1
|
Zhao N, Tao W, Ouyang X, Yang X, Sun Z, Liu F, Qian K. Nicotinamide mononucleotide mitigates hyperoxia-aggravated septic lung injury via the GPx4-mediated anti-ferroptosis signaling pathway in alveolar epithelial cells. Free Radic Biol Med 2025; 234:S0891-5849(25)00231-X. [PMID: 40246251 DOI: 10.1016/j.freeradbiomed.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND The molecular mechanisms and optimal treatment strategies underlying hyperoxia-aggravated septic lung injury remain elusive. We explored the effects and mechanisms of nicotinamide mononucleotide (NMN) on hyperoxia-aggravated septic lung injury. METHODS The rat and cellular models of sepsis-induced lung injury were established and subjected to hyperoxygenation treatment, followed by treatment with NMN, ferroptosis promoter, or inhibitor separately. The extent of lung injury was assessed based on histological examination, lung histological injury scores, wet/dry weight ratio of lung tissues, oxygenation indexes, TNF-ɑ and IL-6 levels, and cell viability. Meanwhile, ferroptosis was assessed through various methods. The levels of glutathione peroxidase 4 (GPx4) and 4-hydroxynonenal (4-HNE) in lung tissues were determined by immunohistochemistry, while iron deposition was evaluated using Prussian blue staining. Fe2+, MDA, and GSH levels were also detected with the respective kits. The reactive oxygen species (ROS) level was measured by flow cytometry and immunofluorescence techniques. The protein and mRNA levels of GPx4 and ACSL4 were also detected. The relationship between sirtuin 6 (SIRT6) and GPx4 was clarified by using SIRT6 inhibitor and activator, as well as in combination with sh-GPx4. RESULTS Hyperoxia exacerbated lung injury in rats subjected to cecal ligation and puncture (CLP). Hyperoxia also intensified damage to alveolar epithelial cells (AECs) in a lipopolysaccharide (LPS) model. However, NMN ameliorated these detrimental effects. Furthermore, LPS+Hyperoxia treatment significantly upregulated Fe2+, MDA, ROS, and ACSL4 levels, exacerbating oxidative damage. Also, LPS+Hyperoxia treatment downregulated GSH and GPx4 levels, thereby reducing antioxidant capacity. Additionally, Erastin, a ferroptosis promoter, further intensified oxidative stress damage and inflammatory response. However, ferroptosis inhibitor Fer-1 alleviated this damage. Similarly, NMN inhibited ferroptosis in hyperoxia-aggravated septic lung injury. Co-treatment with NMN and sh-GPx4 reversed the protective effect of NMN against LPS-stimulated injury exacerbated by hyperoxia in AECs. NMN supplementation increased SIRT6 expression in AECs. SIRT6 inhibition decreased GPx4 expression and raised ferroptosis markers, while SIRT6 activation had opposite effects. Co-treatment with SIRT6 activator and sh-GPx4 reversed the inhibitory effect on ferroptosis. CONCLUSION Hyperoxia aggravates septic lung injury by inducing ferroptosis of AECs. NMN can mitigate hyperoxia-aggravated septic lung injury by up-regulating GPx4 through increasing SIRT6 and inhibiting ferroptosis of AECs.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Medical Innovation Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wenqiang Tao
- Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Medical Innovation Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - XiuFang Ouyang
- Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Medical Innovation Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinyi Yang
- Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Medical Innovation Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhijian Sun
- Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Medical Innovation Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fen Liu
- Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, China.
| | - Kejian Qian
- Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Yu K, Gu Y, Yao Y, Li J, Chen S, Guo H, Li Y, Liu J. The Role of Cuproptosis in Hyperoxia-Induced Lung Injury and Its Potential for Treatment. J Inflamm Res 2025; 18:4651-4664. [PMID: 40195958 PMCID: PMC11975008 DOI: 10.2147/jir.s512187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Background Oxygen supplementation is essential for patients with a multitude of diseases but can cause severe hyperoxia-induced lung injury (HLI), necessitating the identification of therapeutic targets to improve clinical outcomes. Cuproptosis, a novel copper-dependent form of cell death characterized by proteotoxic stress resulting from lipoylated protein aggregation and loss of iron-sulfur cluster proteins, is distinct from other forms of cell death. However, the role of cuproptosis in HLI remains unclear. Methods We established an HLI model in MLE-12 cells and C57BL/6 mice to investigate the involvement of cuproptosis in hyperoxia-induced toxicity. Results We observed a time-dependent increase in the cuproptosis-related gene Fdx1 under hyperoxia. Moreover, hyperoxia activated the membrane-associated copper transporter SLC31A1 and significantly elevated copper levels in MLE-12 cells, as well as in the serum and lung tissue of C57BL/6 mice. Further analysis revealed that hyperoxia significantly altered the expression of cuproptosis-related genes without affecting DLAT levels, but significantly increased lipoylated-DLAT levels. ELISA, CCK-8 assays, HE staining, lung wet-to-dry weight ratio, and bronchoalveolar lavage fluid analysis demonstrated that treatment with the cuproptosis inhibitor TTM reduced pro-inflammatory cytokines (TNF-α and IL-1β) and alleviated hyperoxia-induced injury in both MLE-12 cells and C57BL/6 mice. Conclusion Our study identifies the involvement of cuproptosis in HLI, providing new insights into the pathogenesis of hyperoxic lung injury and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kaihua Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yunfei Gu
- Anesthesiology Department, Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu, People’s Republic of China
| | - Ying Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jianchun Li
- Department of Intensive Care Unit, Suzhou Science and Technology City Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Hong Guo
- Department of Anesthesiology, Inner Mongolia Hospital of Peking University Cancer Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yulan Li
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jian Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
3
|
Zhou X, Tian L, Xiong W, Li Y, Liu Q. Ferroptosis and hyperoxic lung injury: insights into pathophysiology and treatment approaches. Front Pharmacol 2025; 16:1568246. [PMID: 40170719 PMCID: PMC11958998 DOI: 10.3389/fphar.2025.1568246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Hyperoxia therapy is a critical clinical intervention for both acute and chronic illnesses. However, prolonged exposure to high-concentration oxygen can cause lung injury. The mechanisms of hyperoxic lung injury (HLI) remain incompletely understood, and current treatment options are limited. Improving the safety of hyperoxia therapy has thus become an urgent priority. Ferroptosis, a novel form of regulated cell death characterized by iron accumulation and excessive lipid peroxidation, has been implicated in the pathogenesis of HLI, including diffuse alveolar damage, vascular endothelial injury, and bronchopulmonary dysplasia. In this review, we analyze the latest findings on ferroptosis and therapeutic strategies for HLI. Our aim is to provide new insights for the treatment of HLI and to facilitate the translation of these findings from bench to bedside.
Collapse
Affiliation(s)
- Xiaoqiong Zhou
- Department of Anesthesiology, Zigong First People’s Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenyan Xiong
- Department of Anesthesiology, Yibin Maternity and Children Hospital, Yibin, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People’s Hospital, Zigong Academy of Medical Sciences, Zigong, China
| |
Collapse
|
4
|
Litman K, Bouch S, Litvack ML, Post M. Therapeutic characteristics of alveolar-like macrophages in mouse models of hyperoxia and LPS-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2024; 327:L269-L281. [PMID: 38887793 PMCID: PMC11444498 DOI: 10.1152/ajplung.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung disease of high mortality (30-50%). Patients require lifesaving supplemental oxygen therapy; however, hyperoxia can induce pulmonary inflammation and cellular damage. Although alveolar macrophages (AMs) are essential for lung immune homeostasis, they become compromised during inflammatory lung injury. To combat this, stem cell-derived alveolar-like macrophages (ALMs) are a prospective therapeutic for lung diseases like ARDS. Using in vitro and in vivo approaches, we investigated the impact of hyperoxia on murine ALMs during acute inflammation. In vitro, ALMs retained their viability, growth, and antimicrobial abilities when cultured at 60% O2, whereas they die at 90% O2. In contrast, ALMs instilled in mouse lungs remained viable during exposure of mice to 90% O2. The ability of the delivered ALMs to phagocytose Pseudomonas aeruginosa was not impaired by exposure to 60 or 90% O2. Furthermore, ALMs remained immunologically stable in a murine model of LPS-induced lung inflammation when exposed to 60 and 90% O2 and effectively attenuated the accumulation of CD11b+ inflammatory cells in the airways. These results support the potential use of ALMs in patients with ARDS receiving supplemental oxygen therapy.NEW & NOTEWORTHY The current findings support the prospective use of stem cell-derived alveolar-like macrophages (ALMs) as a therapeutic for inflammatory lung disease such as acute respiratory distress syndrome (ARDS) during supplemental oxygen therapy where lungs are exposed to high levels of oxygen. Alveolar-like macrophages directly delivered to mouse lungs were found to remain viable, immunologically stable, phagocytic toward live Pseudomonas aeruginosa, and effective in reducing CD11b+ inflammatory cell numbers in LPS-challenged lungs during moderate and extreme hyperoxic exposure.
