1
|
Yang Y, Schmidt EP. Alveolar glycocalyces during health and critical illness. PROTEOGLYCAN RESEARCH 2025; 3:e70022. [PMID: 40242042 PMCID: PMC11999102 DOI: 10.1002/pgr2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
The alveolus, the functional unit of the lung, is comprised of closely approximated alveolar epithelial and endothelial cells, across which gas exchange occurs. This alveolar septum also includes two substantial, intraluminal extracellular matrices: the alveolar epithelial and endothelial glycocalyces. This perspective investigates the distinct structures and homeostatic functions of these two glycocalyces, as well as their distinct fates and consequences during critical illnesses such as sepsis and the acute respiratory distress syndrome. We seek to identify key knowledge gaps, with the goal to inspire future mechanistic investigations that may substantially impact human health and disease.
Collapse
Affiliation(s)
- Yimu Yang
- Department of Medicine, Massachusetts General Hospital, Boston MA
| | - Eric P. Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston MA
| |
Collapse
|
2
|
Phelp PG, van Wonderen SF, Vlaar APJ, Kapur R, Klanderman RB. Developments in Transfusion Medicine: Pulmonary Transfusion Reactions and Novel Blood Cell Labeling Techniques. Anesth Analg 2024:00000539-990000000-00947. [PMID: 39270303 DOI: 10.1213/ane.0000000000007136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Staying updated on advancements in transfusion medicine is crucial, especially in critical care and perioperative setting, where timely and accurate transfusions can be lifesaving therapeutic interventions. This narrative review explores the landscape of transfusion-related adverse events, focusing on pulmonary transfusion reactions such as transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI). TACO and TRALI are the leading causes of transfusion-related morbidity and mortality; however, specific treatments are lacking. Understanding the current incidence, diagnostic criteria, pathogenesis, treatment, and prevention strategies can equip clinicians to help reduce the incidence of these life-threatening complications. The review discusses emerging pathogenic mechanisms, including the possible role of inflammation in TACO and the mechanisms of reverse TRALI and therapeutic targets for TACO and TRALI, emphasizing the need for further research to uncover preventive and treatment modalities. Despite advancements, significant gaps remain in our understanding of what occurs during transfusions, highlighting the necessity for improved monitoring methods. To address this, the review also presents novel blood cell labeling techniques in transfusion medicine used for improving monitoring, quality assessment, and as a consequence, potentially reducing transfusion-related complications. This article aims to provide an update for anesthesiologists, critical care specialists, and transfusion medicine professionals regarding recent advancements and developments in the field of transfusion medicine.
Collapse
Affiliation(s)
- Philippa G Phelp
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stefan F van Wonderen
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Robert B Klanderman
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Thota LNR, Lopez Rosales JE, Placencia I, Zemskov EA, Tonino P, Michael AN, Black SM, Chignalia AZ. The Pulmonary Endothelial Glycocalyx Modifications in Glypican 1 Knockout Mice Do Not Affect Lung Endothelial Function in Physiological Conditions. Int J Mol Sci 2023; 24:14568. [PMID: 37834029 PMCID: PMC10573009 DOI: 10.3390/ijms241914568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The endothelial glycocalyx is a dynamic signaling surface layer that is involved in the maintenance of cellular homeostasis. The glycocalyx has a very diverse composition, with glycoproteins, proteoglycans, and glycosaminoglycans interacting with each other to form a mesh-like structure. Due to its highly interactive nature, little is known about the relative contribution of each glycocalyx constituent to its overall function. Investigating the individual roles of the glycocalyx components to cellular functions and system physiology is challenging, as the genetic manipulation of animals that target specific glycocalyx components may result in the development of a modified glycocalyx. Thus, it is crucial that genetically modified animal models for glycocalyx components are characterized and validated before the development of mechanistic studies. Among the glycocalyx components, glypican 1, which acts through eNOS-dependent mechanisms, has recently emerged as a player in cardiovascular diseases. Whether glypican 1 regulates eNOS in physiological conditions is unclear. Herein, we assessed how the deletion of glypican 1 affects the development of the pulmonary endothelial glycocalyx and the impact on eNOS activity and endothelial function. Male and female 5-9-week-old wild-type and glypican 1 knockout mice were used. Transmission electron microscopy, immunofluorescence, and immunoblotting assessed the glycocalyx structure and composition. eNOS activation and content were assessed by immunoblotting; nitric oxide production was assessed by the Griess reaction. The pulmonary phenotype was evaluated by histological signs of lung injury, in vivo measurement of lung mechanics, and pulmonary ventilation. Glypican 1 knockout mice showed a modified glycocalyx with increased glycocalyx thickness and heparan sulfate content and decreased expression of syndecan 4. These alterations were associated with decreased phosphorylation of eNOS at S1177. The production of nitric oxides was not affected by the deletion of glypican 1, and the endothelial barrier was preserved in glypican 1 knockout mice. Pulmonary compliance was decreased, and pulmonary ventilation was unaltered in glypican 1 knockout mice. Collectively, these data indicate that the deletion of glypican 1 may result in the modification of the glycocalyx without affecting basal lung endothelial function, validating this mouse model as a tool for mechanistic studies that investigate the role of glypican 1 in lung endothelial function.
Collapse
Affiliation(s)
- Lakshmi N. R. Thota
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Joaquin E. Lopez Rosales
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Ivan Placencia
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Evgeny A. Zemskov
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Paola Tonino
- Research, Innovation & Impact Cores Facilities, Imaging Cores-Electron, Life Sciences North, The University of Arizona, Tucson, AZ 85719, USA;
| | - Ashley N. Michael
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA
| | - Andreia Z. Chignalia
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
- Department of Physiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA
- Sarver Heart Center, The University of Arizona, Tucson, AZ 85724, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Wang LJ, Feng F, Li JC, Chen TT, Liu LP. Role of heparanase in pulmonary hypertension. Front Pharmacol 2023; 14:1202676. [PMID: 37637421 PMCID: PMC10450954 DOI: 10.3389/fphar.2023.1202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.
Collapse
Affiliation(s)
- Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
6
|
Mortazavi CM, Hoyt JM, Patel A, Chignalia AZ. The glycocalyx and calcium dynamics in endothelial cells. CURRENT TOPICS IN MEMBRANES 2023; 91:21-41. [PMID: 37080679 DOI: 10.1016/bs.ctm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The endothelial glycocalyx is a dynamic surface layer composed of proteoglycans, glycoproteins, and glycosaminoglycans with a key role in maintaining endothelial cell homeostasis. Its functions include the regulation of endothelial barrier permeability and stability, the transduction of mechanical forces from the vascular lumen to the vessel walls, serving as a binding site to multiple growth factors and vasoactive agents, and mediating the binding of platelets and the migration of leukocytes during an inflammatory response. Many of these processes are associated with changes in intracellular calcium levels that may occur through mechanisms that alter calcium entry in the endothelium or the release of calcium from the endoplasmic reticulum. Whether the endothelial glycocalyx can regulate calcium dynamics in endothelial cells is unresolved. Interestingly, during cardiovascular disease progression, changes in calcium dynamics are observed in association with the degradation of the glycocalyx and with changes in barrier permeability and vascular reactivity. Herein, we aim to provide a summarized overview of what is known regarding the role of the glycocalyx as a regulator of endothelial barrier and vascular reactivity during homeostatic and pathological conditions and to provide a perspective on how such processes may relate to calcium dynamics in endothelial cells, exploring a possible connection between components of the glycocalyx and calcium-sensitive pathways in the endothelium.
