1
|
Zhang CL, Ma JJ, Li X, Yan HQ, Gui YK, Yan ZX, You MF, Zhang P. The role of transcytosis in the blood-retina barrier: from pathophysiological functions to drug delivery. Front Pharmacol 2025; 16:1565382. [PMID: 40308764 PMCID: PMC12040858 DOI: 10.3389/fphar.2025.1565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-retina barrier (BRB) serves as a critical interface that separates the retina from the circulatory system, playing an essential role in preserving the homeostasis of the microenvironment within the retina. Specialized tight junctions and limited vesicle trafficking restrict paracellular and transcellular transport, respectively, thereby maintaining BRB barrier properties. Additionally, transcytosis of macromolecules through retinal vascular endothelial cells constitutes a primary mechanism for transporting substances from the vascular compartment into the surrounding tissue. This review summarizes the fundamental aspects of transcytosis including its function in the healthy retina, the biochemical properties of transcytosis, and the methodologies used to study this process. Furthermore, we discuss the current understanding of transcytosis in the context of pathological BRB breakdown and present recent findings that highlight significant advances in drug delivery to the retina based on transcytosis.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing-Jie Ma
- Department of Audit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hai-Qing Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong-Kun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhi-Xin Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ming-Feng You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Lu R, Lee BJ, Lee E. Three-Dimensional Lymphatics-on-a-Chip Reveals Distinct, Size-Dependent Nanoparticle Transport Mechanisms in Lymphatic Drug Delivery. ACS Biomater Sci Eng 2024; 10:5752-5763. [PMID: 39176471 DOI: 10.1021/acsbiomaterials.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Although nanoparticle-based lymphatic drug delivery systems promise better treatment of cancer, infectious disease, and immune disease, their clinical translations are limited by low delivery efficiencies and unclear transport mechanisms. Here, we employed a three-dimensional (3D) lymphatics-on-a-chip featuring an engineered lymphatic vessel (LV) capable of draining interstitial fluids including nanoparticles. We tested lymphatic drainage of different sizes (30, 50, and 70 nm) of PLGA-b-PEG nanoparticles (NPs) using the lymphatics-on-a-chip device. In this study, we discovered that smaller NPs (30 and 50 nm) transported faster than larger NPs (70 nm) through the interstitial space, as expected, but the smaller NPs were captured by lymphatic endothelial cells (LECs) and accumulated within their cytosol, delaying NP transport into the lymphatic lumen, which was not observed in larger NPs. To examine the mechanisms of size-dependent NP transports, we employed four inhibitors, dynasore, nystatin, amiloride, and adrenomedullin, to selectively block dynamin-, caveolin-, macropinocytosis-mediated endocytosis-, and cell junction-mediated paracellular transport. Inhibiting dynamin using dynasore enhanced the transport of smaller NPs (30 and 50 nm) into the lymphatic lumen, minimizing cytosolic accumulation, but showed no effect on larger NP transport. Interestingly, the inhibition of caveolin by nystatin decreased the lymphatic transport of larger NPs without affecting the smaller NP transport, indicating distinct endocytosis mechanisms used by different sizes of NPs. Macropinocytosis inhibition by amiloride did not change the drainage of all sizes of NPs; however, paracellular transport inhibition by adrenomedullin blocked the lymphatic transport of NPs of all sizes. We further revealed that smaller NPs were captured in the Rab7-positive late-stage lymphatic endosomes to delay their lymphatic drainage, which was reversed by dynamin inhibition, suggesting that Rab7 is a potential target to enhance the lymphatic delivery of smaller NPs. Together, our 3D lymphatics-on-a-chip model unveils size-dependent NP transport mechanisms in lymphatic drug delivery.
Collapse
Affiliation(s)
- Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Benjamin J Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Yemanyi F, Bora K, Blomfield AK, Wang Z, Chen J. Wnt Signaling in Inner Blood-Retinal Barrier Maintenance. Int J Mol Sci 2021; 22:11877. [PMID: 34769308 PMCID: PMC8584977 DOI: 10.3390/ijms222111877] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
The retina is a light-sensing ocular tissue that sends information to the brain to enable vision. The blood-retinal barrier (BRB) contributes to maintaining homeostasis in the retinal microenvironment by selectively regulating flux of molecules between systemic circulation and the retina. Maintaining such physiological balance is fundamental to visual function by facilitating the delivery of nutrients and oxygen and for protection from blood-borne toxins. The inner BRB (iBRB), composed mostly of inner retinal vasculature, controls substance exchange mainly via transportation processes between (paracellular) and through (transcellular) the retinal microvascular endothelium. Disruption of iBRB, characterized by retinal edema, is observed in many eye diseases and disturbs the physiological quiescence in the retina's extracellular space, resulting in vision loss. Consequently, understanding the mechanisms of iBRB formation, maintenance, and breakdown is pivotal to discovering potential targets to restore function to compromised physiological barriers. These unraveled targets can also inform potential drug delivery strategies across the BRB and the blood-brain barrier into retinas and brain tissues, respectively. This review summarizes mechanistic insights into the development and maintenance of iBRB in health and disease, with a specific focus on the Wnt signaling pathway and its regulatory role in both paracellular and transcellular transport across the retinal vascular endothelium.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.Y.); (K.B.); (A.K.B.); (Z.W.)