Collapse
Affiliation(s)
- Kymberly Litman
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sheena Bouch
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael L Litvack
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Atif M, Alsrhani A, Naz F, Ullah S, Abdalla AE, Ullah MI, Mazhari BBZ, Eltayeb LB, Hamad I, Ejaz H. Adenosine A2AR in viral immune evasion and therapy: unveiling new avenues for treating COVID-19 and AIDS. Mol Biol Rep 2024; 51:894. [PMID: 39115571 DOI: 10.1007/s11033-024-09839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 02/06/2025]
Abstract
Adenosine is a neuro- and immunomodulator that functions via G protein-coupled cell surface receptors. Several microbes, including viruses, use the adenosine signaling pathway to escape from host defense systems. Since the recent research developments in its role in health and disease, adenosine and its signaling pathway have attracted attention for targeting to treat many diseases. The therapeutic role of adenosine has been extensively studied for neurological, cardiovascular, and inflammatory disorders and bacterial pathophysiology, but published data on the role of adenosine in viral infections are lacking. Therefore, the purpose of this review article was to explain in detail the therapeutic role of adenosine signaling against viral infections, particularly COVID-19 and HIV. Several therapeutic approaches targeting A2AR-mediated pathways are in development and have shown encouraging results in decreasing the intensity of inflammatory reaction. The hypoxia-adenosinergic mechanism provides protection from inflammation-mediated tissue injury during COVID-19. A2AR expression increased remarkably in CD39 + and CD8 + T cells harvested from HIV patients in comparison to healthy subjects. A combined in vitro treatment performed by blocking PD-1 and CD39/adenosine signaling produced a synergistic outcome in restoring the CD8 + T cells funstion in HIV patients. We suggest that A2AR is an ideal target for pharmacological interventions against viral infections because it reduces inflammation, prevents disease progression, and ultimately improves patient survival.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Farrah Naz
- Northwestern Polytechnical University, Xian, 710060, China
| | - Sajjad Ullah
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, 54590, Pakistan
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Qurayyat, 75911, Saudi Arabia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, 11942, Saudi Arabia
| | - Ismail Hamad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| |
Collapse
|
6
|
Seelhammer T, Ninan J, Nei S, Nabzdyk CG, Wang Z, Gerberi D, Wieruszewski PM. Anticoagulation during extracorporeal membrane oxygenation. Cochrane Database Syst Rev 2024; 6:CD015685. [PMID: 39804113 PMCID: PMC11163473 DOI: 10.1002/14651858.cd015685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To determine the efficacy and safety of anticoagulation for maintaining extracorporeal membrane oxygenation in people of all ages with cardiac or respiratory failure, or both.
Collapse
Affiliation(s)
- Troy Seelhammer
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Jacob Ninan
- Department of Nephrology and Critical Care, MultiCare Capital Medical Center, Olympia, WA, USA
| | - Scott Nei
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Christoph Gs Nabzdyk
- Department of Critical Care and Anesthesia, Mass General Brigham, Boston, MA, USA
| | - Zhen Wang
- Department of Health Services Research, Mayo Clinic, Rochester, MN, USA
| | - Dana Gerberi
- Mayo Medical Libraries, Mayo Clinic, Rochester, MN, USA
| | - Patrick M Wieruszewski
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Tenfen L, Simon Machado R, Mathias K, Piacentini N, Joaquim L, Bonfante S, Danielski LG, Engel NA, da Silva MR, Rezin GT, de Quadros RW, Gava FF, Petronilho F. Short-term hyperoxia induced mitochondrial respiratory chain complexes dysfunction and oxidative stress in lung of rats. Inhal Toxicol 2024; 36:174-188. [PMID: 38449063 DOI: 10.1080/08958378.2024.2322497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.
Collapse
Affiliation(s)
- Leonardo Tenfen
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Richard Simon Machado
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Khiany Mathias
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Natalia Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Larissa Joaquim
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Sandra Bonfante
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Nicole Alessandra Engel
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | | | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
8
|
Kang A, Regmi B, Cornelissen C, Smith J, Daher A, Dreher M, Spiesshoefer J. Persistence of Diffusion Capacity Impairment and Its Relationship with Dyspnea 12 Months after Hospitalization for COVID-19. J Clin Med 2024; 13:1234. [PMID: 38592095 PMCID: PMC10931668 DOI: 10.3390/jcm13051234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Dyspnea is a common persistent symptom after acute coronavirus disease 2019 illness (COVID-19). One potential explanation for post-COVID-19 dyspnea is a reduction in diffusion capacity. This longitudinal study investigated diffusion capacity and its relationship with dyspnea on exertion in individuals previously hospitalized with COVID-19. Methods: Eligible participants had been hospitalized for the treatment of acute COVID-19 and were assessed at 6 weeks, 6 months, and 12 months after discharge. Pulmonary function testing, diffusion capacity of carbon monoxide (DLCO), blood gas analysis and the level of dyspnea (Borg scale; before and after a 6 min walk test [6 MWT]) were performed. Participants were divided into subgroups based on the presence or absence of dyspnea during the 6 MWT at 12 months after hospitalization. Results: Seventy-two participants (twenty-two female, mean age 59.8 ± 13.5 years) were included. At 12 months after discharge, 41/72 participants (57%) had DLCO below the lower limit of normal and 56/72 (78%) had DLCO < 80% of the predicted value. Individuals with exertional dyspnea had significantly lower DLCO than those without exertional dyspnea (p = 0.001). In participants with DLCO data being available at three timepoints over 12 months (baseline, 6 months, and 12 months) after discharge (n = 25), DLCO improved between 6 weeks and 6 months after hospital discharge, but not thereafter (p = 0.017). Conclusions: About 2/3 of the post-COVID individuals in this study had impaired diffusion capacity at 12 months after hospital discharge. There was an association between persisting dyspnea on exertion and significantly reduced DLCO. Impaired diffusion capacity improved over the first 6 months after hospitalization but not thereafter.
Collapse
Affiliation(s)
- Alice Kang
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.K.)
| | - Binaya Regmi
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.K.)
| | - Christian Cornelissen
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.K.)
| | - Judith Smith
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.K.)
| | - Ayham Daher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.K.)
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.K.)
| | - Jens Spiesshoefer
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.K.)
- Interdisciplinary Health Science Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| |
Collapse
|
9
|
Georgakopoulou VE, Makrodimitri S, Gkoufa A, Apostolidi E, Provatas S, Papalexis P, Spandidos DA, Lempesis IG, Gamaletsou MN, Sipsas NV. Lung function at three months after hospitalization due to COVID‑19 pneumonia: Comparison of alpha, delta and omicron variant predominance periods. Exp Ther Med 2024; 27:83. [PMID: 38274344 PMCID: PMC10809351 DOI: 10.3892/etm.2024.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
The coronavirus disease (COVID-19) pandemic has already affected millions of individuals, with increasing numbers of survivors. These data suggest that the pulmonary sequelae of the infection may have an effect on a wide range of individuals. The aim of the present study was to evaluate pulmonary function in patients hospitalized due to COVID-19 three months after hospital discharge. A total of 116 patients, 34 females and 82 males, with a mean age of 57.77±11.45 years, who were hospitalized due to COVID-19, underwent pulmonary function testing three months after their hospital discharge. Of these, 83 (71.6%) patients were hospitalized in the period of alpha variant predominance, 16 (13.8%) in the period of delta variant predominance and 17 (14.6%) in the omicron variant predominance period. The mean value of diffusion capacity for carbon monoxide (DLCO)% predicted (pred) was statistically higher in patients affected by the omicron variant (P=0.028). Abnormal values (<80% pred) of DLCO and total lung capacity (TLC) were observed in 28.4 and 20.7% of the patients, respectively. Active smoking was an independent predictor of abnormal values of forced expiratory volume in 1 sec % pred and TLC% pred [P=0.038; odds ratio (OR): 8.574, confidence interval (CI) 1.124-65.424 and P=0.004, OR: 14.733, CI 2.323-93.429, respectively], age was an independent predictor of abnormal values of forced vital capacity % pred and DLCO% pred (P=0.027, OR: 1.124, CI 1.014-1.246 and P=0.011, OR:1.054, CI 1.012-1.098, respectively); and female sex was an independent predictor of abnormal values of DLCO% pred (P=0.009, OR: 1.124, CI 1.014-1.246). Α significant percentage of hospitalized patients due to COVID-19 pneumonia will develop abnormal pulmonary function, regardless of the SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotiria Makrodimitri
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Gkoufa
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eirini Apostolidi
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotirios Provatas
- ENT Department, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Propedeutic and Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Ioannis G. Lempesis
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria N. Gamaletsou
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos V. Sipsas
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Ma FQ, He C, Yang HR, Hu ZW, Mao HR, Fan CY, Qi Y, Zhang JX, Xu B. Interpretable machine-learning model for Predicting the Convalescent COVID-19 patients with pulmonary diffusing capacity impairment. BMC Med Inform Decis Mak 2023; 23:169. [PMID: 37644543 PMCID: PMC10466769 DOI: 10.1186/s12911-023-02192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION The COVID-19 patients in the convalescent stage noticeably have pulmonary diffusing capacity impairment (PDCI). The pulmonary diffusing capacity is a frequently-used indicator of the COVID-19 survivors' prognosis of pulmonary function, but the current studies focusing on prediction of the pulmonary diffusing capacity of these people are limited. The aim of this study was to develop and validate a machine learning (ML) model for predicting PDCI in the COVID-19 patients using routinely available clinical data, thus assisting the clinical diagnosis. METHODS Collected from a follow-up study from August to September 2021 of 221 hospitalized survivors of COVID-19 18 months after discharge from Wuhan, including the demographic characteristics and clinical examination, the data in this study were randomly separated into a training (80%) data set and a validation (20%) data set. Six popular machine learning models were developed to predict the pulmonary diffusing capacity of patients infected with COVID-19 in the recovery stage. The performance indicators of the model included area under the curve (AUC), Accuracy, Recall, Precision, Positive Predictive Value(PPV), Negative Predictive Value (NPV) and F1. The model with the optimum performance was defined as the optimal model, which was further employed in the interpretability analysis. The MAHAKIL method was utilized to balance the data and optimize the balance of sample distribution, while the RFECV method for feature selection was utilized to select combined features more favorable to machine learning. RESULTS A total of 221 COVID-19 survivors were recruited in this study after discharge from hospitals in Wuhan. Of these participants, 117 (52.94%) were female, with a median age of 58.2 years (standard deviation (SD) = 12). After feature selection, 31 of the 37 clinical factors were finally selected for use in constructing the model. Among the six tested ML models, the best performance was accomplished in the XGBoost model, with an AUC of 0.755 and an accuracy of 78.01% after experimental verification. The SHAPELY Additive explanations (SHAP) summary analysis exhibited that hemoglobin (Hb), maximal voluntary ventilation (MVV), severity of illness, platelet (PLT), Uric Acid (UA) and blood urea nitrogen (BUN) were the top six most important factors affecting the XGBoost model decision-making. CONCLUSION The XGBoost model reported here showed a good prognostic prediction ability for PDCI of COVID-19 survivors during the recovery period. Among the interpretation methods based on the importance of SHAP values, Hb and MVV contributed the most to the prediction of PDCI outcomes of COVID-19 survivors in the recovery period.
