1
|
Sun T, Yu H, Zhang D, Zhang D, Li D, Fu J. Glucagon-like peptide-1 receptor signaling activation in alveolar type II cells enhances lung development in neonatal rats exposed to hyperoxia. Redox Biol 2025; 82:103586. [PMID: 40080965 PMCID: PMC11954118 DOI: 10.1016/j.redox.2025.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Many studies have reported the important role of glucagon-like peptide-1 receptor (GLP-1R) in regulating glucose homeostasis. However, in addition to the pancreas, GLP-1R is distributed in organs such as the lungs. A few researches have reported the mechanism of action of GLP-1R in acute and chronic lung diseases. Nevertheless, its effect on lung development remains unclear. In this research, we aimed to explore the role of GLP-1R in regulating lung development and its potential mechanisms in in vivo and in vitro bronchopulmonary dysplasia (BPD) models. METHODS Neonatal Sprague-Dawley rats were divided into hyperoxia (FIO2 = 0.85) and control (FIO2 = 0.21) groups. Lung tissues were extracted at 3, 7, 10, and 14 postnatal days and subjected to hematoxylin and eosin staining for histopathological and morphological observation. Single-cell RNA sequencing was performed to explore the role of GLP-1R in lung development. Western blotting was conducted to assess the expression of GLP-1R, dynamin-related protein 1 (DRP1), and glycolysis-associated enzymes, including phosphofructokinase (PFKM), hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA), in the lung tissues, primary alveolar type II (ATII) cells, and RLE-6TN cells. Double immunofluorescence staining was performed to confirm the co-localization of GLP-1R, DRP1, and ATII cells. A Seahorse XF96 metabolic extracellular flux analyzer was used to perform real-time analyses of extracellular acidification rate and oxygen consumption rate in ATII cells isolated from lung tissues and RLE-6TN cells. The adenosine triphosphate (ATP) concentrations in ATII and RLE-6TN cells were measured using an ATP kit. Mitochondria were stained with MitoTracker and observed using HiS-SIM. GLP-1R gene levels in lung tissues, primary ATII cells, and RLE-6TN cells were tested using RT-qPCR. We used MeRIP-qPCR to determine the m6A modification level of GLP-1R mRNA in RLE-6TN cells. A reporter gene was used to verify the modification site and key methyltransferases. RESULTS We observed that GLP-1R signaling regulates lung development and plays a key role in ATII cells, particularly after birth. Hyperoxia inhibits GLP-1R protein and gene expression in ATII cells and accelerates BPD development. ATP production decreased and glycolysis levels increased in ATII cells under hyperoxia. Activation of GLP-1R signaling promotes ATP production and downregulates glycolysis by regulating DRP1 induced mitochondria fission. In RLE-6TN cells, we verified that the m6A modification level of GLP-1R mRNA decreased; the modification site was tested by MeRIP-qPCR and was primarily induced by the methyltransferase-like 14 (METTL14). CONCLUSION GLP-1R is primarily expressed in ATII cells of neonatal rats and can promote lung development during the early postnatal period. The GLP-1R signaling pathway modulates mitochondrial fission and glucose metabolism in ATII cells under hyperoxia. Hyperoxia can inhibit the activation of GLP-1R by inhibiting m6A methylation during BPD pathogenesis.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dingning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Xu P, Zhuo W, Zhang P, Chen Y, Du Y, Li Y, Wang Y. Cyclin G1 Regulates the Alveolarization in Models of Bronchopulmonary Dysplasia by Inhibiting AT2 Cell Proliferation. Biomolecules 2025; 15:101. [PMID: 39858495 PMCID: PMC11764269 DOI: 10.3390/biom15010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated. The purpose of the present study was to explore the effects of cyclin G1 (CCNG1) on AT2 cell proliferation in hyperoxia-induced lung injury in neonatal mice. Our findings revealed that hyperoxia significantly reduced the proportion of AT2 cells in the lungs of neonatal mice and coincided with an upregulation of CCNG1 expression. Notably, this upregulation of CCNG1 was accompanied by an increase in Wnt signaling. We observed colocalization of CCNG1 and Wnt3a within AT2 cells in the hyperoxia group. Further analysis showed that inhibiting CCNG1 expression regressed the expression of Wnt signaling and enhanced cell proliferation. These results suggest that CCNG1 plays a pivotal role in suppressing AT2 cell proliferation, at least partly by counteracting the effects of Wnt signaling to modulate AT2 cell growth in the BPD model. Our findings contribute to a better understanding of the mechanisms underlying BPD.
Collapse
Affiliation(s)
- Panpan Xu
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (P.X.)
| | - Wanqing Zhuo
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peipei Zhang
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (P.X.)
| | - Ying Chen
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China (Y.D.)
| | - Yue Du
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China (Y.D.)
| | - Ying Li
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China (Y.D.)
| | - Yajuan Wang
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China (Y.D.)
| |
Collapse
|
3
|
Sun T, Yu H, Zhang D, Li D, Fu J. Activated DRP1 promotes mitochondrial fission and induces glycolysis in ATII cells under hyperoxia. Respir Res 2024; 25:443. [PMID: 39725939 DOI: 10.1186/s12931-024-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUD Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported. METHODS Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation. We assessed the expression of mitochondria dynamic associated proteins and glycolysis associated enzymes in lung tissues, primary ATII cells and RLE-6TN cells. Double immunofluorescence staining was used to confirm the co-localization of DRP1 and ATII cells. Real-time analyses of ECAR and OCR were performed with primary ATII cells using Seahorse XF96. ATP concentration was measured using an ATP kit. We treated RLE-6TN cells at 85% hyperoxia for 48 h with mitochondrial fission inhibitor Mdivi-1 to verify the role of DRP1 in regulating glucose metabolic reprogramming. FINDINGS We found that hyperoxia causes ATII cells' mitochondrial morphological change. The expression of DRP1 and p-DRP1 increased in lung tissue and primary ATII cells of neonatal rats exposed to hyperoxia. Glycolysis related enzymes including PFKM, HK2, and LDHA were also increased. Hyperoxia inhibited ATP production in ATII cells. In RLE-6TN cells, we verified that the administration of Mdivi-1 could alleviate the enhancement of aerobic glycolysis and fragmentation of mitochondria caused by hyperoxia. INTERPRETATIONS Hyperoxia exposure leads to increased mitochondrial fission in ATII cells and mediates the reprogramming of glucose metabolism via the DRP1 signaling pathway. Inhibiting the activation of DRP1 signaling pathway may be a promising therapeutic target for BPD.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dingning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Wang MY, Yi MX, Mo XY, Wei SJ, Qiao Y, Zhang Z, Su ZL, Lu HY. Over-activation of iNKT cells aggravate lung injury in bronchopulmonary dysplasia mice. Redox Biol 2024; 77:103370. [PMID: 39342744 PMCID: PMC11470607 DOI: 10.1016/j.redox.2024.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe lung disease in preterm infants, the abnormal proliferate and differentiate ability of type II epithelial cells (AEC II) is the key to the pathological basis of BPD. Mechanisms regarding abnormal AEC II in BPD remain unclear. The present work investigated the role and mechanisms of invariant natural killer T (iNKT) cells in lung disorder in BPD using public datasets, clinical samples, a hyperoxia-induced BPD mouse model and AEC II-iNKT cells transwell co-culture system. Firstly, we found that the NKT cells development factor IL-15 increased over time in patients with BPD in public databases, and clinically collected peripheral blood NKT cells in patients with BPD were increased. Subsequently, the percentage of iNKT cells increased in hyperoxia group compared with normoxia group, with the highest at P7, accompanied by increased activation with abnormal lung development. The administration of anti-CD1d neutralizing antibody to inhibit iNKT cells could alleviate the abnormal lung development of hyperoxia group mice, while α-GalCer administration could aggravate lung injury in hyperoxia group mice, and adoptive transfer of iNKT cells could aggravate the abnormal lung development in hyperoxia group mice. In addition, to further verify the role of iNKT cells on AEC II, AEC II-iNKT cells co-culture system was established. The presence of iNKT cells could aggravate the abnormal expression of SP-C and T1α under hyperoxia. Meanwhile, RNA-seq analysis showed that ferroptosis-related genes were highly expressed in AEC II co-cultured with iNKT cells under hyperoxia. We further validated the effect of the presence of iNKT cells under hyperoxia environment on AEC II ferroptosis levels, suggested that iNKT cells promote AEC II ferroptosis under hyperoxia, accompanied by decreased expression of SP-C and T1α. Our study found that the recruitment of iNKT cells in the lung may be an important cause of alveolarization disorder in BPD.
Collapse
Affiliation(s)
- Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Meng-Xu Yi
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Xing-Yu Mo
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shan-Jie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yu Qiao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Zheng Zhang
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute for Medical Immunology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
5
|
Goryunov K, Ivanov M, Kulikov A, Shevtsova Y, Burov A, Podurovskaya Y, Zubkov V, Degtyarev D, Sukhikh G, Silachev D. A Review of the Use of Extracellular Vesicles in the Treatment of Neonatal Diseases: Current State and Problems with Translation to the Clinic. Int J Mol Sci 2024; 25:2879. [PMID: 38474125 PMCID: PMC10932115 DOI: 10.3390/ijms25052879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neonatal disorders, particularly those resulting from prematurity, pose a major challenge in health care and have a significant impact on infant mortality and long-term child health. The limitations of current therapeutic strategies emphasize the need for innovative treatments. New cell-free technologies utilizing extracellular vesicles (EVs) offer a compelling opportunity for neonatal therapy by harnessing the inherent regenerative capabilities of EVs. These nanoscale particles, secreted by a variety of organisms including animals, bacteria, fungi and plants, contain a repertoire of bioactive molecules with therapeutic potential. This review aims to provide a comprehensive assessment of the therapeutic effects of EVs and mechanistic insights into EVs from stem cells, biological fluids and non-animal sources, with a focus on common neonatal conditions such as hypoxic-ischemic encephalopathy, respiratory distress syndrome, bronchopulmonary dysplasia and necrotizing enterocolitis. This review summarizes evidence for the therapeutic potential of EVs, analyzes evidence of their mechanisms of action and discusses the challenges associated with the implementation of EV-based therapies in neonatal clinical practice.