| |
Collapse
|
4
|
Alexeyev M, Geurts AM, Annamdevula NS, Francis CM, Leavesley SJ, Rich TC, Taylor MS, Lin MT, Balczon R, Knighten JM, Alvarez DF, Stevens T. Development of an endothelial cell-restricted transgenic reporter rat: a resource for physiological studies of vascular biology. Am J Physiol Heart Circ Physiol 2020; 319:H349-H358. [PMID: 32589443 PMCID: PMC7473926 DOI: 10.1152/ajpheart.00276.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Here, we report the generation of a Cre-recombinase (iCre) transgenic rat, where iCre is driven using a vascular endothelial-cadherin (CDH5) promoter. The CDH5 promoter was cloned from rat pulmonary microvascular endothelial cells and demonstrated ~60% similarity to the murine counterpart. The cloned rat promoter was 2,508 bp, it extended 79 bp beyond the transcription start site, and it was 22,923 bp upstream of the translation start site. The novel promoter was cloned upstream of codon-optimized iCre and subcloned into a Sleeping Beauty transposon vector for transpositional transgenesis in Sprague-Dawley rats. Transgenic founders were generated and selected for iCre expression. Crossing the CDH5-iCre rat with a tdTomato reporter rat resulted in progeny displaying endothelium-restricted fluorescence. tdTomato fluorescence was prominent in major arteries and veins, and it was similar in males and females. Quantitative analysis of the carotid artery and the jugular vein revealed that, on average, more than 50% of the vascular surface area exhibited strong fluorescence. tdTomato fluorescence was observed in the circulations of every tissue tested. The microcirculation in all tissues tested displayed homogenous fluorescence. Fluorescence was examined across young (6-7.5 mo), middle (14-16.5 mo), and old age (17-19.5 mo) groups. Although tdTomato fluorescence was seen in middle- and old-age animals, the intensity of the fluorescence was significantly reduced compared with that seen in the young rats. Thus, this endothelium-restricted transgenic rat offers a novel platform to test endothelial microheterogeneity within all vascular segments, and it provides exceptional resolution of endothelium within-organ microcirculation for application to translational disease models.NEW & NOTEWORTHY The use of transgenic mice has been instrumental in advancing molecular insight of physiological processes, yet these models oftentimes do not faithfully recapitulate human physiology and pathophysiology. Rat models better replicate some human conditions, like Group 1 pulmonary arterial hypertension. Here, we report the development of an endothelial cell-restricted transgenic reporter rat that has broad application to vascular biology. This first-in-kind model offers exceptional endothelium-restricted tdTomato expression, in both conduit vessels and the microcirculations of organs.
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Aron M Geurts
- Genome Editing Rat Resource Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Naga S Annamdevula
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Silas Josiah Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | | | - Diego F Alvarez
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, Texas
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
5
|
Tiruppathi C, Regmi SC, Wang DM, Mo GCH, Toth PT, Vogel SM, Stan RV, Henkemeyer M, Minshall RD, Rehman J, Malik AB. EphB1 interaction with caveolin-1 in endothelial cells modulates caveolae biogenesis. Mol Biol Cell 2020; 31:1167-1182. [PMID: 32238105 PMCID: PMC7353165 DOI: 10.1091/mbc.e19-12-0713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae, the cave-like structures abundant in endothelial cells (ECs), are important for multiple signaling processes such as production of nitric oxide and caveolae-mediated intracellular trafficking. Using superresolution microscopy, fluorescence resonance energy transfer, and biochemical analysis, we observed that the EphB1 receptor tyrosine kinase constitutively interacts with caveolin-1 (Cav-1), the key structural protein of caveolae. Activation of EphB1 with its ligand Ephrin B1 induced EphB1 phosphorylation and the uncoupling EphB1 from Cav-1 and thereby promoted phosphorylation of Cav-1 by Src. Deletion of Cav-1 scaffold domain binding (CSD) motif in EphB1 prevented EphB1 binding to Cav-1 as well as Src-dependent Cav-1 phosphorylation, indicating the importance of CSD in the interaction. We also observed that Cav-1 protein expression and caveolae numbers were markedly reduced in ECs from EphB1-deficient (EphB1-/-) mice. The loss of EphB1 binding to Cav-1 promoted Cav-1 ubiquitination and degradation, and hence the loss of Cav-1 was responsible for reducing the caveolae numbers. These studies identify the crucial role of EphB1/Cav-1 interaction in the biogenesis of caveolae and in coordinating the signaling function of Cav-1 in ECs.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Sushil C. Regmi
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Dong-Mei Wang
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Gary C. H. Mo
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Peter T. Toth
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Stephen M. Vogel
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Radu V. Stan
- Department of Pathology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Mark Henkemeyer
- Departments of Neuroscience and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Richard D. Minshall
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- Anesthesiology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Jalees Rehman
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Asrar B. Malik
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
6
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
7
|
Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc Natl Acad Sci U S A 2019; 116:12980-12985. [PMID: 31186359 PMCID: PMC6600969 DOI: 10.1073/pnas.1902165116] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increased hydrostatic pressure in lung capillaries experienced during high altitude, head trauma, and left heart failure can lead to disruption of lung endothelial barrier and edema formation. We identified Piezo1 as a mechanical sensor responsible for endothelial barrier breakdown (barotrauma) secondary to reduced expression of the endothelial adherens junction proteins VE-cadherin, β-catenin, and p120-catenin. Endothelial-specific deletion or pharmacological inhibition of Piezo1 prevented lung capillary leakage, suggesting a therapeutic approach for preventing edema and associated lung failure. Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.
Collapse
|
8
|
Gerbod-Giannone MC, Dallet L, Naudin G, Sahin A, Decossas M, Poussard S, Lambert O. Involvement of caveolin-1 and CD36 in native LDL endocytosis by endothelial cells. Biochim Biophys Acta Gen Subj 2019; 1863:830-838. [DOI: 10.1016/j.bbagen.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
|
9
|
Larsen MT, Rawsthorne H, Schelde KK, Dagnæs-Hansen F, Cameron J, Howard KA. Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement. J Control Release 2018; 287:132-141. [PMID: 30016735 DOI: 10.1016/j.jconrel.2018.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Recombinant albumin-drug genetic fusions are an effective technology to prolong the serum half-life of therapeutics that has resulted in marketed products. Indirect evidence suggests albumin fusions' long circulation is controlled by engagement with the cellular recycling neonatal Fc receptor (FcRn) in addition to reduced kidney filtration. In this work, we have used a panel of recombinant fusions, engineered with different human FcRn (hFcRn) affinity, including a novel high binding albumin variant (HBII), to directly define and importantly, control the intracellular mechanism as a half-life extension tuning method. mNeonGreen or mCherry fusion to the N-terminal of the recombinant human albumin (rHA) variants null-binder (rHA NB), wild-type (rHA WT), high-binder I (rHA HBI), and high-binder II (rHA HBII) did not generally interfere with hFcRn interaction determined by Biolayer Interferometry. Co-localisation of the albumins with endosomal, but not lysosomal, markers was shown by confocal microscopy for high, but not low, hFcRn binders in a human microvascular endothelial hFcRn overexpressing cell line (HMEC-1 FcRn) suggestive of endosomal compartmentalisation. Furthermore, a cellular recycling assay revealed increased recycling of albumin fusions for the high binding variants (mNeonGreen WT; ~1, mNeonGreen HBI; 5.26-fold higher, and mNeonGreen HBII; 5.77-fold higher) in the hFcRn overexpressing cell line. In vivo experiments demonstrated a direct in vitro recycling/in vivo half-life correlation with a longer circulation for the mCherry fusions engineered with high hFcRn affinity that was highest with the HBII variant of 30.1 h compared to 18.2 h for the mCherry WT. This work gives the first direct evidence for an FcRn-driven endosomal cellular recycling pathway for recombinant albumin fusions that correlates with half-life extension controlled by the affinity to hFcRn; promoting a versatile method to tune the pharmacokinetics of albumin fusion-based therapeutics not met by current technologies.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Helen Rawsthorne
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Karen Kræmmer Schelde
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jason Cameron
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
DeLalio LJ, Keller AS, Chen J, Boyce AK, Artamonov M, Askew-Page HR, Keller TS, Johnstone SR, Weaver RB, Good ME, Murphy S, Best AK, Mintz EL, Penuela S, Greenwood I, Machado RF, Somlyo AV, Swayne LA, Minshall R, Isakson BE. Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure. Arterioscler Thromb Vasc Biol 2018; 38:2065-2078. [PMID: 30026274 PMCID: PMC6202122 DOI: 10.1161/atvbaha.118.311290] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.