Collapse
Affiliation(s)
- Fu-Qiang Ma
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cong He
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Hao-Ran Yang
- School of Software, HuaZhong University of Science and Technology, Wuhan, 430074, China
| | - Zuo-Wei Hu
- Wuhan No.1 Hospital, Wuhan, 430022, China
| | - He-Rong Mao
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cun-Yu Fan
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, 430015, China
| | - Yu Qi
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ji-Xian Zhang
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, 430015, China.
| | - Bo Xu
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
11
|
Qin H, Zhuang W, Liu X, Wu J, Li S, Wang Y, Liu X, Chen C, Zhang H. Targeting CXCR1 alleviates hyperoxia-induced lung injury through promoting glutamine metabolism. Cell Rep 2023; 42:112745. [PMID: 37405911 DOI: 10.1016/j.celrep.2023.112745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/22/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Although increasing evidence suggests potential iatrogenic injury from supplemental oxygen therapy, significant exposure to hyperoxia in critically ill patients is inevitable. This study shows that hyperoxia causes lung injury in a time- and dose-dependent manner. In addition, prolonged inspiration of oxygen at concentrations higher than 80% is found to cause redox imbalance and impair alveolar microvascular structure. Knockout of C-X-C motif chemokine receptor 1 (Cxcr1) inhibits the release of reactive oxygen species (ROS) from neutrophils and synergistically enhances the ability of endothelial cells to eliminate ROS. We also combine transcriptome, proteome, and metabolome analysis and find that CXCR1 knockdown promotes glutamine metabolism and leads to reduced glutathione by upregulating the expression of malic enzyme 1. This preclinical evidence suggests that a conservative oxygen strategy should be recommended and indicates that targeting CXCR1 has the potential to restore redox homeostasis by reducing oxygen toxicity when inspiratory hyperoxia treatment is necessary.
Collapse
Affiliation(s)
- Hao Qin
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Wei Zhuang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiucheng Liu
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangming Liu
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China.
| |
Collapse
|
12
|
Saleem F, Mansour H, Vichare R, Ayalasomayajula Y, Yassine J, Hesaraghatta A, Panguluri SK. Influence of Age on Hyperoxia-Induced Cardiac Pathophysiology in Type 1 Diabetes Mellitus (T1DM) Mouse Model. Cells 2023; 12:1457. [PMID: 37296578 PMCID: PMC10252211 DOI: 10.3390/cells12111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Mechanical ventilation often results in hyperoxia, a condition characterized by excess SpO2 levels (>96%). Hyperoxia results in changes in the physiological parameters, severe cardiac remodeling, arrhythmia development, and alteration of cardiac ion channels, all of which can point toward a gradual increase in the risk of developing cardiovascular disease (CVD). This study extends the analysis of our prior work in young Akita mice, which demonstrated that exposure to hyperoxia worsens cardiac outcomes in a type 1 diabetic murine model as compared to wild-type (WT) mice. Age is an independent risk factor, and when present with a major comorbidity, such as type 1 diabetes (T1D), it can further exacerbate cardiac outcomes. Thus, this research subjected aged T1D Akita mice to clinical hyperoxia and analyzed the cardiac outcomes. Overall, aged Akita mice (60 to 68 weeks) had preexisting cardiac challenges compared to young Akita mice. Aged mice were overweight, had an increased cardiac cross-sectional area, and showed prolonged QTc and JT intervals, which are proposed as major risk factors for CVD like intraventricular arrhythmias. Additionally, exposure to hyperoxia resulted in severe cardiac remodeling and a decrease in Kv 4.2 and KChIP2 cardiac potassium channels in these rodents. Based on sex-specific differences, aged male Akita mice had a higher risk of poor cardiac outcomes than aged females. Aged male Akita mice had prolonged RR, QTc, and JT intervals even at baseline normoxic exposure. Moreover, they were not protected against hyperoxic stress through adaptive cardiac hypertrophy, which, at least to some extent, is due to reduced cardiac androgen receptors. This study in aged Akita mice aims to draw attention to the clinically important yet understudied subject of the effect of hyperoxia on cardiac parameters in the presence of preexisting comorbidities. The findings would help revise the provision of care for older T1D patients admitted to ICUs.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Riddhi Vichare
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Yashwant Ayalasomayajula
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Jenna Yassine
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Anagha Hesaraghatta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
- Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| |
Collapse
|
13
|
Minkove S, Dhamapurkar R, Cui X, Li Y, Sun J, Cooper D, Eichacker PQ, Torabi-Parizi P. Effect of low-to-moderate hyperoxia on lung injury in preclinical animal models: a systematic review and meta-analysis. Intensive Care Med Exp 2023; 11:22. [PMID: 37088856 PMCID: PMC10122981 DOI: 10.1186/s40635-023-00501-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/13/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Extensive animal investigation informed clinical practice regarding the harmful effects of high fractional inspired oxygen concentrations (FiO2s > 0.60). Since questions persist whether lower but still supraphysiologic FiO2 ≤ 0.60 and > 0.21 (FiO2 ≤ 0.60/ > 0.21) are also harmful with inflammatory lung injury in patients, we performed a systematic review examining this question in animal models. METHODS Studies retrieved from systematic literature searches of three databases, that compared the effects of exposure to FiO2 ≤ 0.60/ > 0.21 vs. FiO2 = 0.21 for ≥ 24 h in adult in vivo animal models including an inflammatory challenge or not were analyzed. Survival, body weight and/or lung injury measures were included in meta-analysis if reported in ≥ 3 studies. RESULTS More than 600 retrieved reports investigated only FiO2s > 0.60 and were not analyzed. Ten studies with an inflammatory challenge (6 infectious and 4 noninfectious) and 14 studies without, investigated FiO2s ≤ 0.60/ > 0.21 and were analyzed separately. In seven studies with an inflammatory challenge, compared to FiO2 = 0.21, FiO2 ≤ 0.60/ > 0.21 had consistent effects across animal types on the overall odds ratio of survival (95%CI) that was on the side of harm but not significant [0.68 (0.38,1.23), p = 0.21; I2 = 0%, p = 0.57]. However, oxygen exposure times were only 1d in 4 studies and 2-4d in another. In a trend approaching significance, FiO2 ≤ 0.60/ > 0.21 with an inflammatory challenge consistently increased the standardized mean difference (95%CI) (SMD) in lung weights [0.47 (- 0.07,1.00), p = 0.09; I2 = 0%, p = 0.50; n = 4 studies] but had inconsistent effects on lung lavage protein concentrations (n = 3), lung pathology scores (n = 4) and/or arterial oxygenation (n = 4) (I2 ≥ 43%, p ≤ 0.17). Studies without an inflammatory challenge had consistent effects on lung lavage protein concentration (n = 3) SMDs on the side of being increased that was not significant [0.43 (- 0.23,1.09), p = 0.20; I2 = 0%, p = 0.40] but had inconsistent effects on body and lung weights (n = 6 and 8 studies, respectively) (I2 ≥ 71%, p < 0.01). Quality of evidence for studies was weak. INTERPRETATION Limited animal studies have investigated FiO2 ≤ 0.60/ > 0.21 with clinically relevant models and endpoints but suggest even these lower FiO2s may be injurious. Given the influence animal studies examining FiO2 > 0.60 have had on clinical practice, additional ones investigating FiO2 ≤ 0.60/ > 0.21 appear warranted, particularly in pneumonia models.
Collapse
Affiliation(s)
- Samuel Minkove
- Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Xizhong Cui
- Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Yan Li
- Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Junfeng Sun
- Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Diane Cooper
- NIH Library, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter Q Eichacker
- Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
CD73: Friend or Foe in Lung Injury. Int J Mol Sci 2023; 24:ijms24065545. [PMID: 36982618 PMCID: PMC10056814 DOI: 10.3390/ijms24065545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Ecto-5′-nucleotidase (CD73) plays a strategic role in calibrating the magnitude and chemical nature of purinergic signals that are delivered to immune cells. Its primary function is to convert extracellular ATP to adenosine in concert with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) in normal tissues to limit an excessive immune response in many pathophysiological events, such as lung injury induced by a variety of contributing factors. Multiple lines of evidence suggest that the location of CD73, in proximity to adenosine receptor subtypes, indirectly determines its positive or negative effect in a variety of organs and tissues and that its action is affected by the transfer of nucleoside to subtype-specific adenosine receptors. Nonetheless, the bidirectional nature of CD73 as an emerging immune checkpoint in the pathogenesis of lung injury is still unknown. In this review, we explore the relationship between CD73 and the onset and progression of lung injury, highlighting the potential value of this molecule as a drug target for the treatment of pulmonary disease.
