1
|
Geng L, Bai Z, Wen X, Liu H, Xie H, Wang Y, Wu W, Zeng Z, Zheng K. PTEN-Long inhibits the biological behaviors of glioma cells. Am J Transl Res 2024; 16:2840-2851. [PMID: 39114725 PMCID: PMC11301513 DOI: 10.62347/qhca5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES PTEN-Long is a translational variant of phosphatase and tensin homolog (PTEN). This study aimed to assess the effect of PTEN-Long on the biological characteristics of glioma cells and related mechanisms. METHODS A vector stably expressing PTEN-Long was established and transfected into cells, serving as the overexpression group, while a set of empty vectors served as the negative control group. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of PTEN-Long and phosphatidylinositol 3-kinase, Protein kinase B, andnuclear factor-κB (PI3K-AKT-NF-κB). Cell proliferation was assessed with the Cell Counting Kit 8 (CCK8) assay, migration through the scratch test, and invasion by the transwell chamber assay. Cell cycle analysis was performed using flow cytometry. The volume and weight of subcutaneous tumors in nude mice were also evaluated. RESULTS PTEN-Long expression led to downregulation of p-Akt, NF-κB p65, p-NF-κB p65, and Bcl-xl, and up-regulation of IκBα. In addition, it inhibited glioma cell proliferation, induced cell cycle arrest in the G0/G1 phase, and reduced cell migration and invasion. Moreover, PTEN-Long inhibited the growth of subcutaneous glioma in nude mice. CONCLUSIONS PTEN-Long inhibits the proliferation, migration, and invasion and induces apoptosis in glioma cells by inhibiting PI3K-AKT-NF-κb signaling, implying that PTEN-Long may be a new target for glioma treatment.
Collapse
Affiliation(s)
- Lianting Geng
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Zetong Bai
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Haipeng Liu
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Haipeng Xie
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Yan Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Wensong Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330000, Jiangxi, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| |
Collapse
|
2
|
Yang X, Cai X, Lin J, Zheng Y, Liao Z, Lin W, He X, Zhang Y, Ren X, Liu C. E. Coli LPS-induced calcium signaling regulates the expression of hypoxia-inducible factor 1α in periodontal ligament fibroblasts in a non-hypoxia-dependent manner. Int Immunopharmacol 2024; 128:111418. [PMID: 38176341 DOI: 10.1016/j.intimp.2023.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Periodontitis, an inflammatory disease, can cause significant damage to the oral tissues which support the teeth. During the early development of periodontitis, periodontal ligament fibroblasts (PDLFs) undergo metabolic reprogramming regulated by hypoxia-inducible factor 1α (HIF-1α), which is strongly linked to the progression of inflammation. However, the precise mechanisms by which PDLFs regulate HIF-1α and its associated metabolic reprogramming during early inflammation remain unclear. This study illustrated that brief and low-dose exposure to Escherichia coli (E. coli) lipopolysaccharide (LPS) can serve as a non-hypoxic stimulus, effectively replicating early periodontal inflammatory reactions. This is evidenced by the upregulation of HIF-1α expression and the activation of HIF-1α-mediated crucial glycolytic enzymes, namely lactate dehydrogenase a, pyruvate kinase, and hexokinase 2, concomitant with an augmentation in the inflammatory response within PDLFs. We observed that the effects mentioned and their impact on macrophage polarization were notably attenuated when intracellular and extracellular stores of Ca2+ were depleted using BAPTA-AM and Ca2+-free medium, respectively. Mechanistically, our findings demonstrated that the transcriptional process of HIF-1α is regulated by Ca2+ during E. coli LPS stimulation, mediated through the signal transducer and activator of transcription 3 (STAT3) pathway. Additionally, we observed that the stabilization of intracellular HIF-1α proteins occurs via the endothelin (ET)-1-endothelin A receptor pathway, independent of hypoxia. Taken together, our research outcomes underscore the pivotal involvement of Ca2+ in the onset of early periodontitis by modulating HIF-1α and glycolysis, thereby presenting novel avenues for early therapeutic interventions.
Collapse
Affiliation(s)
- Xia Yang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Xuepei Cai
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, China
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Yifan Zheng
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Zhihao Liao
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Weiyin Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Ying Zhang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - XiaoHua Ren
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China.
| |
Collapse
|
3
|
Moriya Y, Kubota S, Iijima Y, Takasugi N, Uehara T. Epigenetic Regulation of Carbonic Anhydrase 9 Expression by Nitric Oxide in Human Small Airway Epithelial Cells. Biol Pharm Bull 2024; 47:1119-1122. [PMID: 38839363 DOI: 10.1248/bpb.b24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function.
Collapse
Affiliation(s)
- Yuto Moriya
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
4
|
Suresh MV, Aggarwal V, Raghavendran K. The Intersection of Pulmonary Vascular Disease and Hypoxia-Inducible Factors. Interv Cardiol Clin 2023; 12:443-452. [PMID: 37290846 DOI: 10.1016/j.iccl.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hypoxia-inducible factors (HIFs) are a family of nuclear transcription factors that serve as the master regulator of the adaptive response to hypoxia. In the lung, HIFs orchestrate multiple inflammatory pathways and signaling. They have been reported to have a major role in the initiation and progression of acute lung injury, chronic obstructive pulmonary disease, pulmonary fibrosis, and pulmonary hypertension. Although there seems to be a clear mechanistic role for both HIF 1α and 2α in pulmonary vascular diseases including PH, a successful translation into a definitive therapeutic modality has not been accomplished to date.
Collapse
Affiliation(s)
| | - Vikas Aggarwal
- Division of Cardiology (Frankel Cardiovascular Center), Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Section of Cardiology, Department of Internal Medicine, Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Krishnan Raghavendran
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Zhang M, Tang B, Huang L, Xiong Y, Tu J, Jia Y, Jiang F, Shen L, Luo Q, Ye J. Hypoxia induces the production of epithelial-derived cytokines in eosinophilic chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 121:110559. [PMID: 37364325 DOI: 10.1016/j.intimp.2023.110559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Hypoxia plays a significant role in the pathogenesis of chronic rhinosinusitis (CRS). However, the role and mechanism of hypoxia in the type 2 immune response in eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) remain unclear. METHODS The expression of hypoxia-inducible factor-1α (HIF-1α) and epithelial-derived cytokines (EDCs), including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), was detected in nasal polyps via immunohistochemical analysis. The relationship between HIF-1α and EDCs was also elucidated using Pearson's correlation. Moreover, primary human nasal epithelial cells (HNECs) and a mouse model of ECRSwNP were employed to elucidate the role and mechanism of hypoxia in type 2 immune responses. RESULTS HIF-1α, IL-25, IL-33, and TSLP expression levels were upregulated in the non-ECRSwNP and ECRSwNP groups compared with the control group, with the ECRSwNP group having the highest HIF-1α and EDC expression levels. Additionally, HIF-1α was positively correlated with IL-25 and IL-33 in the ECRSwNP group. Meanwhile, treatment with a HIF-1α inhibitor, PX-478, inhibited the hypoxia-induced increase in the mRNA and protein expression of EDCs and type 2 cytokines in HNECs. Similarly, in vivo, PX-478 inhibited EDC expression in the sinonasal mucosa of mice with ECRSwNP. CONCLUSIONS Hypoxia induces EDC expression by upregulating HIF-1α levels, thereby promoting type 2 immune responses and the development of ECRSwNP. Hence, targeting HIF-1α may represent an effective therapeutic strategy for ECRSwNP.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Suegery, Nanchang, Jiangxi Province, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Suegery, Nanchang, Jiangxi Province, China
| | - Ligui Huang
- The 908th Hospital of Joint Logistics Support Force of PLA, Nanchang, Jiangxi Province, China
| | - Yishan Xiong
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yizhen Jia
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fan Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Suegery, Nanchang, Jiangxi Province, China.
| |
Collapse
|
6
|
Mikami Y, Grubb BR, Rogers TD, Dang H, Asakura T, Kota P, Gilmore RC, Okuda K, Morton LC, Sun L, Chen G, Wykoff JA, Ehre C, Vilar J, van Heusden C, Livraghi-Butrico A, Gentzsch M, Button B, Stutts MJ, Randell SH, O’Neal WK, Boucher RC. Chronic airway epithelial hypoxia exacerbates injury in muco-obstructive lung disease through mucus hyperconcentration. Sci Transl Med 2023; 15:eabo7728. [PMID: 37285404 PMCID: PMC10664029 DOI: 10.1126/scitranslmed.abo7728] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of β and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.