Collapse
Affiliation(s)
- Leon J. DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Alexander S. Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Jiwang Chen
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL
| | - Andrew K.J. Boyce
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Mykhaylo Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Henry R. Askew-Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - T.C. Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Scott R. Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Rachel B. Weaver
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Miranda E. Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Sara Murphy
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Angela K. Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Ellen L. Mintz
- Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich Scholl of Medicine and Dentistry, University of Western Ontario, London ON, Canada
| | - Iain Greenwood
- Molecular and Clinical Sciences Research Institute, St. George’s University London UK
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, & Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Avril V. Somlyo
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Leigh Anne Swayne
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Richard Minshall
- Department of Pharmacology and Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| |
Collapse
|
11
|
Lee Y, Chakraborty S, Meininger CJ, Muthuchamy M. Insulin resistance disrupts cell integrity, mitochondrial function, and inflammatory signaling in lymphatic endothelium. Microcirculation 2018; 25:e12492. [PMID: 30025187 DOI: 10.1111/micc.12492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Lymphatic vessel dysfunction and increased lymph leakage have been directly associated with several metabolic diseases. However, the underlying cellular mechanisms causing lymphatic dysfunction have not been determined. Aberrant insulin signaling affects the metabolic function of cells and consequently impairs tissue function. We hypothesized that insulin resistance in LECs decreases eNOS activity, disrupts barrier integrity increases permeability, and activates mitochondrial dysfunction and pro-inflammatory signaling pathways. METHODS LECs were treated with insulin and/or glucose to determine the mechanisms leading to insulin resistance. RESULTS Acute insulin treatment increased eNOS phosphorylation and NO production in LECs via activation of the PI3K/Akt signaling pathway. Prolonged hyperglycemia and hyperinsulinemia induced insulin resistance in LECs. Insulin-resistant LECs produced less NO due to a decrease in eNOS phosphorylation and showed a significant decrease in impedance across an LEC monolayer that was associated with disruption in the adherence junctional proteins. Additionally, insulin resistance in LECs impaired mitochondrial function by decreasing basal-, maximal-, and ATP-linked OCRs and activated NF-κB nuclear translocation coupled with increased pro-inflammatory signaling. CONCLUSION Our data provide the first evidence that insulin resistance disrupts endothelial barrier integrity, decreases eNOS phosphorylation and mitochondrial function, and activates inflammation in LECs.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
12
|
Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection. Viruses 2018; 10:v10020069. [PMID: 29419739 PMCID: PMC5850376 DOI: 10.3390/v10020069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.
Collapse
|
13
|
Pádua TA, Torres ND, Candéa ALP, Costa MFS, Silva JD, Silva‐Filho JL, Costa FTM, Rocco PRM, Souza MC, Henriques MG. Therapeutic effect of Lipoxin A
4
in malaria‐induced acute lung injury. J Leukoc Biol 2018; 103:657-670. [DOI: 10.1002/jlb.3a1016-435rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/29/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tatiana A. Pádua
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Natalia D. Torres
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - André L. P. Candéa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria Fernanda Souza Costa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Johnatas D. Silva
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - João Luiz Silva‐Filho
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Fabio T. M. Costa
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Mariana C. Souza
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria G. Henriques
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| |
Collapse
|
14
|
Brenner JS, Kiseleva RY, Glassman PM, Parhiz H, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR. The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752329. [PMID: 29261028 PMCID: PMC5768280 DOI: 10.1177/2045893217752329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pulmonary vasculature plays an important role in many lung pathologies, such as pulmonary arterial hypertension, primary graft dysfunction of lung transplant, and acute respiratory distress syndrome. Therapy for these diseases is quite limited, largely due to dose-limiting side effects of numerous drugs that have been trialed or approved. High doses of drugs targeting the pulmonary vasculature are needed due to the lack of specific affinity of therapeutic compounds to the vasculature. To overcome this problem, the field of targeted drug delivery aims to target drugs to the pulmonary endothelial cells, especially those in pathological regions. The field uses a variety of drug delivery systems (DDSs), ranging from nano-scale drug carriers, such as liposomes, to methods of conjugating drugs to affinity moieites, such as antibodies. These DDSs can deliver small molecule drugs, protein therapeutics, and imaging agents. Here we review targeted drug delivery to the pulmonary endothelium for the treatment of pulmonary diseases. Cautionary notes are made of the risk–benefit ratio and safety—parameters one should keep in mind when developing a translational therapeutic.
