1
|
Wang D, Xu L, Liu Y, Wang C, Qi S, Li Z, Bai X, Liao Y, Wang Y. Role of mesenchymal stem cells in sepsis and their therapeutic potential in sepsis‑associated myopathy (Review). Int J Mol Med 2024; 54:92. [PMID: 39219272 PMCID: PMC11374154 DOI: 10.3892/ijmm.2024.5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis‑induced myopathy (SIM) is one of the leading causes of death in critically ill patients. SIM mainly involves the respiratory and skeletal muscles of patients, resulting in an increased risk of lung infection, aggravated respiratory failure, and prolonged mechanical ventilation and hospital stay. SIM is also an independent risk factor associated with increased mortality in critically ill patients. At present, no effective treatment for SIM has yet been established. However, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach and have been utilized in the treatment of various clinical conditions. A significant body of basic and clinical research supports the efficacy of MSCs in managing sepsis and muscle‑related diseases. This literature review aims to explore the relationship between MSCs and sepsis, as well as their impact on skeletal muscle‑associated diseases. Additionally, the present review discusses the potential mechanisms and therapeutic benefits of MSCs in the context of SIM.
Collapse
Affiliation(s)
- Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ligang Xu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chuntao Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Siyuan Qi
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiliu Liao
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Xu H, Nie X, Deng W, Zhou H, Huang D, Wang Z. Bone marrow mesenchymal stem cells-derived exosomes ameliorate LPS-induced acute lung injury by miR-223-regulated alveolar macrophage M2 polarization. J Biochem Mol Toxicol 2024; 38:e23568. [PMID: 37899695 DOI: 10.1002/jbt.23568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Numerous studies have shown that the M2 polarization of alveolar macrophages (AM) plays a protective role in acute lung injury (ALI). Mesenchymal stem cells (MSCs) secreted exosomes have been reported to be involved in inflammatory diseases by the effects of polarized M1/M2 macrophage populations. However, whether bone marrow mesenchymal stem cells (BMMSCs) derived exosomes could protect from ALI and its mechanisms are still unclear. Here, we explored the role of exosomes from BMMSC in rat AM polarization and the lipopolysaccharide- (LPS-) induced ALI rat model. Furthermore, the levels of exosomal miR-223 in BMMSCs were measured by RT-qPCR. Additionally, miR-223 mimics and its inhibitors were used to verify the vital role of miR-223 of BMMSCs-derived exosomes in the polarization of M2 macrophages. The results showed that BMMSCs-derived exosomes were taken up by the AM. Exosomes derived from BMMSCs promoted M2 polarization of AM in vitro. BMMSCs exosomes effectively mitigated pathological injuries, lung edema, and the inflammation of rats from LPS-induced ALI, accompanied by an increase of M2 polarization of AM in lung tissue. Interestingly, we also found that miR-223 was enriched in BMMSCs-derived exosomes, and overexpression of miR-223 in BMMSCs-derived exosomes promoted M2 polarization of AM while depressing miR-223 showed opposite effects in AM. The present study demonstrated that BMMSCs-derived exosomes triggered alveolar M2 polarization to improve inflammation by transferring miR-223, which may provide new therapeutic strategies in ALI.
Collapse
Affiliation(s)
- Hui Xu
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Xiangbi Nie
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Wu Deng
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Han Zhou
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Dan Huang
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Zenggeng Wang
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| |
Collapse
|
3
|
Ramos Maia DR, Otsuki DA, Rodrigues CE, Zboril S, Sanches TR, Neto AND, Andrade L, Auler JOC. TREATMENT WITH HUMAN UMBILICAL CORD-DERIVED MESENCHYMAL STEM CELLS IN A PIG MODEL OF SEPSIS-INDUCED ACUTE KIDNEY INJURY: EFFECTS ON MICROVASCULAR ENDOTHELIAL CELLS AND TUBULAR CELLS IN THE KIDNEY. Shock 2023; 60:469-477. [PMID: 37548627 DOI: 10.1097/shk.0000000000002191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
ABSTRACT Background: Approximately 50% of patients with sepsis develop acute kidney injury (AKI), which is predictive of poor outcomes, with mortality rates of up to 70%. The endothelium is a major target for treatments aimed at preventing the complications of sepsis. We hypothesized that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) could attenuate tubular and endothelial injury in a porcine model of sepsis-induced AKI. Methods: Anesthetized pigs were induced to fecal peritonitis, resulting in septic shock, and were randomized to treatment with fluids, vasopressors, and antibiotics (sepsis group; n = 11) or to that same treatment plus infusion of 1 × 10 6 cells/kg of hUC-MSCs (sepsis+MSC group; n = 11). Results: At 24 h after sepsis induction, changes in serum creatinine and mean arterial pressure were comparable between the two groups, as was mortality. However, the sepsis+MSC group showed some significant differences in comparison with the sepsis group: lower fractional excretions of sodium and potassium; greater epithelial sodium channel protein expression; and lower protein expression of the Na-K-2Cl cotransporter and aquaporin 2 in the renal medulla. Expression of P-selectin, thrombomodulin, and vascular endothelial growth factor was significantly lower in the sepsis+MSC group than in the sepsis group, whereas that of Toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) was lower in the former. Conclusion: Treatment with hUC-MSCs seems to protect endothelial and tubular cells in sepsis-induced AKI, possibly via the TLR4/NF-κB signaling pathway. Therefore, it might be an effective treatment for sepsis-induced AKI.