Collapse
Affiliation(s)
- Yu Mikami
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Troy D. Rogers
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisa C. Morton
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason A. Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Vilar
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Catharina van Heusden
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M. Jackson Stutts
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 2023; 46:491-508. [PMID: 36596930 PMCID: PMC9811056 DOI: 10.1007/s10753-022-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
Collapse
Affiliation(s)
| | | | - Sumeet Solanki
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | | | - Yatrik M Shah
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
8
|
Zhang M, Xiong Y, Tu J, Tang B, Zhang Z, Yu J, Shen L, Luo Q, Ye J. Hypoxia disrupts the nasal epithelial barrier by inhibiting PTPN2 in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 118:110054. [PMID: 36963262 DOI: 10.1016/j.intimp.2023.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Hypoxia is involved in inflammation and immune response; however, its role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) is not fully understood. We aimed to investigate the mechanisms by which hypoxia disrupts the nasal epithelial barrier in CRSwNP. METHODS The expression of hypoxia-inducible factor-1α (HIF-1α), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and tight junction (TJ) components (claudin-4, occludin, and ZO-1) was detected in nasal polyps using immunohistochemistry, western blotting, and qRT-PCR. Primary human nasal epithelial cells (HNECs), BEAS-2B cells, and an eosinophilic CRSwNP (Eos CRSwNP) mouse model were used to explore the potential mechanisms by which hypoxia disrupts the nasal epithelial barrier. RESULTS HIF-1α expression in the non-Eos and Eos CRSwNP groups was higher than in the control group, and the expression of PTPN2 and TJs in the non-Eos and Eos CRSwNP groups were lower than those in the control group. Hypoxia decreased the expression of PTPN2 and TJs and increased epithelial cell permeability in HNECs, which was blocked by the HIF-1α inhibitor PX-478. PTPN2 overexpression inhibited hypoxia-induced downregulation of TJ expression in BEAS-2B cells, whereas PTPN2-knockdown aggravated the effects of hypoxia. In the Eos CRSwNP mouse model, both PX-478 and PTPN2 overexpression reduced the formation of nasal polypoid lesions, permeability of the nasal epithelium, and restored TJ expression. CONCLUSIONS Our data indicate that hypoxia-induced HIF-1α downregulates TJ expression by inhibiting PTPN2, thereby disrupting the nasal epithelial barrier and promoting CRSwNP development. HIF-1α and PTPN2 may be potential targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yishan Xiong
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jieqing Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Surgery, Nanchang, Jiangxi Province, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Surgery, Nanchang, Jiangxi Province, China.
| |
Collapse
|
9
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
10
|
lncRNA MEG3 Inhibits the Proliferation and Growth of Glioma Cells by Downregulating Bcl-xL in the PI3K/Akt/NF-κB Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3729069. [PMID: 35860793 PMCID: PMC9293524 DOI: 10.1155/2022/3729069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the impact and mechanisms of lncRNA MEG3 on glioma cells. lncRNA MEG3 was lowly expressed in glioma cells as compared to noncancer cells. Overexpression of MEG3 significantly downregulated the expression of Bcl-xL, slightly upregulated the expression of NF-κB p65 and IκBα, and reduced the proliferation of glioma cells with increased apoptosis and the migration and invasion ability. Subsequently, glioma cells overexpressing MEG3 had less tumorgenicity in xenograft mouse models. It is likely that MEG3 induces apoptosis in glioma cells via downregulating the Bcl-xL gene in the PI3K/Akt/NF-κB signal pathway to reduce the development of glioma.
Collapse
|
11
|
Yu D, Li B, Yu M, Guo S, Guo Z, Han Y. Cubic multi-ions-doped Na2TiO3 nanorod-like coatings: Structure-stable, highly efficient platform for ions-exchanged release to immunomodulatory promotion on vascularized bone apposition. Bioact Mater 2022; 18:72-90. [PMID: 35387170 PMCID: PMC8961311 DOI: 10.1016/j.bioactmat.2022.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022] Open
Abstract
The dissolution-derived release of bioactive ions from ceramic coatings on metallic implants, despite improving osseointegration, renders a concern on the interfacial breakdown of the metal/coating/bone system during long-term service. Consequently, persistent efforts to seek alternative strategies instead of dissolution-derived activation are pressingly carrying out. Inspired by bone mineral containing ions as Ca2+, Mg2+, Sr2+ and Zn2+, here we hydrothermally grew the quadruple ions co-doped Na2TiO3 nanorod-like coatings. The co-doped ions partially substitute Na+ in Na2TiO3, and can be efficiently released from cubic lattice via exchange with Na+ in fluid rather than dissolution, endowing the coatings superior long-term stability of structure and bond strength. Regulated by the coatings-conditioned extracellular ions, TLR4-NFκB signalling is enhanced to act primarily in macrophages (MΦs) at 6 h while CaSR-PI3K-Akt1 signalling is potentiated to act predominately since 24 h, triggering MΦs in a M1 response early and then in a M2 response to sequentially secrete diverse cytokines. Acting on endothelial and mesenchymal stem cells with the released ions and cytokines, the immunomodulatory coatings greatly promote Type-H (CD31hiEmcnhi) angiogenesis and osteogenesis in vitro and in vivo, providing new insights into orchestrating insoluble ceramics-coated implants for early vascularized osseointegration in combination with long-term fixation to bone. Co-doped Ca2+, Mg2+, Sr2+ and Zn2+ in Na2TiO3 efficiently release via ion exchange. QID elevates extracellular concentrations of the ions and MΦ intracellular [Ca2+]. Co-doped Na2TiO3 coatings promote immunomodulatory apposition of vascularized bone.
Collapse
Affiliation(s)
- Dongmei Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Shuo Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Corresponding author.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- Corresponding author.
| |
Collapse
|
12
|
Wang X, Wang Y, Pan H, Yan C. Dimethyl fumarate prevents acute lung injury related cognitive impairment potentially via reducing inflammation. J Cardiothorac Surg 2021; 16:331. [PMID: 34772431 PMCID: PMC8588675 DOI: 10.1186/s13019-021-01705-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Dimethyl fumarate (DMF) has been reported to exert a protective role against diverse lung diseases and cognitive impairment-related diseases. Thus this study aimed to investigate its role on acute lung injury (ALI) and related cognitive impairment in animal model. METHODS C57BL/6 mice were divided into four groups: control group, DMF group, ALI group, and ALI + DMF group. For ALI group, the ALI mice model was created by airway injection of LPS (50 μL, 1 μg/μL); for ALI + DMF group, DMF (dissolved in 0.08% methylcellulose) was treated twice a day for 2 days, and on the third day, mice were injected with LPS for ALI modeling. Mice pre-administered with methylcellulose or DMF without LPS injection (PBS instead) were used as the control group and DMF group, respectively. Morris water maze test was performed before any treatment (0 h) and 6 h after LPS-induction (54 h) to evaluate the cognitive impairment of mice. Next, the brain edema and blood brain barrier (BBB) permeability of ALI mice were assessed by brain water content, Evans blue extravasation and FITC-Dextran uptake assays. In addition, the effect of DMF on the numbers of total cells and neutrophils, protein content in BALF were quantified; the inflammatory factors in BALF, serum, and brain tissues were examined by ELISA, qRT-PCR, and Western blot assays. The effect of DMF on the cognitive impairment-related factor HIF-1α level in lung and brain tissues was also examined by Western blot. RESULTS DMF reduced the numbers of total cells, neutrophils and protein content in BALF of ALI mice, inhibited the levels of IL-6, TNF-α and IL-1β in BALF, serum and brain tissues of ALI mice. The protein expressions of p-NF-κB/NF-κB and p-IKBα/IKBα was also suppressed by DMF in ALI mice. Morris water maze test showed that DMF alleviated the cognitive impairment in ALI mice by reducing the escape latency and path length. Moreover, DMF lessened the BBB permeability by decreasing cerebral water content, Evans blue extravasation and FITC-Dextran uptake in ALI mice. The HIF-1α levels in lung and brain tissues of ALI mice were also lessened by DMF. CONCLUSION In conclusion, DME had the ability to alleviate the lung injury and cerebral cognitive impairment in ALI model mice. This protective effect partly associated with the suppression of inflammation by DMF.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, No. 305 Tianmu Shan Road, Hangzhou City, 310000, Zhejiang Province, China.
| |
Collapse
|
13
|
Chandrasekaran VRM, Periasamy S, Chien SP, Tseng CH, Tsai PJ, Liu MY. Physical and psychological stress along with candle fumes induced-cardiopulmonary injury mimicking restaurant kitchen workers. Curr Res Toxicol 2021; 2:246-253. [PMID: 34345867 PMCID: PMC8320639 DOI: 10.1016/j.crtox.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022] Open
Abstract
Restaurant kitchens are work areas where involve strict and hierarchal environments that promote opportunity for bullying and workplace aggression and violence. These physical and psychological stress and fumes ultimately trigger severe occupational stress by disrupting the body's homeostasis that might induce cardiopulmonary injury. The study aimed to investigate the physical and psychological stress and candle fumes on cardiopulmonary injury in an animal model mimicking a restaurant kitchen worker. Social disruption stress (SDR) mice were exposed to scented candle fumes (4.5 h/d, 5 d/wk) in an exposure chamber for 8 weeks. Exposure to burning scented candles failed to reduce serum corticosterone level and increased proinflammatory cytokines levels and NF-ƙB activity in the lung. In addition, burning scented candle fumes synergistically increased SDR-induced serum LDH, CPK, CKMB levels, proinflammatory cytokines production as well as NF-ƙB activation in the lung and heart. Further, cardiac HIF-1α and BNP levels were also increased. We conclude that the physical and psychological stress along with candle fumes might induce cardiopulmonary injury in mice. These results could be extrapolated to restaurant kitchen workers.