Collapse
Affiliation(s)
- Jacob S Brenner
- 1 14640 Pulmonary, Allergy, & Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Yu Kiseleva
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick M Glassman
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth D Hood
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir V Shuvaev
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res 2017; 63:20-68. [PMID: 29126927 DOI: 10.1016/j.preteyeres.2017.10.006] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Macular edema consists of intra- or subretinal fluid accumulation in the macular region. It occurs during the course of numerous retinal disorders and can cause severe impairment of central vision. Major causes of macular edema include diabetes, branch and central retinal vein occlusion, choroidal neovascularization, posterior uveitis, postoperative inflammation and central serous chorioretinopathy. The healthy retina is maintained in a relatively dehydrated, transparent state compatible with optimal light transmission by multiple active and passive systems. Fluid accumulation results from an imbalance between processes governing fluid entry and exit, and is driven by Starling equation when inner or outer blood-retinal barriers are disrupted. The multiple and intricate mechanisms involved in retinal hydro-ionic homeostasis, their molecular and cellular basis, and how their deregulation lead to retinal edema, are addressed in this review. Analyzing the distribution of junction proteins and water channels in the human macula, several hypotheses are raised to explain why edema forms specifically in the macular region. "Pure" clinical phenotypes of macular edema, that result presumably from a single causative mechanism, are detailed. Finally, diabetic macular edema is investigated, as a complex multifactorial pathogenic example. This comprehensive review on the current understanding of macular edema and its mechanisms opens perspectives to identify new preventive and therapeutic strategies for this sight-threatening condition.
Collapse
|
16
|
Ono S, Egawa G, Kabashima K. Regulation of blood vascular permeability in the skin. Inflamm Regen 2017; 37:11. [PMID: 29259710 PMCID: PMC5725833 DOI: 10.1186/s41232-017-0042-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Regulation of blood vessel permeability is essential for the homeostasis of peripheral tissues. This regulation controls the trafficking of plasma contents, including water, vitamins, ions, hormones, cytokines, amyloids, lipoproteins, carrier proteins, and immunoglobulins. The properties of blood vessels vary among tissues based on their structural differences: continuous, fenestrated, or sinusoidal. These three types of blood vessels have different charge and size barrier properties. The anionic luminal glycocalyx layer on endothelial cells establishes the "charge barrier" that repels the attachment of negatively charged blood cells and plasma molecules. In contrast, the "size barrier" of blood vessels largely relies on the interendothelial junctions (IEJs) between endothelial cells, which define the paracellular permeability. As in most peripheral tissues, blood capillaries in the skin are composed of continuous and/or fenestrated blood vessels that have relatively tighter IEJs compared to those in the internal organs. Small vesicles in the capillary endothelium were discovered in the 1950s, and studies have since confirmed that blood endothelial cells transport the plasma contents by endocytosis and subsequent transcytosis and exocytosis-this process is called transcellular permeability. The permeability of blood vessels is highly variable as a result of intrinsic and extrinsic factors. It is significantly elevated upon tissue inflammations as a result of disabled IEJs and increased paracellular permeability due to inflammatory mediators. An increase in transcellular permeability during inflammation has also been postulated. Here, we provide an overview of the general properties of vascular permeability based on our recent observations of murine skin inflammation models, and we discuss its physiological significance in peripheral homeostasis.
Collapse
Affiliation(s)
- Sachiko Ono
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara, Sakyo, Kyoto, 606-8507 Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara, Sakyo, Kyoto, 606-8507 Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara, Sakyo, Kyoto, 606-8507 Japan
- Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
17
|
Schmidt EGW, Hvam ML, Antunes F, Cameron J, Viuff D, Andersen B, Kristensen NN, Howard KA. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J Biol Chem 2017. [PMID: 28637874 DOI: 10.1074/jbc.m117.794248] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Albumin is the most abundant plasma protein involved in the transport of many compounds, such as fatty acids, bilirubin, and heme. The endothelial cellular neonatal Fc receptor (FcRn) has been suggested to play a central role in maintaining high albumin plasma levels through a cellular recycling pathway. However, direct mapping of this process is still lacking. This work presents the use of wild-type and engineered recombinant albumins with either decreased or increased FcRn affinity in combination with a low or high FcRn-expressing endothelium cell line to clearly define the FcRn involvement, intracellular pathway, and kinetics of albumin trafficking by flow cytometry, quantitative confocal microscopy, and an albumin-recycling assay. We found that cellular albumin internalization was proportional to FcRn expression and albumin-binding affinity. Albumin accumulation in early endosomes was independent of FcRn-binding affinity, but differences in FcRn-binding affinities significantly affected the albumin distribution between late endosomes and lysosomes. Unlike albumin with low FcRn-binding affinity, albumin with high FcRn-binding affinity was directed less to the lysosomes, suggestive of FcRn-directed albumin salvage from lysosomal degradation. Furthermore, the amount of recycled albumin in cell culture media corresponded to FcRn-binding affinity, with a ∼3.3-fold increase after 1 h for the high FcRn-binding albumin variant compared with wild-type albumin. Together, these findings uncover an FcRn-dependent endosomal cellular-sorting pathway that has great importance in describing fundamental mechanisms of intracellular albumin recycling and the possibility to tune albumin-based therapeutic effects by FcRn-binding affinity.
Collapse
Affiliation(s)
| | - Michael L Hvam
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark, and
| | | | | | | | | | | | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark, and
| |
Collapse
|
18
|
Triacca V, Güç E, Kilarski WW, Pisano M, Swartz MA. Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress. Circ Res 2017; 120:1440-1452. [DOI: 10.1161/circresaha.116.309828] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/12/2023]
Abstract
Rationale:
The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell–cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport.
Objective:
The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway.
Methods and Results:
We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation.
Conclusions:
These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues.
Collapse
Affiliation(s)
- Valentina Triacca
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Esra Güç
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Witold W. Kilarski
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Marco Pisano
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Melody A. Swartz
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| |
Collapse
|
19
|
Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci U S A 2017; 114:E1168-E1177. [PMID: 28137846 DOI: 10.1073/pnas.1609905114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) is a defining and early feature of multiple sclerosis (MS) that directly damages the central nervous system (CNS), promotes immune cell infiltration, and influences clinical outcomes. There is an urgent need for new therapies to protect and restore BBB function, either by strengthening endothelial tight junctions or suppressing endothelial vesicular transcytosis. Although wingless integrated MMTV (Wnt)/β-catenin signaling plays an essential role in BBB formation and maintenance in healthy CNS, its role in BBB repair in neurologic diseases such as MS remains unclear. Using a Wnt/β-catenin reporter mouse and several downstream targets, we demonstrate that the Wnt/β-catenin pathway is up-regulated in CNS endothelial cells in both human MS and the mouse model experimental autoimmune encephalomyelitis (EAE). Increased Wnt/β-catenin activity in CNS blood vessels during EAE progression correlates with up-regulation of neuronal Wnt3 expression, as well as breakdown of endothelial cell junctions. Genetic inhibition of the Wnt/β-catenin pathway in CNS endothelium before disease onset exacerbates the clinical presentation of EAE, CD4+ T-cell infiltration into the CNS, and demyelination by increasing expression of vascular cell adhesion molecule-1 and the transcytosis protein Caveolin-1 and promoting endothelial transcytosis. However, Wnt signaling attenuation does not affect the progressive degradation of tight junction proteins or paracellular BBB leakage. These results suggest that reactivation of Wnt/β-catenin signaling in CNS vessels during EAE/MS partially restores functional BBB integrity and limits immune cell infiltration into the CNS.