Collapse
Affiliation(s)
- Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Mikhail Ivanov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulikov
- Medical Institute, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Artem Burov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Yulia Podurovskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Victor Zubkov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Dmitry Degtyarev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
6
|
Wickramasinghe LC, Tsantikos E, Kindt A, Raftery AL, Gottschalk TA, Borger JG, Malhotra A, Anderson GP, van Wijngaarden P, Hilgendorff A, Hibbs ML. Granulocyte Colony-Stimulating Factor is a Determinant of Severe Bronchopulmonary Dysplasia and Coincident Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2001-2016. [PMID: 37673326 DOI: 10.1016/j.ajpath.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
Bronchopulmonary dysplasia (BPD), also called chronic lung disease of immaturity, afflicts approximately one third of all extremely premature infants, causing lifelong lung damage. There is no effective treatment other than supportive care. Retinopathy of prematurity (ROP), which impairs vision irreversibly, is common in BPD, suggesting a related pathogenesis. However, specific mechanisms of BPD and ROP are not known. Herein, a neonatal mouse hyperoxic model of coincident BPD and retinopathy was used to screen for candidate mediators, which revealed that granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3, was up-regulated significantly in mouse lung lavage fluid and plasma at postnatal day 14 in response to hyperoxia. Preterm infants with more severe BPD had increased plasma G-CSF. G-CSF-deficient neonatal pups showed significantly reduced alveolar simplification, normalized alveolar and airway resistance, and normalized weight gain compared with wild-type pups after hyperoxic lung injury. This was associated with a marked reduction in the intensity, and activation state, of neutrophilic and monocytic inflammation and its attendant oxidative stress response, and protection of lung endothelial cells. G-CSF deficiency also provided partial protection against ROP. The findings in this study implicate G-CSF as a pathogenic mediator of BPD and ROP, and suggest the therapeutic utility of targeting G-CSF biology to treat these conditions.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden University, Leiden, the Netherlands
| | - April L Raftery
- Leukocyte Signalling Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Timothy A Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jessica G Borger
- Leukocyte Signalling Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Atul Malhotra
- Early Neurodevelopment Clinic, Monash Children's Hospital, Clayton, Victoria, Australia; Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
| | - Peter van Wijngaarden
- Division of Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity, Helmholtz Zentrum Muenchen, Munich, Germany; Center for Comprehensive Developmental Care, Ludwig-Maximilian Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Teofili L, Papacci P, Giannantonio C, Bianchi M, Giovanna Valentini C, Vento G. Allogenic Cord Blood Transfusion in Preterm Infants. Clin Perinatol 2023; 50:881-893. [PMID: 37866854 DOI: 10.1016/j.clp.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Repeated red blood cell (RBC) transfusions in preterm neonates cause the progressive displacement of fetal hemoglobin (HbF) by adult hemoglobin. The ensuing increase of oxygen delivery may result at the cellular level in a dangerous condition of hyperoxia, explaining the association between low-HbF levels and retinopathy of prematurity or bronchopulmonary dysplasia. Transfusing preterm neonates with RBC concentrates obtained from allogeneic umbilical blood is a strategy to increase hemoglobin concentration without depleting the physiologic HbF reservoir. This review summarizes the mechanisms underlying a plausible beneficial impact of this strategy and reports clinical experience gathered so far in this field.
Collapse
Affiliation(s)
- Luciana Teofili
- Transfusion Medicine Department, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, Rome, Italy.
| | - Patrizia Papacci
- Neonatal Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, Rome, Italy
| | - Carmen Giannantonio
- Neonatal Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Gemelli 8, Rome, Italy
| | - Maria Bianchi
- Transfusion Medicine Department, Fondazione Policlinico A. Gemelli IRCCS, Largo Gemelli 8, Rome, Italy
| | | | - Giovanni Vento
- Neonatal Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, Rome, Italy
| |
Collapse
|
8
|
Lu HY, Wang MY, Zhu SX, Ju HM, Xu SQ, Qiao Y, Wei SJ, Su ZL. ILC2 influence the differentiation of alveolar type II epithelial cells in bronchopulmonary dysplasia mice. J Leukoc Biol 2023; 114:604-614. [PMID: 37647586 DOI: 10.1093/jleuko/qiad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Bronchopulmonary dysplasia, a common complication of premature infants, is mainly characterized by blocked alveolarization. Proverbially, the injury of alveolar type II epithelial cells is regarded as the pathologic basis of occurrence and development of bronchopulmonary dysplasia. In the case of alveolar epithelial damage, alveolar type II epithelial cells can also differentiate to alveolar type I epithelial cells as progenitor cells. During bronchopulmonary dysplasia, the differentiation of alveolar type II epithelial cells becomes abnormal. Group 2 innate lymphoid cells can produce type 2 cytokines in response to a variety of stimuli, including the epithelial cytokines IL-25, IL-33, and thymic stromal lymphopoietin. Previous studies have shown that group 2 innate lymphoid cells can inhibit the alveolarization process of bronchopulmonary dysplasia by secreting IL-13. However, whether group 2 innate lymphoid cells can affect the differentiation of alveolar type II epithelial cells in the pathologic process of bronchopulmonary dysplasia remains unclear. In this study, we have shown that IL-13 secreted by group 2 innate lymphoid cells increased during bronchopulmonary dysplasia, which was related to the release of large amounts of IL-33 by impaired alveolar type II epithelial cells. This led to abnormal differentiation of alveolar type II epithelial cells, reduced differentiation to alveolar type I epithelial cells, and increased transdifferentiation to mesenchymal cells through the epithelial-mesenchymal transition. Taken together, our study provides a complementary understanding of the development of bronchopulmonary dysplasia and highlights a novel immune mechanism in the pathogenesis of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Shao-Xuan Zhu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Hui-Min Ju
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Su-Qing Xu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Yu Qiao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Shan-Jie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute for medical Immunology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| |
Collapse
|
9
|
Li H, Ma K, Dou H, Liu L, Qian Y, Li S, Chen J, Han S, Gu X, Yin J. CircABPD1 alleviates oxidative lung injury of bronchopulmonary dysplasia through regulating miR-330-3p/HIF1α axis. Int J Biochem Cell Biol 2023; 163:106464. [PMID: 37660980 DOI: 10.1016/j.biocel.2023.106464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
In the NICU, bronchopulmonary dysplasia (BPD) is a concerning common respiratory complication in preterm and low birth-weight infants. Clinical studies have confirmed that human milk has an important nutritional role for children with BPD, therefore, dentification of beneficial components in human milk that prevent BPD is urgently needed. Our previous work showed that human milk exosomes (HM-Exos) could inhibit apoptosis of alveolar type II epithelial cells (AT II), and the circular RNA (circRNA)-circABPD1 were highly expressed in preterm colostrum milk exosomes. Exosomes transport circRNAs that are stable and may exert anti-inflammatory and immune effects attracted the attention of researchers, but the role and mechanism of human milk exosome-derived circABPD1 in BPD remains unclear. Here, we constructed BPD in vivo and in vitro models through exposure to hyperoxia, verified the effect of circABPD1 and revealed its mechanism through rescue experiments. We found that circABPD1 had circRNA properties, and overexpression of circABPD1 could improve reduced alveolar number, enlarged the alveolar linear intercept in vivo models of BPD, promote cell proliferation, reduce oxidative stress levels and alleviate lung epithelial cell damage in vivo and in vitro models. Mechanistically, circABPD1 targets miR-330-3p and regulates the expression of HIF1α. These results suggest that circABPD1 can improve the pathologoical changes of bronchopulmonary dysplasia, promote cell proliferation, inhibit oxidative stress level, and alleviate lung injury by targeting the miR-330-3p/HIF1α axis, which provides a new idea for the prevention and treatment of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Huimin Li
- School of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Ke Ma
- School of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Heng Dou
- School of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Linjie Liu
- School of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Yun Qian
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shushu Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jingjing Chen
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shuping Han
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China.
| | - Xiaoqi Gu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China.