Collapse
Affiliation(s)
- Débora Rothstein Ramos Maia
- Laboratory for Medical Research 8, Anesthesiology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Denise Aya Otsuki
- Laboratory for Medical Research 8, Anesthesiology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Camila Eleutério Rodrigues
- Laboratory for Medical Research 12, Division of Nephrology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Zboril
- Laboratory for Medical Research 8, Anesthesiology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Talita Rojas Sanches
- Laboratory for Medical Research 12, Division of Nephrology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Amaro Nunes Duarte Neto
- Division of Pathology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Andrade
- Laboratory for Medical Research 12, Division of Nephrology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José Otávio Costa Auler
- Laboratory for Medical Research 8, Anesthesiology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Liu Y, Shu H, Wan P, Wang X, Xie H. Neutrophil extracellular traps predict postoperative pulmonary complications in paediatric patients undergoing parental liver transplantation. BMC Gastroenterol 2023; 23:237. [PMID: 37442949 DOI: 10.1186/s12876-023-02744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/25/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Parental liver transplantation (PLT) improves long-term survival rates in paediatric hepatic failure patients; however, the mechanism of PLT-induced postoperative pulmonary complications (PPCs) is unclear. METHODS A total of 133 paediatric patients undergoing PLT were included. Serum levels of NET components, including circulating free DNA (cfDNA), DNA-histone complex, and myeloperoxidase (MPO)-DNA complex, were detected. The occurrence of PPCs post-PLT, prolonged intensive care unit (ICU) stay and death within one year were recorded as the primary and secondary outcomes. RESULTS The overall rate of PPCs in the hospital was 47.4%. High levels of serum cfDNA, DNA-histone complexes and MPO-DNA complexes were associated with an increased risk of PPCs (for cfDNA, OR 2.24; for DNA-histone complex, OR 1.64; and for MPO-DNA, OR 1.94), prolonged ICU stay (OR 1.98, 4.26 and 3.69, respectively), and death within one year (OR 1.53, 2.65 and 1.85, respectively). The area under the curve of NET components for the prediction of PPCs was 0.843 for cfDNA, 0.813 for DNA-histone complexes, and 0.906 for MPO-DNA complexes. During the one-year follow-up, the death rate was higher in patients with PPCs than in patients without PPCs (14.3% vs. 2.9%, P = 0.001). CONCLUSIONS High serum levels of NET components are associated with an increased incidence of PPCs and death within one year in paediatric patients undergoing PLT. Serum levels of NET components serve as a biomarker for post-PLT PPCs and a prognostic indicator.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road Suzhou, Jiangsu, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Huigang Shu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, China.
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Evans CE, Zhang X, Machireddy N, Zhao YY. The Unexpected Protective Role of Thrombosis in Sepsis-Induced Inflammatory Lung Injury Via Endothelial Alox15. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.29.23287934. [PMID: 37034726 PMCID: PMC10081399 DOI: 10.1101/2023.03.29.23287934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
BACKGROUND Patients with sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) commonly suffer from severe pulmonary thrombosis, but clinical trials of anti-coagulant therapies in sepsis and ARDS patients have failed. ARDS patients with thrombocytopenia also exhibit increased mortality, and widespread pulmonary thrombosis is often seen in coronavirus disease 2019 (COVID-19) ARDS patients. METHODS Employing different amounts of microbeads to induce various levels of pulmonary thrombosis. Acute lung injury was induced by either lipopolysaccharide i.p. or cecal ligation and puncture. Endothelial cell (EC)-targeted nanoparticle coupled with CDH5 promoter was employed to delivery plasmid DNA expressing the CRISPR/Cas9 system for EC-specific gene knockout or expressing Alox15 for EC-specific overexpression. Additionally, thrombocytopenia was induced by genetic depletion of platelets using DTR Pf4Cre mice by breeding Pf4 Cre mice into the genetic background of DTR mice. RESULTS We show that while severe pulmonary thrombosis or thrombocytopenia augments sepsis-induced ALI, the induction of mild pulmonary thrombosis conversely reduces endothelial cell (EC) apoptosis, ALI, and mortality via sustained expression of endothelial arachidonate 15-lipoxygenase (Alox15). Endothelial Alox15 knockout via EC-targeted nanoparticle delivery of CRISPR/Cas9 plasmid DNA in adult mice abolished the protective impact of mild lung thrombosis. Conversely, overexpression of endothelial Alox15 inhibited the increases in ALI caused by severe pulmonary thrombosis. The clinical relevance of the findings was validated by the observation of reduced ALOX15-expressing ECs in lung autopsy samples of ARDS patients. Additionally, restoration of pulmonary thrombosis in thrombocytopenic mice also normalized endotoxemia-induced ALI. CONCLUSION We have demonstrated that moderate levels of thrombosis protect against sepsis-induced inflammatory lung injury via endothelial Alox15. Overexpression of Alox5 inhibits severe pulmonary thrombosis-induced increase of ALI. Thus, activation of ALOX15 signaling represents a promising therapeutic strategy for treatment of ARDS, especially in sub-populations of patients with thrombocytopenia and/or severe pulmonary thrombosis.