Collapse
|
15
|
van der Sar-van der Brugge S, Flikweert A, du Mee A, Gense K, Talman S, Kant M, De Backer I. Recovery after admission with COVID-19 pneumonia – a follow-up study. Respir Med Res 2023; 83:101001. [PMID: 37027896 PMCID: PMC9902280 DOI: 10.1016/j.resmer.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Introduction We performed this study to describe clinical, radiological and pulmonary function outcomes of patients with COVID-19 pneumonia 1 year after discharge from hospital. Methods This is a prospective longitudinal study on patients admitted with COVID-19 pneumonia in March and April 2020. 162 patients were classified as moderate, severe or critical. Symptoms and pulmonary function were assessed at 3 months and 1 year after discharge. Chest CT scans were made during hospital admission, at 3 months and, in case of persistent radiological abnormalities, after 1 year. Results 54% of patients reported full recovery of their pre-illness fitness after 1 year. 53% still reported exertional dyspnoea, independent of illness severity. DLCOc < 80% after 1 year was found in 74% of critical, 50% of severe and 38% of moderate cases. For KCOc<80%, no between-group difference was found. Restriction (TLC<80%) was found in 28% of critical, 5% of severe, and 13% of moderate cases. At baseline, chest CT score was significantly higher for the critical illness group, but after 1 year, there was no significant difference. Most resolution of abnormalities occurred before 3 months. A high prevalence of fibrotic lesions (24%) and subpleural banding (27%) was found. Conclusion/clinical implication A large proportion of patients experience consequences of COVID-19 pneumonia one year after discharge, irrespective of initial disease severity. Follow-up of patients admitted with COVID-19 is therefore warranted. An evaluation of symptoms, pulmonary function and radiology three months after discharge can discriminate between patients with early complete recovery and those with persistent abnormalities.
Collapse
Affiliation(s)
| | - Antine Flikweert
- Amphia Hospital, Department of Pulmonary Medicine, Postbus 90158, 4800 RK Breda, the Netherlands
| | - Arthur du Mee
- Amphia Hospital, Department of Radiology, Postbus 90158, 4800 RK Breda, the Netherlands
| | - Kim Gense
- Canisius Wilhelmina Hospital, Department of Pulmonary Medicine, Postbus 9015, 500GS Nijmegen, the Netherlands
| | - Sander Talman
- Amphia Hospital, Department of Pulmonary Medicine, Postbus 90158, 4800 RK Breda, the Netherlands
| | - Merijn Kant
- Amphia Hospital, Department of Pulmonary Medicine, Postbus 90158, 4800 RK Breda, the Netherlands; Amphia Hospital, Department of Intensive Care Medicine, Postbus 90158, 4800 RK Breda, the Netherlands
| | - Ingrid De Backer
- Amphia Hospital, Department of Pulmonary Medicine, Postbus 90158, 4800 RK Breda, the Netherlands
| |
Collapse
|
16
|
Iacovelli A, Nicolardi ML, Baccolini V, Olmati F, Attilia I, Baiocchi P, D'Antoni L, Menichini I, Migliarini A, Pellegrino D, Petroianni A, Piamonti D, Tramontano A, Villari P, Palange P. Conservative oxygen supplementation during Helmet CPAP therapy in patients with COVID-19 and respiratory failure: A pilot study. ERJ Open Res 2022; 9:00455-2022. [PMID: 37013111 PMCID: PMC9790093 DOI: 10.1183/23120541.00455-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundRespiratory failure is a severe complication in COVID-19 pneumonia that, in addition to oxygen therapy, may require CPAP support. It has been postulated that COVID-19 lung injury may share some features with those observed in HALI. Thus, a correct target PaO2during oxygen supplementation may be crucial to protect the lung from further tissue damage. Aims of the study were: 1) to evaluate the effects of conservative oxygen supplementation during Helmet CPAP therapy on mortality and ICU admission in patients with COVID-19 and respiratory failure; 2) to evaluate the effect of conservative oxygen supplementation on new-onset organ failure and secondary pulmonary infections.MethodsThis was a single-center, historically controlled study of patients with severe respiratory failure due to COVID-19 pneumonia, receiving either conservative or non-conservative oxygen supplementation during Helmet CPAP. A cohort receiving conservative oxygen supplementation was studied prospectively in which oxygen supplementation was administered with a target PaO2<100 mmHg. Results of this cohort were compared with those of a cohort who had received liberal oxygen supplementation.ResultsSeventy-one patients were included in the conservative cohort and 75 in the non-conservative cohort. Mortality rate was lower in the conservative cohort (22.5%versus62.7%, p<0.001). Rates of ICU admission and new-onset rate organ failure were lower in conservative cohort (14.1%versus37.3%, p=0.001, and 9.9%versus45.3% p<0.001, respectively).ConclusionsIn patients with COVID-19 and severe respiratory failure, conservative oxygen supplementation during Helmet CPAP was associated to improved survival, lower ICU admission rate and less new-onset organ failure.
Collapse
|
17
|
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022; 45:1430-1449. [PMID: 35320469 PMCID: PMC8940980 DOI: 10.1007/s10753-022-01656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a global pandemic with severe socioeconomic effects. Immunopathogenesis of COVID-19 leads to acute respiratory distress syndrome (ARDS) and organ failure. Binding of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (hACE2) on bronchiolar and alveolar epithelial cells triggers host inflammatory pathways that lead to pathophysiological changes. Proinflammatory cytokines and type I interferon (IFN) signaling in alveolar epithelial cells counter barrier disruption, modulate host innate immune response to induce chemotaxis, and initiate the resolution of inflammation. Here, we discuss experimental models to study SARS-CoV-2 infection, molecular pathways involved in SARS-CoV-2-induced inflammation, and viral hijacking of anti-inflammatory pathways, such as delayed type-I IFN response. Mechanisms of alveolar adaptation to hypoxia, adenosinergic signaling, and regulatory microRNAs are discussed as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Divisions of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Agnieszka K Czopik
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Keith P, Scott LK, Perkins L, Burnside R, Day M. High-Frequency Oscillatory Ventilation for Refractory Hypoxemia in Severe COVID-19 Pneumonia: A Small Case Series. AMERICAN JOURNAL OF CASE REPORTS 2022; 23:e936651. [PMID: 35731717 PMCID: PMC9238079 DOI: 10.12659/ajcr.936651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND COVID-19 continues to place a tremendous burden on the healthcare system, with most deaths resulting from respiratory failure. Management strategies have varied, but the mortality rate for mechanically ventilated patients remains high. Conventional management with ARDSnet ventilation can improve outcomes but alternative and adjunct treatments continue to be explored. High-frequency oscillatory ventilation (HFOV), a modality now rarely used in adult critical care medicine, may offer an alternative treatment option by maximizing lung protection and limiting oxygen toxicity in critically ill patients failing conventional ventilator strategies. CASE REPORT We present 3 patients with severe acute respiratory distress syndrome (ARDS) and sepsis due to COVID-19 who all improved clinically after transitioning from conventional ventilation to HFOV. Two patients developed refractory hypoxemia with hemodynamic instability and multiple organ failure requiring vasopressor support and renal replacement therapy. After failing to improve with all available therapies, both patients stabilized and ultimately improved after being placed on HFOV. The third patient developed severe volutrauma/barotrauma despite extreme lung protection and ARDSnet ventilation. He showed improvement in oxygenation and signs of lung trauma slowly improved after initiating HFOV. All 3 patients were ultimately liberated from mechanical ventilation and discharged from the hospital to return to functional independence. CONCLUSIONS Our experience suggests that HFOV offers advantages in the management of certain critically ill patients with ARDS due to COVID-19 pneumonia and might be considered in cases refractory to standard management strategies.
Collapse
Affiliation(s)
- Philip Keith
- Department of Critical Care Medicine, Lexington Medical Center, West Columbia, SC, USA
| | - L. Keith Scott
- Division of Trauma and Surgical Critical Care, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Linda Perkins
- Department of Critical Care Medicine, Lexington Medical Center, West Columbia, SC, USA
| | - Rebecca Burnside
- Department of Critical Care Medicine, Lexington Medical Center, West Columbia, SC, USA
| | - Matthew Day
- Department of Critical Care Medicine, Lexington Medical Center, West Columbia, SC, USA
| |
Collapse
|
19
|
Garcia VP, Mattos JD, Mentzinger J, Leite PEC, Rocha HNM, Campos MO, Rocha MP, Mansur DE, Secher NH, Nóbrega ACL, Fernandes IA, Rocha NG. Short isocapnic hyperoxia affects indices of vascular remodeling and intercellular adhesion molecules in healthy men. Braz J Med Biol Res 2022; 55:e12110. [PMID: 35703682 PMCID: PMC9200048 DOI: 10.1590/1414-431x2022e12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
In preparation for tracheal intubation during induction of anesthesia, the patient may be ventilated with 100% oxygen. To investigate the impact of acute isocapnic hyperoxia on endothelial activation and vascular remodeling, ten healthy young men (24±3 years) were exposed to 5-min normoxia (21% O2) and 10-min hyperoxia trials (100% O2). During hyperoxia, intercellular adhesion molecules (ICAM-1) (hyperoxia: 4.16±0.85 vs normoxia: 3.51±0.84 ng/mL, P=0.04) and tissue inhibitor matrix metalloproteinase 1 (TIMP-1) (hyperoxia: 8.40±3.84 vs normoxia: 5.73±2.15 pg/mL, P=0.04) increased, whereas matrix metalloproteinase (MMP-9) activity (hyperoxia: 0.53±0.11 vs normoxia: 0.68±0.18 A.U., P=0.03) decreased compared to the normoxia trial. We concluded that even short exposure to 100% oxygen may affect endothelial activation and vascular remodeling.