| | - Jing Yin
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Zhou Y, Zhu Y, Jin W, Yan R, Fang Y, Zhang F, Tang T, Chen S, Chen J, Zhang F, Yu Z, Zang L, Yu Z. Tat-P combined with GAPR1 releases Beclin1 to promote autophagy and improve Bronchopulmonary dysplasia model. iScience 2023; 26:107509. [PMID: 37636035 PMCID: PMC10448080 DOI: 10.1016/j.isci.2023.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Long-term exposure to hyperoxia can leading to the bronchopulmonary dysplasia (BPD). The progression of BPD is primarily driven by the apoptosis of alveolar epithelial cells, and the regulation of autophagy has an impact on apoptosis. This study aims to investigate the therapeutic potential and underlying mechanism of an autophagy-promoting peptide (Tat-P) in ameliorating BPD. In vitro experiments demonstrated that Tat-P promoted autophagy and partially prevented apoptosis caused by exposure to hyperoxia. Further investigation into the mechanism revealed that Tat-P competitively binds to GAPR1, displacing the Beclin1 protein and thereby inhibiting the apoptosis. In vivo experiments conducted on Sprague-Dawley pups exposed to high oxygen levels demonstrated that Tat-P promoted autophagy and reduced apoptosis in lung tissues and ameliorated BPD-related phenotypes. Our findings elucidate the underlying mechanisms and effects of Tat-P in enhancing autophagy and preventing apoptosis. This study presents an approach for the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Yahui Zhou
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Yuting Zhu
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Weilai Jin
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Ru Yan
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Yuanyuan Fang
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Fan Zhang
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Tonghui Tang
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Si Chen
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Jing Chen
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Fan Zhang
- Department of Pediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Zhangbin Yu
- Department of Neonatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Le Zang
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| | - Zhiwei Yu
- Department of Neonatology, Wuxi Children’s Hospital affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Tong X, Li D, Liu N, Huang W, Zhao X, Zhang D, Xue X, Fu J. Rad1 attenuates DNA double-strand breaks and cell cycle arrest in type II alveolar epithelial cells of rats with bronchopulmonary dysplasia. Mol Med 2023; 29:70. [PMID: 37226090 PMCID: PMC10207718 DOI: 10.1186/s10020-023-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common and serious chronic lung disease in preterm infants with pathological characteristics of arrested lung development. DNA double-strand breaks (DSBs) are a serious manifestation of oxidative stress damage, but little is known about the role of DSBs in BPD. The current study set out to detect DSB accumulation and cell cycle arrest in BPD and study the expression of genes related to DNA damage and repair in BPD through DNA damage signaling pathway-based PCR array to determine a suitable target to improve arrested lung development associated with BPD. METHODS DSB accumulation and cell cycle arrest were detected in a BPD animal model and primary cells, then a DNA damage signaling pathway-based PCR array was used to identify the target of DSB repair in BPD. RESULTS DSB accumulation and cell cycle arrest were shown in BPD animal model, primary type II alveolar epithelial cells (AECII) and cultured cells after exposure to hyperoxia. Of the 84 genes in the DNA damage-signaling pathway PCR array, eight genes were overexpressed and 11 genes were repressed. Rad1, an important protein for DSB repair, was repressed in the model group. Real-time PCR and western blots were used to verify the microarray results. Next, we confirmed that silencing Rad1 expression aggravated the accumulation of DSBs and cell cycle arrest in AECII cells, whereas its overexpression alleviated DSB accumulation and cell cycle arrest. CONCLUSIONS The accumulation of DSBs in AECII might be an important cause of alveolar growth arrest associated with BPD. Rad1 could be an effective target for intervention to improve this arrest in lung development associated with BPD.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
He F, Wang QF, Li L, Yu C, Liu CZ, Wei WC, Chen LP, Li HY. Melatonin Protects Against Hyperoxia-Induced Apoptosis in Alveolar Epithelial type II Cells by Activating the MT2/PI3K/AKT/ETS1 Signaling Pathway. Lung 2023; 201:225-234. [PMID: 36928143 DOI: 10.1007/s00408-023-00610-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Hyperoxia-induced apoptosis in alveolar epithelial type II cells (AECIIs) plays a critical role in the development of bronchopulmonary dysplasia (BPD). Melatonin has been shown to improve BPD. However, the protective effect of melatonin on hyperoxia-induced apoptosis in AECIIs and the precise mechanisms involved remain unclear. METHODS Human alveolar epithelial type II A549 cells were treated with hyperoxia as an in vitro model to investigate the antiapoptotic mechanism of melatonin. CCK-8 assays were performed to investigate the viability of A549 cells. Hoechst 33,258 staining was carried out to quantify apoptosis in A549 cells. The protein expression levels of E26 oncogene homolog 1 (ETS1), Bcl-2, Bax, Bim, Wnt, β-catenin, AKT and phosphorylated AKT were measured by western blotting. LY294002, SC79 and the downregulation of ETS1, melatonin receptor 1 (MT1) and MT2 with specific siRNAs were used to investigate the role of the PI3K/AKT pathway, ETS1, MT1 and MT2 in hyperoxia-induced apoptosis in A549 cells. RESULTS Melatonin prevented hyperoxia-induced apoptosis in A549 cells, and the upregulation of E26 oncogene homolog 1 (ETS1) contributed to the antiapoptotic effect of melatonin. Melatonin activated the PI3K/AKT axis, which led to ETS1 upregulation and inhibited apoptosis in hyperoxia-exposed A549 cells. Furthermore, melatonin-induced activation of the PI3K/AKT axis, upregulation of ETS1 and inhibition of apoptosis were reversed by melatonin receptor 2 (MT2) siRNA in hyperoxia-exposed A549 cells. CONCLUSION Melatonin prevents hyperoxia-induced apoptosis by activating the MT2/PI3K/AKT/ETS1 axis in alveolar epithelial cells.
Collapse
Affiliation(s)
- Fan He
- Department of Neonatology, Jiangxi Provincial Children's Hospital, No. 1666, DieziHu Road, Honggutan District, Nanchang, 330038, Jiangxi, China
| | - Qiao-Fang Wang
- Department of Neonatology, Jiangxi Provincial Children's Hospital, No. 1666, DieziHu Road, Honggutan District, Nanchang, 330038, Jiangxi, China
| | - Lin Li
- Department of Neonatology, Jiangxi Provincial Children's Hospital, No. 1666, DieziHu Road, Honggutan District, Nanchang, 330038, Jiangxi, China
| | - Cong Yu
- Department of Neonatology, Jiangxi Provincial Children's Hospital, No. 1666, DieziHu Road, Honggutan District, Nanchang, 330038, Jiangxi, China
| | - Chun-Zi Liu
- Department of Neonatology, Jiangxi Provincial Children's Hospital, No. 1666, DieziHu Road, Honggutan District, Nanchang, 330038, Jiangxi, China
| | - Wen-Chao Wei
- Department of Neonatology, Jiangxi Provincial Children's Hospital, No. 1666, DieziHu Road, Honggutan District, Nanchang, 330038, Jiangxi, China
| | - Li-Ping Chen
- Department of Neonatology, Jiangxi Provincial Children's Hospital, No. 1666, DieziHu Road, Honggutan District, Nanchang, 330038, Jiangxi, China.
| | - Huan-Yu Li
- Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 152, Aiguo Road, DongHu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
14
|
Perrone S, Manti S, Petrolini C, Dell’Orto VG, Boscarino G, Ceccotti C, Bertini M, Buonocore G, Esposito SMR, Gitto E. Oxygen for the Newborn: Friend or Foe? CHILDREN (BASEL, SWITZERLAND) 2023; 10:579. [PMID: 36980137 PMCID: PMC10047080 DOI: 10.3390/children10030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Oxygen supplementation is widely used in neonatal care, however, it can also cause toxic effects if not used properly. Therefore, it appears crucial to find a balance in oxygen administration to avoid damage as a consequence of its insufficient or excessive use. Oxygen toxicity is mainly due to the production of oxygen radicals, molecules normally produced in humans and involved in a myriad of physiological reactions. In the neonatal period, an imbalance between oxidants and antioxidant defenses, the so-called oxidative stress, might occur, causing severe pathological consequences. In this review, we focus on the mechanisms of the production of oxygen radicals and their physiological functions in determining a set of diseases grouped together as "free radical diseases in the neonate". In addition, we describe the evolution of the oxygenation target recommendations during neonatal resuscitation and post-stabilization phases with the aim to define the best oxygen administration according to the newest evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology “Gaetano Barresi”, University of Messina, 98122 Messina, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Giovanna Dell’Orto
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Ceccotti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Mattia Bertini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | - Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Human Pathology “Gaetano Barresi”, University of Messina, 98122 Messina, Italy
| |
Collapse
|
15
|
Xuefei Y, Dongyan L, Tianming L, Hejuan Z, Jianhua F. O-linked N-acetylglucosamine affects mitochondrial homeostasis by regulating Parkin-dependent mitophagy in hyperoxia-injured alveolar type II cells injury. Respir Res 2023; 24:16. [PMID: 36647045 PMCID: PMC9841680 DOI: 10.1186/s12931-022-02287-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The level of linked N-acetylglucosamine (O-GlcNAc) has been proved to be a sensor of cell state, but its relationship with hyperoxia-induced alveolar type 2 epithelial cells injure and bronchopulmonary dysplasia (BPD) has not been clarified. In this study, we evaluated if these effects ultimately led to functional damage in hyperoxia-induced alveolar cells. METHODS We treated RLE-6TN cells at 85% hyperoxia for 0, 24 and 48 h with Thiamet G (TG), an OGA inhibitor; OSMI-1 (OS), an OGT inhibitor; or with UDP-GlcNAc, which is involved in synthesis of O-GlcNAc as a donor. The metabolic rerouting, cell viability and apoptosis resulting from the changes in O-GlcNAc glycosyltransferase levels were evaluated in RLE-6TN cells after hyperoxia exposure. We constructed rat Park2 overexpression and knockdown plasmmids for in vitro verification and Co-immunoprecipitation corroborated the binding of Parkin and O-GlcNAc. Finally, we assessed morphological detection in neonatal BPD rats with TG and OS treatment. RESULTS We found a decrease in O-GlcNAc content and levels of its metabolic enzymes in RLE-6TN cells under hyperoxia. However, the inhibition of OGT function with OSMI-1 ameliorated hyperoxia-induced lung epithelial cell injury, enhanced cell metabolism and viability, reduced apoptosis, and accelerated the cell proliferation. Mitochondrial homeostasis was affected by O-GlcNAc and regulated Parkin. CONCLUSION The results revealed that the decreased O-GlcNAc levels and increased O-GlcNAcylation of Parkin might cause hyperoxia-induced alveolar type II cells injurys.
Collapse
Affiliation(s)
- Yu Xuefei
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Liu Dongyan
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Li Tianming
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Zheng Hejuan
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Fu Jianhua
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| |
Collapse
|
16
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, Mohamed T, Madhukar BV, Uhal BD. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells 2022; 11:cells11081275. [PMID: 35455954 PMCID: PMC9025385 DOI: 10.3390/cells11081275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Premature newborns are at a higher risk for the development of respiratory distress syndrome (RDS), acute lung injury (ALI) associated with lung inflammation, disruption of alveolar structure, impaired alveolar growth, lung fibrosis, impaired lung angiogenesis, and development of bronchopulmonary dysplasia (BPD) with severe long-term developmental adverse effects. The current therapy for BPD is limited to supportive care including high-oxygen therapy and pharmacotherapy. Recognizing more feasible treatment options to improve lung health and reduce complications associated with BPD is essential for improving the overall quality of life of premature infants. There is a reduction in the resident stem cells in lungs of premature infants with BPD, which strongly suggests a critical role of stem cells in BPD pathogenesis; this warrants the exploration of the potential therapeutic use of stem-cell therapy. Stem-cell-based therapies have shown promise for the treatment of many pathological conditions including acute lung injury and BPD. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) including exosomes are promising and effective therapeutic modalities for the treatment of BPD. Treatment with MSCs and EVs may help to reduce lung inflammation, improve pulmonary architecture, attenuate pulmonary fibrosis, and increase the survival rate.