Collapse
Affiliation(s)
- Victor Raj Mohan Chandrasekaran
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Se-Ping Chien
- Department of Food and Beverage Services, Tainan University of Technology, Tainan 71002, Taiwan
| | - Chu-Han Tseng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Perng-Jy Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
14
|
Wang W, Tang J, Zhong M, Chen J, Li T, Dai Y. HIF-1 α may play a role in late pregnancy hypoxia-induced autism-like behaviors in offspring rats. Behav Brain Res 2021; 411:113373. [PMID: 34048873 DOI: 10.1016/j.bbr.2021.113373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can be caused by various factors. The present study aimed to determine whether prenatal hypoxia can lead to ASD and the role of hypoxia-inducible factor-1α (HIF-1α) in this process. We constructed a prenatal hypoxia model of pregnant rats by piping nitrogen and oxygen mixed gas, with an oxygen concentration of 10 ± 0.5 %, into the self-made hypoxia chamber. Rats were subjected to different extents of hypoxia treatments at different points during pregnancy. The results showed that hypoxia for 6 h on the 17th gestation day is most likely to lead to autistic behavior in offspring rats, including social deficits, repetitive behaviors, and impaired learning and memory. The mRNA expression level of TNF-α also increased in hypoxia-induced autism group and valproic acid (VPA) group. Western blotting analysis showed increased levels of hypoxia inducible factor 1 alpha (HIF-1α) and decreased levels of phosphatase and tensin homolog (PTEN) in the hypoxic-induced autism group. Meanwhile, N-methyl d-aspartate receptor subtype 2 (NR2A) and glutamate ionotropic receptor AMPA type subunit 2 (GluR2) were upregulated in the hypoxic-induced autism group. HIF-1α might play a role in hypoxia-caused autism-like behavior and its regulatory effect is likely to be achieved by regulating synaptic plasticity.
Collapse
Affiliation(s)
- Weiyu Wang
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jinghua Tang
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Min Zhong
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jie Chen
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ying Dai
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
| |
Collapse
|
15
|
Kling L, Schreiber A, Eckardt KU, Kettritz R. Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. J Leukoc Biol 2020; 110:61-75. [PMID: 33070368 DOI: 10.1002/jlb.4ri0820-535r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed heterodimeric transcription factors, composed of an oxygen-dependent α and a constitutive β subunit. The stability of HIF-1α and HIF-2α is regulated by oxygen-sensing prolyl-hydroxylases (PHD). HIF-1α and HIF-2α modify the innate immune response and are context dependent. We provide a historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and how HIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adaptation to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1α enables efficient infection defense by myeloid cells. HIF-2α delays inflammation resolution and decreases antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only control HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clinical practice. Current indications include renal anemia and certain cancers. Beneficial and adverse effects on myeloid cells should be considered and could possibly lead to drug repurposing for inflammatory disorders.
Collapse
Affiliation(s)
- Lovis Kling
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Zhang CQ, Yi S, Chen BB, Cui PP, Wang Y, Li YZ. mTOR/NF-κB signaling pathway protects hippocampal neurons from injury induced by intermittent hypoxia in rats. Int J Neurosci 2020; 131:994-1003. [PMID: 32378972 DOI: 10.1080/00207454.2020.1766460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To expound the roles of mTOR and NF-kB signaling pathway in intermittent hypoxia (IH)-induced damage of hippocampal neurons. METHODS For rat experiments, mTOR inhibitor (Rapamycin, Rapa) and NF-κB signaling inhibitor (ammonium pyrrolidine dithiocarbamate, PDTC) were applied to inhibit mTOR and NF-κB signaling, respectively. For neuron experiments, hippocampal neurons from rat were successfully cultured. Different concentrations of Rapa and PDTC were added to the cultured hippocampal neurons. Rat or primary hippocampal neurons were exposed to normoxic or IH conditions after administration of Rapa and PDTC. The effects of Rapa and PDTC administration on learning and memory ability of rats and hippocampal injury after IH exposure were assayed by Morris water maze and H&E staining. Electron microscope was utilized to examine primary hippocampal neuron ultrastructure changes after IH exposure and Rapa or PDTC administration. The expressions of NF-κB-p65, IκBα, IKKβ, BDNF, TNF-α, IL-1β, PSD-95 and SYN in hippocampal neurons were examined. RESULTS Compared with normal control rats or neurons, IH-treated group had elevated expression levels of NF-kB, TNF-α and IL-1β and suppressed expression level of BDNF, PSD-95 and SYN. These results were reversed upon pre-treatment with Rapa and PDTC. Furthermore, IκBα and IKKβ expressions were down-regulated in IH group. No notable difference was manifested in PDTC pre-treatment group, while a prominent increase was shown after Rapa pre-administration. CONCLUSION The administration of PDTC and Rapa could prevent IH-induced hippocampal neuron impairment, indicating that inhibition of the mTOR and NF-κB pathway may likely act as a therapeutic target for obstructive sleep apnea.
Collapse
Affiliation(s)
- Chu-Qin Zhang
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Song Yi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Bo-Bei Chen
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Pan-Pan Cui
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yan Wang
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yan-Zhong Li
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
17
|
Activation of Hypoxia-Inducible Factor-1α Via Succinate Dehydrogenase Pathway During Acute Lung Injury Induced by Trauma/Hemorrhagic Shock. Shock 2020; 53:208-216. [DOI: 10.1097/shk.0000000000001347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Lin CH, Shih CH, Jiang CP, Wen HC, Cheng WH, Chen BC. Mammalian target of rapamycin and p70S6K mediate thrombin-induced nuclear factor-κB activation and IL-8/CXCL8 release in human lung epithelial cells. Eur J Pharmacol 2019; 868:172879. [PMID: 31863766 DOI: 10.1016/j.ejphar.2019.172879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
Thrombin plays a crucial role in lung inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Thrombin induces the release of interleukin-8 (IL-8)/CXCL8 by lung epithelial cells, and this phenomenon plays a vital role in lung inflammation. Our previous studies have indicated that thrombin stimulates IL-8/CXCL8 expression through PI3K/Akt/IκB kinase (IKK)α/β/nuclear factor-κB (NF-κB) and p300 pathways in human lung epithelial cells. In the present study, we explored the roles of mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K) in thrombin-induced NF-κB activation and IL-8/CXCL8 release in human lung epithelial cells. In this study, we found that rapamycin (an mTOR inhibitor) and p70S6K siRNA diminished thrombin-induced IL-8/CXCL8 release. Thrombin induced mTOR Ser2448 phosphorylation and p70S6K Thr389 phosphorylation in a time-dependent manner. Moreover, rapamycin attenuated thrombin-stimulated p70S6K phosphorylation. We also found that transfection of cells with the dominant negative mutant of Akt (Akt DN) reduced the thrombin-induced increase in mTOR phosphorylation and p70S6K phosphorylation. Moreover, thrombin-stimulated p300 phosphorylation was attenuated by Akt DN, rapamycin, and p70S6K siRNA. Thrombin triggered p70S6K translocation from the cytosol to the nucleus in a time-dependent manner. Thrombin induced the complex formation of p70S6K, p300, and p65; acetylation of p65 Lys310, and recruitment of p70S6K, p300, and p65 to the κB-binding site of the IL-8/CXCL8 promoter region. In conclusion, these results indicate that thrombin initiates the Akt-dependent mTOR/p70S6K signaling pathway to promote p300 phosphorylation and NF-κB activation and finally induces IL-8/CXCL8 release in human lung epithelial cells.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chung-Hung Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ping Jiang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Heng-Ching Wen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wun-Hao Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Bing-Chang Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
19
|
Baay-Guzman GJ, Duran-Padilla MA, Rangel-Santiago J, Tirado-Rodriguez B, Antonio-Andres G, Barrios-Payan J, Mata-Espinosa D, Klunder-Klunder M, Vega MI, Hernandez-Pando R, Huerta-Yepez S. Dual role of hypoxia-inducible factor 1 α in experimental pulmonary tuberculosis: its implication as a new therapeutic target. Future Microbiol 2018; 13:785-798. [PMID: 29848058 DOI: 10.2217/fmb-2017-0168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/22/2018] [Indexed: 12/29/2022] Open
Abstract
AIM Investigate the role of hypoxia-inducible factor-1α (HIF-1α) in pulmonary tuberculosis (TB). METHODS & RESULTS A model of progressive pulmonary TB in BALB/c mice, immunohistochemistry and digital pathology were used. High HIF-1α expression was observed during early TB in activated macrophages. During late TB, even higher HIF-1α expression was observed in foamy macrophages, which are resistant to apoptosis. Blocking HIF-1α during early infection with 2-methoxyestradiol worsened the disease, while during late TB, it induced macrophage apoptosis and decreased bacillary loads. CONCLUSION HIF-1α has a dual role in experimental TB. This finding could have therapeutic implications because combined treatment with 2-methoxyestradiol and antibiotics appeared to eliminate mycobacteria more efficiently than conventional chemotherapy during advanced disease.