Collapse
Affiliation(s)
- V P Garcia
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - J D Mattos
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - J Mentzinger
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - P E C Leite
- Laboratório de Bioengenharia e Toxicologia in Vitro, Instituto Nacional de Qualidade e Tecnologia Metrológica, Duque de Caxias, RJ, Brasil
| | - H N M Rocha
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - M O Campos
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - M P Rocha
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - D E Mansur
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - N H Secher
- Department of Anesthesia, Rigshospitalet, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - A C L Nóbrega
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - I A Fernandes
- NeuroVASQ - Laboratório de Fisiologia Integrativa, Faculdade de Educação Física, Universidade de Brasília, Brasília, DF, Brasil
| | - N G Rocha
- Laboratório de Ciências do Exercício, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| |
Collapse
|
20
|
Abstract
INTRODUCTION : Coronavirus disease 2019 (COVID-19) causes a long-term and persistent condition with clinical features similar to previous virulent outbreaks and other epidemics. Currently, post-COVID syndrome (PCS) is recognized as a new entity in the context of SARS-CoV-2 infection. Though its pathogenesis is not completely understood, persistent inflammation from acute illness and the development of autoimmunity play a critical role in its development. As the pandemic develops, the increasing latent and overt autoimmunity cases indicate that PCS is at the intersection of autoimmunity. AREAS COVERED The mechanisms involved in the emergence of PCS, their similarities with post-viral and post-care syndromes, its inclusion in the spectrum of autoimmunity and possible targets for its treatment. EXPERT OPINION An autoimmune phenomenon plays a major role in most causative theories explaining PCS. Due to the wide scope of symptoms and pathophysiology associated with PCS, there is a need for both PCS definition and classification criteria (including severity scores). Longitudinal and controlled studies are necessary to better understand this new entity, and to confirm that PCS is the chronic phase of COVID-19 as well as to find what additional factors participate into its development. With the high prevalence of COVID-19 cases worldwide, together with the current evidence on latent autoimmunity in PCS, we may observe an increase of autoimmune diseases (ADs) in the coming years. Vaccination's effect on the development of PCS and ADs will also receive attention in the future. Health and social care services need to develop a new framework to deal with PCS.
Collapse
Affiliation(s)
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Santiago Beltrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia.,Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
León-Jiménez A, Vázquez-Gandullo E, Montoro-Ballesteros F. [Pulmonary toxicity by oxygen and COVID-19]. Med Intensiva 2022; 46:353. [PMID: 34007094 PMCID: PMC8120487 DOI: 10.1016/j.medin.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022]
Affiliation(s)
- A León-Jiménez
- Unidad de Gestión Clínica de Neumología, Alergología y Cirugía Torácica, Servicio de Neumología, Hospital Universitario Puerta del Mar, Cádiz, España
| | - E Vázquez-Gandullo
- Unidad de Gestión Clínica de Neumología, Alergología y Cirugía Torácica, Servicio de Neumología, Hospital Universitario Puerta del Mar, Cádiz, España
| | - F Montoro-Ballesteros
- Unidad de Gestión Clínica de Neumología, Alergología y Cirugía Torácica, Servicio de Neumología, Hospital Universitario Puerta del Mar, Cádiz, España
| |
Collapse
|
22
|
León-Jiménez A, Vázquez-Gandullo E, Montoro-Ballesteros F. Pulmonary toxicity by oxygen and COVID-19. MEDICINA INTENSIVA (ENGLISH EDITION) 2022; 46:353. [PMID: 35527193 PMCID: PMC9046065 DOI: 10.1016/j.medine.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Affiliation(s)
- A León-Jiménez
- Unidad de Gestión Clínica de Neumología, Alergología y Cirugía Torácica, Servicio de Neumología, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - E Vázquez-Gandullo
- Unidad de Gestión Clínica de Neumología, Alergología y Cirugía Torácica, Servicio de Neumología, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| | - F Montoro-Ballesteros
- Unidad de Gestión Clínica de Neumología, Alergología y Cirugía Torácica, Servicio de Neumología, Hospital Universitario Puerta del Mar, Cádiz, Spain
| |
Collapse
|
23
|
Dyrbuś M, Oraczewska A, Szmigiel S, Gawęda S, Kluszczyk P, Cyzowski T, Jędrzejek M, Dubik P, Kozłowski M, Kwiatek S, Celińska B, Wita M, Trejnowska E, Swinarew A, Darocha T, Barczyk A, Skoczyński S. Mallampati Score Is an Independent Predictor of Active Oxygen Therapy in Patients with COVID-19. J Clin Med 2022; 11:jcm11112958. [PMID: 35683347 PMCID: PMC9181244 DOI: 10.3390/jcm11112958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022] Open
Abstract
Mallampati score has been identified and accepted worldwide as an independent predictor of difficult intubation and obstructive sleep apnea. We aimed to determine whether Mallampati score assessed on the first patient medical assessment allowed us to stratify the risk of worsening of conditions in patients hospitalized due to COVID-19. A total of 493 consecutive patients admitted between 13 November 2021 and 2 January 2022 to the temporary hospital in Pyrzowice were included in the analysis. The clinical data, chest CT scan, and major, clinically relevant laboratory parameters were assessed by patient-treating physicians, whereas the Mallampati score was assessed on admission by investigators blinded to further treatment. The primary endpoints were necessity of active oxygen therapy (AOT) during hospitalization and 60-day all-cause mortality. Of 493 patients included in the analysis, 69 (14.0%) were in Mallampati I, 57 (11.6%) were in Mallampati II, 78 (15.8%) were in Mallampati III, and 288 (58.9%) were in Mallampati IV. There were no differences in the baseline characteristics between the groups, except the prevalence of chronic kidney disease (p = 0.046). Patients with Mallampati IV were at the highest risk of AOT during the hospitalization (33.0%) and the highest risk of death due to any cause at 60 days (35.0%), which significantly differed from other scores (p = 0.005 and p = 0.03, respectively). Mallampati IV was identified as an independent predictor of need for AOT (OR 3.089, 95% confidence interval 1.65−5.77, p < 0.001) but not of all-cause mortality at 60 days. In conclusion, Mallampati IV was identified as an independent predictor of AOT during hospitalization. Mallampati score can serve as a prehospital tool allowing to identify patients at higher need for AOT.
Collapse
Affiliation(s)
- Maciej Dyrbuś
- Pyrzowice Temporary Hospital, Leszek Giec Upper-Silesian Medical Center, 40-635 Katowice, Poland; (A.O.); (T.C.); (M.J.); (M.K.); (T.D.); (S.S.)
- 3rd Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
- Correspondence:
| | - Aleksandra Oraczewska
- Pyrzowice Temporary Hospital, Leszek Giec Upper-Silesian Medical Center, 40-635 Katowice, Poland; (A.O.); (T.C.); (M.J.); (M.K.); (T.D.); (S.S.)
- Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Szymon Szmigiel
- Student Scientific Society, Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (S.S.); (S.G.); (P.K.)
| | - Szymon Gawęda
- Student Scientific Society, Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (S.S.); (S.G.); (P.K.)
| | - Paulina Kluszczyk
- Student Scientific Society, Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (S.S.); (S.G.); (P.K.)
| | - Tomasz Cyzowski
- Pyrzowice Temporary Hospital, Leszek Giec Upper-Silesian Medical Center, 40-635 Katowice, Poland; (A.O.); (T.C.); (M.J.); (M.K.); (T.D.); (S.S.)
- Department of Anaesthesiology and Intensive Therapy, Medical University of Silesia, 40-752 Katowice, Poland
| | - Marek Jędrzejek
- Pyrzowice Temporary Hospital, Leszek Giec Upper-Silesian Medical Center, 40-635 Katowice, Poland; (A.O.); (T.C.); (M.J.); (M.K.); (T.D.); (S.S.)
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-752 Katowice, Poland
| | - Paweł Dubik
- Department of Anesthesiology and Intensive Therapy, Hospital of the Ministry of the Interior and Administration, 40-061 Katowice, Poland;
| | - Michał Kozłowski
- Pyrzowice Temporary Hospital, Leszek Giec Upper-Silesian Medical Center, 40-635 Katowice, Poland; (A.O.); (T.C.); (M.J.); (M.K.); (T.D.); (S.S.)
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-752 Katowice, Poland
| | - Sebastian Kwiatek
- Division of Internal Diseases Oncology, Gastroenterology, Angiology, Department of Cardiology Intensive Care, Hospital of the Ministry of the Interior and Administration, 40-061 Katowice, Poland;
| | - Beata Celińska
- Consultant in Infectious Diseases GCM, Upper Silesian Medical Center, 40-635 Katowice, Poland;
| | - Michał Wita
- First Chair and Department of Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Ewa Trejnowska
- Department of Cardiac Anaesthesia and Intensive Care, Silesian Centre for Heart Diseases in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Andrzej Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland;
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Tomasz Darocha
- Pyrzowice Temporary Hospital, Leszek Giec Upper-Silesian Medical Center, 40-635 Katowice, Poland; (A.O.); (T.C.); (M.J.); (M.K.); (T.D.); (S.S.)
- Department of Anaesthesiology and Intensive Therapy, Medical University of Silesia, 40-752 Katowice, Poland
| | - Adam Barczyk
- Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Szymon Skoczyński
- Pyrzowice Temporary Hospital, Leszek Giec Upper-Silesian Medical Center, 40-635 Katowice, Poland; (A.O.); (T.C.); (M.J.); (M.K.); (T.D.); (S.S.)
- Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
24
|
Narala VR, Thimmana LV, Panati K, Kolliputi N. Nitrated fatty acid, 10-nitrooleate protects against hyperoxia-induced acute lung injury in mice. Int Immunopharmacol 2022; 109:108838. [PMID: 35561478 DOI: 10.1016/j.intimp.2022.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
Abstract
The antioxidant and anti-inflammatory effects of electrophilic nitrated fatty acid (NFA); 10-nitrooleate, have been reported. The present study investigated whether 10-nitrooleate has a protective role against hyperoxic-induced acute lung injury (HALI). Using a C57BL/6 mice model of HALI, we investigated the protective effect of 10-nitrooleate. C57BL/6 mice were administered with NFA intratracheally, exposed to hyperoxia for 48 h to induce HALI, and kept at room air for 24 h. Bronchoalveolar lavage (BAL) fluid and lung samples were collected after 24 h of post hyperoxia to analyze markers associated with HALI. Intratracheal (IT) and intraperitoneal (IP) administration of NFA notably attenuated hyperoxia-induced infiltration of inflammatory cells, alveolar-capillary leakage, upregulation of proinflammatory cytokine levels (IL-6 and TNFα) into the BAL fluid, and resolution of inflammation in the lung. Western blot analyses showed that 10-nitrooleate reduced the expression of the inflammatory transcription factor NFκB p65 subunit and increased antioxidant proteins HO-1 and NQO1 expression in the lung tissues compared to vehicle-treated animals. Moreover, 10-nitrooleate reversed the hyperoxia-induced expression of mitophagy-associated markers (PINK1 and p62/SQSTM1), thereby protecting the HALI/ acute respiratory distress syndrome (ARDS). IT and IP delivery of 10-nitrooleate reduces hyperoxia-induced ALI/ARDS by regulating the antioxidant pathways and restoring the mitochondrial homeostasis by regulating mitophagy. It is suggested that NFAs can be further evaluated as supplementary therapy for critically ill patients like COVID-19/ARDS.
Collapse
Affiliation(s)
| | - Lokesh V Thimmana
- Department of Zoology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, Andhra Pradesh, India
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
25
|
Solaiman A, Mehanna RA, Meheissen GA, Elatrebi S, Said R, Elsokkary NH. Potential effect of amniotic fluid-derived stem cells on hyperoxia-induced pulmonary alveolar injury. Stem Cell Res Ther 2022. [DOI: https://doi.org/10.1186/s13287-022-02821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats.
Methods
The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons.
Results
Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups.
Conclusions
Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically.
Collapse
|
26
|
Solaiman A, Mehanna RA, Meheissen GA, Elatrebi S, Said R, Elsokkary NH. Potential effect of amniotic fluid-derived stem cells on hyperoxia-induced pulmonary alveolar injury. Stem Cell Res Ther 2022; 13:145. [PMID: 35379329 PMCID: PMC8978174 DOI: 10.1186/s13287-022-02821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats. METHODS The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons. RESULTS Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups. CONCLUSIONS Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically.
Collapse
Affiliation(s)
- Amany Solaiman
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
- Center of Excellence for Research in Regenerative Medicine and Its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ghada A Meheissen
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt.
| | - Soha Elatrebi
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Rasha Said
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Nahed H Elsokkary
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| |
Collapse
|
27
|
Rabiu Abubakar A, Ahmad R, Rowaiye AB, Rahman S, Iskandar K, Dutta S, Oli AN, Dhingra S, Tor MA, Etando A, Kumar S, Irfan M, Gowere M, Chowdhury K, Akter F, Jahan D, Schellack N, Haque M. Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life (Basel) 2022; 12:life12040478. [PMID: 35454970 PMCID: PMC9031737 DOI: 10.3390/life12040478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19-infected patients require an intact immune system to suppress viral replication and prevent complications. However, the complications of SARS-CoV-2 infection that led to death were linked to the overproduction of proinflammatory cytokines known as cytokine storm syndrome. This article reported the various checkpoints targeted to manage the SARS-CoV-2-induced cytokine storm. The literature search was carried out using PubMed, Embase, MEDLINE, and China National Knowledge Infrastructure (CNKI) databases. Journal articles that discussed SARS-CoV-2 infection and cytokine storm were retrieved and appraised. Specific checkpoints identified in managing SARS-CoV-2 induced cytokine storm include a decrease in the level of Nod-Like Receptor 3 (NLRP3) inflammasome where drugs such as quercetin and anakinra were effective. Janus kinase-2 and signal transducer and activator of transcription-1 (JAK2/STAT1) signaling pathways were blocked by medicines such as tocilizumab, baricitinib, and quercetin. In addition, inhibition of interleukin (IL)-6 with dexamethasone, tocilizumab, and sarilumab effectively treats cytokine storm and significantly reduces mortality caused by COVID-19. Blockade of IL-1 with drugs such as canakinumab and anakinra, and inhibition of Bruton tyrosine kinase (BTK) with zanubrutinib and ibrutinib was also beneficial. These agents' overall mechanisms of action involve a decrease in circulating proinflammatory chemokines and cytokines and or blockade of their receptors. Consequently, the actions of these drugs significantly improve respiration and raise lymphocyte count and PaO2/FiO2 ratio. Targeting cytokine storms' pathogenesis genetic and molecular apparatus will substantially enhance lung function and reduce mortality due to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, PMB 3452, Kano 700233, Nigeria;
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | | | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown BB11114, Barbados;
| | - Katia Iskandar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Lebanese University, Beirut P.O. Box 6573/14, Lebanon;
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot 360001, Gujrat, India;
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Nigeria;
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India;
| | - Maryam Abba Tor
- Department of Health and Biosciences, University of East London, University Way, London E16 2RD, UK;
| | - Ayukafangha Etando
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, P.O. Box A624 Swazi Plaza Mbabane, Mbabane H101, Hhohho, Eswatini;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Adalaj Uvarsad Road, Gandhinagar 382422, Gujarat, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, R. Gomes Carneiro, 1-Centro, Pelotas 96010-610, RS, Brazil;
| | - Marshall Gowere
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Kona Chowdhury
- Department of Paediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional Malaysia (National Defense University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
28
|
Halpin-Veszeleiova K, Hatfield SM. Therapeutic Targeting of Hypoxia-A2-Adenosinergic Pathway in COVID-19 Patients. Physiology (Bethesda) 2022; 37:46-52. [PMID: 34486395 PMCID: PMC8742736 DOI: 10.1152/physiol.00010.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hypoxia-hypoxia-inducible factor (HIF)-1α-A2-adenosinergic pathway protects tissues from inflammatory damage during antipathogen immune responses. The elimination of this physiological tissue-protecting mechanism by supplemental oxygenation may contribute to the high mortality of oxygen-ventilated COVID-19 patients by exacerbating inflammatory lung damage. Restoration of this pathway with hypoxia-adenosinergic drugs may improve outcomes in these patients.
Collapse
Affiliation(s)
- Katarina Halpin-Veszeleiova
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| |
Collapse
|
29
|
The implications of hyperoxia, type 1 diabetes and sex on cardiovascular physiology in mice. Sci Rep 2021; 11:23086. [PMID: 34845324 PMCID: PMC8630164 DOI: 10.1038/s41598-021-02550-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023] Open
Abstract
Oxygen supplementation, although a cornerstone of emergency and cardiovascular medicine, often results in hyperoxia, a condition characterized by excessive tissue oxygen which results in adverse cardiac remodeling and subsequent injurious effects to physiological function. Cardiac remodeling is further influenced by various risk factors, including pre-existing conditions and sex. Thus, the purpose of this experiment was to investigate cardiac remodeling in Type I Diabetic (Akita) mice subjected to hyperoxic treatment. Overall, we demonstrated that Akita mice experience distinct challenges from wild type (WT) mice. Specifically, Akita males at both normoxia and hyperoxia showed significant decreases in body and heart weights, prolonged PR, QRS, and QTc intervals, and reduced %EF and %FS at normoxia compared to WT controls. Moreover, Akita males largely resemble female mice (both WT and Akita) with regards to the parameters studied. Finally, statistical analysis revealed hyperoxia to have the greatest influence on cardiac pathophysiology, followed by sex, and finally genotype. Taken together, our data suggest that Type I diabetic patients may have distinct cardiac pathophysiology under hyperoxia compared to uncomplicated patients, with males being at high risk. These findings can be used to enhance provision of care in ICU patients with Type I diabetes as a comorbid condition.
Collapse
|
30
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
31
|
Guo T, Jiang F, Liu Y, Zhao Y, Li Y, Wang Y. Respiratory Outcomes in Patients Following COVID-19-Related Hospitalization: A Meta-Analysis. Front Mol Biosci 2021; 8:750558. [PMID: 34692771 PMCID: PMC8528387 DOI: 10.3389/fmolb.2021.750558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Background: To determine the respiratory outcomes in patients following COVID-19-related hospitalization. Methods: Systematic review and meta-analysis of the literature. Results: Forced vital capacity (FVC, % of predicted): 0-3 months post discharge: 96.1, 95% CI [82.1-110.0]; 3-6 months post discharge: 99.9, 95% CI [84.8, 115.0]; >6 months post discharge: 97.4, 95% CI [76.8-118.0]. Diffusing capacity of the lungs for carbon monoxide (DLCO, % of predicted): 0-3 months post discharge: 83.9, 95% CI [68.9-98.9]; 3-6 months post discharge: 91.2, 95% CI [74.8-107.7]; >6 months post discharge: 97.3, 95% CI [76.7-117.9]. Percentage of patients with FVC less than 80% of predicted: 0-3 months post discharge: 10%, 95% CI [6-14%]; 3-6 months post discharge: 10%, 95% CI [2-18%]; >6 months post discharge: 13%, 95% CI [8-18%]. Percentage of patients with DLCO less than 80% of predicted: 0-3 months post discharge: 48%, 95% CI [41-56%]; 3-6 months post discharge: 33%, 95% CI [23-44%]; >6 months post discharge: 43%, 95% CI [22-65%]. Conclusion: The meta-analysis confirms a high prevalence of persistent lung diffusion impairment in patients following COVID-19-related hospitalization. Routine respiratory follow-up is thus strongly recommended.