Collapse
Affiliation(s)
- Cameron M Mortazavi
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Jillian M Hoyt
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Aamir Patel
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Physiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Pharmacology & Toxicology, University of Arizona, College of Pharmacy, Tucson, AZ, United States.
| |
Collapse
|
7
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
8
|
Li J, Stadlbauer A, Heller A, Song Z, Petermichl W, Foltan M, Schmid C, Schopka S. Impact of fluid balance and blood transfusion during extracorporeal circulation on outcome for acute type A aortic dissection surgery. THE JOURNAL OF CARDIOVASCULAR SURGERY 2022; 63:734-741. [PMID: 35913035 DOI: 10.23736/s0021-9509.22.12339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND In thoracic aortic surgery, fluid replacement and blood transfusion during extracorporeal circulation (ECC) are associated with increased coagulopathy, elevated inflammatory response, and end-organ dysfunction. The optimal strategy has not been established in this regard. The aim of this study was to evaluate the effect of the fluid balance during ECC in thoracic aortic dissection surgery on outcome. METHODS Between 2009 and 2020, 358 patients suffering from acute type A aortic dissection (ATAAD) underwent aortic surgery at our heart center. In-hospital mortality, major complications (postoperative stroke, respiratory failure, heart failure, acute renal failure), and follow-up mortality were assessed. Logistic regression analysis was used to identify whether fluid balance and blood transfusion during ECC were risk factors for occurring adverse events. RESULTS The in-hospital mortality amounted to 20.4%. Major complications included temporary neurologic deficit in 13.4%, permanent neurologic deficit in 6.1%, acute renal failure in 32.7%, prolonged ventilation for respiratory failure in 17.9%, and acute heart failure in 10.9% of cases. At a mean of 42 months after discharge of 285 survivors, follow-up mortality was 13.3%. Multivariate analysis revealed major complications as well as the risk of in-hospital and follow-up mortality to increase with fluid balance and blood transfusion during ECC. CONCLUSIONS Fluid balance and blood transfusion during ECC present with predictive potential concerning the risk of postoperative adverse events.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiothoracic Surgery, University Medical Center of Regensburg, Regensburg, Germany -
| | - Andrea Stadlbauer
- Department of Cardiothoracic Surgery, University Medical Center of Regensburg, Regensburg, Germany
| | - Anton Heller
- Department of Cardiothoracic Surgery, University Medical Center of Regensburg, Regensburg, Germany
| | - Zhiyang Song
- Institute of Mathematics, Ludwig-Maximilian University Munich, Munich, Germany
| | - Walter Petermichl
- Department of Anesthesiology, University Medical Center of Regensburg, Regensburg, Germany
| | - Maik Foltan
- Department of Cardiothoracic Surgery, University Medical Center of Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center of Regensburg, Regensburg, Germany
| | - Simon Schopka
- Department of Cardiothoracic Surgery, University Medical Center of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Bulle EB, Klanderman RB, Pendergrast J, Cserti-Gazdewich C, Callum J, Vlaar APJ. The recipe for TACO: A narrative review on the pathophysiology and potential mitigation strategies of transfusion-associated circulatory overload. Blood Rev 2021; 52:100891. [PMID: 34627651 DOI: 10.1016/j.blre.2021.100891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022]
Abstract
Transfusion associated circulatory overload (TACO) is one of the leading causes of transfusion related morbidity and mortality. TACO is the result of hydrostatic pulmonary edema following transfusion. However, up to 50% of all TACO cases appear after transfusion of a single unit, suggesting other factors, aside from volume, play a role in its pathophysiology. TACO follows a two-hit model, in which the first hit is an existing disease or comorbidity that renders patients volume incompliant, and the second hit is the transfusion. First hit factors include, amongst others, cardiac and renal failure. Blood product factors, setting TACO apart from crystalloid overload, include colloid osmotic pressure effects, viscosity, pro-inflammatory mediators and storage lesion byproducts. Differing hemodynamic changes, glycocalyx injury, endothelial damage and inflammatory reactions can all contribute to developing TACO. This narrative review explores pathophysiological mechanisms for TACO, discusses related therapeutic and preventative measures, and identifies areas of interest for future research.
Collapse
Affiliation(s)
- Esther B Bulle
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| | - Robert B Klanderman
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| | - Jacob Pendergrast
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Christine Cserti-Gazdewich
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Jeannie Callum
- Department of Pathology and Molecular Medicine, Queen's University and Kingston Health Sciences Centre, Canada.
| | - Alexander P J Vlaar
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| |
Collapse
|
10
|
Oshima K, King SI, McMurtry SA, Schmidt EP. Endothelial Heparan Sulfate Proteoglycans in Sepsis: The Role of the Glycocalyx. Semin Thromb Hemost 2021; 47:274-282. [PMID: 33794552 DOI: 10.1055/s-0041-1725064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is increasing recognition of the importance of the endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer, in vascular homeostasis. Heparan sulfate proteoglycans (HSPGs) are a major structural constituent of the endothelial glycocalyx and serve to regulate vascular permeability, microcirculatory tone, leukocyte and platelet adhesion, and hemostasis. During sepsis, endothelial HSPGs are shed through the induction of "sheddases" such as heparanase and matrix metalloproteinases, leading to loss of glycocalyx integrity and consequent vascular dysfunction. Less well recognized is that glycocalyx degradation releases HSPG fragments into the circulation, which can shape the systemic consequences of sepsis. In this review, we will discuss (1) the normal, homeostatic functions of HSPGs within the endothelial glycocalyx, (2) the pathological changes in HSPGs during sepsis and their consequences on the local vascular bed, and (3) the systemic consequences of HSPG degradation. In doing so, we will identify potential therapeutic targets to improve vascular function during sepsis as well as highlight key areas of uncertainty that require further mechanistic investigation.
Collapse
Affiliation(s)
- Kaori Oshima
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Samantha I King
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah A McMurtry
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric P Schmidt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
11
|
Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int J Mol Sci 2021; 22:ijms22062996. [PMID: 33804258 PMCID: PMC7999025 DOI: 10.3390/ijms22062996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.
Collapse
|
12
|
Dull RO, Patel M, Isbatan A, Hahn RG. Syndecan-1 and Glypican-1 Knockout Alters Body Water Balance and Urine Response to Fluid Challenge in Mice. J Vasc Res 2020; 58:58-64. [PMID: 33105135 DOI: 10.1159/000510430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
Syndecan-1 (Sdc-1) and glypican-1 (Gpc-1) are 2 important proteoglycans found in the glycocalyx and believed to govern transvascular distribution of fluid and protein. In this translational study, we assessed Sdc-1 and Gpc-1 knockout (KO) on whole body water balance after an intravenous volume challenge. Sdc-1 and Gpc-1 KO mice had higher starting blood water content versus strain-matched controls. Sdc-1 KO mice exhibited a significantly higher diuretic response (87%; p < 0.05), higher excreted volume/infusion volume ratio (p < 0.01), higher extravascular/infused ratio, and greater tissue water concentration (60 vs. 52%). Collectively, these suggest differences in kidney response and greater fluid efflux from peripheral vessels. The CD1 strain and Gpc-1 KO had a 2-3-fold larger urine output relative to C57 strain, but Gpc-1 KO reduced the excreted/infused ratio relative to controls (p < 0.01) and they maintained plasma dilution longer. Thus, genetic KO of Sdc-1 and Gpc-1 resulted in markedly different phenotypes. This work establishes the feasibility of performing fluid balance studies in mice.