Collapse
Affiliation(s)
- Guillermina J Baay-Guzman
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Marco A Duran-Padilla
- Servicio de Patologia del Hospital General de Mexico, Facultad de Medicina de la UNAM, Mexico City, Mexico
| | - Jesus Rangel-Santiago
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Gabriela Antonio-Andres
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Section of Experimental Pathology, National Institute of Medical Sciences & Nutrition 'Salvador Zubirán', Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Section of Experimental Pathology, National Institute of Medical Sciences & Nutrition 'Salvador Zubirán', Mexico City, Mexico
| | - Miguel Klunder-Klunder
- Departamento de Investigación en Salud Comunitaria, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Mario I Vega
- Oncology Research Unit, Oncology Hospital, CMN SXXI, IMSS, Mexico City, Mexico
- Department of Medicine, Hematology-Oncology Division, VA West Los Angeles Medical Center BBRI, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| | - Rogelio Hernandez-Pando
- Section of Experimental Pathology, National Institute of Medical Sciences & Nutrition 'Salvador Zubirán', Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| |
Collapse
|
20
|
Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer A549 cells by reversing EMT via the TNF-α/NF-κB and PI3K/AKT signaling pathway. Cell Death Discov 2018. [PMID: 29531823 PMCID: PMC5841291 DOI: 10.1038/s41420-018-0026-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is associated with tumor invasion and metastasis, and offers insight into novel strategies for cancer treatment. Sotetsuflavone was isolated from Cycas revolute, which has excellent anticancer activity in the early stages. The present study aims to evaluate the anti-metastatic potential of sotetsuflavone in vitro. Our data demonstrated that sotetsuflavone inhibits metastasis of A549 cells, and EMT. This inhibition was reflected in the upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, and Snail. Mechanistically, our study demonstrated that HIF-1α played an important role in the anti-metastatic effect of sotetsuflavone in non-small-cell lung cancer A549 cells. Sotetsuflavone not only mediated VEGF expression but also downregulated VEGF and upregulated angiostatin, and simultaneously affected the expression of MMPs and decreased MMP-9 and MMP-13 expression. More importantly, HIF-1α expression may be regulated by the inhibition of PI3K/AKT and TNF-α/NF-κB pathways. These results suggest that sotetsuflavone can reverse EMT, thereby inhibiting the migration and invasion of A549 cells. This process may be associated with both PI3K/AKT and TNF-α/NF-κB pathways, and sotetsuflavone may be efficacious in the treatment of non-small-cell lung cancer.
Collapse
|
21
|
Bufalin suppresses hepatocellular carcinoma invasion and metastasis by targeting HIF-1α via the PI3K/AKT/mTOR pathway. Oncotarget 2018; 7:20193-208. [PMID: 26958938 PMCID: PMC4991447 DOI: 10.18632/oncotarget.7935] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/06/2016] [Indexed: 01/21/2023] Open
Abstract
It has been reported that there are multiple mechanisms by which bufalin could exert its antimetastatic effect. HIF-1α has been reported to be involved in tumor migration and invasion by regulating EMT. However, it is not known whether bufalin could exert the antimetastatic effect by modulating HIF-1α expression in hepatocellular carcinoma. In the present study, we aimed to evaluate the antimetastatic potential of bufalin in vivo and in vitro. Our results demonstrated that the liver/lung metastases were significantly reduced in bufalin-treated mice, as tested in the orthotopic transplanted and tail vein injection tumor models. Furthermore, the epithelial-to-mesenchymal transition (EMT) was inhibited in bufalin-treated tumors, as reflected the upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, Snail. Similar results were observed in SMMC7721 cells treated with bufalin. Moreover, the transforming growth factor-β1 (TGF-β1)-induced EMT was also abrogated by bufalin. Mechanistically, our study demonstrated that hypoxia-inducible factor-1α (HIF-1α) played an important role in the antimetastatic effect of bufalin in hepatocellular carcinoma. Importantly, HIF-1α expression may be regulated through the inhibition of the PI3K/AKT/mTOR pathway. Taken together, our results suggest that bufalin suppresses hepatic tumor invasion and metastasis and that this process may be related to the PI3K/AKT/mTOR/ HIF-1α axis.
Collapse
|
22
|
Orellana A, García-González V, López R, Pascual-Guiral S, Lozoya E, Díaz J, Casals D, Barrena A, Paris S, Andrés M, Segarra V, Vilella D, Malhotra R, Eastwood P, Planagumà A, Miralpeix M, Nueda A. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells. PLoS One 2018; 13:e0189247. [PMID: 29320511 PMCID: PMC5761851 DOI: 10.1371/journal.pone.0189247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology leads.
Collapse
Affiliation(s)
- Adelina Orellana
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Rosa López
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Estrella Lozoya
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Julia Díaz
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Daniel Casals
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Antolín Barrena
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Stephane Paris
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Miriam Andrés
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Victor Segarra
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Dolors Vilella
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Rajneesh Malhotra
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Paul Eastwood
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Anna Planagumà
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Arsenio Nueda
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
23
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Inhibition of Phosphatidylinositol 3-kinease suppresses formation and progression of experimental abdominal aortic aneurysms. Sci Rep 2017; 7:15208. [PMID: 29123158 PMCID: PMC5680315 DOI: 10.1038/s41598-017-15207-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/23/2017] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence suggests an important role of Phosphatidylinositol 3-kinease (PI3K) pathway in inflammatory cells infiltration. Given the essential role of inflammatory cells infiltration during the formation and progression of abdominal aortic aneurysm (AAA), to investigate the possibility of preventing AAA formation and progression via targeting PI3K is anticipated. Here, experimental AAAs was created in rats by transient intraluminal porcine pancreatic elastase (PPE) infusion into the infrarenal aorta firstly. AAAs rats were administrated with vehicle or Wortmannin during the period of day 0 to day 28 after PPE infusion. The aortic diameter of rats treated with Wortmannin was significantly smaller than those treated with vehicle. Meanwhile, Elastin destruction score and SMC destruction score were significantly decreased in rats treated with Wortmannin. Furthermore, histological analysis revealed infiltration of inflammatory cells were significantly reduced in rats treated with Wortmannin. Finally, the mRNA expression of PI3K and protein expression of pAKT in human abdominal aneurismal aorta tissues was elevated as compare to normal aorta. Our study revealed that PI3K inhibitor suppresses experimental AAAs formation and progression, through mechanisms likely related to impairing inflammation cells infiltration and median elastin degradation. These findings indicated that PI3K inhibitor may hold substantial translation value for AAA diseases.
Collapse
|
25
|
Bao L, Mohan GC, Alexander JB, Doo C, Shen K, Bao J, Chan LS. A molecular mechanism for IL-4 suppression of loricrin transcription in epidermal keratinocytes: implication for atopic dermatitis pathogenesis. Innate Immun 2017; 23:641-647. [PMID: 28952836 DOI: 10.1177/1753425917732823] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Skin barrier defects play an important role in atopic dermatitis (AD) pathogenesis. Loricrin, an important barrier protein suppressed in human AD, is down-regulated by IL-4 in keratinocytes. However, the molecular mechanism is unknown. Since loricrin transcription requires p300/CBP, and Stat6 also recruits this common coactivator for its stimulated factors, we hypothesize that IL-4-activated Stat6 competes for the available endogenous p300/CBP, leading to loricrin transcription inhibition. First, we showed that loricrin is suppressed in the skin of IL-4 transgenic mice, an AD mouse model. In human keratinocytes, IL-4 down-regulation of loricrin is abrogated by a pan-Jak inhibitor, suggesting that the Jak-Stat pathway is involved. To further investigate the downstream molecular mechanism, we transfected HaCat cells with a loricrin promoter and then treated them with either IL-4 or vehicle. Not surprisingly, IL-4 greatly suppressed the promoter activity. Interestingly, this suppression was prevented when we knocked down Stat6, indicating that Stat6 participates in IL-4 regulation of loricrin. A Stat6-specific inhibitor confirmed the knockdown study. Finally, IL-4 suppression of loricrin was reversed with transfection of a CBP expression vector in a dose-dependent manner. Taken together, for the first time, we delineate a molecular mechanism for IL-4 down-regulation of loricin expression in human keratinocytes, which may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Lei Bao
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Girish C Mohan
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Jaime B Alexander
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Caroline Doo
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Kui Shen
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Jeremy Bao
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Lawrence S Chan
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA.,2 Department of Microbiology/Immunology, University of Illinois at Chicago, IL, USA.,3 Jesse Brown VA Medical Center, Chicago, IL, USA.,4 Medicine Service, Captain James Lovell FHCC, North Chicago, IL, USA
| |
Collapse
|
26
|
Chabert C, Khochbin S, Rousseaux S, Furze R, Smithers N, Prinjha R, Schlattner U, Pison C, Dubouchaud H. Muscle hypertrophy in hypoxia with inflammation is controlled by bromodomain and extra-terminal domain proteins. Sci Rep 2017; 7:12133. [PMID: 28935884 PMCID: PMC5608715 DOI: 10.1038/s41598-017-12112-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
Some of the Chronic Obstructive Pulmonary Disease (COPD) patients engaged in exercise-based muscle rehabilitation programs are unresponsive. To unravel the respective role of chronic hypoxia and pulmonary inflammation on soleus muscle hypertrophic capacities, we challenged male Wistar rats to repeated lipopolysaccharide instillations, associated or not with a chronic hypoxia exposure. Muscle hypertrophy was initiated by bilateral ablation of soleus agonists 1 week before sacrifice. To understand the role played by the histone acetylation, we also treated our animals with an inhibitor of bromodomains and extra terminal proteins (I-BET) during the week after surgery. Pulmonary inflammation totally inhibited this hypertrophy response under both normoxic and hypoxic conditions (26% lower than control surgery, p < 0.05), consistent with the S6K1 and myogenin measurements. Changes in histone acetylation and class IIa histone deacetylases expression, following pulmonary inflammation, suggested a putative role for histone acetylation signaling in the altered hypertrophy response. The I-BET drug restored the hypertrophy response suggesting that the non-response of muscle to a hypertrophic stimulus could be modulated by epigenetic mechanisms, including histone-acetylation dependant pathways. Drugs targeting such epigenetic mechanisms may open therapeutic perspectives for COPD patients with systemic inflammation who are unresponsive to rehabilitation.