Collapse
Affiliation(s)
- Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
- Correspondence: ; Tel.: +1-517-364-2948
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Sherif Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Natasha Pillai
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Mohammed Abdulmageed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Ranga Prasanth Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
18
|
Calcitonin Gene-Related Peptide Attenuates Hyperoxia-Induced Oxidative Damage in Alveolar Epithelial Type II Cells Through Regulating Viability and Transdifferentiation. Inflammation 2022; 45:863-875. [PMID: 34988756 DOI: 10.1007/s10753-021-01591-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
As a stem cell of alveolar epithelium, the physiological status of alveolar epithelium type II cells (AECII) after hyperoxia exposure is closely related to the occurrence of hyperoxia-induced lung injury and the restoration of normal morphological function of damaged alveolar epithelium. However, the relevant mechanisms involved are not very clear. Therefore, this study aimed to explore the effect of calcitonin gene-related peptide (CGRP) on AECII exposed to hyperoxia and its potential mechanisms. The AECII viability was detected using MTT assay. The malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected by spectrophotometry. The transdifferentiation capacity of AECII was evaluated by flow cytometry. The expression levels of Notch1, Hes, HERP, and AECII markers were detected using immunohistochemistry and/or RT-qPCR or immunofluorescence. ELISA was used for the determination of inflammatory markers. The results showed that CGRP significantly promoted cell viability, and markedly suppressed hyperoxia-induced transdifferentiation of AECII; these biological alterations were coincided with decreased MDA level, increased SOD activity, and activated Notch signaling pathway (upregulated expression levels of Notch1, Hes, and HERP). Notably, the in vitro effects of CGRP on Notch signaling pathway were further investigated in animal model, and the HE staining results showed that CGRP reduced in vivo oxidative injury and inflammation in hyperoxia-treated AECII through the promotion of structural and functional regeneration, accompanied by elevated Notch1 expression and activated Notch signaling cascade as shown by immunohistochemistry and QPCR, respectively. Immunohistochemistry of APQ-5 and SPC indicated that CGRP reversed the transdifferentiation of AECIIs in vivo. Our current results were consistent across both in vitro and in vivo settings, and provide a new direction for the prevention and treatment of bronchopulmonary dysplasia (BPD).
Collapse
|
19
|
Yu X, Liu Z, Pan Y, Cui X, Zhao X, Li D, Xue X, Fu J. Co-expression network analysis for identification of novel biomarkers of bronchopulmonary dysplasia model. Front Pediatr 2022; 10:946747. [PMID: 36440350 PMCID: PMC9696732 DOI: 10.3389/fped.2022.946747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common neonatal chronic lung disease. However, its exact molecular pathogenesis is not understood. We aimed to identify relevant gene modules that may play crucial roles in the occurrence and development of BPD by weighted gene co-expression network analysis (WGCNA). METHODS We used RNA-Seq data of BPD and healthy control rats from our previous studies, wherein data from 30 samples was collected at days 1, 3, 7, 10, and 14. Data for preprocessing analysis included 17,613 differentially expressed genes (DEGs) with false discovery rate <0.05. RESULTS We grouped the highly correlated genes into 13 modules, and constructed a network of mRNA gene associations, including the 150 most associated mRNA genes in each module. Lgals8, Srpra, Prtfdc1, and Thap11 were identified as the key hub genes. Enrichment analyses revealed Golgi vesicle transport, coated vesicle, actin-dependent ATPase activity and endoplasmic reticulum pathways associated with these genes involved in the pathological process of BPD in module. CONCLUSIONS This is a study to analyze data obtained from BPD animal model at different time-points using WGCNA, to elucidate BPD-related susceptibility modules and disease-related genes.
Collapse
Affiliation(s)
- Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuqing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Zuo J, Tong Y, Yang Y, Wang Y, Yue D. Claudin-18 expression under hyperoxia in neonatal lungs of bronchopulmonary dysplasia model rats. Front Pediatr 2022; 10:916716. [PMID: 36299696 PMCID: PMC9589239 DOI: 10.3389/fped.2022.916716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is characterized by impaired alveolar and microvascular development. Claudin-18 is the only known lung-specific tight junction protein affecting the development and transdifferentiation of alveolar epithelium. OBJECTIVE We aimed to explore the changes in the expression of claudin-18, podoplanin, SFTPC, and the canonical WNT pathway, in a rat model of hyperoxia-induced BPD, and to verify the regulatory relationship between claudin-18 and the canonical WNT pathway by cell experiments. METHODS A neonatal rat and cell model of BPD was established by exposing to hyperoxia (85%). Hematoxylin and eosin (HE) staining was used to confirm the establishment of the BPD model. The mRNA levels were assessed using quantitative real-time polymerase chain reaction(qRT-PCR). Protein expression levels were determined using western blotting, immunohistochemical staining, and immunofluorescence. RESULTS As confirmed by HE staining, the neonatal rat model of BPD was successfully established. Compared to that in the control group, claudin-18 and claudin-4 expression decreased in the hyperoxia group. Expression of β-catenin in the WNT signaling pathway decreased, whereas that of p-GSK-3β increased. Expression of the AEC II marker SFTPC initially decreased and then increased, whereas that of the AEC I marker podoplanin increased on day 14 (P < 0.05). Similarly, claudin-18, claudin-4, SFTPC and β-catenin were decreased but podoplanin was increased when AEC line RLE-6TN exposed to 85% hyperoxia. And the expression of SFTPC was increased, the podoplanin was decreased, and the WNT pathway was upregulated when claudin-18 was overexpressed. CONCLUSIONS Claudin-18 downregulation during hyperoxia might affect lung development and maturation, thereby resulting in hyperoxia-induced BPD. Additionally, claudin-18 is associated with the canonical WNT pathway and AECs transdifferentiation.
Collapse
Affiliation(s)
- Jingye Zuo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yirui Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Xi Y, Ju R, Wang Y. Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Treatment of Bronchopulmonary Dysplasia. Front Pediatr 2022; 10:852034. [PMID: 35444971 PMCID: PMC9013803 DOI: 10.3389/fped.2022.852034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in premature infants. However, there is a lack of effective treatment. Mesenchymal stromal cells derived extracellular vesicles (MSC-EVs), as nano- and micron-sized heterogeneous vesicles secreted by MSCs, are the main medium for information exchange between MSCs and injured tissue and organ, playing an important role in repairing tissue and organ injury. EVs include exosomes, microvesicles and so on. They are rich with various proteins, nucleic acids, and lipids. Now, EVs are considered as a new way of cell-to-cell communication. EVs mainly induce regeneration and therapeutic effects in different tissues and organs through the biomolecules they carry. The surface membrane protein or loaded protein and nucleic acid molecules carried by EVs, can activate the signal transduction of target cells and regulate the biological behavior of target cells after binding and cell internalization. MSC-EVs can promote the development of pulmonary vessels and alveoli and reduce pulmonary hypertension (PH) and inflammation and play an important role in the repair of lung injury in BPD. The regeneration potential of MSC-EVs is mainly due to the regulation of cell proliferation, survival, migration, differentiation, angiogenesis, immunoregulation, anti-inflammatory, mitochondrial activity and oxidative stress. As a new type of cell-free therapy, MSC-EVs have non-immunogenic, and are small in size and go deep into most tissues. What's more, it has good biological stability and can be modified and loaded with drugs of interest. Obviously, MSC-EVs have a good application prospect in the treatment of lung injury and BPD. However, there are still many challenges to make MSC-EVs really enter clinical application.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Ai D, Shen J, Sun J, Zhu Z, Gao R, Du Y, Yuan L, Chen C, Zhou J. Mesenchymal stem cell-derived extracellular vesicles suppress hyperoxia-induced transdifferentiation of rat alveolar type 2 epithelial cells. Stem Cells Dev 2021; 31:53-66. [PMID: 34913742 DOI: 10.1089/scd.2021.0256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most important respiratory morbidity of preterm infants with few effective preventive strategies. Administration of mesenchymal stem cells (MSC) was considered effective to prevent BPD via paracrine extracellular vesicles (EVs), while appropriate regimens of MSC-EVs and the mechanism remain unclear. Therefore, we established a hyperoxia-induced rat BPD model, and examined the effect of early intraperitoneal MSC-EVs with different doses on BPD. We found that MSC-EVs ameliorated hyperoxia-induced lung injury in a dose-dependent manner, and high dose MSC-EVs ameliorated alveolar simplification and fibrosis. Also, MSC-EVs showed its beneficial effects on vascular growth and pulmonary hypertension. Primary AT2 cells were observed to transdifferentiate into AT1 cells when exposure to hyperoxia in vitro. Administration of MSC-EVs at the first-day culture significantly delayed the transdifferentiation of AT2 cells induced by hyperoxia. We further found that exposure to hyperoxia led to elevated expression of WNT5a mRNA and protein, a key agent in AT2 transdifferentiation, while MSC-EVs administration decreased it. Further study is warranted that MSC-EVs may delay the transdifferentiation of AT2 cells via WNT5a. These studies provide key preclinical evidence of MSC-EVs therapeutics on BPD and highlight the effect of MSC-EVs on suppressing the transdifferentiation of AT2 cells and its possible mechanism through downregulation of WNT5a.