Collapse
|
20
|
Abstract
The functional integrity of endothelial cells is a marker and a prerequisite for vascular health. It is well established that the endothelium not only modulates, but also mediates vascular disease processes. Certain diseases such as diabetes, dyslipidaemia, obesity, and arterial hypertension advance endothelial injury. The disease process induces cellular and functional changes in endothelial cells leading to a pathophysiological phenomenon referred to as endothelial cell dysfunction, which involves abnormal vasomotion, an imbalance in reactive oxygen species and nitric oxide, the activation of inflammation, and disruption of the coagulation process of the endothelial cells. With this knowledge, it is now known that vascular function plays a central role in the development and progression of heart failure (HF). HF is the primary cause of patient hospitalization. There is a strong desire to intervene and prevent the growing HF epidemic. Over the last decade, numerous therapies have been evaluated but few have led to positive results in the later stages of clinical trials. Efforts are currently being made to understand the pathophysiology of endothelial dysfunction and use this knowledge to identify novel agents or therapeutic targets that will improve the outcome of patients with HF and restore the normal function of the endothelium. The purpose of this review is to present a brief summary of the traditional approaches that have been taken to improve endothelial dysfunction and combat HF and, more importantly, to discuss some novel therapeutic approaches that are still under investigation, including the use of gene therapy and nanocarriers as means of delivering targets to the dysfunctional endothelium as treatment for HF.
Collapse
Affiliation(s)
- Ou Yang
- Department of Cadre Ward, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, Jilin Province, China
| | - Jie Li
- Department of Cadre Ward, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, Jilin Province, China.
| | - Jian Kong
- Department of Cadre Ward, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
21
|
Calatrava-Ferreras L, Gonzalo-Gobernado R, Reimers D, Herranz AS, Casarejos MJ, Jiménez-Escrig A, Regadera J, Velasco-Martín J, Vallejo-Muñoz M, Díaz-Gil JJ, Bazán E. Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich's Ataxia Transgenic Mice. Int J Mol Sci 2016; 17:E2066. [PMID: 27941692 PMCID: PMC5187866 DOI: 10.3390/ijms17122066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/03/2023] Open
Abstract
Friedreich's ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.
Collapse
Affiliation(s)
- Lucía Calatrava-Ferreras
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Rafael Gonzalo-Gobernado
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Diana Reimers
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Antonio S Herranz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - María J Casarejos
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | | | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Juan Velasco-Martín
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Manuela Vallejo-Muñoz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Juan José Díaz-Gil
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Eulalia Bazán
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
22
|
Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever. Sci Rep 2016; 6:31855. [PMID: 27546060 PMCID: PMC4992822 DOI: 10.1038/srep31855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/28/2016] [Indexed: 01/04/2023] Open
Abstract
Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between “paracellular” endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether “transcellular” endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS.
Collapse
|
23
|
Kuebler WM, Wittenberg C, Lee WL, Reppien E, Goldenberg NM, Lindner K, Gao Y, Winoto-Morbach S, Drab M, Mühlfeld C, Dombrowsky H, Ochs M, Schütze S, Uhlig S. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. Am J Physiol Lung Cell Mol Physiol 2016; 310:L720-32. [PMID: 26851257 DOI: 10.1152/ajplung.00157.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023] Open
Abstract
Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Heart Institute Berlin, Berlin, Germany; The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Claudia Wittenberg
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Warren L Lee
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; Interdepartmental Division of Critical Care, Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Eike Reppien
- Division of Pulmonary Pharmacology, Research Center Borstel, Borstel, Germany
| | - Neil M Goldenberg
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada
| | - Karsten Lindner
- Division of Pulmonary Pharmacology, Research Center Borstel, Borstel, Germany
| | - Yizhuo Gao
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada
| | | | - Marek Drab
- Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DLZ), Hannover, Germany; Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany; and
| | - Heike Dombrowsky
- Division of Pulmonary Pharmacology, Research Center Borstel, Borstel, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DLZ), Hannover, Germany; Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany; and
| | - Stefan Schütze
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Stefan Uhlig
- Division of Pulmonary Pharmacology, Research Center Borstel, Borstel, Germany; Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
24
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
25
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
26
|
Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2014; 200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Citation(s) in RCA: 1246] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
Collapse
|
27
|
Song Y, Wang P, Ma J, Xue Y. C-terminus of human BKca channel alpha subunit enhances the permeability of the brain endothelial cells by interacting with caveolin-1 and triggering caveolin-1 intracellular trafficking. Neuromolecular Med 2014; 16:499-509. [PMID: 24705869 DOI: 10.1007/s12017-014-8300-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
The blood-tumor barrier (BTB) significantly limits the delivery of chemotherapeutic drugs to brain tumors. In this study, we found a significant increase in the permeability of BTB by mediating the association of the C-terminus of alpha subunit of human large-conductance calcium-activated potassium channels (hSlo1c) with caveolin-1 (Cav-1). We present evidence for the first time that hSlo1c associates with Cav-1 in human brain microvascular endothelial cells (HBMECs). A 57-amino acid (966-1022) fragment in hSlo1c was identified to be critical for hSlo1c/Cav-1 interaction. Activation of HBMECs transfected with fusion plasmids of pCMV-hSlo1c containing aa966-1022 by NS1619 selectively enhanced BTB permeability in a BTB model from the co-culture of HBMECs and U87 MG cells but not if the fusion plasmid lacks this fragment. This effect was attenuated by filipin, an agent disrupting caveolae or deletion of the potential interaction fragment, suggesting hSlo1c/Cav-1 association is crucial for regulating the permeability of BTB. Furthermore, we found that hSlo1c/Cav-1 association boosted Cav-1 transferring from the cell membrane to the cytoplasm of HBMECs. Our study indicates that cytoplasmic hSlo1c not only associates with Cav-1 but also has functional consequences on the permeability of BTB by triggering the intracellular trafficking of its interacting protein partner, Cav-1.