Collapse
Affiliation(s)
- Clovis Chabert
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France
| | - Saadi Khochbin
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| | - Rebecca Furze
- Epigenetics DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY, England, UK
| | - Nicholas Smithers
- Epigenetics DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY, England, UK
| | - Rab Prinjha
- Epigenetics DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY, England, UK
| | - Uwe Schlattner
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France
| | - Christophe Pison
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France.,Univ. Grenoble Alpes, Inserm, CHU des Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France
| | - Hervé Dubouchaud
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France.
| |
Collapse
|
27
|
Wilson RB. Changes in the coelomic microclimate during carbon dioxide laparoscopy: morphological and functional implications. Pleura Peritoneum 2017; 2:17-31. [PMID: 30911629 PMCID: PMC6328073 DOI: 10.1515/pp-pp-2017-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
In this article the adverse effects of laparoscopic CO2 pneumoperitoneum and coelomic climate change, and their potential prevention by warmed, humidified carbon dioxide insufflation are reviewed. The use of pressurized cold, dry carbon dioxide (C02) pneumoperitoneum causes a number of local effects on the peritoneal mesothelium, as well as systemic effects. These can be observed at a macroscopic, microscopic, cellular and metabolic level. Local effects include evaporative cooling, oxidative stress, desiccation of mesothelium, disruption of mesothelial cell junctions and glycocalyx, diminished scavenging of reactive oxygen species, decreased peritoneal blood flow, peritoneal acidosis, peritoneal hypoxia or necrosis, exposure of the basal lamina and extracellular matrix, lymphocyte infiltration, and generation of peritoneal cytokines such as IL-1, IL-6, IL-8 and TNFα. Such damage is increased by high CO2 insufflation pressures and gas velocities and prolonged laparoscopic procedures. The resulting disruption of the glycocalyx, mesothelial cell barrier and exposure of the extracellular matrix creates a cascade of immunological and pro-inflammatory events and favours tumour cell implantation. Systemic effects include cardiopulmonary and respiratory changes, hypothermia and acidosis. Such coelomic climate change can be prevented by the use of lower insufflation pressures and preconditioned warm humidified CO2. By achieving a more physiological temperature, pressure and humidity, the coelomic microenvironment can be better preserved during pneumoperitoneum. This has the potential clinical benefits of maintaining isothermia and perfusion, reducing postoperative pain, preventing adhesions and inhibiting cancer cell implantation in laparoscopic surgery.
Collapse
Affiliation(s)
- Robert B. Wilson
- Department of Upper Gastrointestinal Surgery, Liverpool Hospital, Elizabeth St, Liverpool, Sydney, NSW, 2170, Australia
| |
Collapse
|
28
|
Chai D, Jiang H, Li Q. Isoflurane neurotoxicity involves activation of hypoxia inducible factor-1α via intracellular calcium in neonatal rodents. Brain Res 2016; 1653:39-50. [DOI: 10.1016/j.brainres.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/08/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
|
29
|
Yamaya M, Nomura K, Arakawa K, Nishimura H, Lusamba Kalonji N, Kubo H, Nagatomi R, Kawase T. Increased rhinovirus replication in nasal mucosa cells in allergic subjects is associated with increased ICAM-1 levels and endosomal acidification and is inhibited by L-carbocisteine. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:166-181. [PMID: 27957326 PMCID: PMC4879463 DOI: 10.1002/iid3.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
Abstract
Increased viral replication and cytokine production may be associated with the pathogenesis of asthma attacks in rhinovirus (RV) infections. However, the association between increased RV replication and enhanced expression of intercellular adhesion molecule‐1 (ICAM‐1), a receptor for a major RV group, in airway epithelial cells has remained unclear. Furthermore, the inhibitory effects of mucolytics, which have clinical benefits in asthmatic subjects, are uncertain. Human nasal epithelial (HNE) cells were infected with type 14 rhinovirus (RV14), a major RV group. RV14 titers and cytokine concentrations, including interleukin (IL)‐6 and IL‐8, in supernatants, RV14 RNA replication and susceptibility to RV14 infection were higher in HNE cells obtained from subjects in the allergic group (allergic subjects) than in those from subjects in the non‐allergic group (non‐allergic subjects). ICAM‐1 expression and the number and fluorescence intensity of acidic endosomes from which RV14 RNA enters the cytoplasm were higher in HNE cells from allergic subjects, though substantial amounts of interferon (IFN)‐γ and IFN‐λ were not detected in the supernatant. The abundance of p50 and p65 subunits of transcription factor nuclear factor kappa B (NF‐κB) in nuclear extracts of the cells from allergic subjects was higher compared to non‐allergic subjects, and an inhibitor of NF‐κB, caffeic acid phenethyl ester, reduced the fluorescence intensity of acidic endosomes as well as RV titers and RNA. Furthermore, a mucolytic agent, L‐carbocisteine, reduced RV14 titers and RNA levels, cytokine release, ICAM‐1 expression, the fluorescence intensity of acidic endosomes, and NF‐κB activation. The increased RV14 replication observed in HNE cells from allergic subjects might be partly associated with enhanced ICAM‐1 expression and decreased endosomal pH through NF‐κB activation. L‐Carbocisteine inhibits RV14 infection by reducing ICAM‐1 and acidic endosomes and may, therefore, modulate airway inflammation caused by RV infection in allergic subjects.
Collapse
Affiliation(s)
- Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Kazuhiro Nomura
- Department of Otolaryngology-Head and Neck Surgery Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Kazuya Arakawa
- Department of Otolaryngology-Head and Neck Surgery Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division Sendai Medical Center Sendai 983-8520 Japan
| | - Nadine Lusamba Kalonji
- Department of Advanced Preventive Medicine for Infectious Disease Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Ryoichi Nagatomi
- Medicine and Science in Sports and Exercise Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Tetsuaki Kawase
- Laboratory of Rehabilitative Auditory Science Tohoku University Graduate School of Biomedical Engineering Sendai 980-8575 Japan
| |
Collapse
|
30
|
Zhang P, Fang L, Wu H, Ding P, Shen Q, Liu R. Down-regulation of GRα expression and inhibition of its nuclear translocation by hypoxia. Life Sci 2016; 146:92-9. [PMID: 26767627 DOI: 10.1016/j.lfs.2015.12.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/08/2015] [Accepted: 12/31/2015] [Indexed: 02/03/2023]
Abstract
AIMS Glucocorticoids are the most effective anti-inflammatory agent in treating pulmonary diseases typically accompanied by hypoxia. Our previous study has demonstrated that glucocorticoid receptor α (GRα) expression is reduced in hypoxia but the underlying mechanism remains elusive. In this study we aim to identify the signaling pathway involved in hypoxia-induced down-regulation of GRα, and whether hypoxia affects nuclear translocation of GRα. MAIN METHODS Female C57BL/6 mice were sensitized with saline or ovalbumin (OVA) as the in vivo model. Mice were divided into control and OVA groups, and their lung histology and the expression of hypoxia inducible factor (HIF-1) and GRα were examined. A549 cells were exposed to chemical hypoxia as the in vitro model, where mitogen-activated protein kinases (MAPKs) were inhibited specifically by SB203580. Next, under normal or hypoxic conditions, the expression of GRα, MAPKs and HIF-1 signal protein were determined by Western blot analysis, and GRα translocation were observed through live-cell imaging. KEY FINDINGS In OVA challenged mice the expression of GRα was down-regulated whereas HIF-1 was up-regulated. Hypoxia caused a time-dependent decrease of GRα expression, and activated multiple signaling pathways including MAPKs and HIF-1. Moreover, GRα expression increased with MAPK inhibition. Interestingly, only MAPK inhibitor SB203580, but not JNK inhibitor SP600125 or ERK inhibitor U0126 improved the expression of GRα under hypoxic condition. GRα nuclear translocation was also significantly inhibited by hypoxia. SIGNIFICANCE Hypoxia down-regulated the expression of GRα through p38 signaling pathway, as well as inhibited GRα nuclear translocation significantly.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University
| | - Lei Fang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University
| | - HuiMei Wu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University
| | - Peishan Ding
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University
| | - QiYing Shen
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University
| | - Rongyu Liu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University
| |
Collapse
|
31
|
Chen X, Li YY, Zhang WQ, Zhang WM, Zhou H. House dust mite extract induces growth factor expression in nasal mucosa by activating the PI3K/Akt/HIF-1α pathway. Biochem Biophys Res Commun 2016; 469:1055-61. [DOI: 10.1016/j.bbrc.2015.12.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/24/2015] [Indexed: 11/29/2022]
|
32
|
Sun L, Li T, Wei Q, Zhang Y, Jia X, Wan Z, Han L. Upregulation of BNIP3 mediated by ERK/HIF-1α pathway induces autophagy and contributes to anoikis resistance of hepatocellular carcinoma cells. Future Oncol 2015; 10:1387-98. [PMID: 25052749 DOI: 10.2217/fon.14.70] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Acquisition of anoikis resistance is the hallmark of cancer and has been shown to be involved in metastasis of melignant cells. Our previous work showed that anoikis resistance is associated with the metastasis of hepatocellular carcinoma (HCC) cells. The aim of this study is to elucidate the mechanisms of this course. MATERIALS & METHODS Expression of BNIP3 and HIF-1α at the mRNA and protein level in HCC cells were detected by realtime PCR and western blot, respectively. Autophagy activation and signaling transduction pathway were detected by western blot. Cell viabilities were detected by CCK8 assay and trypan blue exclusion assay. RESULTS Upregulation of BNIP3 promoted the activation of autophagy, one type of cell survival strategy in response to external stress, by suppressing mTOR/S6K1 signaling system. The upregulation of BNIP3 was mediated by ERK/HIF-1α pathway, which further contributed to anoikis resistance of HCC cells through the mTORC1 signaling pathway. CONCLUSION Upregulation of BNIP3 contributs to anoikis resistance of HCC cells, and BNIP3 may serve as a novel therapeutic target for manipulation of cancer metastasis.