Collapse
|
6
|
Singh P, Mohsin M, Sultan A, Jha P, Khan MM, Syed MA, Chopra M, Serajuddin M, Rahmani AH, Almatroodi SA, Alrumaihi F, Dohare R. Combined Multiomics and In Silico Approach Uncovers PRKAR1A as a Putative Therapeutic Target in Multi-Organ Dysfunction Syndrome. ACS OMEGA 2023; 8:9555-9568. [PMID: 36936296 PMCID: PMC10018728 DOI: 10.1021/acsomega.3c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Despite all epidemiological, clinical, and experimental research efforts, therapeutic concepts in sepsis and sepsis-induced multi-organ dysfunction syndrome (MODS) remain limited and unsatisfactory. Currently, gene expression data sets are widely utilized to discover new biomarkers and therapeutic targets in diseases. In the present study, we analyzed MODS expression profiles (comprising 13 sepsis and 8 control samples) retrieved from NCBI-GEO and found 359 differentially expressed genes (DEGs), among which 170 were downregulated and 189 were upregulated. Next, we employed the weighted gene co-expression network analysis (WGCNA) to establish a MODS-associated gene co-expression network (weighted) and identified representative module genes having an elevated correlation with age. Based on the results, a turquoise module was picked as our hub module. Further, we constructed the PPI network comprising 35 hub module DEGs. The DEGs involved in the highest-confidence PPI network were utilized for collecting pathway and gene ontology (GO) terms using various libraries. Nucleotide di- and triphosphate biosynthesis and interconversion was the most significant pathway. Also, 3 DEGs within our PPI network were involved in the top 5 significantly enriched ontology terms, with hypercortisolism being the most significant term. PRKAR1A was the overlapping gene between top 5 significant pathways and GO terms, respectively. PRKAR1A was considered as a therapeutic target in MODS, and 2992 ligands were screened for binding with PRKAR1A. Among these ligands, 3 molecules based on CDOCKER score (molecular dynamics simulated-based score, which allows us to rank the binding poses according to their quality and to identify the best pose for each system) and crucial interaction with human PRKAR1A coding protein and protein kinase-cyclic nucleotide binding domains (PKA RI alpha CNB-B domain) via active site binding residues, viz. Val283, Val302, Gln304, Val315, Ile327, Ala336, Ala337, Val339, Tyr373, and Asn374, were considered as lead molecules.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Armiya Sultan
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prakash Jha
- Laboratory
of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar
Center for Biomedical Research, University
of Delhi, New Delhi 110007, India
| | - Mohd Mabood Khan
- Department
of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Mansoor Ali Syed
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Madhu Chopra
- Laboratory
of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar
Center for Biomedical Research, University
of Delhi, New Delhi 110007, India
| | - Mohammad Serajuddin
- Department
of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Arshad Husain Rahmani
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ravins Dohare
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
7
|
Huang C, Xiong H, Li W, Peng L, Zheng Y, Liao W, Zhou M, Xu Y. T cell activation profiles can distinguish gram negative/positive bacterial sepsis and are associated with ICU discharge. Front Immunol 2023; 13:1058606. [PMID: 36703970 PMCID: PMC9871918 DOI: 10.3389/fimmu.2022.1058606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Sepsis is a life-threatening complication resulting from a dysregulated host response to a serious infection, of which bacteria are the most common cause. A rapid differentiation of the gram negative (G-)/gram positive (G+) pathogens facilitates antibiotic treatment, which in turn improves patients' survival. Methods We performed a prospective, observational study of adult patients in intensive care unit (ICU) unit and underwent the analysis of peripheral blood lymphocyte subsets, cytokines and other clinical indexes. The enrolled 94 patients were divided into no infection group (n=28) and bacterial sepsis group (n=66), and the latter group was subdivided into G- (n=46) and G+ (n=20) sepsis subgroups. Results The best immune biomarker which differentiated the diagnosis of G- sepsis from G+ sepsis, included activation markers of CD69, human leukocyte antigen DR (HLA-DR) on CD3+CD8+T subset. The ratio of CD3+CD4+CD69+T/CD3+CD8+CD69+T (odds ratio (OR): 0.078(0.012,0.506), P = 0.008), PCT>0.53 ng/ml (OR: 9.31(1.36,63.58), P = 0.023), and CO2CP<26.5 mmol/l (OR: 10.99(1.29, 93.36), P = 0.028) were predictive of G- sepsis (versus G+ sepsis), and the area under the curve (AUC) was 0.947. Additionally, the ratio of CD3+CD4+CD69+T/CD3+CD8+CD69+T ≤ 0.2697 was an independent risk factor for poor ICU discharge in G- sepsis patients (HR: 0.34 (0.13, 0.88), P=0.026). Conclusion We conclude that enhanced activation of T cells may regulate the excessive inflammatory response of G- bacterial sepsis, and that T cell activation profiles can rapidly distinguish G- sepsis from G+ sepsis and are associated with ICU discharge.