Collapse
Affiliation(s)
- Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, USA,
- Department of Anesthesiology, University of Arizona College of Medicine, Tucson, Arizona, USA,
| | - Milan Patel
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Ayman Isbatan
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Robert G Hahn
- Research Unit, Södertälje Hospital, Södertälje, and Karolinska Institute at Danderyds Hospital (KIDS), Stockholm, Sweden
| |
Collapse
|
13
|
Dull RO, Chignalia AZ. The Glycocalyx and Pressure-Dependent Transcellular Albumin Transport. Cardiovasc Eng Technol 2020; 11:655-662. [PMID: 33006050 PMCID: PMC7782381 DOI: 10.1007/s13239-020-00489-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Purpose Acute increases in hydrostatic pressure activate endothelial signaling pathways that modulate barrier function and vascular permeability. We investigated the role the glycocalyx and established mechanotransduction pathways in pressure-induced albumin transport across rat lung microvascular endothelial cells.
Methods Rat lung microvascular endothelial cells (RLMEC) were cultured on Costar Snapwell chambers. Cell morphology was assessed using silver nitrate staining. RLMEC were exposed to zero pressure (Control) or 30 cmH2O (Pressure) for 30 or 60 min. Intracellular albumin uptake and transcellular albumin transport was quantified. Transcellular transport was reported as solute flux (Js) and an effective permeability coefficient (Pe). The removal of cell surface heparan sulfates (heparinase), inhibition of NOS (L-NAME) and reactive oxygen species (apocynin, Apo) was investigated. Results Acute increase in hydrostatic pressure augmented albumin uptake by 30–40% at 60 min and Js and Pe both increased significantly. Heparinase increased albumin uptake but attenuated transcellular transport while L-NAME attenuated both pressure-dependent albumin uptake and transport. Apo interrupted albumin uptake under both control and pressure conditions, leading to a near total lack of transcellular transport, suggesting a different mechanism and/or site of action. Conclusion Pressure-dependent albumin uptake and transcellular transport is another component of endothelial mechanotransduction and associated regulation of solute flux. This novel albumin uptake and transport pathway is regulated by heparan sulfates and eNOS. Albumin uptake is sensitive to ROS. The physiological and clinical implications of this albumin transport are discussed.
Collapse
Affiliation(s)
- Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL, USA. .,Department of Anesthesiology, Banner-University Medical Center, University of Arizona College of Medicine, Suite 4401, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5114, USA. .,Department of Pathology, Banner-University Medical Center, University of Arizona College of Medicine, Tucson, AZ, USA. .,Department of Surgery, Banner-University Medical Center, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Anesthesiology, Banner-University Medical Center, University of Arizona College of Medicine, Suite 4401, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5114, USA.,Department of Physiology, Banner-University Medical Center, University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
15
|
Restrictive intraoperative fluid management was associated with higher incidence of composite complications compared to less restrictive strategies in open thoracotomy: A retrospective cohort study. Sci Rep 2020; 10:8449. [PMID: 32439944 PMCID: PMC7242459 DOI: 10.1038/s41598-020-65532-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 01/15/2023] Open
Abstract
Restrictive fluid management has been recommended for thoracic surgery. However, specific guidelines are lacking, and there is always concern regarding impairment of renal perfusion with a restrictive policy. The objective of this study was to find the net intraoperative fluid infusion rate which shows the lowest incidence of composite complications (either pulmonary complications or acute kidney injury) in open thoracotomy. We hypothesized that a certain range of infusion rate would decrease the composite complications within postoperative 30 days. All patients (n = 1,031) who underwent open thoracotomy at a tertiary care university hospital were included in this retrospective study. The time frame of fluid monitoring was from the start of operation to postoperative 24 hours. The cutoff value of the intraoperative net fluid amount was 4–5 ml.kg−1.h−1 according to the minimum p-value method, thus, patients were divided into Low (≤3 ml.kg−1.h−1), Cutoff (4–5 ml.kg−1.h−1) and High (≥6 ml.kg−1.h−1) groups. The Cutoff group showed the lowest composite complication rate (19%, 12%, and 13% in the Low, Cutoff, and High groups, respectively, P = 0.0283; Low vs. Cutoff, P = 0.0324, Bonferroni correction). Acute respiratory distress syndrome occurred least frequently in the Cutoff group (7%, 3%, and 6% for the Low, Cutoff, and High groups, respectively, P = 0.0467; Low vs. Cutoff, P = 0.0432, Bonferroni correction). In multivariable analysis, intraoperative net fluid infusion rate was associated with composite complications, and the Cutoff group decreased risk (odds ratio 0.54, 95% confidence interval: 0.35–0.81, P = 0.0035). In conclusion, maintaining intraoperative net fluid infusion at 4–5 ml.kg−1.h−1 was associated with better results in open thoracotomy, in terms of composite complications, compared to more restrictive fluid management.
Collapse
|
16
|
Butler MJ, Down CJ, Foster RR, Satchell SC. The Pathological Relevance of Increased Endothelial Glycocalyx Permeability. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:742-751. [PMID: 32035881 DOI: 10.1016/j.ajpath.2019.11.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
Abstract
The endothelial glycocalyx is a vital regulator of vascular permeability. Damage to this delicate layer can result in increased protein and water transit. The clinical importance of albuminuria as a predictor of kidney disease progression and vascular disease has driven research in this area. This review outlines how research to date has attempted to measure the contribution of the endothelial glycocalyx to vessel wall permeability. We discuss the evidence for the role of the endothelial glycocalyx in regulating permeability in discrete areas of the vasculature and highlight the inherent limitations of the data that have been produced to date. In particular, this review emphasizes the difficulties in interpreting urinary albumin levels in early disease models. In addition, the research that supports the view that glycocalyx damage is a key pathologic step in a diverse array of clinical conditions, including diabetic complications, sepsis, preeclampsia, and atherosclerosis, is summarized. Finally, novel methods are discussed, including an ex vivo glomerular permeability assay that enhances the understanding of permeability changes in disease.
Collapse
Affiliation(s)
- Matthew J Butler
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Colin J Down
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rebecca R Foster
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Simon C Satchell
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
17
|
Abstract
Objective: The endothelial glycocalyx (eGC) is a dynamic and multicomponent layer of macromolecules found at the surface of vascular endothelium, which is largely underappreciated. It has recently been recognized that eGC is a major regulator of endothelial function and may have therapeutic value in organ injuries. This study aimed to explore the role of the eGC in various pathologic and physiologic conditions, by reviewing the basic research findings pertaining to the detection of the eGC and its clinical significance. We also explored different pharmacologic agents used to protect and rebuild the eGC. Data sources: An in-depth search was performed in the PubMed database, focusing on research published after 2003 with keywords including eGC, permeability, glycocalyx and injuries, and glycocalyx protection. Study selection: Several authoritative reviews and original studies were identified and reviewed to summarize the characteristics of the eGC under physiologic and pathologic conditions as well as the detection and protection of the eGC. Results: The eGC degradation is closely associated with pathophysiologic changes such as vascular permeability, edema formation, mechanotransduction, and clotting cascade, together with neutrophil and platelet adhesion in diverse injury and disease states including inflammation (sepsis and trauma), ischemia-reperfusion injury, shock, hypervolemia, hypertension, hyperglycemia, and high Na+ as well as diabetes and atherosclerosis. Therapeutic strategies for protecting and rebuilding the eGC should be explored through experimental test and clinical verifications. Conclusions: Disturbance of the eGC usually occurs at early stages of various clinical pathophysiologies which can be partly prevented and reversed by protecting and restoring the eGC. The eGC seems to be a promising diagnostic biomarker and therapeutic target in clinical settings.