Collapse
Affiliation(s)
- Lei Sun
- Department of Immunology, Shandong University School of Medicine, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Vogel ER, Britt RD, Trinidad MC, Faksh A, Martin RJ, MacFarlane PM, Pabelick CM, Prakash YS. Perinatal oxygen in the developing lung. Can J Physiol Pharmacol 2014; 93:119-27. [PMID: 25594569 DOI: 10.1139/cjpp-2014-0387] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung diseases, such as bronchopulmonary dysplasia (BPD), wheezing, and asthma, remain significant causes of morbidity and mortality in the pediatric population, particularly in the setting of premature birth. Pulmonary outcomes in these infants are highly influenced by perinatal exposures including prenatal inflammation, postnatal intensive care unit interventions, and environmental agents. Here, there is strong evidence that perinatal supplemental oxygen administration has significant effects on pulmonary development and health. This is of particular importance in the preterm lung, where premature exposure to room air represents a hyperoxic insult that may cause harm to a lung primed to develop in a hypoxic environment. Preterm infants are also subject to increased episodes of hypoxia, which may also result in pulmonary damage and disease. Here, we summarize the current understanding of the effects of oxygen on the developing lung and how low vs. high oxygen may predispose to pulmonary disease that may extend even into adulthood. Better understanding of the underlying mechanisms will help lead to improved care and outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Elizabeth R Vogel
- a Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ma J, Zi Jiang Y, Shi H, Mi C, Li J, Xing Nan J, Wu X, Joon Lee J, Jin X. Cucurbitacin B inhibits the translational expression of hypoxia-inducible factor-1α. Eur J Pharmacol 2014; 723:46-54. [DOI: 10.1016/j.ejphar.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 01/27/2023]
|
35
|
Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway. PLoS One 2013; 8:e81773. [PMID: 24312355 PMCID: PMC3843701 DOI: 10.1371/journal.pone.0081773] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/16/2013] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α). Recently, inhibition of the mammalian target of rapamycin (mTOR) has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K)/Akt or protein kinase C-delta (PKC δ) in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.
Collapse
|
36
|
Eckle T, Brodsky K, Bonney M, Packard T, Han J, Borchers CH, Mariani TJ, Kominsky DJ, Mittelbronn M, Eltzschig HK. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol 2013; 11:e1001665. [PMID: 24086109 DOI: 10.1371/journal.pbio.1001665] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND While acute lung injury (ALI) contributes significantly to critical illness, it resolves spontaneously in many instances. The majority of patients experiencing ALI require mechanical ventilation. Therefore, we hypothesized that mechanical ventilation and concomitant stretch-exposure of pulmonary epithelia could activate endogenous pathways important in lung protection. METHODS AND FINDINGS To examine transcriptional responses during ALI, we exposed pulmonary epithelia to cyclic mechanical stretch conditions--an in vitro model resembling mechanical ventilation. A genome-wide screen revealed a transcriptional response similar to hypoxia signaling. Surprisingly, we found that stabilization of hypoxia-inducible factor 1A (HIF1A) during stretch conditions in vitro or during ventilator-induced ALI in vivo occurs under normoxic conditions. Extension of these findings identified a functional role for stretch-induced inhibition of succinate dehydrogenase (SDH) in mediating normoxic HIF1A stabilization, concomitant increases in glycolytic capacity, and improved tricarboxylic acid (TCA) cycle function. Pharmacologic studies with HIF activator or inhibitor treatment implicated HIF1A-stabilization in attenuating pulmonary edema and lung inflammation during ALI in vivo. Systematic deletion of HIF1A in the lungs, endothelia, myeloid cells, or pulmonary epithelia linked these findings to alveolar-epithelial HIF1A. In vivo analysis of ¹³C-glucose metabolites utilizing liquid-chromatography tandem mass-spectrometry demonstrated that increases in glycolytic capacity, improvement of mitochondrial respiration, and concomitant attenuation of lung inflammation during ALI were specific for alveolar-epithelial expressed HIF1A. CONCLUSIONS These studies reveal a surprising role for HIF1A in lung protection during ALI, where normoxic HIF1A stabilization and HIF-dependent control of alveolar-epithelial glucose metabolism function as an endogenous feedback loop to dampen lung inflammation.
Collapse
Affiliation(s)
- Tobias Eckle
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Denver, Colorado, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Mol Cancer 2013; 12:78. [PMID: 23866118 PMCID: PMC3725176 DOI: 10.1186/1476-4598-12-78] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Background Inflammation is a well-known etiological factor for colorectal cancer, but mechanisms underlying the linkage between inflammation and cancer are incompletely understood. We hypothesized that two pro-inflammatory cytokines, TNFα and IL-17, might play a role in promoting colorectal carcinogenesis. Aerobic glycolysis is a metabolic adaptation that promotes the survival/proliferation of cancer cells. Paracrine signaling between tumor cells and cancer-associated fibroblasts also plays a role in carcinogenesis. Methods The effect of TNFα and IL-17 on aerobic glycolysis and growth factor production in cultured human colorectal cancer cells was investigated. Glucose utilization and lactate production were quantified by measuring the disappearance of glucose and appearance of lactate in the culture medium. Glucose transporter and glycolytic enzyme expression levels were measured by immunoblotting. Results TNFα and IL-17 cooperatively stimulated glycolysis in HT-29, T84, Caco-2 and HCT116 colorectal cancer cells. Treatment of HT-29 cells with TNFα plus IL-17 also increased the expression of HIF-1α and c-myc, two factors know to induce the transcription of genes encoding components of the glycolytic pathway. To further investigate mechanisms for cytokine-stimulated glycolysis, the effects of TNFα and IL-17 on expression of six members and one regulator of the glycolytic pathway were investigated. TNFα and IL-17 cooperatively increased the expression of the glucose transporter SLC2A1 and hexokinase-2 but did not regulate expression of glucose transporter SLC2A3, enolase-1, pyruvate kinase M2, lactate dehydrogenase A, or 6-phoshofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). Experiments with inhibitors indicated that HIF-1α played a role in induction of SLC2A1 and that the transcription factor NF-κB played a role in induction of hexokinase-2 by TNFα and IL-17. TNFα and IL-17 also synergistically stimulated production by HT-29 cells of a growth factor that simulated proliferation/survival of NIL8 fibroblastic cells. The activity of this factor was not specifically inhibited by the EGFR inhibitor AG1478, indicating that it is not an EGFR ligand. Conclusions Chronic inflammation is known to promote colorectal tumorigenesis. The pro-inflammatory cytokines TNFα and IL-17 may contribute to this effect by stimulating glycolysis and growth factor production in colorectal cancer cells.
Collapse
|
38
|
Lin CH, Li CH, Liao PL, Tse LS, Huang WK, Cheng HW, Cheng YW. Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br J Pharmacol 2013; 168:920-31. [PMID: 23004355 DOI: 10.1111/j.1476-5381.2012.02227.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/19/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia-mediated neovascularization plays an important role in age-related macular degeneration (AMD). There are few animal models or effective treatments for AMD. Here, we investigated the effects of the flavonoid silibinin on hypoxia-induced angiogenesis in a rat AMD model. EXPERIMENTAL APPROACH Retinal pigmented epithelial (RPE) cells were subjected to hypoxia in vitro and the effects of silibinin on activation of key hypoxia-induced pathways were examined by elucidating the hypoxia-inducible factor-1 alpha (HIF-1α) protein level by Western blot. A rat model of AMD was developed by intravitreal injection of VEGF in Brown Norway rats, with or without concomitant exposure of animals to hypoxia. Animals were treated with oral silibinin starting at day 7 post-VEGF injection and AMD changes were followed by fluorescein angiography on days 14 and 28 post-injection. KEY RESULTS Silibinin pretreatment of RPE cells increased proline hydroxylase-2 expression, inhibited HIF-1α subunit accumulation, and inhibited VEGF secretion. Silibinin-induced HIF-1α and VEGF down-regulation required suppression of hypoxia-induced phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. In the rat model of AMD, silibinin administration prevented VEGF- and VEGF plus hypoxia-induced retinal oedema and neovascularization. CONCLUSION AND IMPLICATIONS The effects of silibinin, both in vitro and in vivo, support its potential as a therapeutic for the prevention of neovascular AMD.