Collapse
Affiliation(s)
- Yang Song
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, Liaoning Province, People's Republic of China,
| | | | | | | |
Collapse
|
28
|
Abstract
Current advances in nanotechnology have paved the way for the early detection, prevention and treatment of various diseases such as vascular disorders and cancer. These advances have provided novel approaches or modalities of incorporating or adsorbing therapeutic, biosensor and targeting agents into/on nanoparticles. With significant progress, nanomedicine for vascular therapy has shown significant advantages over traditional medicine because of its ability to selectively target the disease site and reduce adverse side effects. Targeted delivery of nanoparticles to vascular endothelial cells or the vascular wall provides an effective and more efficient way for early detection and/or treatment of vascular diseases such as atherosclerosis, thrombosis and Cerebrovascular Amyloid Angiopathy (CAA). Clinical applications of biocompatible and biodegradable polymers in areas such as vascular graft, implantable drug delivery, stent devices and tissue engineering scaffolds have advanced the candidature of polymers as potential nano-carriers for vascular-targeted delivery of diagnostic agents and drugs. This review focuses on the basic aspects of the vasculature and its associated diseases and relates them to polymeric nanoparticle-based strategies for targeting therapeutic agents to diseased vascular site.
Collapse
Affiliation(s)
- Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL ; Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Karunyna Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat Commun 2013; 4:1831. [PMID: 23652019 PMCID: PMC3674239 DOI: 10.1038/ncomms2808] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/26/2013] [Indexed: 12/23/2022] Open
Abstract
Caveolae are abundant in endothelial cells and are thought to have important roles in endothelial cell biology. The cavin proteins are key components of caveolae, and are expressed at varied amounts in different tissues. Here we use knockout mice to determine the roles of cavins 2 and 3 in caveolar morphogenesis in vivo. Deletion of cavin 2 causes loss of endothelial caveolae in lung and adipose tissue, but has no effect on the abundance of endothelial caveolae in heart and other tissues. Changes in the morphology of endothelium in cavin 2 null mice correlate with changes in caveolar abundance. Cavin 3 is not required for making caveolae in the tissues examined. Cavin 2 determines the size of cavin complexes, and acts to shape caveolae. Cavin 1, however, is essential for normal oligomerization of caveolin 1. Our data reveal that endothelial caveolae are heterogeneous, and identify cavin 2 as a determinant of this heterogeneity. Cavin proteins are key components of mammalian caveolae and are expressed from four genes in a tissue-specific manner. Gram Hansen et al. demonstrate that caveolae in the endothelia of different tissues are remarkably heterogeneous, and reveal a role for cavin 2 in determining the apparent size of cavin complexes.
Collapse
|
30
|
Abstract
This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.
Collapse
Affiliation(s)
- Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
31
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
32
|
Gonzalo-Gobernado R, Calatrava-Ferreras L, Reimers D, Herranz AS, Rodríguez-Serrano M, Miranda C, Jiménez-Escrig A, Díaz-Gil JJ, Bazán E. Neuroprotective activity of peripherally administered liver growth factor in a rat model of Parkinson's disease. PLoS One 2013; 8:e67771. [PMID: 23861803 PMCID: PMC3701531 DOI: 10.1371/journal.pone.0067771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
| | | | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Antonio Sánchez Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Cristina Miranda
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Juan José Díaz-Gil
- Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
33
|
Klaassen I, Van Noorden CJF, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 2013; 34:19-48. [PMID: 23416119 DOI: 10.1016/j.preteyeres.2013.02.001] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/19/2012] [Accepted: 02/01/2013] [Indexed: 12/16/2022]
Abstract
Breakdown of the inner endothelial blood-retinal barrier (BRB), as occurs in diabetic retinopathy, age-related macular degeneration, retinal vein occlusions, uveitis and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing loss of vision. The central mechanism of altered BRB function is a change in the permeability characteristics of retinal endothelial cells caused by elevated levels of growth factors, cytokines, advanced glycation end products, inflammation, hyperglycemia and loss of pericytes. Subsequently, paracellular but also transcellular transport across the retinal vascular wall increases via opening of endothelial intercellular junctions and qualitative and quantitative changes in endothelial caveolar transcellular transport, respectively. Functional changes in pericytes and astrocytes, as well as structural changes in the composition of the endothelial glycocalyx and the basal lamina around BRB endothelium further facilitate BRB leakage. As Starling's rules apply, active transcellular transport of plasma proteins by the BRB endothelial cells causing increased interstitial osmotic pressure is probably the main factor in the formation of macular edema. The understanding of the complex cellular and molecular processes involved in BRB leakage has grown rapidly in recent years. Although appropriate animal models for human conditions like diabetic macular edema are lacking, these insights have provided tools for rational design of drugs aimed at restoring the BRB as well as for design of effective transport of drugs across the BRB, to treat the chronic retinal diseases such as diabetic macular edema that affect the quality-of-life of millions of patients.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2013; 17:3729-40. [PMID: 21834767 DOI: 10.2174/138161211798220918] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2012; 2:120. [PMID: 22232608 PMCID: PMC3252561 DOI: 10.3389/fphys.2011.00120] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/19/2011] [Indexed: 12/29/2022] Open
Abstract
Caveolae are cholesterol and glycosphingolipid-rich flask-shaped invaginations of the plasma membrane which are particularly abundant in vascular endothelium and present in all other cell types of the cardiovascular system, including vascular smooth-muscle cells, macrophages, cardiac myocytes, and fibroblasts. Caveolins and the more recently discovered cavins are the major protein components of caveolae. When caveolae were discovered, their functional role was believed to be limited to transport across the endothelial cell barrier. Since then, however, a large body of evidence has accumulated, suggesting that these microdomains are very important in regulating many other important endothelial cell functions, mostly due to their ability to concentrate and compartmentalize various signaling molecules. Over the course of several years, multiple studies involving knockout mouse and small interfering RNA approaches have considerably enhanced our understanding of the role of caveolae and caveolin-1 in regulating many cardiovascular functions. New findings have been reported implicating other caveolar protein components in endothelial cell signaling and function, such as the understudied caveolin-2 and newly discovered cavin proteins. The aim of this review is to focus primarily on molecular and cellular aspects of the role of caveolae, caveolins, and cavins in endothelial cell signaling and function. In addition, where appropriate, the possible implications for the cardiovascular and pulmonary physiology and pathophysiology will be discussed.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, USA