Collapse
Affiliation(s)
- Canxia Huang
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiong
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weichao Li
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Peng
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yukai Zheng
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Liao
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minggen Zhou
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Ying Xu, ; Minggen Zhou,
| | - Ying Xu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Ying Xu, ; Minggen Zhou,
| |
Collapse
|
8
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
9
|
Kono H, Hosomura N, Amemiya H, Kawaida H, Furuya S, Shoda K, Akaike H, Kawaguchi Y, Ichikawa D. Recombinant Human Thrombomodulin Reduces Mortality and Acute Lung Injury Caused by Septic Peritonitis in Rats. Immunohorizons 2023; 7:159-167. [PMID: 36706425 PMCID: PMC10563402 DOI: 10.4049/immunohorizons.2200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/29/2023] Open
Abstract
This study aimed to investigate the therapeutic effects of recombinant human thrombomodulin (rhTM) on acute lung injury (ALI) caused by sepsis in rats. Rats that underwent cecal ligation and puncture (CLP) were treated with or without rhTM, and then mortality was analyzed. In another set of experiments, ALI was assessed. Furthermore, microthrombosis in the lungs was investigated by immunohistochemistry. Moreover, plasma inflammatory and anti-inflammatory cytokines, such as TNF-α, high-mobility group box chromosomal protein 1 (HMGB-1), and IL-10, were evaluated by ELISA. Production of TNF-α and HMGB-1 by isolated tissue macrophages (Mφs) was assessed in vitro. Mortality after CLP was significantly improved by rhTM treatment. In addition, rhTM treatment improved the wet/dry weight ratio of the lungs, the pulmonary microvascular permeability, and the lung injury scores in animals that underwent CLP. Microthrombosis was detected in the lungs after CLP. These pathophysiological changes were blunted by rhTM treatment. Increased plasma TNF-α and HMGB-1 levels were blunted by rhTM treatment; however, the anti-inflammatory cytokine IL-10 was significantly greater in the rhTM(+) group than in the rhTM(-) group. Increased TNF-α and HMGB-1 production by the tissue Mφs stimulated with LPS were significantly blunted by rhTM treatment in vitro, but the production of IL-10 by the tissue Mφs was not changed in the cells incubated with rhTM. Overall, rhTM improved the mortality caused by septic peritonitis. The possible mechanisms are most likely anti-inflammatory and anticoagulant effects, which lead to the prevention of ALI.
Collapse
Affiliation(s)
- Hiroshi Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naohiro Hosomura
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hidenori Akaike
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
10
|
Senousy SR, Ahmed ASF, Abdelhafeez DA, Khalifa MMA, Abourehab MAS, El-Daly M. Alpha-Chymotrypsin Protects Against Acute Lung, Kidney, and Liver Injuries and Increases Survival in CLP-Induced Sepsis in Rats Through Inhibition of TLR4/NF-κB Pathway. Drug Des Devel Ther 2022; 16:3023-3039. [PMID: 36105322 PMCID: PMC9467300 DOI: 10.2147/dddt.s370460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract Inflammation and oxidative stress play a major role in the development of sepsis and its associated complications, leading to multiple organ failure and death. The lungs, liver, and kidneys are among the early affected organs correlated with mortality in sepsis. Alpha-chymotrypsin (α-ch) is a serine protease that exerts anti-inflammatory, anti-edematous, and anti-oxidant properties. Purpose This study was undertaken to elucidate if the anti-inflammatory and anti-oxidant effects of α-ch observed in previous studies can alleviate lung, liver, and kidney injuries in a cecal ligation and puncture (CLP)-induced sepsis model, and thus decrease mortality. Materials and Methods Septic animals were given α-ch 2 h post CLP procedure. Sepsis outcomes were assessed in the lungs, liver, and kidneys. Separate animal groups were investigated for a survival study. Results CLP resulted in 0% survival, while α-chymotrypsin post-treatment led to 50% survival at the end of the study. Administration of α-chymotrypsin resulted in a significant attenuation of sepsis-induced elevated malonaldehyde (MDA) and total nitrite/nitrate (NOx) levels. In addition, there was a significant increase in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity in the lungs, liver, and kidneys. Administration of α-ch reduced elevated tissue expression of toll-like receptor-4 (TLR4), nuclear factor kappa-B (NF-κB), myeloperoxidase (MPO), and inducible nitric oxide synthase (iNOS). Alpha-chymotrypsin resulted in a significant reduction in serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Alpha-chymotrypsin attenuated the rise in serum creatinine, cystatin C, blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels that was observed in the septic group. In addition, α-ch significantly reduced the lung wet/dry weight ratio, total protein content, and leukocytic counts in bronchoalveolar lavage fluid (BALF). Histopathological examination of the lungs, liver, and kidneys confirmed the protective effects of α-ch on those organs. Conclusion α-ch has protective potential against sepsis through lowering tissue expression of TLR4, NF-κB, MPO, and iNOS leading to decreased oxidative stress and inflammatory signals induced by sepsis. This effect appeared to alleviate the damage to the lungs, liver, and kidneys and increase survival in rats subjected to sepsis.