Collapse
Affiliation(s)
- Danyang Ai
- Children's Hospital of Fudan University, 145601, Neonatology, 399 Wanyuan Road, Minhang District, Shanghai, Shanghai, Shanghai, China, 201102;
| | - Jieru Shen
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Jiali Sun
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Zhicheng Zhu
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Ruiwei Gao
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Yang Du
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Lin Yuan
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Chao Chen
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| | - Jianguo Zhou
- Children's Hospital of Fudan University, 145601, Neonatology, Shanghai, Shanghai, China;
| |
Collapse
|
23
|
Hirani D, Alvira CM, Danopoulos S, Milla C, Donato M, Tian L, Mohr J, Dinger K, Vohlen C, Selle J, Koningsbruggen-Rietschel SV, Barbarino V, Pallasch C, Rose-John S, Odenthal M, Pryhuber GS, Mansouri S, Savai R, Seeger W, Khatri P, Al Alam D, Dötsch J, Alejandre Alcazar MA. Macrophage-derived IL-6 trans-signaling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur Respir J 2021; 59:13993003.02248-2020. [PMID: 34446466 PMCID: PMC8850688 DOI: 10.1183/13993003.02248-2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
Rationale Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. Methods and results First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. Conclusion We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease. M1-like macrophage activation is linked to IL-6/STAT3 axis in clinical and experimental BPD. Inhibition of macrophage-related IL-6 trans-signalling promotes ATII survival and lung growth in experimental BPD as a new therapy for preterm infants.https://bit.ly/3AhF7GP
Collapse
Affiliation(s)
- Dharmesh Hirani
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany
| | - Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michele Donato
- Biomedical Informatics Research-Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany
| | - Katharina Dinger
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany
| | - Christina Vohlen
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany.,Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Koln, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany
| | - Silke V Koningsbruggen-Rietschel
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Koln, Germany
| | - Verena Barbarino
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, University of Cologne, Koln, Germany
| | - Christian Pallasch
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, University of Cologne, Koln, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Margarete Odenthal
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Pathology, Koln, Germany
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Siavash Mansouri
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL)
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL)
| | - Purvesh Khatri
- Biomedical Informatics Research-Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Koln, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Koln, Germany .,University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Koln, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL).,University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
24
|
Wickramasinghe LC, van Wijngaarden P, Tsantikos E, Hibbs ML. The immunological link between neonatal lung and eye disease. Clin Transl Immunology 2021; 10:e1322. [PMID: 34466225 PMCID: PMC8387470 DOI: 10.1002/cti2.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two neonatal diseases of major clinical importance, arising in large part as a consequence of supplemental oxygen therapy used to promote the survival of preterm infants. The presence of coincident inflammation in the lungs and eyes of neonates receiving oxygen therapy indicates that a dysregulated immune response serves as a potential common pathogenic factor for both diseases. This review examines the current state of knowledge of immunological dysregulation in BPD and ROP, identifying similarities in the cellular subsets and inflammatory cytokines that are found in the alveoli and retina during the active phase of these diseases, indicating possible mechanistic overlap. In addition, we highlight gaps in the understanding of whether these responses emerge independently in the lung and retina as a consequence of oxygen exposure or arise because of inflammatory spill-over from the lung. As BPD and ROP are anatomically distinct, they are often considered discreet disease entities and are therefore treated separately. We propose that an improved understanding of the relationship between BPD and ROP is key to the identification of novel therapeutic targets to treat or prevent both conditions simultaneously.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Peter van Wijngaarden
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVICAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVICAustralia
| | - Evelyn Tsantikos
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Margaret L Hibbs
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| |
Collapse
|
25
|
Qing C, Xinyi Z, Xuefei Y, Xindong X, Jianhua F. The Specific Connexin 43-Inhibiting Peptide Gap26 Improved Alveolar Development of Neonatal Rats With Hyperoxia Exposure. Front Pharmacol 2021; 12:587267. [PMID: 34290603 PMCID: PMC8287833 DOI: 10.3389/fphar.2021.587267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common devastating pulmonary complication in preterm infants. Alveolar maldevelopment is the crucial pathological change of BPD highly associated with oxidative stress–mediated excessive apoptosis. Cellular injury can be propagated and amplified by gap junction (GJ)–mediated intercellular communication. Connexin 43 (Cx43) is the most ubiquitous and critical GJ protein. Gap26 is a specific Cx43 mimic peptide, playing as a Cx43-GJ inhibitor. We hypothesized that Cx43-GJ was involved in alveolar maldevelopment of BPD via amplifying oxidative stress signaling and inducing excessive apoptosis. Neonatal Sprague Dawley rats were kept in either normoxia (21% O2) or hyperoxia (85% O2) continuously from postnatal day (PN) 1 to 14 in the presence or absence of Gap26. Moreover, RLE-6TN cells (type II alveolar epithelial cells of rats) were cultured in vitro under normoxia (21% O2) or hyperoxia (85% O2). RLE-6TN cells were treated by N-acetyl cysteine (NAC) (a kind of reactive oxygen species (ROS) scavenger) or Gap26. Morphological properties of lung tissue are detected. Markers associated with Cx43 expression, ROS production, the activity of the ASK1-JNK/p38 signaling pathway, and apoptotic level are detected in vivo and in vitro, respectively. In vitro, the ability of GJ-mediated intercellular communication was examined by dye-coupling assay. In vitro, our results demonstrated ROS increased Cx43 expression and GJ-mediated intercellular communication and Gap26 treatment decreased ROS production, inhibited ASK1-JNK/p38 signaling, and decreased apoptosis. In vivo, we found that hyperoxia exposure resulted in increased ROS production and Cx43 expression, activated ASK1-JNK/p38 signaling, and induced excessive apoptosis. However, Gap26 treatment reversed these changes, thus improving alveolar development in neonatal rats with hyperoxia exposure. In summary, oxidative stress increased Cx43 expression and Cx43-GJ–mediated intercellular communication. And Cx43-GJ–mediated intercellular communication amplified oxidative stress signaling, inducing excessive apoptosis via the ASK1-JNK/p38 signaling pathway. The specific connexin 43–inhibiting peptide Gap26 was a novel therapeutic strategy to improve the alveolar development of BPD.
Collapse
Affiliation(s)
- Cai Qing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao Xinyi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Xuefei
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Xindong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fu Jianhua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, Tan GC, Wong YP. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:615508. [PMID: 33791258 PMCID: PMC8006350 DOI: 10.3389/fped.2021.615508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yee Khong
- Department of Pathology, SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Wickramasinghe LC, van Wijngaarden P, Johnson C, Tsantikos E, Hibbs ML. An Experimental Model of Bronchopulmonary Dysplasia Features Long-Term Retinal and Pulmonary Defects but Not Sustained Lung Inflammation. Front Pediatr 2021; 9:689699. [PMID: 34527643 PMCID: PMC8435611 DOI: 10.3389/fped.2021.689699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe lung disease that affects preterm infants receiving oxygen therapy. No standardized, clinically-relevant BPD model exists, hampering efforts to understand and treat this disease. This study aimed to evaluate and confirm a candidate model of acute and chronic BPD, based on exposure of neonatal mice to a high oxygen environment during key lung developmental stages affected in preterm infants with BPD. Neonatal C57BL/6 mouse pups were exposed to 75% oxygen from postnatal day (PN)-1 for 5, 8, or 14 days, and their lungs were examined at PN14 and PN40. While all mice showed some degree of lung damage, mice exposed to hyperoxia for 8 or 14 days exhibited the greatest septal wall thickening and airspace enlargement. Furthermore, when assessed at PN40, mice exposed for 8 or 14 days to supplemental oxygen exhibited augmented septal wall thickness and emphysema, with the severity increased with the longer exposure, which translated into a decline in respiratory function at PN80 in the 14-day model. In addition to this, mice exposed to hyperoxia for 8 days showed significant expansion of alveolar epithelial type II cells as well as the greatest fibrosis when assessed at PN40 suggesting a healing response, which was not seen in mice exposed to high oxygen for a longer period. While evidence of lung inflammation was apparent at PN14, chronic inflammation was absent from all three models. Finally, exposure to high oxygen for 14 days also induced concurrent outer retinal degeneration. This study shows that early postnatal exposure to high oxygen generates hallmark acute and chronic pathologies in mice that highlights its use as a translational model of BPD.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Peter van Wijngaarden
- Department of Surgery - Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Chad Johnson
- Monash Micro Imaging, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Tong X, Li M, Liu N, Huang W, Xue X, Fu J. Hyperoxia induces endoplasmic reticulum stress‑associated apoptosis via the IRE1α pathway in rats with bronchopulmonary dysplasia. Mol Med Rep 2020; 23:33. [PMID: 33179109 PMCID: PMC7684859 DOI: 10.3892/mmr.2020.11671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in premature infants, and alveolar dysplasia and pulmonary vascular development disorders are the predominant pathological features. Apoptosis of lung epithelial cells is a key factor in the pathological process of alveolar developmental arrest. Endoplasmic reticulum stress (ERS)-associated apoptosis is a noncanonical apoptotic pathway involved in the development of several pulmonary diseases. Previous studies have demonstrated that protein kinase RNA-like endoplasmic reticulum kinase, inositol-requiring enzyme 1α (IRE1α) and activating transcription factor 6 can initiate the apoptosis signaling pathway mediated by ERS and induce apoptosis of injured cells. Among them, the IRE1α pathway is the most conservative pathway in the unfolded protein response, which serves an important role in a number of pathological environments, to the extent of determining cell fate; however, it is rarely reported in BPD. Based on the establishment of a rat BPD model, the present study verified the activation of ERS in BPD and further confirmed that prolonged ERS inhibited the protective pathway, IRE1α/X-box binding proteins, and activated the proapoptotic pathway, IRE1α/c-Jun N-terminal kinase, to induce the apoptosis of lung epitheliums.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Mengyun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
29
|
Yu X, Sun Y, Cai Q, Zhao X, Liu Z, Xue X, Fu J. Hyperoxia exposure arrests alveolarization in neonatal rats via PTEN‑induced putative kinase 1‑Parkin and Nip3‑like protein X‑mediated mitophagy disorders. Int J Mol Med 2020; 46:2126-2136. [PMID: 33125104 PMCID: PMC7595656 DOI: 10.3892/ijmm.2020.4766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), also known as chronic lung disease, is one of the most common respiratory diseases in premature new‑born humans. Mitochondria are not only the main source of reactive oxygen species but are also critical for the maintenance of homeostasis and a wide range of biological activities, such as producing energy, buffering cytosolic calcium and regulating signal transduction. However, as a critical quality control method for mitochondria, little is known about the role of mitophagy in BPD. The present study assessed mitochondrial function in hyperoxia‑exposed alveolar type II (AT‑II) cells of rats during lung development. New‑born Sprague‑Dawley rats were divided into hyperoxia (85% oxygen) and control (21% oxygen) groups. Histopathological and morphological properties of the lung tissues were assessed at postnatal days 1, 3, 7 and 14. Ultrastructural mitochondrial alteration was observed using transmission electron microscopy and the expression of the mitophagy proteins putative kinase (PINK)1, Parkin and Nip3‑like protein X (NIX) in the lung tissues was evaluated using western blotting. Immunofluorescence staining was used to determine the co‑localisation of PINK1 and Parkin. Real‑time analyses of extracellular acidification rate and oxygen consumption rate were performed using primary AT‑II cells to evaluate metabolic changes. Mitochondria in hyperoxia‑exposed rat AT‑II cells began to show abnormal morphological and physiological features. These changes were accompanied by decreased mitochondrial membrane potential and increased expression levels of PINK1‑Parkin and NIX. Increased binding between a mitochondria marker (cytochrome C oxidase subunit IV isoform I) and an autophagy marker (microtubule‑associated protein‑1 light chain‑3B) was observed in primary AT‑II cells and was accompanied by decreased mitochondrial metabolic capacity in model rats. Thus, mitophagy mediated by PINK1, Parkin and NIX in AT‑II cells occurred in hyperoxia‑exposed new‑born rats. These findings suggested that the accumulation of dysfunctional mitochondria may be a key factor in the pathogenesis of BPD and result in attenuated alveolar development.