Collapse
|
18
|
Nikmanesh M, Cancel LM, Shi Z, Tarbell JM. Heparan sulfate proteoglycan, integrin, and syndecan‐4 are mechanosensors mediating cyclic strain‐modulated endothelial gene expression in mouse embryonic stem cell‐derived endothelial cells. Biotechnol Bioeng 2019; 116:2730-2741. [DOI: 10.1002/bit.27104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/18/2019] [Accepted: 06/26/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Maria Nikmanesh
- Department of Biomedical Engineering, The City College of New YorkCUNY New York New York
| | - Limary M. Cancel
- Department of Biomedical Engineering, The City College of New YorkCUNY New York New York
| | - Zhong‐Dong Shi
- Developmental Biology ProgramMemorial Sloan‐Kettering Cancer Center New York New York
| | - John M. Tarbell
- Department of Biomedical Engineering, The City College of New YorkCUNY New York New York
| |
Collapse
|
19
|
Yuan J, Chiofolo CM, Czerwin BJ, Chbat NW. Modeling of Transport Mechanisms in the Respiratory System: Validation via Congestive Heart Failure Patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:2361-2364. [PMID: 31946374 DOI: 10.1109/embc.2019.8856569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The heart and lungs are intricately related. For congestive heart failure patients, fluid (plasma) backs up into the pulmonary system. As a result, pulmonary capillary pressure increases, causing fluid to seep into the lungs (pulmonary edema) within minutes. This excess fluid induces extra stress during breathing that affects respiratory health. In this paper, we focus on the effect that high pulmonary capillary pressure has on the development of this extravascular lung water (EVLW). A mathematical model of pulmonary fluid and mass transport mechanisms is developed in order to quantitatively analyze the transport phenomena in the pulmonary system. The model is then validated on 15 male heart failure patients from published literature [1]. The model shows reasonable estimation of EVLW in heart failure patients, which is useful in assessing the severity of pulmonary edema.
Collapse
|
20
|
Patel M, Chignalia AZ, Isbatan A, Bommakanti N, Dull RO. Ropivacaine inhibits pressure-induced lung endothelial hyperpermeability in models of acute hypertension. Life Sci 2019; 222:22-28. [PMID: 30822427 DOI: 10.1016/j.lfs.2019.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 11/18/2022]
Abstract
AIMS Increases in hydrostatic pressure results in endothelial hyperpermeability via eNOS-dependent pathways. Ropivacaine is known to inhibit eNOS activation and to attenuate lung injury. Herein, we sought to determine if ropivacaine regulates pressure-induced lung endothelial hyperpermeability. MAIN METHODS The effects of ropivacaine on lung permeability were assessed in two models of acute hypertension (AH): the isolated perfused lung preparation where acute increases in left atrial pressure model the hemodynamic changes of severe hypertension, and an animal model of AH induced by norepinephrine. In the IPL model, whole lung filtration coefficient (Kf) was used as the index of lung permeability; pulmonary artery pressure (Ppa), pulmonary capillary pressures (Ppc), and zonal characteristics (ZC) were measured to assess the effects of ropivacaine on hemodynamics and their relationship to Kf2/Kf1. In vivo, ropivacaine effects were investigated on indices of pulmonary edema (changes in PaO2, lung wet-to-dry ratio), changes in plasma volume and nitric oxide (NO) production. KEY FINDINGS Ropivacaine provided robust protection from pressure-dependent barrier failure; it inhibited pressure-induced increases in Kf without affecting Ppa, Ppc or ZC. In vivo, ropivacaine prevented pressure-induced lung edema and associated hyperpermeability as evidence by maintaining PaO2, lung wet-to-dry ratio and plasma volume in levels similar to sham rats. Ropivacaine inhibited pressure-induced NO production as evidenced by decreased lung nitro-tyrosine content when compared to hypertensive lungs. SIGNIFICANCE Collectively these data show that ropivacaine inhibits pressure-induced lung endothelial hyperpermeability and suggest that ropivacaine may be a clinically useful agent to prevent endothelial hyperpermeability when pulmonary pressure is acutely increased.
Collapse
Affiliation(s)
- Milan Patel
- Department of Anesthesiology, University of Illinois at Chicago. 1740 West Taylor Street, Suite 3200, Chicago, Il 60612, USA
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois at Chicago. 1740 West Taylor Street, Suite 3200, Chicago, Il 60612, USA; Department of Anesthesiology, University of Arizona COM and Banner-University Medical Center, Suite 4401, Room 4443, 1501 N. Campbell Avenue, PO Box 245114, Tucson, AZ 85724, USA.
| | - Ayman Isbatan
- Department of Anesthesiology, University of Illinois at Chicago. 1740 West Taylor Street, Suite 3200, Chicago, Il 60612, USA
| | - Nikhil Bommakanti
- Department of Anesthesiology, University of Illinois at Chicago. 1740 West Taylor Street, Suite 3200, Chicago, Il 60612, USA
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois at Chicago. 1740 West Taylor Street, Suite 3200, Chicago, Il 60612, USA; Department of Anesthesiology, University of Arizona COM and Banner-University Medical Center, Suite 4401, Room 4443, 1501 N. Campbell Avenue, PO Box 245114, Tucson, AZ 85724, USA
| |
Collapse
|
21
|
Transfusion-Associated Circulatory Overload: A Clinical Perspective. Transfus Med Rev 2019; 33:69-77. [PMID: 30853167 DOI: 10.1016/j.tmrv.2019.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/20/2019] [Accepted: 01/26/2019] [Indexed: 01/28/2023]
Abstract
For 30 years, transfusion-associated circulatory overload (TACO) has been recognized as a serious transfusion complication. Currently, TACO is the leading cause of transfusion-related morbidity and mortality worldwide which occurs in 1% to 12% of at-risk populations. Despite an incomplete understanding of the underlying pathophysiology, TACO is defined as a collection of signs and symptoms of acute pulmonary edema due to circulatory overload occurring within 6 to 12 hours of transfusion. In the past decade, large observational cohort studies resulted in better insight into the associated transfusion risk factors leading to the development of TACO. In this clinical review, we critically analyze the pathogenesis of TACO, associated risk factors, clinical presentation, diagnostic modalities, and treatment options to guide clinicians with early detection of this syndrome and intervention to improve clinical outcomes. Future research should focus on better understanding of the pathogenesis to help advance the field of volume kinetics and endothelial barrier function.