Collapse
Affiliation(s)
- Shaymaa Ramzy Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Correspondence: Al-Shaimaa F Ahmed, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt, Tel +20 1020018842, Email
| | - Dalia A Abdelhafeez
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
11
|
Hypoxia and Hypercoagulability in COVID-19: Chicken or the Egg? Anesthesiology 2022; 137:13-14. [PMID: 35522846 PMCID: PMC9590669 DOI: 10.1097/aln.0000000000004241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Fukatsu M, Ohkawara H, Wang X, Alkebsi L, Furukawa M, Mori H, Fukami M, Fukami SI, Sano T, Takahashi H, Harada-Shirado K, Kimura S, Sugimoto K, Ogawa K, Ikezoe T. The suppressive effects of Mer inhibition on inflammatory responses in the pathogenesis of LPS-induced ALI/ARDS. Sci Signal 2022; 15:eabd2533. [PMID: 35258998 DOI: 10.1126/scisignal.abd2533] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pathogenesis of sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) has not yet been fully elucidated. Growth arrest-specific 6 (Gas6) has marked effects on hemostasis and reduces inflammation through its interaction with receptor tyrosine kinases of the TAM family: Tyro3, Axl, and Mer. Here, we found that plasma concentrations of Gas6 and soluble Mer were greater in patients with severe sepsis or septic ALI/ARDS compared with those in normal healthy donors. To determine whether the Gas6-Mer axis was critical in the pathogenesis of ALI/ARDS, we investigated the effects of intravenous administration of the selective Mer inhibitor UNC2250 on lipopolysaccharide (LPS)-induced ALI in mouse models subjected to inhalation of LPS. UNC2250 markedly inhibited the infiltration into the lungs of neutrophils and monocytes with increased amounts of Gas6 and Mer proteins, severe lung damage, and increased amounts of reactive oxygen species (ROS) in LPS-induced ALI in mice. In human pulmonary aortic endothelial cells, LPS induced decreases in the amounts of endothelial nitric oxide synthase, thrombomodulin, and vascular endothelial-cadherin, which was blocked by treatment with UNC2250. UNC2250 also inhibited the LPS-dependent increases in cell proliferation and enhanced apoptosis in HL-60 cells, a human neutrophil-like cell line, and RAW264.7 cells, a mouse monocyte/macrophage cell line. These data provide insights into the potential multiple beneficial effects of the Mer inhibitor UNC2250 as a therapeutic reagent to treat inflammatory responses in ALI/ARDS.
Collapse
Affiliation(s)
- Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Ohkawara
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Xintao Wang
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Lobna Alkebsi
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Miki Furukawa
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hirotaka Mori
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Miwa Fukami
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Shin-Ichi Fukami
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takahiro Sano
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | | | - Satoshi Kimura
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuei Ogawa
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
13
|
Evans CE. Editorial: Highlights in Thrombosis: 2021. Front Cardiovasc Med 2022; 9:863030. [PMID: 35282334 PMCID: PMC8908234 DOI: 10.3389/fcvm.2022.863030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Colin E. Evans
- Program for Lung and Vascular Biology, Section for Injury, Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
- Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- *Correspondence: Colin E. Evans
| |
Collapse
|
14
|
ER Stress, UPR Activation and the Inflammatory Response to Viral Infection. Viruses 2021; 13:v13050798. [PMID: 33946891 PMCID: PMC8146799 DOI: 10.3390/v13050798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
The response to invading pathogens such as viruses is orchestrated by pattern recognition receptor (PRR) and unfolded protein response (UPR) signaling, which intersects and converges in the activation of proinflammatory pathways and the release of cytokines and chemokines that harness the immune system in the attempt to clear microbial infection. Despite this protective intent, the inflammatory response, particularly during viral infection, may be too intense or last for too long, whereby it becomes the cause of organ or systemic diseases itself. This suggests that a better understanding of the mechanisms that regulate this complex process is needed in order to achieve better control of the side effects that inflammation may cause while potentiating its protective role. The use of specific inhibitors of the UPR sensors or PRRs or the downstream pathways activated by their signaling could offer the opportunity to reach this goal and improve the outcome of inflammation-based diseases associated with viral infections.
Collapse
|
15
|
'Pulmonary thrombosis in situ': risk factors, clinic characteristics and long-term evolution. Blood Coagul Fibrinolysis 2021; 31:469-475. [PMID: 32833808 DOI: 10.1097/mbc.0000000000000949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
: Pulmonary embolism typically occurs from deep venous thrombosis (DVT). However, not always a DVT can be identified, and 'in situ' generation of pulmonary embolism has been considered, referred to in the literature as 'De novo pulmonary embolism' (DNPE). The objective of the study is to assess risk factors, comorbidities, clinic characteristics and long-term evolution of patients with pulmonary embolism in the absence of an identified source. Retrospective study of 280 patients with pulmonary embolism, 190 pulmonary embolisms with DVT group and 90 (32%) pulmonary embolism without DVT (DNPE group), admitted to an Internal Medicine Department of a tertiary hospital from January 2012 to December 2015. In the DNPE group, segmental and subsegmental arteries were more frequently affected (P = 0.01). As compared with pulmonary embolisms with DVT group: older age, female sex, sedentary lifestyle, diabetes mellitus, arterial hypertension, heart failure, respiratory infections and chronic obstructive pulmonary disease (COPD) were significantly more frequent in DNPE. In multivariate analysis, respiratory infection [odds ratio (OR) 12.2, P < 0.0001], COPD (OR 8.7, P < 0.0001) and female sex (OR 3.0, P = 0.003) were independently associated risk factors. Long-term mortality (median follow-up 15 months) was also higher in DNPE group (34 vs. 16%, P = 0.01). De novo pulmonary embolism occurred in 32% of cases of pulmonary embolisms and was more frequent in female and COPD patients or those with respiratory infections as compared with pulmonary embolisms in which DVT was identified as a source of embolism.