Collapse
Affiliation(s)
- C H Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Tsapournioti S, Mylonis I, Hatziefthimiou A, Ioannou MG, Stamatiou R, Koukoulis GK, Simos G, Molyvdas PA, Paraskeva E. TNFα induces expression of HIF-1α mRNA and protein but inhibits hypoxic stimulation of HIF-1 transcriptional activity in airway smooth muscle cells. J Cell Physiol 2013; 228:1745-53. [PMID: 23359428 DOI: 10.1002/jcp.24331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/16/2013] [Indexed: 12/28/2022]
Abstract
Airway smooth muscle cells (ASMCs) participate in tissue remodeling characteristic of airway inflammatory diseases like asthma. Inflammation and hypoxia pathways are often interconnected and the regulatory subunit of the hypoxia inducible factor, HIF-1α, has been recently shown to be induced by cytokines. Here we investigate the effect of individual or combined treatment of ASMCs with the inflammatory mediator TNFα and/or hypoxia on the expression of HIF-1α, HIF-1 targets and inflammation markers. TNFα enhances HIF-1α protein and mRNA levels, under both normoxia and hypoxia. TNFα-mediated induction of HIF-1α gene transcription is repressed by inhibition of the NF-κB pathway. Despite the up-regulation of HIF-1α protein, the transcription of HIF-1 target genes remains low in the presence of TNFα at normoxia and is even reduced at hypoxia. We show that the reduction in HIF-1 transcriptional activity by TNFα is due to inhibition of the interaction of HIF-1α with ARNT and subsequent blocking of its binding to HREs. Comparison between hypoxia and TNFα for their effects on the expression of inflammatory markers shows significant differences: hypoxia up-regulates the expression of IL-6, but not RANTES or ICAM, and reduces the induction of VCAM by TNFα. Finally, ex vivo treatment of rabbit trachea strips with TNFα increases HIF-1α protein levels, but reduces the expression of HIF-1 targets under hypoxia. Overall, TNFα induces HIF-1α mRNA synthesis via an NF-κB dependent pathway but inhibits binding of HIF-1α to ARNT and DNA, while hypoxia and TNFα have distinct effects on ASMC inflammatory gene expression.
Collapse
|
40
|
Yi X, Zhang G, Yuan J. Renoprotective Role of Fenoldopam Pretreatment Through Hypoxia-Inducible Factor-1alpha and Heme Oxygenase-1 Expressions in Rat Kidney Transplantation. Transplant Proc 2013; 45:517-22. [DOI: 10.1016/j.transproceed.2012.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 12/27/2022]
|
41
|
Involvement of early growth response factors in TNFα-induced aromatase expression in breast adipose. Breast Cancer Res Treat 2013; 138:193-203. [PMID: 23338760 DOI: 10.1007/s10549-013-2413-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022]
Abstract
Expression of the oestrogen producing enzyme, aromatase, is regulated in a tissue-specific manner by its encoding gene CYP19A1. In post-menopausal women, the major site for oestrogen production in the breast is the adipose, where CYP19A1 transcription is driven by the distal promoter I.4 (PI.4). Transcripts via this promoter are also elevated in breast adipose fibroblasts (BAFs) adjacent to a tumour. PI.4 expression is stimulated by a number of cytokines, and TNFα is one such factor. The transcriptional mechanisms induced by TNFα to stimulate PI.4 are poorly characterised. We show that the early growth response (Egr) transcription factors play an important role in the TNFα-induced signalling pathway resulting in elevated PI.4 transcription. TNFα treatment of BAFs increases mRNA levels of all four Egr family members, with EGR2 being the most highly expressed. Overexpression of EGR2 causes an increase in endogenous CYP19A1 expression in preadipocyte Simpson-Golabi-Behmel syndrome cells, driven by increases in PI.4-specific transcripts. PI.4 luciferase reporter activity is increased in a dose-dependent manner by EGR2, EGR3 and EGR4, with EGR2 showing the most potent activation of promoter activity. Deletion analysis indicates that this promoter activity is being indirectly mediated by a short region of the promoter not containing any previously characterised binding sites, and we further show that EGR2 does not bind directly or indirectly to this promoter region. However, siRNA knockdown of the Egrs reduces the total and PI.4-derived CYP19A1 transcription in BAFs. These studies unveil a novel component of the aromatase gene regulatory network and further enhance the complexity of oestrogen production in the breast.
Collapse
|
42
|
Fujiu K, Manabe I, Sasaki M, Inoue M, Iwata H, Hasumi E, Komuro I, Katada Y, Taguchi T, Nagai R. Nickel-free stainless steel avoids neointima formation following coronary stent implantation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064218. [PMID: 27877545 PMCID: PMC5099778 DOI: 10.1088/1468-6996/13/6/064218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/02/2012] [Indexed: 06/06/2023]
Abstract
SUS316L stainless steel and cobalt-chromium and platinum-chromium alloys are widely used platforms for coronary stents. These alloys also contain nickel (Ni), which reportedly induces allergic reactions in some subjects and is known to have various cellular effects. The effects of Ni on neointima formation after stent implantation remain unknown, however. We developed coronary stents made of Ni-free high-nitrogen austenitic stainless steel prepared using a N2-gas pressurized electroslag remelting (P-ESR) process. Neointima formation and inflammatory responses following stent implantation in porcine coronary arteries were then compared between the Ni-free and SUS316L stainless steel stents. We found significantly less neointima formation and inflammation in arteries implanted with Ni-free stents, as compared to SUS316L stents. Notably, Ni2+ was eluted into the medium from SUS316L but not from Ni-free stainless steel. Mechanistically, Ni2+ increased levels of hypoxia inducible factor protein-1α (HIF-1α) and its target genes in cultured smooth muscle cells. HIF-1α and their target gene levels were also increased in the vascular wall at SUS316L stent sites but not at Ni-free stent sites. The Ni-free stainless steel coronary stent reduces neointima formation, in part by avoiding activation of inflammatory processes via the Ni-HIF pathway. The Ni-free-stainless steel stent is a promising new coronary stent platform.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, University of Tokyo, 7–3-1 Hongo, Bunkyo, 113-8655, Tokyo, Japan
- Translational Systems Biology and Medicine Initiative (TSBMI), University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, University of Tokyo, 7–3-1 Hongo, Bunkyo, 113-8655, Tokyo, Japan
| | - Makoto Sasaki
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan
- Biomaterials Unit, Nano-Bio Field, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Japan
| | - Motoki Inoue
- Biomaterials Unit, Nano-Bio Field, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Japan
| | - Hiroshi Iwata
- Department of Cardiovascular Medicine, University of Tokyo, 7–3-1 Hongo, Bunkyo, 113-8655, Tokyo, Japan
| | - Eriko Hasumi
- Department of Cardiovascular Medicine, University of Tokyo, 7–3-1 Hongo, Bunkyo, 113-8655, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo, 7–3-1 Hongo, Bunkyo, 113-8655, Tokyo, Japan
| | - Yasuyuki Katada
- Biomaterials Unit, Nano-Bio Field, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan
- Biomaterials Unit, Nano-Bio Field, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Japan
| | | |
Collapse
|
43
|
Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:272-96. [PMID: 22579961 PMCID: PMC3788359 DOI: 10.1016/j.bbcan.2012.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
44
|
Kaul DK, Fabry ME, Suzuka SM, Zhang X. Antisickling fetal hemoglobin reduces hypoxia-inducible factor-1α expression in normoxic sickle mice: microvascular implications. Am J Physiol Heart Circ Physiol 2012; 304:H42-50. [PMID: 23125209 DOI: 10.1152/ajpheart.00296.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chronic inflammation is a salient feature of sickle cell disease (SCD) and transgenic-knockout sickle (BERK) mice. Inflammation is implicated in the activation of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions. We hypothesize that, in SCD, inflammation coupled with nitric oxide (NO) depletion will induce expression of HIF-1α, a transcription factor with wide-ranging effects including activation of genes for vasoactive molecules. To this end, we have examined the expression of HIF-1α in normoxic BERK mice expressing exclusively human α- and β(S)- globins, and evaluated the effect of fetal hemoglobin (HbF) in BERK mice (i.e., <1.0%, 20%, and 40% HbF). HbF exerts antisickling and anti-inflammatory effects. Here, we show that HIF-1α is expressed in BERK mice under normoxic conditions, accompanied by increased expression of its vasoactive biomarkers such as VEGF, heme oxygenase-1 (HO-1), and serum ET-1 levels. In BERK mice expressing HbF, HIF-1α expression decreases concomitantly with increasing HbF, commensurately with increased NO bioavailability, and shows a strong inverse correlation with plasma NO metabolites (NOx) levels. Reduced HIF-1α expression is associated with decreased HO-1, VEGF, and ET-1. Notably, arteriolar dilation, enhanced volumetric blood flow, and low blood pressure in normoxic BERK mice all show a trend toward normalization with the introduction of HbF. Also, arginine treatment reduced HIF-1α, as well as VEGF expression in normoxic BERK mice, supporting a role of NO bioavailability in HIF-1α activation. Thus HIF-1α expression in normoxic sickle mice is likely a consequence of chronic inflammation, and HbF exerts an ameliorating effect by decreasing sickling, increasing NO bioavailability, and reducing inflammation.