| |
Collapse
|
36
|
Sowa G. Regulation of Cell Signaling and Function by Endothelial Caveolins: Implications in Disease. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2012; Suppl 8:001. [PMID: 26605130 PMCID: PMC4655115 DOI: 10.4172/2161-1025.s8-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caveolae are cholesterol- and glycosphingolipid-rich omega-shaped invaginations of the plasma membrane that are very abundant in vascular endothelial cells and present in most cell types. Caveolins are the major coat protein components of caveolae. Multiple studies using knockout mouse, small interfering RNA, and cell-permeable peptide delivery approaches have significantly enhanced our understanding of the role of endothelial caveolae and caveolin-1 in physiology and disease. Several postnatal pulmonary and cardiovascular pathologies have been reported in caveolin-1 knockout mice, many of which have been recently rescued by selective re-expression of caveolin-1 in endothelium of these mice. A large body of experimental evidence mostly using caveolin-1 knockout mice suggests that, depending on the disease model, endothelial caveolin-1 may play either a protective or a detrimental role. For instance, physiological or higher expression levels of caveolin-1 in endothelium might be beneficial in such diseases as pulmonary hypertension, cardiac hypertrophy, or ischemic injury. On the other hand, endothelial caveolin-1 might contribute to acute lung injury and inflammation, atherosclerosis or pathological angiogenesis associated with inflammatory bowel disease. Moreover, depending on the specific model, endothelial caveolin-1 may either promote or suppress tumor-induced angiogenesis. In addition to overwhelming evidence for the role of endothelial caveolin-1, more recent studies also suggest that endothelial caveolin-2 could possibly play a role in pulmonary disease. The purpose of this review is to focus on how caveolin-1 expressed in endothelial cells regulates endothelial cell signaling and function. The review places particular emphasis on relevance to disease, including but not limited to Pulmonary and cardiovascular disorders as well as cancer. In addition to caveolin-1, possible importance of the less-studied endothelial caveolin-2 in pulmonary diseases will be also discussed.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
37
|
Deshpande DD, Janero DR, Amiji MM. Therapeutic strategies for endothelial dysfunction. Expert Opin Biol Ther 2011; 11:1637-54. [DOI: 10.1517/14712598.2011.625007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab 2011; 301:E252-63. [PMID: 21610226 PMCID: PMC3154531 DOI: 10.1152/ajpendo.00186.2011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin, at physiological concentrations, regulates the volume of microvasculature perfused within skeletal and cardiac muscle. It can also, by relaxing the larger resistance vessels, increase total muscle blood flow. Both of these effects require endothelial cell nitric oxide generation and smooth muscle cell relaxation, and each could increase delivery of insulin and nutrients to muscle. The capillary microvasculature possesses the greatest endothelial surface area of the body. Yet, whether insulin acts on the capillary endothelial cell is not known. Here, we review insulin's actions at each of three levels of the arterial vasculature as well as recent data suggesting that insulin can regulate a vesicular transport system within the endothelial cell. This latter action, if it occurs at the capillary level, could enhance insulin delivery to muscle interstitium and thereby complement insulin's actions on arteriolar endothelium to increase insulin delivery. We also review work that suggests that this action of insulin on vesicle transport depends on endothelial cell nitric oxide generation and that insulin's ability to regulate this vesicular transport system is impaired by inflammatory cytokines that provoke insulin resistance.
Collapse
Affiliation(s)
- Eugene J Barrett
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
39
|
Mahmud A, Discher DE. Lung vascular targeting through inhalation delivery: insight from filamentous viruses and other shapes. IUBMB Life 2011; 63:607-12. [PMID: 21721102 DOI: 10.1002/iub.481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 01/08/2023]
Abstract
Systemic delivery of therapeutic agents via inhalation of particulates remains an attractive, noninvasive means of administration due to the possibilities of high bioavailability and high patient compliance. Optimization of particle shapes and particle properties for deep lung deposition after inhalation continues to be one of the key challenges. Here, we review several aspects of nanoparticle design for deep lung deposition as well as the nature and extent of translocation through the air-blood barrier for local or systemic vascular targeting. We describe filamentous influenza virus in comparison to worm-like "filomicelle" polymers as one example of a nature inspired design.
Collapse
Affiliation(s)
- Abdullah Mahmud
- Molecular Cell Biophysics and NanoBioPolymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
40
|
Nag S, Kapadia A, Stewart DJ. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 2011; 37:3-23. [PMID: 20946242 DOI: 10.1111/j.1365-2990.2010.01138.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically, the blood-brain barrier (BBB) was considered to be at the level of cerebral endothelium. Currently, the interaction of endothelium with other components of the vessel wall and with neurones and glial cells is considered to constitute a functional unit, termed the neurovascular unit that maintains cerebral homeostasis in steady states and brain injury. The emphasis of this review is on cerebral endothelium, the best-studied component of the neurovascular unit, and its permeability mechanisms in health and acute brain injury. Major advances have been made in unravelling the molecular structure of caveolae and tight junctions, both of which are components of the structural barrier to the entry of plasma proteins into brain. Time course studies suggest that caveolar changes precede junctional changes in acute brain injury. Additional factors modulating BBB permeability in acute brain injury are matrix metalloproteinases-2 and 9 and angiogenic factors, the most notable being vascular endothelial growth factor-A and angiopoietins (Ang) 1 and 2. Vascular endothelial growth factor-A and Ang2 have emerged as potent inducers of BBB breakdown while Ang1 is a potent anti-leakage factor. These factors have the potential to modulate permeability in acute brain injury and this is an area of ongoing research. Overall, a combination of haemodynamic, structural and molecular alterations affecting brain endothelium results in BBB breakdown in acute brain injury.