Collapse
|
22
|
Chignalia AZ, Isbatan A, Patel M, Ripper R, Sharlin J, Shosfy J, Borlaug BA, Dull RO. Pressure-dependent NOS activation contributes to endothelial hyperpermeability in a model of acute heart failure. Biosci Rep 2018; 38:BSR20181239. [PMID: 30355657 PMCID: PMC6250809 DOI: 10.1042/bsr20181239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Aims: Acute increases in left ventricular end diastolic pressure (LVEDP) can induce pulmonary edema (PE). The mechanism(s) for this rapid onset edema may involve more than just increased fluid filtration. Lung endothelial cell permeability is regulated by pressure-dependent activation of nitric oxide synthase (NOS). Herein, we demonstrate that pressure-dependent NOS activation contributes to vascular failure and PE in a model of acute heart failure (AHF) caused by hypertension.Methods and results: Male Sprague-Dawley rats were anesthetized and mechanically ventilated. Acute hypertension was induced by norepinephrine (NE) infusion and resulted in an increase in LVEDP and pulmonary artery pressure (Ppa) that were associated with a rapid fall in PaO2, and increases in lung wet/dry ratio and injury scores. Heart failure (HF) lungs showed increased nitrotyrosine content and ROS levels. L-NAME pretreatment mitigated the development of PE and reduced lung ROS concentrations to sham levels. Apocynin (Apo) pretreatment inhibited PE. Addition of tetrahydrobiopterin (BH4) to AHF rats lung lysates and pretreatment of AHF rats with folic acid (FA) prevented ROS production indicating endothelial NOS (eNOS) uncoupling.Conclusion: Pressure-dependent NOS activation leads to acute endothelial hyperpermeability and rapid PE by an increase in NO and ROS in a model of AHF. Acute increases in pulmonary vascular pressure, without NOS activation, was insufficient to cause significant PE. These results suggest a clinically relevant role of endothelial mechanotransduction in the pathogenesis of AHF and further highlights the concept of active barrier failure in AHF. Therapies targetting the prevention or reversal of endothelial hyperpermeability may be a novel therapeutic strategy in AHF.
Collapse
Affiliation(s)
- Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A.
| | - Ayman Isbatan
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Milan Patel
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Richard Ripper
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
- Research and Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S Damen Ave., Chicago, IL 60612, U.S.A
| | - Jordan Sharlin
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Joelle Shosfy
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic and Foundation, 200 First St SW, Rochester, MN 55905, U.S.A
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
- Department of Anesthesiology, University of Arizona College of Medicine and Banner-University Medical Center, Tucson, AZ 85724, U.S.A
| |
Collapse
|
23
|
LaRivière WB, Schmidt EP. The Pulmonary Endothelial Glycocalyx in ARDS: A Critical Role for Heparan Sulfate. CURRENT TOPICS IN MEMBRANES 2018; 82:33-52. [PMID: 30360782 DOI: 10.1016/bs.ctm.2018.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelial glycocalyx is a glycosaminoglycan-enriched endovascular layer that, with the development of novel fixation and in vivo microscopy techniques, has been increasingly recognized as a major contributor to vascular homeostasis. Sepsis-associated degradation of the endothelial glycocalyx mediates the onset of the alveolar microvascular dysfunction characteristic of sepsis-induced lung injury (such as the Acute Respiratory Distress Syndrome, ARDS). Emerging evidence indicates that processes of glycocalyx reconstitution are necessary for endothelial repair and, as such, are promising therapeutic targets to accelerate lung injury recovery. This review discusses what has been learned about the homeostatic and pathophysiologic role of the pulmonary endothelial glycocalyx during lung health and injury, with the goal to identify promising new areas for future mechanistic investigation.
Collapse
Affiliation(s)
- Wells B LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
24
|
Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 2018; 25:58. [PMID: 30037331 PMCID: PMC6057007 DOI: 10.1186/s12929-018-0462-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023] Open
Abstract
Dengue virus (DENV) infection is the most common mosquito-transmitted viral infection. DENV infection can cause mild dengue fever or severe dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS). Hemorrhage and vascular leakage are two characteristic symptoms of DHF/DSS. However, due to the limited understanding of dengue pathogenesis, no satisfactory therapies to treat nor vaccine to prevent dengue infection are available, and the mortality of DHF/DSS is still high. DENV nonstructural protein 1 (NS1), which can be secreted in patients’ sera, has been used as an early diagnostic marker for dengue infection for many years. However, the roles of NS1 in dengue-induced vascular leakage were described only recently. In this article, the pathogenic roles of DENV NS1 in hemorrhage and vascular leakage are reviewed, and the possibility of using NS1 as a therapeutic target and vaccine candidate is discussed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
25
|
Song JW, Goligorsky MS. Perioperative implication of the endothelial glycocalyx. Korean J Anesthesiol 2018; 71:92-102. [PMID: 29619781 PMCID: PMC5903118 DOI: 10.4097/kjae.2018.71.2.92] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 11/10/2022] Open
Abstract
The endothelial glycocalyx (EG) is a gel-like layer lining the luminal surface of healthy vascular endothelium. Recently, the EG has gained extensive interest as a crucial regulator of endothelial funtction, including vascular permeability, mechanotransduction, and the interaction between endothelial and circulating blood cells. The EG is degraded by various enzymes and reactive oxygen species upon pro-inflammatory stimulus. Ischemia-reperfusion injury, oxidative stress, hypervolemia, and systemic inflammatory response are responsible for perioperative EG degradation. Perioperative damage of the EG has also been demonstrated, especially in cardiac surgery. However, the protection of the EG and its association with perioperative morbidity needs to be elucidated in future studies. In this review, the present knowledge about EG and its perioperative implication is discussed from an anesthesiologist's perspective.
Collapse
Affiliation(s)
- Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology, and Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
26
|
Parthasarathi K. The Pulmonary Vascular Barrier: Insights into Structure, Function, and Regulatory Mechanisms. MOLECULAR AND FUNCTIONAL INSIGHTS INTO THE PULMONARY VASCULATURE 2018; 228:41-61. [DOI: 10.1007/978-3-319-68483-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Oshima K, Haeger SM, Hippensteel JA, Herson PS, Schmidt EP. More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217745786. [PMID: 29199903 PMCID: PMC5731723 DOI: 10.1177/2045893217745786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Advances in tissue fixation and imaging techniques have yielded increasing appreciation for the glycosaminoglycan-rich endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer (ESL). Pathological loss of the ESL during critical illness promotes local endothelial dysfunction and, consequently, organ injury. Glycosaminoglycan fragments, such as heparan sulfate, are released into the plasma of animals and humans after ESL degradation and have thus served as a biomarker of endothelial injury. The development of state-of-the-art glycomic techniques, however, has revealed that these circulating heparan sulfate fragments are capable of influencing growth factor and other signaling pathways distant to the site of ESL injury. This review summarizes the current state of knowledge concerning the local (i.e. endothelial injury) and systemic (i.e. para- or endocrine) consequences of ESL degradation and identifies opportunities for future, novel investigations.
Collapse
Affiliation(s)
- Kaori Oshima
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Sarah M Haeger
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Paco S Herson
- 2 129263 Department of Anesthesiology, University of Colorado Denver, Aurora, CO, USA
| | - Eric P Schmidt
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA.,3 Department of Medicine, Denver Health Medical Center, Denver, CO, USA
| |
Collapse
|
28
|
Bommakanti N, Isbatan A, Bavishi A, Dharmavaram G, Chignalia AZ, Dull RO. Hypercapnic acidosis attenuates pressure-dependent increase in whole-lung filtration coefficient (K f). Pulm Circ 2017; 7:719-726. [PMID: 28727979 PMCID: PMC5841912 DOI: 10.1177/2045893217724414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypercapnic acidosis (HCA) has beneficial effects in experimental models of lung injury by attenuating inflammation and decreasing pulmonary edema. However, HCA increases pulmonary vascular pressure that will increase fluid filtration and worsen edema development. To reconcile these disparate effects, we tested the hypothesis that HCA inhibits endothelial mechanotransduction and protects against pressure-dependent increases in the whole lung filtration coefficient (Kf). Isolated perfused rat lung preparation was used to measure whole lung filtration coefficient (Kf) at two levels of left atrial pressure (PLA = 7.5 versus 15 cm H2O) and at low tidal volume (LVt) versus standard tidal volume (STVt) ventilation. The ratio of Kf2/Kf1 was used as the index of whole lung permeability. Double occlusion pressure, pulmonary artery pressure, pulmonary capillary pressures, and zonal characteristics (ZC) were measured to assess effects of HCA on hemodynamics and their relationship to Kf2/Kf1. An increase in PLA2 from 7.5 to 15 cm H2O resulted in a 4.9-fold increase in Kf2/Kf1 during LVt and a 4.8-fold increase during STVt. During LVt, HCA reduced Kf2/Kf1 by 2.7-fold and reduced STVt Kf2/Kf1 by 5.2-fold. Analysis of pulmonary hemodynamics revealed no significant differences in filtration forces in response to HCA. HCA interferes with lung vascular mechanotransduction and prevents pressure-dependent increases in whole lung filtration coefficient. These results contribute to a further understanding of the lung protective effects of HCA.