Collapse
Affiliation(s)
- Tao Guo
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Fangfang Jiang
- Department of Mathematical Sciences, Faculty of Social Sciences, University of Southampton, Southampton, United Kingdom
| | - Yufei Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Zhao
- School of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiran Li
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
Maharana B, Chakraborty P, Rackimuthu S, Baig R, Kadakia S. Paradoxical role of oxygen in the treatment of patients with COVID-19. Monaldi Arch Chest Dis 2021; 92. [PMID: 34526728 DOI: 10.4081/monaldi.2021.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Dear Editor, Coronavirus disease-2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was declared a pandemic by WHO on 11 March 2020 and has adversely affected human society and disrupted global health...
Collapse
Affiliation(s)
| | | | | | - Rusab Baig
- Shadan Institute of Medical Sciences, Telangana.
| | | |
Collapse
|
33
|
Anaya JM, Rojas M, Salinas ML, Rodríguez Y, Roa G, Lozano M, Rodríguez-Jiménez M, Montoya N, Zapata E, Monsalve DM, Acosta-Ampudia Y, Ramírez-Santana C. Post-COVID syndrome. A case series and comprehensive review. Autoimmun Rev 2021; 20:102947. [PMID: 34509649 PMCID: PMC8428988 DOI: 10.1016/j.autrev.2021.102947] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 01/08/2023]
Abstract
The existence of a variety of symptoms with a duration beyond the acute phase of COVID-19, is referred to as post-COVID syndrome (PCS). We aimed to report a series of patients with PCS attending a Post-COVID Unit and offer a comprehensive review on the topic. Adult patients with previously confirmed SARS-CoV-2 infection and PCS were systematically assessed through a semi-structured and validated survey. Total IgG, IgA and IgM serum antibodies to SARS-CoV-2 were evaluated by an electrochemiluminescence immunoassay. A systematic review of the literature and meta-analysis were conducted, following PRISMA guidelines. Univariate and multivariate methods were used to analyze data. Out of a total of 100 consecutive patients, 53 were women, the median of age was 49 years (IQR: 37.8–55.3), the median of post-COVID time after the first symptoms was 219 days (IQR: 143–258), and 65 patients were hospitalized during acute COVID-19. Musculoskeletal, digestive (i.e., diarrhea) and neurological symptoms including depression (by Zung scale) were the most frequent observed in PCS patients. A previous hospitalization was not associated with PCS manifestation. Arthralgia and diarrhea persisted in more than 40% of PCS patients. The median of anti-SARS-CoV-2 antibodies was 866.2 U/mL (IQR: 238.2–1681). Despite this variability, 98 patients were seropositive. Based on autonomic symptoms (by COMPASS 31) two clusters were obtained with different clinical characteristics. Levels of anti-SARS-CoV-2 antibodies were not different between clusters. A total of 40 articles (11,196 patients) were included in the meta-analysis. Fatigue/muscle weakness, dyspnea, pain and discomfort, anxiety/depression and impaired concentration were presented in more than 20% of patients reported. In conclusion, PCS is mainly characterized by musculoskeletal, pulmonary, digestive and neurological involvement including depression. PCS is independent of severity of acute illness and humoral response. Long-term antibody responses to SARS-CoV-2 infection and a high inter-individual variability were confirmed. Future studies should evaluate the mechanisms by which SARS-CoV-2 may cause PCS and the best therapeutic options.
Collapse
Affiliation(s)
- Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia.
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia
| | - Geraldine Roa
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Lozano
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mónica Rodríguez-Jiménez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Elizabeth Zapata
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | -
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
34
|
Huang L, Yao Q, Gu X, Wang Q, Ren L, Wang Y, Hu P, Guo L, Liu M, Xu J, Zhang X, Qu Y, Fan Y, Li X, Li C, Yu T, Xia J, Wei M, Chen L, Li Y, Xiao F, Liu D, Wang J, Wang X, Cao B. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet 2021; 398:747-758. [PMID: 34454673 PMCID: PMC8389999 DOI: 10.1016/s0140-6736(21)01755-4] [Citation(s) in RCA: 716] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The full range of long-term health consequences of COVID-19 in patients who are discharged from hospital is largely unclear. The aim of our study was to comprehensively compare consequences between 6 months and 12 months after symptom onset among hospital survivors with COVID-19. METHODS We undertook an ambidirectional cohort study of COVID-19 survivors who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7 and May 29, 2020. At 6-month and 12-month follow-up visit, survivors were interviewed with questionnaires on symptoms and health-related quality of life (HRQoL), and received a physical examination, a 6-min walking test, and laboratory tests. They were required to report their health-care use after discharge and work status at the 12-month visit. Survivors who had completed pulmonary function tests or had lung radiographic abnormality at 6 months were given the corresponding tests at 12 months. Non-COVID-19 participants (controls) matched for age, sex, and comorbidities were interviewed and completed questionnaires to assess prevalent symptoms and HRQoL. The primary outcomes were symptoms, modified British Medical Research Council (mMRC) score, HRQoL, and distance walked in 6 min (6MWD). Multivariable adjusted logistic regression models were used to evaluate the risk factors of 12-month outcomes. FINDINGS 1276 COVID-19 survivors completed both visits. The median age of patients was 59·0 years (IQR 49·0-67·0) and 681 (53%) were men. The median follow-up time was 185·0 days (IQR 175·0-198·0) for the 6-month visit and 349·0 days (337·0-361·0) for the 12-month visit after symptom onset. The proportion of patients with at least one sequelae symptom decreased from 68% (831/1227) at 6 months to 49% (620/1272) at 12 months (p<0·0001). The proportion of patients with dyspnoea, characterised by mMRC score of 1 or more, slightly increased from 26% (313/1185) at 6-month visit to 30% (380/1271) at 12-month visit (p=0·014). Additionally, more patients had anxiety or depression at 12-month visit (26% [331/1271] at 12-month visit vs 23% [274/1187] at 6-month visit; p=0·015). No significant difference on 6MWD was observed between 6 months and 12 months. 88% (422/479) of patients who were employed before COVID-19 had returned to their original work at 12 months. Compared with men, women had an odds ratio of 1·43 (95% CI 1·04-1·96) for fatigue or muscle weakness, 2·00 (1·48-2·69) for anxiety or depression, and 2·97 (1·50-5·88) for diffusion impairment. Matched COVID-19 survivors at 12 months had more problems with mobility, pain or discomfort, and anxiety or depression, and had more prevalent symptoms than did controls. INTERPRETATION Most COVID-19 survivors had a good physical and functional recovery during 1-year follow-up, and had returned to their original work and life. The health status in our cohort of COVID-19 survivors at 12 months was still lower than that in the control population. FUNDING Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the National Natural Science Foundation of China, the National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, the China Evergrande Group, Jack Ma Foundation, Sino Biopharmaceutical, Ping An Insurance (Group), and New Sunshine Charity Foundation.
Collapse
Affiliation(s)
- Lixue Huang
- Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Qun Yao
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qiongya Wang
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Lili Ren
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Ping Hu
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Li Guo
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jiuyang Xu
- Tsinghua University School of Medicine, Beijing, China
| | - Xueyang Zhang
- Tsinghua University School of Medicine, Beijing, China
| | - Yali Qu
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Yanqing Fan
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Xia Li
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Caihong Li
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Ting Yu
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Jiaan Xia
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Ming Wei
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Li Chen
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Yanping Li
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Fan Xiao
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Dan Liu
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Jianwei Wang
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianguang Wang
- Jin Yin-tan Hospital, Wuhan, Hubei Province, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
35
|
Hanidziar D, Robson SC. Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G200-G212. [PMID: 34105986 PMCID: PMC8410108 DOI: 10.1152/ajpgi.00406.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatosplanchnic and pulmonary vasculatures constitute synapomorphic, highly comparable networks integrated with the external environment. Given functionality related to obligatory requirements of "feeding and breathing," these organs are subject to constant environmental challenges entailing infectious risk, antigenic and xenobiotic exposures. Host responses to these stimuli need to be both protective and tightly regulated. These functions are facilitated by dualistic, high-low pressure blood supply of the liver and lungs, as well as tolerogenic characteristics of resident immune cells and signaling pathways. Dysregulation in hepatosplanchnic and pulmonary blood flow, immune responses, and microbiome implicate common pathogenic mechanisms across these vascular networks. Hepatosplanchnic diseases, such as cirrhosis and portal hypertension, often impact lungs and perturb pulmonary circulation and oxygenation. The reverse situation is also noted with lung disease resulting in hepatic dysfunction. Others, and we, have described common features of dysregulated cell signaling during liver and lung inflammation involving extracellular purines (e.g., ATP, ADP), either generated exogenously or endogenously. These metabokines serve as danger signals, when released by bacteria or during cellular stress and cause proinflammatory and prothrombotic signals in the gut/liver-lung vasculature. Dampening of these danger signals and organ protection largely depends upon activities of vascular and immune cell-expressed ectonucleotidases (CD39 and CD73), which convert ATP and ADP into anti-inflammatory adenosine. However, in many inflammatory disorders involving gut, liver, and lung, these protective mechanisms are compromised, causing perpetuation of tissue injury. We propose that interventions that specifically target aberrant purinergic signaling might prevent and/or ameliorate inflammatory disorders of the gut/liver and lung axis.