Collapse
|
16
|
Spier AB, Evans CE. Surviving and thriving in thrombosis research during a global pandemic: Experiences of a vascular scientist diagnosed with COVID-19. THROMBOSIS UPDATE 2021; 2:100028. [PMID: 38620750 PMCID: PMC7977002 DOI: 10.1016/j.tru.2020.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
The 2019-2020 COVID-19 outbreak resulted in widespread suffering along with major changes in the ways that researchers carry out their work. This article profiles the experiences of an early-career investigator in thrombosis research who worked through the COVID-19 pandemic and a COVID-19 diagnosis. The aims of this article are to normalize concern regarding COVID-19 in the research community, to provide a perspective on maintaining productivity during stay-at-home periods, and to discuss how the COVID-19 pandemic might alter common research practices in the future. While the COVID-19 outbreak was clearly disruptive and debilitating on a global level, some research practices that were heavily employed during the pandemic may continue to be utilized in scientific research for many years to come.
Collapse
Affiliation(s)
- Addie B Spier
- Department of Medicine, University of Illinois College of Medicine, Rockford, IL, USA
| | - Colin E Evans
- Lung and Vascular Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Yu WK, McNeil JB, Wickersham NE, Shaver CM, Bastarache JA, Ware LB. Angiopoietin-2 outperforms other endothelial biomarkers associated with severe acute kidney injury in patients with severe sepsis and respiratory failure. Crit Care 2021; 25:48. [PMID: 33541396 PMCID: PMC7859898 DOI: 10.1186/s13054-021-03474-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endothelial dysfunction and injury is a major pathophysiologic feature of sepsis. Sepsis is also the most frequent cause of acute kidney injury (AKI) in critically ill patients. Though most studies of AKI in sepsis have focused on tubular epithelial injury, the role of endothelial dysfunction and injury is less well studied. The goal of this study was first to investigate whether endothelial dysfunction and injury biomarkers were associated with severe AKI in sepsis patients. The second goal was to determine the best performing biomarker for severe AKI and whether this biomarker was associated with severe AKI across different etiologies of sepsis and clinical outcomes. METHODS We studied adults with severe sepsis and acute respiratory failure (ARF) enrolled in the prospective observational Validating Acute Lung Injury markers for Diagnosis (VALID) study. Plasma endothelial dysfunction and injury biomarkers, including angiopoietin-2, soluble vascular endothelial cadherin (sVE-cadherin), endocan and syndecan-1, were measured at study enrollment. Primary analysis focused on the association between endothelial biomarker levels with severe AKI (defined as Kidney Disease: Improving Global Outcomes [KDIGO] AKI stage 2 or 3), other organ dysfunctions (defined by Brussels organ failure scores), and comparison of pulmonary versus non-pulmonary sepsis. RESULTS Among 228 sepsis patients enrolled, 141 developed severe AKI. Plasma levels of angiopoietin-2, endocan, sVE-cadherin, and syndecan-1 were significantly higher in sepsis patients with severe AKI compared to those without severe AKI. Among four endothelial biomarkers, only angiopoietin-2 was independently associated with severe AKI (odds ratio 6.07 per log increase, 95% CI 2.34-15.78, p < 0.001). Plasma angiopoietin-2 levels by quartile were significantly higher in sepsis patients with hepatic, coagulation, and circulatory failure. Plasma angiopoietin-2 levels were also significantly higher in patients with non-pulmonary sepsis compared to subjects with pulmonary sepsis. CONCLUSION Among four biomarkers of endothelial dysfunction and injury, angiopoietin-2 had the most robust independent association with development of severe AKI in patients with severe sepsis and ARF. Plasma angiopoietin-2 levels were also associated with other organ dysfunctions, non-pulmonary sepsis, and death. These findings highlight the importance of early endothelial dysfunction and injury in the pathogenesis of sepsis-induced AKI.