Collapse
Affiliation(s)
- Nikhil Bommakanti
- 1 Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,2 Department of Bioengineering, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Ayman Isbatan
- 1 Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,3 Lung Vascular Biology Laboratory, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Avni Bavishi
- 1 Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,3 Lung Vascular Biology Laboratory, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Gourisree Dharmavaram
- 1 Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,3 Lung Vascular Biology Laboratory, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Andreia Z Chignalia
- 1 Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,3 Lung Vascular Biology Laboratory, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Randal O Dull
- 1 Department of Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,2 Department of Bioengineering, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,3 Lung Vascular Biology Laboratory, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| |
Collapse
|
29
|
Assaad S, Kratzert WB, Shelley B, Friedman MB, Perrino A. Assessment of Pulmonary Edema: Principles and Practice. J Cardiothorac Vasc Anesth 2017; 32:901-914. [PMID: 29174750 DOI: 10.1053/j.jvca.2017.08.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Indexed: 12/24/2022]
Abstract
Pulmonary edema increasingly is recognized as a perioperative complication affecting outcome. Several risk factors have been identified, including those of cardiogenic origin, such as heart failure or excessive fluid administration, and those related to increased pulmonary capillary permeability secondary to inflammatory mediators. Effective treatment requires prompt diagnosis and early intervention. Consequently, over the past 2 centuries a concentrated effort to develop clinical tools to rapidly diagnose pulmonary edema and track response to treatment has occurred. The ideal properties of such a tool would include high sensitivity and specificity, easy availability, and the ability to diagnose early accumulation of lung water before the development of the full clinical presentation. In addition, clinicians highly value the ability to precisely quantify extravascular lung water accumulation and differentiate hydrostatic from high permeability etiologies of pulmonary edema. In this review, advances in understanding the physiology of extravascular lung water accumulation in health and in disease and the various mechanisms that protect against the development of pulmonary edema under physiologic conditions are discussed. In addition, the various bedside modalities available to diagnose early accumulation of extravascular lung water and pulmonary edema, including chest auscultation, chest roentgenography, lung ultrasonography, and transpulmonary thermodilution, are examined. Furthermore, advantages and limitations of these methods for the operating room and intensive care unit that are critical for proper modality selection in each individual case are explored.
Collapse
Affiliation(s)
- Sherif Assaad
- Cardiothoracic Anesthesia Service, VA Connecticut Healthcare System, Yale University School of Medicine, New Haven, CT.
| | - Wolf B Kratzert
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA
| | - Benjamin Shelley
- Golden Jubilee National Hospital /West of Scotland Heart and Lung Centre, University of Glasgow, Glasgow, Scotland
| | - Malcolm B Friedman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, VA Connecticut Healthcare System, New Haven, CT
| | - Albert Perrino
- Cardiothoracic Anesthesia Service, VA Connecticut Healthcare System, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
30
|
Job KM, O'Callaghan R, Hlady V, Barabanova A, Dull RO. The Biomechanical Effects of Resuscitation Colloids on the Compromised Lung Endothelial Glycocalyx. Anesth Analg 2017; 123:382-93. [PMID: 27331777 DOI: 10.1213/ane.0000000000001284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The endothelial glycocalyx is an important component of the vascular permeability barrier, forming a scaffold that allows serum proteins to create a gel-like layer on the endothelial surface and transmitting mechanosensing and mechanotransduction information that influences permeability. During acute inflammation, the glycocalyx is degraded, changing how it interacts with serum proteins and colloids used during resuscitation and altering its barrier properties and biomechanical characteristics. We quantified changes in the biomechanical properties of lung endothelial glycocalyx during control conditions and after degradation by hyaluronidase using biophysical techniques that can probe mechanics at (1) the aqueous/glycocalyx interface and (2) inside the glycocalyx. Our goal was to discern the location-specific effects of albumin and hydroxyethyl starch (HES) on glycocalyx function. METHODS The effects of albumin and HES on the mechanical properties of bovine lung endothelial glycocalyx were studied using a combination of atomic force microscopy and reflectance interference contrast microscopy. Logistic regression was used to determine the odds ratios for comparing the effects of varying concentrations of albumin and HES on the glycocalyx with and without hyaluronidase. RESULTS Atomic force microscopy measurements demonstrated that both 0.1% and 4% albumin increased the thickness and reduced the stiffness of glycocalyx when compared with 1% albumin. The effect of HES on glycocalyx thickness was similar to albumin, with thickness increasing significantly between 0.1% and 1% HES and a trend toward a softer glycocalyx at 4% HES. Reflectance interference contrast microscopy revealed a concentration-dependent softening of the glycocalyx in the presence of albumin, but a concentration-dependent increase in stiffness with HES. After glycocalyx degradation with hyaluronidase, stiffness was increased only at 4% albumin and 1% HES. CONCLUSIONS Albumin and HES induced markedly different effects on glycocalyx mechanics and had notably different effects after glycocalyx degradation by hyaluronidase. We conclude that HES is not comparable with albumin for studies of vascular permeability and glycocalyx-dependent signaling. Characterizing the molecular and biomechanical effects of resuscitation colloids on the glycocalyx should clarify their indicated uses and permit a better understanding of how HES and albumin affect vascular function.
Collapse
Affiliation(s)
- Kathleen M Job
- From the *Department of Bioengineering, University of Utah, Salt lake City, Utah; and †Department of Anesthesiology, University of Illinois Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
31
|
Masciantonio MG, Lee CKS, Arpino V, Mehta S, Gill SE. The Balance Between Metalloproteinases and TIMPs: Critical Regulator of Microvascular Endothelial Cell Function in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:101-131. [PMID: 28413026 DOI: 10.1016/bs.pmbts.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells (EC), especially the microvascular EC (MVEC), have critical functions in health and disease. For example, healthy MVEC provide a barrier between the fluid and protein found within the blood, and the surrounding tissue. Following tissue injury or infection, the microvascular barrier is often disrupted due to activation and dysfunction of the MVEC. Multiple mechanisms promote MVEC activation and dysfunction, including stimulation by cytokines, mechanical interaction with activated leukocytes, and exposure to harmful leukocyte-derived molecules, which collectively result in a loss of MVEC barrier function. However, MVEC activation is also critical to facilitate recruitment of inflammatory cells, such as neutrophils (PMNs) and monocytes, into the injured or infected tissue. Metalloproteinases, including the matrix metalloproteinases (MMPs) and the closely related, a disintegrin and metalloproteinases (ADAMs), have been implicated in regulating both MVEC barrier function, through cleavage of adherens and tight junctions proteins between adjacent MVEC and through degradation of the extracellular matrix, as well as PMN-MVEC interaction, through shedding of cell surface PMN receptors. Moreover, the tissue inhibitors of metalloproteinases (TIMPs), which collectively inhibit most MMPs and ADAMs, are critical regulators of MVEC activation and dysfunction through their ability to inhibit metalloproteinases and thereby promote MVEC stability. However, TIMPs have been also found to modulate MVEC function through metalloproteinase-independent mechanisms, such as regulation of vascular endothelial growth factor signaling. This chapter is focused on examining the role of the metalloproteinases and TIMPs in regulation of MVEC function in both health and disease.