Collapse
Affiliation(s)
- Dusan Hanidziar
- 1Department of Anesthesia, Critical Care and Pain Medicine, grid.32224.35Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- 2Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,3Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Zimecki M, Actor JK, Kruzel ML. The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol 2021; 95:107571. [PMID: 33765614 PMCID: PMC7953442 DOI: 10.1016/j.intimp.2021.107571] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is a serious global health threat caused by severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). Symptoms of COVID-19 are highly variable with common hyperactivity of immune responses known as a "cytokine storm". In fact, this massive release of inflammatory cytokines into in the pulmonary alveolar structure is a main cause of mortality during COVID-19 infection. Current management of COVID-19 is supportive and there is no common clinical protocol applied to suppress this pathological state. Lactoferrin (LF), an iron binding protein, is a first line defense protein that is present in neutrophils and excretory fluids of all mammals, and is well recognized for its role in maturation and regulation of immune system function. Also, due to its ability to sequester free iron, LF is known to protect against insult-induced oxidative stress and subsequent "cytokine storm" that results in dramatic necrosis within the affected tissue. Review of the literature strongly suggests utility of LF to silence the "cytokine storm", giving credence to both prophylactic and therapeutic approaches towards combating COVID-19 infection.
Collapse
Affiliation(s)
- Michał Zimecki
- The Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jeffrey K Actor
- University of Texas, Health Science Center Houston, Texas, USA.
| | - Marian L Kruzel
- University of Texas, Health Science Center Houston, Texas, USA
| |
Collapse
|
37
|
Núñez-Fernández M, Ramos-Hernández C, García-Río F, Torres-Durán M, Nodar-Germiñas A, Tilve-Gómez A, Rodríguez-Fernández P, Valverde-Pérez D, Ruano-Raviña A, Fernández-Villar A. Alterations in Respiratory Function Test Three Months after Hospitalisation for COVID-19 Pneumonia: Value of Determining Nitric Oxide Diffusion. J Clin Med 2021; 10:jcm10102119. [PMID: 34068867 PMCID: PMC8153552 DOI: 10.3390/jcm10102119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Three to four months after hospitalisation for COVID-19 pneumonia, the most frequently described alteration in respiratory function tests (RFTs) is decreased carbon monoxide transfer capacity (DLCO). Methods: This is a prospective cohort study that included patients hospitalised because of SARS-CoV-2 pneumonia, three months after their discharge. A clinical evaluation, analytical parameters, chest X-ray, six-minute walk test, spirometry and DLCO–DLNO analysis were performed. Demographic variables, comorbidities, and variables related to the severity of the admission were recorded. Results: Two hundred patients completed the study; 59.5% men, age 62 years, 15.5% admitted to the intensive care unit. The most frequent functional alteration, in 27% of patients, was in the DLCO–DLNO combination. This alteration was associated with age, male sex, degree of dyspnoea, poorer perception of health, and limited ability for physical effort. These patients also presented higher levels of D-Dimer and more residual radiological alterations. In 42% of the patients with diffusion alterations, only reduced DLNO was presented, along with lower D-Dimer levels and less capillary volume involvement. The severity of the process was associated with the reduction in DLCO–DLNO. Conclusions: The most sensitive RFT for the detection of the sequelae of COVID-19 pneumonia was the combined measurement of DLCO–DLNO and this factor was related to patient health status and their capacity for physical exertion. In 40% of these cases, there was only a reduction in DLNO, a finding that may indicate less pulmonary vascular involvement.
Collapse
Affiliation(s)
- Marta Núñez-Fernández
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
| | - Cristina Ramos-Hernández
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
| | - Francisco García-Río
- Service of Pneumology La Paz-IdiPAZ University Hospital, 28046 Madrid, Spain;
- CIBER Respiratory Diseases (CIBERES), 28046 Madrid, Spain
- Department of Medicine, University Autónoma de Madrid, 28046 Madrid, Spain
| | - María Torres-Durán
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
| | - Andrés Nodar-Germiñas
- Infectious Diseases Unit, Service of Internal Medicine, University Hospital Complex of Vigo, 36213 Vigo, Spain;
| | - Amara Tilve-Gómez
- Service of Radiodiagnosis, University Hospital Complex of Vigo, 36213 Vigo, Spain; (A.T.-G.); (P.R.-F.)
| | - Paula Rodríguez-Fernández
- Service of Radiodiagnosis, University Hospital Complex of Vigo, 36213 Vigo, Spain; (A.T.-G.); (P.R.-F.)
| | - Diana Valverde-Pérez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
| | - Alberto Ruano-Raviña
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, 15704 Santiago de Compostela, Spain;
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 15704 Santiago de Compostela, Spain
| | - Alberto Fernández-Villar
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
- Correspondence:
| |
Collapse
|
38
|
Wu X, Liu X, Zhou Y, Yu H, Li R, Zhan Q, Ni F, Fang S, Lu Y, Ding X, Liu H, Ewing RM, Jones MG, Hu Y, Nie H, Wang Y. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. THE LANCET RESPIRATORY MEDICINE 2021; 9:747-754. [PMID: 33964245 PMCID: PMC8099316 DOI: 10.1016/s2213-2600(21)00174-0] [Citation(s) in RCA: 477] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Background The consequences of COVID-19 in those who recover from acute infection requiring hospitalisation have yet to be clearly defined. We aimed to describe the temporal trends in respiratory outcomes over 12 months in patients hospitalised for severe COVID-19 and to investigate the associated risk factors. Methods In this prospective, longitudinal, cohort study, patients admitted to hospital for severe COVID-19 who did not require mechanical ventilation were prospectively followed up at 3 months, 6 months, 9 months, and 12 months after discharge from Renmin Hospital of Wuhan University, Wuhan, China. Patients with a history of hypertension; diabetes; cardiovascular disease; cancer; and chronic lung disease, including asthma or chronic obstructive pulmonary disease; or a history of smoking documented at time of hospital admission were excluded at time of electronic case-note review. Patients who required intubation and mechanical ventilation were excluded given the potential for the consequences of mechanical ventilation itself to influence the factors under investigation. During the follow-up visits, patients were interviewed and underwent physical examination, routine blood test, pulmonary function tests (ie, diffusing capacity of the lungs for carbon monoxide [DLCO]; forced expiratory flow between 25% and 75% of forced vital capacity [FVC]; functional residual capacity; FVC; FEV1; residual volume; total lung capacity; and vital capacity), chest high-resolution CT (HRCT), and 6-min walk distance test, as well as assessment using a modified Medical Research Council dyspnoea scale (mMRC). Findings Between Feb 1, and March 31, 2020, of 135 eligible patients, 83 (61%) patients participated in this study. The median age of participants was 60 years (IQR 52–66). Temporal improvement in pulmonary physiology and exercise capacity was observed in most patients; however, persistent physiological and radiographic abnormalities remained in some patients with COVID-19 at 12 months after discharge. We found a significant reduction in DLCO over the study period, with a median of 77% of predicted (IQR 67–87) at 3 months, 76% of predicted (68–90) at 6 months, and 88% of predicted (78–101) at 12 months after discharge. At 12 months after discharge, radiological changes persisted in 20 (24%) patients. Multivariate logistic regression showed increasing odds of impaired DLCO associated with female sex (odds ratio 8·61 [95% CI 2·83–26·2; p=0·0002) and radiological abnormalities were associated with peak HRCT pneumonia scores during hospitalisation (1·36 [1·13–1·62]; p=0·0009). Interpretation In most patients who recovered from severe COVID-19, dyspnoea scores and exercise capacity improved over time; however, in a subgroup of patients at 12 months we found evidence of persistent physiological and radiographic change. A unified pathway for the respiratory follow-up of patients with COVID-19 is required. Funding National Natural Science Foundation of China, UK Medical Research Council, and National Institute for Health Research Southampton Biomedical Research Centre. Translation For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaofan Liu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hongying Yu
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ruiyun Li
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingyuan Zhan
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fang Ni
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Fang
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Lu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hailing Liu
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mark G Jones
- Institute for Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| | - Yi Hu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| |
Collapse
|
39
|
Heart-lung interactions in COVID-19: prognostic impact and usefulness of bedside echocardiography for monitoring of the right ventricle involvement. Heart Fail Rev 2021; 27:1325-1339. [PMID: 33864580 PMCID: PMC8052527 DOI: 10.1007/s10741-021-10108-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Due to the SARS-CoV-2 infection–related severe pulmonary tissue damages associated with a relative specific widespread thrombotic microangiopathy, the pathophysiologic role of heart–lung interactions becomes crucial for the development and progression of right ventricular (RV) dysfunction. The high resistance in the pulmonary circulation, as a result of small vessel thrombosis and hypoxemia, is the major cause of right heart failure associated with a particularly high mortality in severe COVID-19. Timely identification of patients at high risk for RV failure, optimization of mechanical ventilation to limit its adverse effects on RV preload and afterload, avoidance of medication-related increase in the pulmonary vascular resistance, and the use of extracorporeal membrane oxygenation in refractory respiratory failure with hemodynamic instability, before RV failure develops, can improve patient survival. Since it was confirmed that the right-sided heart is particularly involved in the clinical deterioration of patients with COVID-19 and pressure overload-induced RV dysfunction plays a key role for patient outcome, transthoracic echocardiography (TTE) received increasing attention. Limited TTE focused on the right heart appears highly useful in hospitalized COVID-19 patients and particularly beneficial for monitoring of critically ill patients. In addition to detection of right-sided heart dilation and RV dysfunction, it enables assessment of RV-pulmonary arterial coupling and evaluation of RV adaptability to pressure loading which facilitate useful prognostic statements to be made. The increased use of bedside TTE focused on the right heart could facilitate more personalized management and treatment of hospitalized patients and can contribute towards reducing the high mortality associated with SARS-CoV-2 infection.
Collapse
|