Collapse
Affiliation(s)
- Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanli Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qing Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
30
|
Zhao X, Shi Y, Zhang D, Tong X, Sun Y, Xue X, Fu J. Autophagy inducer activates Nrf2-ARE pathway to attenuate aberrant alveolarization in neonatal rats with bronchopulmonary dysplasia. Life Sci 2020; 252:117662. [DOI: 10.1016/j.lfs.2020.117662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/28/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023]
|
31
|
Moreira AG, Siddiqui SK, Macias R, Johnson-Pais TL, Wilson D, Gelfond JAL, Vasquez MM, Seidner SR, Mustafa SB. Oxygen and mechanical ventilation impede the functional properties of resident lung mesenchymal stromal cells. PLoS One 2020; 15:e0229521. [PMID: 32142526 PMCID: PMC7064315 DOI: 10.1371/journal.pone.0229521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Resident/endogenous mesenchymal stromal cells function to promote the normal development, growth, and repair of tissues. Following premature birth, the effects of routine neonatal care (e.g. oxygen support and mechanical ventilation) on the biological properties of lung endogenous mesenchymal stromal cells is (L-MSCs) is poorly understood. New Zealand white preterm rabbits were randomized into the following groups: (i) sacrificed at birth (Fetal), (ii) spontaneously breathing with 50% O2 for 4 hours (SB), or (iii) mechanical ventilation with 50% O2 for 4h (MV). At time of necropsy, L-MSCs were isolated, characterized, and compared. L-MSCs isolated from the MV group had decreased differentiation capacity, ability to form stem cell colonies, and expressed less vascular endothelial growth factor mRNA. Compared to Fetal L-MSCs, 98 and 458 genes were differentially expressed in the L-MSCs derived from the SB and MV groups, respectively. Gene ontology analysis revealed these genes were involved in key regulatory processes including cell cycle, cell division, and angiogenesis. Furthermore, the L-MSCs from the SB and MV groups had smaller mitochondria, nuclear changes, and distended endoplasmic reticula. Short-term hyperoxia/mechanical ventilation after birth alters the biological properties of L-MSCs and stimulates genomic changes that may impact their reparative potential.
Collapse
Affiliation(s)
- Alvaro G. Moreira
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sartaj K. Siddiqui
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Rolando Macias
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Desiree Wilson
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Jonathon A. L. Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Margarita M. Vasquez
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Steven R. Seidner
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shamimunisa B. Mustafa
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
32
|
Zuniga-Hertz JP, Patel HH. The Evolution of Cholesterol-Rich Membrane in Oxygen Adaption: The Respiratory System as a Model. Front Physiol 2019; 10:1340. [PMID: 31736773 PMCID: PMC6828933 DOI: 10.3389/fphys.2019.01340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
The increase in atmospheric oxygen levels imposed significant environmental pressure on primitive organisms concerning intracellular oxygen concentration management. Evidence suggests the rise of cholesterol, a key molecule for cellular membrane organization, as a cellular strategy to restrain free oxygen diffusion under the new environmental conditions. During evolution and the increase in organismal complexity, cholesterol played a pivotal role in the establishment of novel and more complex functions associated with lipid membranes. Of these, caveolae, cholesterol-rich membrane domains, are signaling hubs that regulate important in situ functions. Evolution resulted in complex respiratory systems and molecular response mechanisms that ensure responses to critical events such as hypoxia facilitated oxygen diffusion and transport in complex organisms. Caveolae have been structurally and functionally associated with respiratory systems and oxygen diffusion control through their relationship with molecular response systems like hypoxia-inducible factors (HIF), and particularly as a membrane-localized oxygen sensor, controlling oxygen diffusion balanced with cellular physiological requirements. This review will focus on membrane adaptations that contribute to regulating oxygen in living systems.
Collapse
Affiliation(s)
- Juan Pablo Zuniga-Hertz
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| | - Hemal H Patel
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
33
|
Effects of C/EBPα overexpression on alveolar epithelial type II cell proliferation, apoptosis and surfactant protein-C expression after exposure to hyperoxia. BMC Pulm Med 2019; 19:142. [PMID: 31387550 PMCID: PMC6683353 DOI: 10.1186/s12890-019-0911-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 07/30/2019] [Indexed: 02/05/2023] Open
Abstract
Background This study aims to investigate the effects of CCAAT/enhancer binding protein alpha (C/EBPα) overexpression on cell proliferation, apoptosis and surfactant protein-C(SP-C) in alveolar epithelial type II (AEC II) cells after exposure to hyperoxia. Methods pcDNA3.1(+)-C/EBPα plasmid or air-empty vector were transfected into AEC II cells with or without hyperoxia. AEC II cells were divided into air group, air+pcDNA3.1-C/EBPα group, air-empty vector group, hyperoxia group, hyperoxia+pcDNA3.1-C/EBPα group, and hyperoxia-empty vector group. Cell proliferation was analyzed using Cell Counting Kit-8. The mRNA level and protein expression were measured using PCR and Western blot techniques, respectively. The cell cycle and apoptosis were analyzed using flow cytometry. Results After 48 h of post-transfection, significantly higher protein expression of C/EBPα was observed in the C/EBPα transfection group with or without hyperoxia compared to the others (P < 0.05). Compared to the air group, hyperoxia decreased cell proliferation, increased apoptosis, decreased SP-C expression, decreased percentage of cells in G1 phase, and increased percentage of cells in the S and G2 phases (P < 0.05); however, reversed by C/EBPα transfection (P < 0.05). No significant changes were observed in cell proliferation, SP-C expression, and apoptosis rates in the C/EBPα transfection group as compared to the controls air-empty vector group. Conclusion C/EBPα overexpression significantly upregulates the expression of SP-C, promotes cell proliferation, and inhibits apoptosis in AEC II cells after exposure to hyperoxia. Hence, this data suggests that C/EBPα overexpression may reverse the damage and exert a protective role in hyperoxia-induced lung injury. Electronic supplementary material The online version of this article (10.1186/s12890-019-0911-x) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
35
|
Wang J, Dong W. Oxidative stress and bronchopulmonary dysplasia. Gene 2018; 678:177-183. [PMID: 30098433 DOI: 10.1016/j.gene.2018.08.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
Abstract
With the progress of modern medicine, oxygen therapy has become a crucial measure for the treatment of premature infants. As an environmental stimulus, in the normal development of lungs, oxygen plays a very important regulatory role. However, the problem is that long-term exposure to hyperoxia can interfere with the development of lungs, leading to irreversible developmental abnormalities. Now, the incidence of bronchopulmonary dysplasia (BPD) is increasing year by year. The existing related research shows that although BPD is a multi-factor triggered disease, its main risk factors are the premature exposure to hyperoxia and the role of reactive oxygen species (ROS). As for premature infants, especially very premature babies and those with very low birth weight, prolonged exposure to high oxygen can affect and alter the normal developmental trajectories of lung tissue and vascular beds, triggering developmental disorders, such as BPD. In the relevant studies about human BPD, a large number of them support that ROS is associated with impaired lung development. Neonates, due to the damage in the development of alveolar, are specific to hyperoxia-induced inflammatory damage. This review while focusing on the role of oxidative stress in the pathogenesis of BPD, suggests that antioxidant measures may be effective to guard against BPD of preterm infants.
Collapse
Affiliation(s)
- Junyi Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, Sichuan 646000, People's Republic of China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, Sichuan 646000, People's Republic of China.
| |
Collapse
|
36
|
Li M, Pan B, Shi Y, Fu J, Xue X. Increased expression of CHOP and LC3B in newborn rats with bronchopulmonary dysplasia. Int J Mol Med 2018; 42:1653-1665. [PMID: 29901175 DOI: 10.3892/ijmm.2018.3724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/09/2018] [Indexed: 11/06/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) seriously affects the health and prognosis of children, but the efficacy of treatments is poor. The present study aimed to examine the effects of C/EBP homologous protein (CHOP), activating transcription factor 4 (ATF4) and microtubule‑associated protein light chain 3β (LC3B), and the interaction between CHOP and LC3B, in newborn rats with BPD. At 1, 7, 14 and 21 days, the rats in the model [fraction of inspired oxygen (FiO2)=80‑85%] and control groups (FiO2=21%) were randomly sacrificed, and lung samples were collected. Alveolar development was evaluated according to the radial alveolar count (RAC) and alveolar septum thickness. Ultrastructural changes were observed by transmission electron microscopy (TEM), the expression levels of CHOP, ATF4 and LC3B were determined by immunohistochemistry, and western blot and reverse transcription‑quantitative polymerase chain reaction analyses. The co‑localization of CHOP and LC3B in lung tissues was determined by immunofluorescence. The results showed that, compared with the control group, alveolarization arrest was present in the model group. The TEM observations revealed that, at 14 days, type II alveolar epithelial cell (AECII) lamellar bodies were damaged, with an apparent dilation of the endoplasmic reticulum (ER) and autophagy in cells within the model group. Between days 7 and 14, the protein levels of ATF4, CHOP and LC3B were significantly increased in the model group. The mRNA levels of CHOP and LC3B were lower at days 7‑21. CHOP and LC3B were co‑localized in the cells of the lung tissues at day 14 in the model group. Pearson's correlation analysis showed that the protein levels of CHOP and LC3B‑II were positively correlated in the model groups. As in previous studies, the present study demonstrated that BPD damaged the AECII cells, which exhibited detached and sparse microvilli and the vacuolization of lamellar bodies. In addition, it was found that the ER was dilated, with autophagosomes containing ER and other organelles in AECII cells; the expression levels of CHOP and LC3B‑II were upregulated. CHOP and LC3B‑II may have joint involvement in the occurrence and development of BPD.