Collapse
Affiliation(s)
- Marcello G Masciantonio
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher K S Lee
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
32
|
Abstract
In the United States trauma is the leading cause of mortality among those under the age of 45, claiming approximately 192,000 lives each year. Significant personal disability, lost productivity, and long-term healthcare needs are common and contribute 580 billion dollars in economic impact each year. Improving resuscitation strategies and the early acute care of trauma patients has the potential to reduce the pathological sequelae of combined exuberant inflammation and immune suppression that can co-exist, or occur temporally, and adversely affect outcomes. The endothelial and epithelial glycocalyx has emerged as an important participant in both inflammation and immunomodulation. Constituents of the glycocalyx have been used as biomarkers of injury severity and have the potential to be target(s) for therapeutic interventions aimed at immune modulation. In this review, we provide a contemporary understanding of the physiologic structure and function of the glycocalyx and its role in traumatic injury with a particular emphasis on lung injury.
Collapse
|
33
|
Haeger SM, Yang Y, Schmidt EP. Heparan Sulfate in the Developing, Healthy, and Injured Lung. Am J Respir Cell Mol Biol 2016; 55:5-11. [PMID: 26982577 PMCID: PMC4942210 DOI: 10.1165/rcmb.2016-0043tr] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/24/2022] Open
Abstract
Remarkable progress has been achieved in understanding the regulation of gene expression and protein translation, and how aberrancies in these template-driven processes contribute to disease pathogenesis. However, much of cellular physiology is controlled by non-DNA, nonprotein mediators, such as glycans. The focus of this Translational Review is to highlight the importance of a specific glycan polymer-the glycosaminoglycan heparan sulfate (HS)-on lung health and disease. We demonstrate how HS contributes to lung physiology and pathophysiology via its actions as both a structural constituent of the lung parenchyma as well as a regulator of cellular signaling. By highlighting current uncertainties in HS biology, we identify opportunities for future high-impact pulmonary and critical care translational investigations.
Collapse
Affiliation(s)
- Sarah M. Haeger
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Yimu Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
- Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
34
|
Wang W, Feng ZS, Yin W. The newest progress of research on acute trauma-induced coagulopathy. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Lohser J, Slinger P. Lung Injury After One-Lung Ventilation: A Review of the Pathophysiologic Mechanisms Affecting the Ventilated and the Collapsed Lung. Anesth Analg 2015. [PMID: 26197368 DOI: 10.1213/ane.0000000000000808] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung injury is the leading cause of death after thoracic surgery. Initially recognized after pneumonectomy, it has since been described after any period of 1-lung ventilation (OLV), even in the absence of lung resection. Overhydration and high tidal volumes were thought to be responsible at various points; however, it is now recognized that the pathophysiology is more complex and multifactorial. All causative mechanisms known to trigger ventilator-induced lung injury have been described in the OLV setting. The ventilated lung is exposed to high strain secondary to large, nonphysiologic tidal volumes and loss of the normal functional residual capacity. In addition, the ventilated lung experiences oxidative stress, as well as capillary shear stress because of hyperperfusion. Surgical manipulation and/or resection of the collapsed lung may induce lung injury. Re-expansion of the collapsed lung at the conclusion of OLV invariably induces duration-dependent, ischemia-reperfusion injury. Inflammatory cytokines are released in response to localized injury and may promote local and contralateral lung injury. Protective ventilation and volatile anesthesia lessen the degree of injury; however, increases in biochemical and histologic markers of lung injury appear unavoidable. The endothelial glycocalyx may represent a common pathway for lung injury creation during OLV, because it is damaged by most of the recognized lung injurious mechanisms. Experimental therapies to stabilize the endothelial glycocalyx may afford the ability to reduce lung injury in the future. In the interim, protective ventilation with tidal volumes of 4 to 5 mL/kg predicted body weight, positive end-expiratory pressure of 5 to 10 cm H2O, and routine lung recruitment should be used during OLV in an attempt to minimize harmful lung stress and strain. Additional strategies to reduce lung injury include routine volatile anesthesia and efforts to minimize OLV duration and hyperoxia.
Collapse
Affiliation(s)
- Jens Lohser
- From the *Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada; and †Department of Anesthesia, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
37
|
Assaad S, Kyriakides T, Tellides G, Kim AW, Perkal M, Perrino A. Extravascular Lung Water and Tissue Perfusion Biomarkers After Lung Resection Surgery Under a Normovolemic Fluid Protocol. J Cardiothorac Vasc Anesth 2015; 29:977-83. [DOI: 10.1053/j.jvca.2014.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 11/11/2022]
|
38
|
Golden MH. Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium - a response to Malcolm Coulthard's hypothesis: Oedema in kwashiorkor is caused by hypo-albuminaemia. Paediatr Int Child Health 2015; 35:90-109. [PMID: 25844980 DOI: 10.1179/2046905515y.0000000010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The various types of oedema in man are considered in relation to Starling's hypothesis of fluid movement from capillaries, with the main emphasis on nutritional oedema and the nephrotic syndrome in children. It is concluded that each condition has sufficient anomalous findings to render Starling's hypothesis untenable. The finding that the endothelial glycocalyx is key to control of fluid movement from and into the capillaries calls for complete revision of our understanding of oedema formation. The factors so far known to affect the function of the glycocalyx are reviewed. As these depend upon sulphated proteoglycans and other glycosaminoglycans, the argument is advanced that the same abnormalities will extend to the interstitial space and that kwashiorkor is fundamentally related to a defect in sulphur metabolism which can explain all the clinical features of the condition, including the formation of oedema.
Collapse
Key Words
- Albumin,
- Aldosterone,
- Angiotensin,
- Beriberi,
- Edema,
- Epidemic dropsy,
- Famine oedema,
- Glycocalyx,
- Glycosaminoglycans,
- Heart failure,
- Hunger oedema,
- Kwashiorkor,
- Malnutrition,
- Nephrotic syndrome,
- Oedema,
- Potassium deficiency,
- Pre-eclampsia,
- Protein-energy malnutrition,
- Proteoglycans,
- Renin,
- Salt,
- Severe acute malnutrition
- Vitamin E deficiency,
- War oedema,
- Water,
Collapse
|
39
|
Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307:L924-35. [PMID: 25381026 PMCID: PMC4269690 DOI: 10.1152/ajplung.00318.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively.