Collapse
Affiliation(s)
- Wen-Kuang Yu
- grid.278247.c0000 0004 0604 5314Division of Respiratory Therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Number 201, Section 2, Shipai Road, Beitou District, Taipei City, 11217 Taiwan, ROC ,grid.260770.40000 0001 0425 5914Institute of Physiology, National Yang-Ming University, Taipei, Taiwan ,grid.412807.80000 0004 1936 9916Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA
| | - J. Brennan McNeil
- grid.412807.80000 0004 1936 9916Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA
| | - Nancy E. Wickersham
- grid.412807.80000 0004 1936 9916Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA
| | - Ciara M. Shaver
- grid.412807.80000 0004 1936 9916Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA
| | - Julie A. Bastarache
- grid.412807.80000 0004 1936 9916Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA
| | - Lorraine B. Ware
- grid.412807.80000 0004 1936 9916Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, T1218 MCN, 1161 21st, Avenue S, Nashville, TN 37232 USA
| |
Collapse
|
18
|
Fujimoto S, Fujita Y, Kadota T, Araya J, Kuwano K. Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their MicroRNAs in Respiratory Diseases. Front Mol Biosci 2021; 7:619697. [PMID: 33614707 PMCID: PMC7890564 DOI: 10.3389/fmolb.2020.619697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory diseases and their comorbidities, such as cardiovascular disease and muscle atrophy, have been increasing in the world. Extracellular vesicles (EVs), which include exosomes and microvesicles, are released from almost all cell types and play crucial roles in intercellular communication, both in the regulation of homeostasis and the pathogenesis of various diseases. Exosomes are of endosomal origin and range in size from 50 to 150 nm in diameter, while microvesicles are generated by the direct outward budding of the plasma membrane in size ranges of 100-2,000 nm in diameter. EVs can contain various proteins, metabolites, and nucleic acids, such as mRNA, non-coding RNA species, and DNA fragments. In addition, these nucleic acids in EVs can be functional in recipient cells through EV cargo. The endothelium is a distributed organ of considerable biological importance, and disrupted endothelial function is involved in the pathogenesis of respiratory diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Endothelial cell-derived EVs (EC-EVs) play crucial roles in both physiological and pathological conditions by traveling to distant sites through systemic circulation. This review summarizes the pathological roles of vascular microRNAs contained in EC-EVs in respiratory diseases, mainly focusing on chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Furthermore, this review discusses the potential clinical usefulness of EC-EVs as therapeutic agents in respiratory diseases.
Collapse
Affiliation(s)
- Shota Fujimoto
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yu Fujita
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Translational Research for Exosomes, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsukasa Kadota
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Moreno G, Carbonell R, Bodí M, Rodríguez A. [Systematic review of the prognostic utility of D-dimer, disseminated intravascular coagulation, and anticoagulant therapy in COVID-19 critically ill patients]. Med Intensiva 2021; 45:42-55. [PMID: 32646669 PMCID: PMC7298463 DOI: 10.1016/j.medin.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
During the new pandemic caused by SARS-CoV-2, there is short knowledge regarding the management of different disease areas, such as coagulopathy and interpretation of D-dimer levels, its association with disseminated intravascular coagulation (DIC) and controversy about the benefit of anticoagulation. Thus, a systematic review has been performed to define the role of D-dimer in the disease, the prevalence of DIC and the usefulness of anticoagulant treatment in these patients. A literature search was performed to analyze the studies of COVID-19 patients. Four recommendations were drawn based on expert opinion and scientific knowledge, according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The present review suggests the presence of higher levels of D-dimer in those with worse prognosis, there may be an overdiagnosis of DIC in the course of the disease and there is no evidence on the benefit of starting anticoagulant treatment based only on isolated laboratory data.
Collapse
Affiliation(s)
- G Moreno
- Servicio de Medicina Intensiva, Hospital Universitari Joan XXIII, URV/IISPV, Tarragona, España.
| | - R Carbonell
- Servicio de Medicina Intensiva, Hospital Universitari Joan XXIII, URV/IISPV, Tarragona, España
| | - M Bodí
- Servicio de Medicina Intensiva, Hospital Universitari Joan XXIII, URV/IISPV, Tarragona, España
| | - A Rodríguez
- Servicio de Medicina Intensiva, Hospital Universitari Joan XXIII, URV/IISPV, Tarragona, España
| |
Collapse
|
20
|
Moreno G, Carbonell R, Bodí M, Rodríguez A. Systematic review of the prognostic utility of D-dimer, disseminated intravascular coagulation, and anticoagulant therapy in COVID-19 critically ill patients. MEDICINA INTENSIVA (ENGLISH EDITION) 2021. [PMCID: PMC7833662 DOI: 10.1016/j.medine.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the new pandemic caused by SARS-CoV-2, there is short knowledge regarding the management of different disease areas, such as coagulopathy and interpretation of D-dimer levels, its association with disseminated intravascular coagulation (DIC) and controversy about the benefit of anticoagulation. Thus, a systematic review has been performed to define the role of D-dimer in the disease, the prevalence of DIC and the usefulness of anticoagulant treatment in these patients. A literature search was performed to analyze the studies of COVID-19 patients. Four recommendations were drawn based on expert opinion and scientific knowledge, according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The present review suggests the presence of higher levels of D-dimer in those with worse prognosis, there may be an overdiagnosis of DIC in the course of the disease and there is no evidence on the benefit of starting anticoagulant treatment based only on isolated laboratory data.