Collapse
Affiliation(s)
- S Nag
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
41
|
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44:725-38. [PMID: 21531958 PMCID: PMC7328339 DOI: 10.1165/rcmb.2009-0210st] [Citation(s) in RCA: 1440] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Collapse
|
42
|
Abstract
The molecular advances in various aspects of brain endothelial cell function in steady states are considerable and difficult to summarize in one chapter. Therefore, this chapter focuses on endothelial permeability mechanisms in steady states and disease namely vasogenic edema. The morphology and properties of caveolae and tight junctions that are involved in endothelial permeability to macromolecules are reviewed. Endothelial transport functions are briefly reviewed. Diseases with alterations of endothelial permeability are mentioned and details are provided of the molecular alterations in caveolae and tight junctions in vasogenic edema. Other factors involved in increased endothelial permeability such as the matrix metalloproteinases are briefly discussed. Of the modulators of endothelial permeability, angioneurins such as the vascular endothelial growth factors and angiopoietins are discussed. The chapter concludes with a brief discussion on delivery of therapeutic substances across endothelium.
Collapse
|
43
|
Chavez A, Smith M, Mehta D. New Insights into the Regulation of Vascular Permeability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:205-48. [DOI: 10.1016/b978-0-12-386037-8.00001-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72:463-93. [PMID: 20148685 DOI: 10.1146/annurev-physiol-021909-135833] [Citation(s) in RCA: 495] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
45
|
Muro S. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:189-204. [PMID: 20112244 PMCID: PMC4002210 DOI: 10.1002/wnan.73] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses the multiple bio- and nanotechnological strategies developed in the last few decades for treatment of a group of fatal genetic diseases termed lysosomal storage disorders. Some basic foundation on the biomedical causes and social and clinical relevance of these diseases is provided. Several treatment modalities, from those currently available to novel therapeutic approaches under development, are also discussed; these include gene and cell therapies, substrate reduction therapy, chemical chaperones, enzyme replacement therapy, multifunctional chimeras, targeting strategies, and drug carrier approaches.
Collapse
Affiliation(s)
- Silvia Muro
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA.
| |
Collapse
|
46
|
Pluta R, Januszewski S, Jabłoński M, Ułamek M. Factors in Creepy Delayed Neuronal Death in Hippocampus Following Brain Ischemia–Reperfusion Injury with Long-Term Survival. BRAIN EDEMA XIV 2010; 106:37-41. [DOI: 10.1007/978-3-211-98811-4_5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Scallan J, Huxley VH, Korthuis RJ. Capillary Fluid Exchange: Regulation, Functions, and Pathology. ACTA ACUST UNITED AC 2010. [DOI: 10.4199/c00006ed1v01y201002isp003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Chapter 4 The Biology of Caveolae. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:117-62. [DOI: 10.1016/s1937-6448(08)01804-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 2008; 130:845-75. [PMID: 18825403 DOI: 10.1007/s00418-008-0511-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2008] [Indexed: 10/25/2022]
Abstract
Molecular imaging, first developed to localise antigens in light microscopy, now encompasses all imaging modalities including those used in clinical care: optical imaging, nuclear medical imaging, ultrasound imaging, CT, MRI, and photoacoustic imaging. Molecular imaging always requires accumulation of contrast agent in the target site, often achieved most efficiently by steering nanoparticles containing contrast agent into the target. This entails accessing target molecules hidden behind tissue barriers, necessitating the use of targeting groups. For imaging modalities with low sensitivity, nanoparticles bearing multiple contrast groups provide signal amplification. The same nanoparticles can in principle deliver both contrast medium and drug, allowing monitoring of biodistribution and therapeutic activity simultaneously (theranostics). Nanoparticles with multiple bioadhesive sites for target recognition and binding will be larger than 20 nm diameter. They share functionalities with many subcellular organelles (ribosomes, proteasomes, ion channels, and transport vesicles) and are of similar sizes. The materials used to synthesise nanoparticles include natural proteins and polymers, artificial polymers, dendrimers, fullerenes and other carbon-based structures, lipid-water micelles, viral capsids, metals, metal oxides, and ceramics. Signal generators incorporated into nanoparticles include iron oxide, gadolinium, fluorine, iodine, bismuth, radionuclides, quantum dots, and metal nanoclusters. Diagnostic imaging applications, now appearing, include sentinal node localisation and stem cell tracking.
Collapse
Affiliation(s)
- Paul Debbage
- Department of Anatomy, Division of Histology and Embryology, Medical University Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria.
| | | |
Collapse
|
50
|
Black KL, Yin D, Ong JM, Hu J, Konda BM, Wang X, Ko MK, Bayan JA, Sacapano MR, Espinoza A, Irvin DK, Shu Y. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res 2008; 1230:290-302. [PMID: 18674521 PMCID: PMC2632551 DOI: 10.1016/j.brainres.2008.06.122] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/23/2008] [Accepted: 06/27/2008] [Indexed: 10/21/2022]
Abstract
The blood-brain tumor barrier (BTB) significantly limits delivery of therapeutic concentrations of chemotherapy to brain tumors. A novel approach to selectively increase drug delivery is pharmacologic modulation of signaling molecules that regulate BTB permeability, such as those in cGMP signaling. Here we show that oral administration of sildenafil (Viagra) and vardenafil (Levitra), inhibitors of cGMP-specific PDE5, selectively increased tumor capillary permeability in 9L gliosarcoma-bearing rats with no significant increase in normal brain capillaries. Tumor-bearing rats treated with the chemotherapy agent, adriamycin, in combination with vardenafil survived significantly longer than rats treated with adriamycin alone. The selective increase in tumor capillary permeability appears to be mediated by a selective increase in tumor cGMP levels and increased vesicular transport through tumor capillaries, and could be attenuated by iberiotoxin, a selective inhibitor for calcium-dependent potassium (K(Ca)) channels, that are effectors in cGMP signaling. The effect by sildenafil could be further increased by simultaneously using another BTB "opener", bradykinin. Collectively, this data demonstrates that oral administration of PDE5 inhibitors selectively increases BTB permeability and enhances anti-tumor efficacy for a chemotherapeutic agent. These findings have significant implications for improving delivery of anti-tumor agents to brain tumors.
Collapse
Affiliation(s)
- Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 West Third Street, Suite 800E, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|