Collapse
Affiliation(s)
- Mengyun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bingting Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
37
|
Hou A, Fu J, Shi Y, Qiao L, Li J, Xing Y, Xue X. Decreased ZONAB expression promotes excessive transdifferentiation of alveolar epithelial cells in hyperoxia-induced bronchopulmonary dysplasia. Int J Mol Med 2018; 41:2339-2349. [PMID: 29393348 DOI: 10.3892/ijmm.2018.3413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
Previous studies by our group have confirmed excessive transdifferentiation of alveolar epithelial cells (AECs) in a hyperoxia‑induced bronchopulmonary dysplasia (BPD) model, but the underlying mechanism have remained elusive. The transcription factor zonula occludens 1‑associated nucleic acid binding protein (ZONAB) has the biological functions of inhibition of epithelial cell differentiation and promotion of epithelial cell proliferation. The aim of the present study was to explore the regulatory effect of ZONAB on the transdifferentiation and proliferation of AECs in a model of hyperoxia‑induced lung injury. Newborn Wistar rats were randomly allocated to a model group (inhalation of 85% O2) or a control group (inhalation of normal air), and ZONAB expression in lung tissues was detected at different time‑points. Type II AECs (AEC II) isolated from normal newborn rats were primarily cultured under an atmosphere of 85 or 21% O2, and ZONAB expression in the cells was examined. The primary cells were further transfected with ZONAB plasmid or small interfering (si)RNA and then exposed to hyperoxia, and the indicators for transdifferentiation and proliferation were measured. The present study indicated that ZONAB expression in AEC II of the BPD rats was significantly decreased from 7 days of exposure to hyperoxia onwards. In the AEC II isolated from normal neonatal rats, ZONAB expression in the model group was also reduced compared with that in the control group. After transfection with the plasmid pCMV6‑ZONAB, the expression of aquaporin 5 (type I alveolar epithelial cell marker) decreased and the expression of surfactant protein C (AEC II marker), proliferating‑cell nuclear antigen and cyclin D1 increased, which was opposite to the effects of ZONAB siRNA. Transfection with pCMV6‑ZONAB also alleviated excessive transdifferentiation and inhibited proliferation of AEC II induced by hyperoxia treatment. These results suggest that ZONAB expression in AEC II decreases under hyperoxia conditions, which promotes transdifferentiation and inhibits proliferation of AECs. This may, at least in part, be the underlying mechanism of lung epithelial injury in the hyperoxia-induced BPD model.
Collapse
Affiliation(s)
- Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lin Qiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yujiao Xing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
38
|
Nakanishi H, Morikawa S, Kitahara S, Yoshii A, Uchiyama A, Kusuda S, Ezaki T. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice. Med Mol Morphol 2018; 51:166-175. [DOI: 10.1007/s00795-018-0182-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
39
|
Engler AJ, Le AV, Baevova P, Niklason LE. Controlled gas exchange in whole lung bioreactors. J Tissue Eng Regen Med 2018; 12:e119-e129. [PMID: 28083925 PMCID: PMC5975638 DOI: 10.1002/term.2408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023]
Abstract
In cellular, tissue-level or whole organ bioreactors, the level of dissolved oxygen is one of the most important factors requiring control. Hypoxic environments may lead to cellular apoptosis, while hyperoxic environments may lead to cellular damage or dedifferentiation, both resulting in loss of overall tissue function. This manuscript describes the creation, characterization and validation of a bioreactor system that can control oxygen delivery based on real-time metabolic demand of cultured whole lung tissue. A mathematical model describing and predicting gas exchange within the tunable bioreactor system is developed. In addition, the inherent gas exchange properties of the bioreactor and the inherent oxygen consumption rates of native rat lungs are determined, thereby providing a quantitative relationship between system parameters and levels of dissolved oxygen. Finally, the mathematical model is validated during whole lung culture under a range of system parameters. The system presented here provides a quantitative relationship between the concentration of dissolved oxygen, tissue oxygen consumption rates, and controllable system parameters that introduce gasses into the bioreactor. This relationship not only enables the maintenance of constant levels of dissolved oxygen throughout a culture period during which cells are replicating, but also provides noninvasive and real-time estimation of the metabolic and proliferative states of native or engineered lung tissue simply through dissolved oxygen measurements. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexander J. Engler
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| | - Andrew V. Le
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Bai YX, Fang F, Jiang JL, Xu F. Extrinsic Calcitonin Gene-Related Peptide Inhibits Hyperoxia-Induced Alveolar Epithelial Type II Cells Apoptosis, Oxidative Stress, and Reactive Oxygen Species (ROS) Production by Enhancing Notch 1 and Homocysteine-Induced Endoplasmic Reticulum Protein (HERP) Expression. Med Sci Monit 2017; 23:5774-5782. [PMID: 29206808 PMCID: PMC5728081 DOI: 10.12659/msm.904549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Lung alveolar epithelial type II cells (AEC II) are the most important stem cells in lung tissues, which are critical for wound repair of bronchopulmonary dysplasia (BPD). This study investigated the effects of calcitonin gene-related peptide (CGRP) on AEC II cells exposed to hyperoxia. Material/Methods Neonatal rat AEC II cells were isolated and identified by detecting surfactant protein C (SP-C). Three small interfering RNAs targeting Notch 1 were synthesized and transfected into AEC II. A hyperoxia-exposed AEC II cell injury model was established and was divided into 8 groups. MDA levels and SOD activity were examined using lipid peroxidation assay kits. Apoptosis and reactive oxygen species (ROS) production were evaluated using flow cytometry. Notch 1 mRNA expression was examined using RT-PCR. Homocysteine-induced endoplasmic reticulum protein (HERP) was examined using Western blot analysis. Results CGRP treatment significantly enhanced MDA levels and decreased SOD activity compared to hyperoxia-treated AEC II cells (P<0.05). CGRP treatment significantly inhibited hyperoxia-induced AEC II cell apoptosis, and significantly suppressed hyperoxia-induced ROS production compared to hyperoxia-treated AEC II cells (P<0.05) either undergoing γ secretase inhibitor or Notch RNA interference. CGRP significantly triggered Notch 1 mRNA expression and significantly enhanced HERP expression compared to hyperoxia-treated AEC II cells (P<0.05) either undergoing γ secretase inhibitor or Notch RNA interference. Conclusions In AEC II cells, extrinsic peptide CGRP suppressed hyperoxia-induced apoptosis, oxidative stress, and ROS production, which may be triggered by Notch 1 and HERP signaling pathway.
Collapse
Affiliation(s)
- Yu-Xin Bai
- Department of Critical Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China (mainland).,Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Fang Fang
- Department of Critical Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China (mainland).,Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Jia-Ling Jiang
- Department of Pediatrics, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Feng Xu
- Department of Critical Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China (mainland).,Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| |
Collapse
|
41
|
Park S, Kim S, Kim MJ, Hong Y, Lee AY, Lee H, Tran Q, Kim M, Cho H, Park J, Kim KP, Park J, Cho MH. GOLGA2 loss causes fibrosis with autophagy in the mouse lung and liver. Biochem Biophys Res Commun 2017; 495:594-600. [PMID: 29128360 DOI: 10.1016/j.bbrc.2017.11.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/20/2023]
Abstract
Autophagy is a biological recycling process via the self-digestion of organelles, proteins, and lipids for energy-consuming differentiation and homeostasis. The Golgi serves as a donor of the double-membraned phagophore for autophagosome assembly. In addition, recent studies have demonstrated that pulmonary and hepatic fibrosis is accompanied by autophagy. However, the relationships among Golgi function, autophagy, and fibrosis are unclear. Here, we show that the deletion of GOLGA2, encoding a cis-Golgi protein, induces autophagy with Golgi disruption. The induction of autophagy leads to fibrosis along with the reduction of subcellular lipid storage (lipid droplets and lamellar bodies) by autophagy in the lung and liver. GOLGA2 knockout mice clearly demonstrated fibrosis features such as autophagy-activated cells, densely packed hepatocytes, increase of alveolar macrophages, and decrease of alveolar surfactant lipids (dipalmitoylphosphatidylcholine). Therefore, we confirmed the associations among Golgi function, fibrosis, and autophagy. Moreover, GOLGA2 knockout mice may be a potentially valuable animal model for studying autophagy-induced fibrosis.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sanghwa Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Science, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Youngeun Hong
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ah Young Lee
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyeonjeong Cho
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Myung-Haing Cho
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
42
|
Pan B, Xue X, Zhang D, Li M, Fu J. SOX4 arrests lung development in rats with hyperoxia‑induced bronchopulmonary dysplasia by controlling EZH2 expression. Int J Mol Med 2017; 40:1691-1698. [PMID: 29039454 PMCID: PMC5716405 DOI: 10.3892/ijmm.2017.3171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is currently the most common severe complication in premature infants and is characterized by the arrest of alveolar and vascular growth. Alveolar type II cells play an important role in the pathological foundation of BPD. An association of BPD with epithelial‑to‑mesenchymal transition (EMT) in type II cells exposed to hyperoxia was previously identified. SOX4, a transcription factor that is indispensable to embryogenesis, including lung development, participates in regulating EMT and cell survival, affecting tumorigenesis. The aim of the present study was to investigate the involvement of SOX4 in the occurrence of BPD, which, to the best of our knowledge, has not been previously determined. For this purpose, newborn rats were randomly divided into two treatment groups: The model group was exposed to hyperoxia (80-85% O2), while the control group was kept under normoxic conditions (21% O2). Lung tissues were collected on postnatal days 1, 3, 7, 14 and 21 and morphological changes in the lungs were examined by hematoxylin and eosin staining. The location of SOX4 in type II cells was detected by double immunofluorescence. The expression of SOX4 and enhancer of zeste homolog 2 (EZH2) in type II cells and lung tissues were detected by immunochemistry, western blotting and quantitative polymerase chain reaction analysis. The results demonstrated that, compared with the control group, the radial alveolar count decreased rapidly in the model group, accompanied by increased mean alveolar diameter and alveolar septal thickness. SOX4 and EZH2 were highly expressed in type II cells exposed to hyperoxia. However, in total lung tissues, SOX4 and EZH2 expression was profoundly decreased in the early stages and increased in the late stages following exposure to hyperoxia. The expression of the EZH2 protein was positively correlated with that of the SOX4 protein. In conclusion, at the alveolar stage, which is a critical period after birth for lung development, hyperoxia induced dysregulation of SOX4 and EZH2 in rat lungs, indicating that SOX4 may contribute to the disruption of lung development in BPD by regulating EZH2 expression.
