The latter cytokine is produced by adipose tissue and inflammatory cells and appears to play a pathogenetic role in insulin resistance and atherogenesis.
Collapse
Affiliation(s)
- B K Pedersen
- The Copenhagen Muscle Research Centre, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
36
|
Abstract
Strenuous exercise induces increased levels in a number of pro-and anti-inflammatory cytokines, natural occurring cytokine inhibitors, and chemokines. Thus, increased plasma levels of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, IL-1 receptor antagonist (IL-1ra), TNF-receptors (TNF-R), IL-10, IL-8, and macrophage inflammatory protein (MIP)-1 are found after strenuous exercise. The concentration of IL-6 increases as much as 100-fold after a marathon race. It has recently been demonstrated that IL-6 is produced locally in contracting skeletal muscles and that the net release from the muscle can account for the exercise-induced increase in arterial concentration. Larger amounts of IL-6 are produced in response to exercise than any other cytokine, IL-6 is produced locally in the skeletal muscle in response to exercise, and IL-6 is known to induce hepatic glucose output and to induce lipolysis. These facts indicate that IL-6 may represent an important link between contracting skeletal muscles and exercise-related metabolic changes.
Collapse
Affiliation(s)
- B K Pedersen
- The Copenhagen Muscle Research Center, Rigshospitalet, Denmark.
| | | | | |
Collapse
|