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois;
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol (Camb) 2014; 6:338-47. [PMID: 24480876 PMCID: PMC3996848 DOI: 10.1039/c3ib40199e] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mammalian epithelial cells are coated with a multifunctional surface glycocalyx (GCX). On vascular endothelial cells (EC), intact GCX is atheroprotective. It is degraded in many vascular diseases. GCX heparan sulfate (HS) is essential for healthy flow-induced EC nitric oxide (NO) release, elongation, and alignment. The HS core protein mechanisms involved in these processes are unknown. We hypothesized that the glypican-1 (GPC1) HS core protein mediates flow-induced EC NO synthase (eNOS) activation because GPC1 is anchored to caveolae where eNOS resides. We also hypothesized that the HS core protein syndecan-1 (SDC1) mediates flow-induced EC elongation and alignment because SDC1 is linked to the cytoskeleton which impacts cell shape. We tested our hypotheses by exposing EC monolayers treated with HS degrading heparinase III (HepIII), and monolayers with RNA-silenced GPC1, or SDC1, to 3 to 24 hours of physiological shear stress. Shear-conditioned EC with intact GCX exhibited characteristic eNOS activation in short-term flow conditions. After long-term exposure, EC with intact GCX were elongated and aligned in the direction of flow. HS removal and GPC1 inhibition, not SDC1 reduction, blocked shear-induced eNOS activation. EC remodeling in response to flow was attenuated by HS degradation and in the absence of SDC1, but preserved with GPC1 knockdown. These findings clearly demonstrate that HS is involved in both centralized and decentralized GCX-mediated mechanotransduction mechanisms, with GPC1 acting as a centralized mechanotransmission agent and SDC1 functioning in decentralized mechanotransmission. This foundational work demonstrates how EC can transform fluid shear forces into diverse biomolecular and biomechanical responses.
Collapse
Affiliation(s)
- Eno E Ebong
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, K-840, Bronx, NY 10461
- Department of Biomedical Engineering, City College of New York, 140 Street and Convent Avenue, T-404B, New York, NY 10031
| | - Sandra V Lopez-Quintero
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, K-840, Bronx, NY 10461
| | - Victor Rizzo
- Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, MERB 1080, Philadelphia, PA 19140
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, K-840, Bronx, NY 10461
| | - John M Tarbell
- Department of Biomedical Engineering, City College of New York, 140 Street and Convent Avenue, T-404B, New York, NY 10031
| |
Collapse
|
41
|
Lygizos MI, Yang Y, Altmann CJ, Okamura K, Hernando AA, Perez MJ, Smith LP, Koyanagi DE, Gandjeva A, Bhargava R, Tuder RM, Faubel S, Schmidt EP. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol Rep 2013; 1:e00153. [PMID: 24400155 PMCID: PMC3871468 DOI: 10.1002/phy2.153] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/26/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022] Open
Abstract
Heparanase, a heparan sulfate-specific glucuronidase, mediates the onset of pulmonary neutrophil adhesion and inflammatory lung injury during early sepsis. We hypothesized that glomerular heparanase is similarly activated during sepsis and contributes to septic acute kidney injury (AKI). We induced polymicrobial sepsis in mice using cecal ligation and puncture (CLP) in the presence or absence of competitive heparanase inhibitors (heparin or nonanticoagulant N-desulfated re-N-acetylated heparin [NAH]). Four hours after surgery, we collected serum and urine for measurement of renal function and systemic inflammation, invasively determined systemic hemodynamics, harvested kidneys for histology/protein/mRNA, and/or measured glomerular filtration by inulin clearance. CLP-treated mice demonstrated early activation of glomerular heparanase with coincident loss of glomerular filtration, as indicated by a >twofold increase in blood urea nitrogen (BUN) and a >50% decrease in inulin clearance (P < 0.05) in comparison to sham mice. Administration of heparanase inhibitors 2 h prior to CLP attenuated sepsis-induced loss of glomerular filtration rate, demonstrating that heparanase activation contributes to early septic renal dysfunction. Glomerular heparanase activation was not associated with renal neutrophil influx or altered vascular permeability, in marked contrast to previously described effects of pulmonary heparanase on neutrophilic lung injury during sepsis. CLP induction of renal inflammatory gene (IL-6, TNF-α, IL-1β) expression was attenuated by NAH pretreatment. While serum inflammatory indices (KC, IL-6, TNF-α, IL-1β) were not impacted by NAH pretreatment, heparanase inhibition attenuated the CLP-induced increase in serum IL-10. These findings demonstrate that glomerular heparanase is active during sepsis and contributes to septic renal dysfunction via mechanisms disparate from heparanase-mediated lung injury.
Collapse
Affiliation(s)
- Melissa I Lygizos
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado
| | - Yimu Yang
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado
| | - Christopher J Altmann
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine Aurora, Colorado
| | - Kayo Okamura
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine Aurora, Colorado
| | - Ana Andres Hernando
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine Aurora, Colorado
| | - Mario J Perez
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado
| | - Lynelle P Smith
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado
| | - Daniel E Koyanagi
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado
| | - Aneta Gandjeva
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado
| | - Rhea Bhargava
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine Aurora, Colorado
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado
| | - Sarah Faubel
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine Aurora, Colorado
| | - Eric P Schmidt
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine Aurora, Colorado ; Denver Health Medical Center Denver, Colorado
| |
Collapse
|
42
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|
43
|
Collins SR, Blank RS, Deatherage LS, Dull RO. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg 2013; 117:664-674. [PMID: 23835455 PMCID: PMC3790575 DOI: 10.1213/ane.0b013e3182975b85] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The endothelial glycocalyx is a dynamic layer of macromolecules at the luminal surface of vascular endothelium that is involved in fluid homeostasis and regulation. Its role in vascular permeability and edema formation is emerging but is still not well understood. In this special article, we highlight key concepts of endothelial dysfunction with regards to the glycocalyx and provide new insights into the glycocalyx as a mediator of processes central to the development of pulmonary edema and lung injury.
Collapse
Affiliation(s)
- Stephen R Collins
- From the Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia; Department of Anesthesiology, University of Utah, Salt Lake City, Utah; and Department of Anesthesiology and Bioengineering, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | | | | | | |
Collapse
|
44
|
|
45
|
Yang Y, Schmidt EP. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers 2013; 1. [PMID: 24073386 PMCID: PMC3781215 DOI: 10.4161/tisb.23494] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation.
Collapse
Affiliation(s)
- Yimu Yang
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
46
|
Epinephrine induces rapid deterioration in pulmonary oxygen exchange in intact, anesthetized rats: a flow and pulmonary capillary pressure-dependent phenomenon. Anesthesiology 2012; 117:745-54. [PMID: 22902967 DOI: 10.1097/aln.0b013e31826a7da7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Previous studies indicate epinephrine adversely affects arterial oxygenation when administered in a rat model of local anesthetic overdose. The authors tested whether epinephrine alone exerts similar effects in the intact animal. METHODS Anesthetized rats received a single intravenous injection of epinephrine (25, 50, or 100 mcg/kg); matched cohorts were pretreated with phentolamine (100 mcg/kg); n = 5 for each of the six treatment groups. Arterial pressure and blood gases were measured at baseline, 1 and 10 min after epinephrine administration. Pulmonary capillary pressures during epinephrine infusion with normal and increased flows were measured in an isolated lung preparation. RESULTS Epinephrine injection in the intact animal caused hypoxemia, hypercapnia, and acidosis at all doses. Arterial oxygen tension was reduced within 1 min of injection. Hyperlactatemia occurred by 10 min after 50 and 100 mcg/kg. Rate pressure product was decreased by 10 min after 100 mcg/kg epinephrine. Pretreatment with phentolamine attenuated these effects except at 100 mcg/kg epinephrine. In the isolated lung preparation, epinephrine in combination with increased pulmonary flow increased pulmonary capillary pressure and lung water. CONCLUSIONS Bolus injection of epinephrine in the intact, anesthetized rat impairs pulmonary oxygen exchange within 1 min of treatment. Effects were blunted by α-adrenergic receptor blockade. Edema occurred in the isolated lung above a threshold pulmonary capillary pressure when epinephrine treatment was coupled with an increase in pulmonary flow. These results potentially argue against using traditional doses of epinephrine for resuscitation, particularly in the anesthetized patient.
Collapse
|