Collapse
Affiliation(s)
- Bingting Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Mengyun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
43
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
44
|
Zhang L, Zhao S, Yuan L, Wu H, Jiang H, Luo G. Hyperoxia-mediated LC3B activation contributes to the impaired transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs). Clin Exp Pharmacol Physiol 2017; 43:834-43. [PMID: 27187184 DOI: 10.1111/1440-1681.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022]
Abstract
Life-saving mechanical ventilation can also cause lung injury through the overproduction of reactive oxygen species (ROS), leading to bronchopulmonary dysplasia (BPD)-like symptoms in preterm infants. It is reported that the autophagic protein microtubule-associated protein-1 light chain (LC)-3B can confer protection against hyperoxia-induced DNA damage in lung alveolar epithelium. However, its role in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs) is unclear and requires further investigation. In this study, newborn Sprague-Dawley rats were exposed to 90% oxygen for up to 14 days to mimic BPD in human infants, with neonatal pups exposed to room air (21% oxygen) as controls. Primary rat AECIIs were cultured under hyperoxic conditions for up to 24 hours to further investigate the underlying mechanisms. This study found that hyperoxia promoted a significant and time-dependent increase of AECII marker surfactant protein (SP)-C in the lung. The increase of AECI marker T1α was repressed by hyperoxia during lung development. These results indicated an impaired AECII transdifferentiation. Pulmonary ROS concentration and expression of autophagic protein LC-3B were increased gradually in response to hyperoxia exposure. Furthermore, AECIIs produced more ROS when cultured under hyperoxic conditions in vitro. Both the LC3B expression and the conversion from LC3BI to LC3BII were enhanced in hyperoxic AECs. Interestingly, inhibition of LC3B either by ROS inhibitor N-acetyl-l-cysteine (NAC) or adenovirus-mediated LC3B shRNA could partly restore AECII transdifferentiation under hyperoxia condition. In summary, the current study reveals a novel role of activated LC3B induced by hyperoxia in AECII transdifferentiation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Department of Paediatrics, Shenyang Fourth People's Hospital, Shenyang, China
| | - Lijie Yuan
- Department of Biochemistry and Molecular Biology, Harbin Medical University (Daqing Campus), Daqing, China
| | - Hongmin Wu
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Jiang
- Department of Paediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Luo
- Department of Paediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Yao L, Shi Y, Zhao X, Hou A, Xing Y, Fu J, Xue X. Vitamin D attenuates hyperoxia-induced lung injury through downregulation of Toll-like receptor 4. Int J Mol Med 2017; 39:1403-1408. [PMID: 28440468 PMCID: PMC5428952 DOI: 10.3892/ijmm.2017.2961] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/30/2017] [Indexed: 01/11/2023] Open
Abstract
With considerable morbidity and mortality, bron-chopulmonary dysplasia (BPD) is a focus of attention in neonatology. Hyperoxia-induced lung injury has long been used as a model of BPD. Among all the signaling pathways involved, Toll-like receptor 4 (TLR4) has been demonstrated to play an important role, and is known to be regulated by vitamin D. This study aimed at elucidating the effect of vitamin D on hyperoxia-induced lung injury and the role of TLR4 in the process. Vitamin D was administered to hyperoxia-treated neonatal rats to investigate changes in the morphology of lungs and expression of pro-inflammatory cytokines, apoptotic proteins and TLR4. Vitamin D attenuated hyperoxia-induced lung injury by protecting the integrity of the lung structure, decreasing extracellular matrix deposition and inhibiting inflammation. The upregulation of TLR4 by hyperoxia was ameliorated by vitamin D and apoptosis was reduced. Vitamin D administration antagonized the activation of TLR4 and therefore alleviated inflammation, reduced apoptosis and preserved lung structure.
Collapse
Affiliation(s)
- Li Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yujiao Xing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
46
|
Ju HM, Lu HY, Zhang YY, Wang QX, Zhang Q. [Association between endoplasmic reticulum stress pathway mediated by inositol-requiring kinase 1 and AECII apoptosis in preterm rats induced by hyperoxia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:867-873. [PMID: 27655546 PMCID: PMC7389971 DOI: 10.7499/j.issn.1008-8830.2016.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the association between endoplasmic reticulum stress (ERS) pathway mediated by inositol-requiring kinase 1 (IRE1) and the apoptosis of type II alveolar epithelial cells (AECIIs) exposed to hyperoxia. METHODS The primarily cultured AECIIs from preterm rats were devided into an air group and a hyperoxia group. The model of hyperoxia-induced cell injury was established. The cells were harvested at 24, 48, and 72 hours after hyperoxia exposure. An inverted phase-contrast microscope was used to observe morphological changes of the cells. Annexin V/PI double staining flow cytometry was performed to measure cell apoptosis. RT-PCR and Western blot were used to measure the mRNA and protein expression of glucose-regulated protein 78 (GRP78), IRE1, X-box binding protein-1 (XBP-1), and C/EBP homologous protein (CHOP). An immunofluorescence assay was performed to measure the expression of CHOP. RESULTS Over the time of hyperoxia exposure, the hyperoxia group showed irregular spreading and vacuolization of AECIIs. Compared with the air group, the hyperoxia group showed a significantly increased apoptosis rate of AECIIs and significantly increased mRNA and protein expression of GRP78, IRE1, XBP1, and CHOP compared at all time points (P<0.05). The hyperoxia group had significantly greater fluorescence intensity of CHOP than the air group at all time points. In the hyperoxia group, the protein expression of CHOP was positively correlated with the apoptosis rate of AECIIs and the protein expression of IRE1 and XBP1 (r=0.97, 0.85, and 0.88 respectively; P<0.05). CONCLUSIONS Hyperoxia induces apoptosis of AECIIs possibly through activating the IRE1-XBP1-CHOP pathway.
Collapse
Affiliation(s)
- Hui-Min Ju
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | | | | | | | | |
Collapse
|
47
|
Xu W, Xu B, Zhao Y, Yang N, Liu C, Wen G, Zhang B. Wnt5a reverses the inhibitory effect of hyperoxia on transdifferentiation of alveolar epithelial type II cells to type I cells. J Physiol Biochem 2015; 71:823-38. [PMID: 26547443 DOI: 10.1007/s13105-015-0446-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022]
Abstract
Transdifferentiation of alveolar epithelial type II cells (AECIIs) to type I cells (AECIs) is critical for reestablishment and maintenance of an intact alveolar epithelium. However, this process is frequently destroyed by hyperoxia treatment, which is commonly used in respiratory distress syndrome therapy in preterm infants. Wnt5a is considered to participate in this physiopathologic process, but the clear mechanisms still need to be further investigated. In this study, preterm rats and primary rat AECIIs were exposed to hyperoxia. Hematoxylin and eosin staining was used to examine the histological changes of the lungs. Real-time PCR and western blotting were used to examine Wnt5a expression and biomarkers of AECII and AECI expression. Immunohistochemistry and immunofluorescence were also used to determine the expression and location of selected biomarkers. Furthermore, AECIIs transfected with Wnt5a gene and exogenous Wnt5a were used to examine whether Wnt5a contributes to the transdifferentiation of AECIIs to AECIs. Results showed that hyperoxia inhibited the transdifferentiation of AECIIs to AECIs in vitro, which is represented by biomarkers of two types of cell that remained unchanged. In addition, Wnt5a protein expression was found to be decreased after hyperoxia exposure in vitro and in vivo. Furthermore, both the overexpression of Wnt5a and exogenous Wnt5a addition blocked the inhibitory effect of hyperoxia in vitro. In conclusion, our results suggest that the transdifferentiation of AECIIs to AECIs is impaired by hyperoxia, and this process may be associated with Wnt5a downregulation. Targeting Wnt5a may have the potential for the therapy of lung injury in preterm infants induced by hyperoxia.
Collapse
Affiliation(s)
- Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Bo Xu
- Department of Ophthalmology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Ying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Chunfeng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Guangfu Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Binglun Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| |
Collapse
|
48
|
Liebler JM, Marconett CN, Juul N, Wang H, Liu Y, Flodby P, Laird-Offringa IA, Minoo P, Zhou B. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung. Am J Physiol Lung Cell Mol Physiol 2015; 310:L114-20. [PMID: 26545903 DOI: 10.1152/ajplung.00337.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022] Open
Abstract
Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung.
Collapse
Affiliation(s)
- Janice M Liebler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Nicholas Juul
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hongjun Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ite A Laird-Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, and Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California;
| |
Collapse
|
49
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
50
|
Xu W, Zhao Y, Zhang B, Xu B, Yang Y, Wang Y, Liu C. Wnt3a Mediates the Inhibitory Effect of Hyperoxia on the Transdifferentiation of AECIIs to AECIs. J Histochem Cytochem 2015. [PMID: 26209081 DOI: 10.1369/0022155415600032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is to investigate the effect of Wnt3a in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I alveolar epithelial cells (AECIs) under hyperoxia condition. In the in vivo study, preterm rats were exposed in hyperoxia for 21 days. In the in vitro study, primary rat AECIIs were subjected to a hyperoxia and normoxia exposure alternatively every 24 hr for 7 days. siRNA-mediated knockout of Wnt3a and exogenous Wnt3a were used to investigate the effect of Wnt3a on transdifferentiation of AECIIs to AECIs. Wnt5a-overexpressed AECIIs were also used to investigate whether Wnt3a could counteract the effect of Wnt5a. The results showed that hyperoxia induced alveolar damage in the lung of preterm born rats, as well as an increased expression of Wnt3a and nuclear accumulation of β-catenin. In addition, Wnt3a/β-catenin signaling was activated in isolated AECIIs after hyperoxia exposure. Wnt3a knockout blocked the inhibition of the transdifferentiation induced by hyperoxia, and Wnt3a addition exacerbated this inhibition. Furthermore, Wnt3a addition blocked the transdifferentiation-promoting effect of Wnt5a in hyperoxia-exposed Wnt5a-overexpressed AECIIs. In conclusion, our results demonstrate that the activated Wnt3a/β-catenin signal may be involved in the hyperoxia-induced inhibition of AECIIs' transdifferentiation to AECIs.
Collapse
Affiliation(s)
- Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China (WX,YZ,BZ,YY,YW,CL)
| | - Ying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China (WX,YZ,BZ,YY,YW,CL)
| | - Binglun Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China (WX,YZ,BZ,YY,YW,CL)
| | - Bo Xu
- Department of Ophthalmology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China (BX)
| | - Yang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China (WX,YZ,BZ,YY,YW,CL)
| | - Yujing Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China (WX,YZ,BZ,YY,YW,CL)
| | - Chunfeng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China (WX,YZ,BZ,YY,YW,CL)
| |
Collapse
|