Collapse
Affiliation(s)
- Dhananjay K Kaul
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
45
|
Jeong JK, Moon MH, Park YG, Lee JH, Lee YJ, Seol JW, Park SY. Gingerol-Induced Hypoxia-Inducible Factor 1 Alpha Inhibits Human Prion Peptide-Mediated Neurotoxicity. Phytother Res 2012; 27:1185-92. [DOI: 10.1002/ptr.4842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 01/31/2023]
Affiliation(s)
- Jae-Kyo Jeong
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine; Chonbuk National University; Jeonju Jeonbuk 561-756 South Korea
| | - Myung-Hee Moon
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine; Chonbuk National University; Jeonju Jeonbuk 561-756 South Korea
| | - Yang-Gyu Park
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine; Chonbuk National University; Jeonju Jeonbuk 561-756 South Korea
| | - Ju-Hee Lee
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine; Chonbuk National University; Jeonju Jeonbuk 561-756 South Korea
| | - You-Jin Lee
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine; Chonbuk National University; Jeonju Jeonbuk 561-756 South Korea
| | - Jae-Won Seol
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine; Chonbuk National University; Jeonju Jeonbuk 561-756 South Korea
| | - Sang-Youel Park
- Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine; Chonbuk National University; Jeonju Jeonbuk 561-756 South Korea
| |
Collapse
|
46
|
L-2-Oxothiazolidine-4-carboxylic acid or α-lipoic acid attenuates airway remodeling: involvement of nuclear factor-κB (NF-κB), nuclear factor erythroid 2p45-related factor-2 (Nrf2), and hypoxia-inducible factor (HIF). Int J Mol Sci 2012; 13:7915-7937. [PMID: 22942681 PMCID: PMC3430212 DOI: 10.3390/ijms13077915] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/09/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the present study, we used a long-term exposure murine model of allergic airway disease to evaluate the effects of an antioxidant, L-2-oxothiazolidine-4-carboxylic acid (OTC) or α-lipoic acid (LA) on airway remodeling, focusing on the ROS-related hypoxia-inducible signaling. Long-term challenge of ovalbumin (OVA) increased ROS production, airway inflammation, and airway hyperresponsiveness, and developed features of airway remodeling such as excessive mucus secretion, subepithelial fibrosis, and thickening of the peribronchial smooth muscle layer. Administration of OTC or LA reduced these features of asthma, including airway remodeling, which was accompanied by suppression of transforming growth factor-β1, vascular endothelial growth factor, and T-helper 2 cytokines. In addition, OVA-induced activation of nuclear factor-κB (NF-κB), nuclear factor erythroid 2p45-related factor-2 (Nrf2), hypoxia-inducible factor (HIF)-1α, and HIF-2α was reduced by OTC or LA. Our results also showed that OTC or LA down-regulated phosphoinositide 3-kinase activity and decreased phosphorylation of p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase. These findings demonstrate that OTC and LA can inhibit activation of NF-κB, Nrf2, and HIF, leading to attenuate allergen-induced airway remodeling.
Collapse
|
47
|
Inhibition of hypoxia inducible factor-1α ameliorates lung injury induced by trauma and hemorrhagic shock in rats. Acta Pharmacol Sin 2012; 33:635-43. [PMID: 22465950 DOI: 10.1038/aps.2012.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM Ischemia/reperfusion is an initial triggering event that leads to gut-induced acute lung injury (ALI). In this study, we investigated whether hypoxia inducible factor-1α (HIF-1α) played a role in the pathogenesis of lung injury induced by trauma and hemorrhagic shock (T/HS). METHODS Male Wistar rats underwent laparotomy and hemorrhagic shock for 60 min. Sham-shock animals underwent laparotomy but without hemorrhagic shock. After resuscitation for 3 hr, the rats were sacrificed. Morphologic changes of the lungs and intestines were examined. Bronchoalveolar lavage fluid (BALF) was collected. Lung water content, pulmonary myeloperoxidase (MPO) activity and the levels of malondialdehyde (MDA), nitrite/nitrate, TNF-α, IL-1β, and IL-6 in the lungs were measured. The gene expression of pulmonary HIF-1α and iNOS, and HIF-1α transcriptional activity in the lungs were also assessed. The apoptosis in the lungs was determined using TUNEL assay and cleaved caspase-3 expression. RESULTS Lung and intestinal injuries induced by T/HS were characterized by histological damages and a significant increase in lung water content. Compared to the sham-shock group, the BALF cell counts, the pulmonary MPO activity and the MDA, nitrite/nitrate, TNF-α, IL-1β, and IL-6 levels in the T/HS group were significantly increased. Acute lung injury was associated with a higher degree of pulmonary HIF-1α and iNOS expression as well as apoptosis in the lungs. Intratracheal delivery of HIF-1α inhibitor YC-1 (1 mg/kg) significantly attenuated lung injury, and reduced pulmonary HIF-1α and iNOS expression and HIF-1α transcriptional activity in the T/HS group. CONCLUSION Local inhibition of HIF-1α by YC-1 alleviates the lung injury induced by T/HS. Our results provide novel insight into the pathogenesis of T/HS-induced ALI and a potential therapeutic application.
Collapse
|
48
|
Fang Li Q, Xu H, Sun Y, Hu R, Jiang H. Induction of inducible nitric oxide synthase by isoflurane post-conditioning via hypoxia inducible factor-1α during tolerance against ischemic neuronal injury. Brain Res 2012; 1451:1-9. [PMID: 22445062 DOI: 10.1016/j.brainres.2012.02.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/29/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
Recent studies have shown that isoflurane protects against ischemic injury via inducible nitric oxide synthase (iNOS). Hypoxia inducible factor (HIF)-1α is a transcriptional factor that activates after cerebral ischemia. However, whether iNOS gene containing the sequence of the hypoxia response element (HRE) is a HIF-1α target during tolerance against ischemic neuronal injury induced by isoflurane post-conditioning remains unknown. In this study, we report that HIF-1α and iNOS gene expression were augmented after cerebral ischemia in rats. Furthermore, isoflurane post-conditioning resulted in greater accumulation of HIF-1α and iNOS gene expression, following by HIF-1α transcriptional activity enhancement and co-localization of HIF-1α and iNOS. Accordingly, in the primary cortical neuron cultures, silencing of HIF-1α attenuated the accumulation of iNOS and the protective effects of isoflurane post-conditioning. Our results suggest the involvement of HIF-1α in the regulation of iNOS during tolerance against cerebral ischemia induced by isoflurane post-conditioning, which provide a mechanistic basis of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Qi Fang Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
49
|
Fekkar A, Balloy V, Pionneau C, Marinach-Patrice C, Chignard M, Mazier D. Secretome of human bronchial epithelial cells in response to the fungal pathogen Aspergillus fumigatus analyzed by differential in-gel electrophoresis. J Infect Dis 2012; 205:1163-72. [PMID: 22357658 DOI: 10.1093/infdis/jis031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND For years, the analysis of innate responses to the major mold pathogen Aspergillus fumigatus has been restricted to specialized cells, such as professional phagocytes. More recently, the contribution of the airway epithelial barrier has been assessed and studies have shown that it was able to sense and react to the Aspergillus infection, for example, by producing cytokines. METHODS To further explore the reaction of the respiratory epithelium to the fungus, we analyzed the proteome response of a human bronchial epithelial cell line to Aspergillus infection using difference gel electrophoresis. We studied the protein pattern of BEAS-2B cell culture supernatant after interaction of the cells with Aspergillus during a 15-hour coculture. RESULTS We found formerly unknown aspects of bronchial cell behavior during Aspergillus infection: bronchial cells are able to develop both cellular defense mechanisms (ie, thioredoxin system activation) and immune reactions (ie, lysosomal degranulation and cathepsin activation) in response to the fungal aggression. CONCLUSIONS Bronchial epithelial cells appear to be a more important effector of antifungal defense than expected. Degranulation of lysosomal enzymes that might be responsible for both fungal growth inhibition and host cell damage suggests that inductors/inhibitors of these pathways may be potential targets of therapeutic intervention.
Collapse
Affiliation(s)
- A Fekkar
- Institut National de la Santé et de la Recherche Médicale (INSERM), U945, Université Pierre et Marie Curie-Paris 6, Paris, France.
| | | | | | | | | | | |
Collapse
|
50
|
Bao L, Shi VY, Chan LS. IL-4 regulates chemokine CCL26 in keratinocytes through the Jak1, 2/Stat6 signal transduction pathway: Implication for atopic dermatitis. Mol Immunol 2012; 50:91-7. [PMID: 22226123 DOI: 10.1016/j.molimm.2011.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 01/11/2023]
Abstract
Atopic dermatitis (AD), a chronic, pruritic, inflammatory skin disease, is histopathologically characterized by epidermal hyperplasia and infiltration of T cells, mast cells, and eosinophils. Clinical study and basic research have established that IL-4 plays an important role in the pathogenesis of AD. In this report, using HaCat cells, we show that CCL26, a chemokine for eosinophils, is up-regulated by IL-4 at both the mRNA and protein levels. IL-4 also enhances CCL26 promoter activity. Serial 5' deletion of the promoter and mutagenesis study reveal that the proximal Stat site is the key response element for IL-4 regulation of CCL26. Although IL-4 increases phosphorylation of both Stat3 and Stat6, it only activates Stat6 as shown by dominant negative studies. In addition, we found that IL-4 induces Stat6 nuclear translocation and stimulates phosphorylation of Jak1 and Jak2 but not Tyk2. IL-4 up-regulation of CCL26 can be suppressed by Jak inhibitors in a dose-dependent manner. Taken together, results of this investigation reveal that IL-4 signals through the Jak1, 2/Stat6 pathway in keratinocytes to stimulate CCL26 expression and this may provide an explanation for the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | | | | |
Collapse
|