Collapse
|
21
|
Ruocco G, McCullough PA, Tecson KM, Mancone M, De Ferrari GM, D'Ascenzo F, De Rosa FG, Paggi A, Forleo G, Secco GG, Pistis G, Monticone S, Vicenzi M, Rota I, Blasi F, Pugliese F, Fedele F, Palazzuoli A. Mortality Risk Assessment Using CHA(2)DS(2)-VASc Scores in Patients Hospitalized With Coronavirus Disease 2019 Infection. Am J Cardiol 2020; 137:111-117. [PMID: 32991860 PMCID: PMC7521434 DOI: 10.1016/j.amjcard.2020.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
Early risk stratification for complications and death related to Coronavirus disease 2019 (COVID-19) infection is needed. Because many patients with COVID-19 who developed acute respiratory distress syndrome have diffuse alveolar inflammatory damage associated with microvessel thrombosis, we aimed to investigate a common clinical tool, the CHA(2)DS(2)-VASc, to aid in the prognostication of outcomes for COVID-19 patients. We analyzed consecutive patients from the multicenter observational CORACLE registry, which contains data of patients hospitalized for COVID-19 infection in 4 regions of Italy, according to data-driven tertiles of CHA(2)DS(2)-VASc score. The primary outcomes were inpatient death and a composite of inpatient death or invasive ventilation. Of 1045 patients in the registry, 864 (82.7%) had data available to calculate CHA(2)DS(2)-VASc score and were included in the analysis. Of these, 167 (19.3%) died, 123 (14.2%) received invasive ventilation, and 249 (28.8%) had the composite outcome. Stratification by CHA(2)DS(2)-VASc tertiles (T1: ≤1; T2: 2 to 3; T3: ≥4) revealed increases in both death (8.1%, 24.3%, 33.3%, respectively; p <0.001) and the composite end point (18.6%, 31.9%, 43.5%, respectively; p <0.001). The odds ratios for mortality and the composite end point for T2 patients versus T1 CHA(2)DS(2)-VASc score were 3.62 (95% CI:2.29 to 5.73,p <0.001) and 2.04 (95% CI:1.42 to 2.93, p <0.001), respectively. Similarly, the odds ratios for mortality and the composite end point for T3 patients versus T1 were 5.65 (95% CI:3.54 to 9.01, p <0.001) and 3.36 (95% CI:2.30 to 4.90,p <0.001), respectively. In conclusion, among Italian patients hospitalized for COVID-19 infection, the CHA(2)DS(2)-VASc risk score for thromboembolic events enhanced the ability to achieve risk stratification for complications and death.
Collapse
Affiliation(s)
- Gaetano Ruocco
- Cardiology Division, Regina Montis Regalis Hospital, Mondovì, Cuneo, Italy
| | - Peter A McCullough
- Baylor Heart and Vascular Institute, Dallas, Texas; Baylor University Medical Center, Dallas, Texas; Baylor Scott and White Heart and Vascular Hospital, Dallas, Texas
| | - Kristen M Tecson
- Baylor Heart and Vascular Institute, Dallas, Texas; Baylor University Medical Center, Dallas, Texas; Baylor Scott and White Heart and Vascular Hospital, Dallas, Texas
| | - Massimo Mancone
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza, University of Rome, Rome, Italy
| | - Gaetano M De Ferrari
- Cardiology, Department of Medical Science University of Turin, Città della Salute e Della Scienza Le Molinette Hospital Torino, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Science University of Turin, Città della Salute e Della Scienza Le Molinette Hospital Torino, Torino, Italy
| | - Francesco G De Rosa
- Infectious Disease, Department of Medical Sciences, University of Torino, AOU Città della salute e della Scienza, Torino, Italy
| | - Anita Paggi
- Interventional Cardiology Department of Internal Medicine, ASSST Nord Milano E Bassini Hospital Cisanello Balsamo, Milan, Italy
| | - Giovanni Forleo
- Section Head Electrophysiology and Cardiac Pacing Azienda Ospedaliera, Polo Universitario -"Luigi Sacco," Milano, Italy
| | - Gioel G Secco
- Interventional Cardiology and Cardiac Surgery Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Gianfranco Pistis
- Interventional Cardiology and Cardiac Surgery Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Silvia Monticone
- Division of Internal Medicine, Department of Medical Sciences University of Turin, Turin, Italy
| | - Marco Vicenzi
- Cardiovascular Disease Unit, Department of Internal Medicine, University of Milano, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Irene Rota
- Cardiovascular Disease Unit, Department of Internal Medicine, University of Milano, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesco Blasi
- Respiratory Unit and Adult Cystic Fibrosis Center, Department of Internal Medicine, University of Milano, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Pugliese
- Department of General Surgery, Surgical Specialities "Paride Stefanini," Rome Italy
| | - Francesco Fedele
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza, University of Rome, Rome, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Medical Sciences, Le Scotte Hospital, University of Siena, Siena, Italy.
| |
Collapse
|
22
|
Negative Effects of SIGIRR on TRAF6 Ubiquitination in Acute Lung Injury In Vitro. J Immunol Res 2020; 2020:5097920. [PMID: 33123603 PMCID: PMC7584944 DOI: 10.1155/2020/5097920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the effects of single immunoglobin IL-1 receptor-related protein (SIGIRR) on tumor necrosis factor- (TNF-) receptor-associated factor 6 (TRAF6) ubiquitination in acute lung injury (ALI) were evaluated in both alveolar epithelial cells and alveolar macrophage cells in vitro. Our results found that SIGIRR negatively regulated TRAF6 ubiquitination and such SIGIRR inhibition could enhance the TRAF6 expression in both alveolar epithelial cells (AECs) and alveolar macrophage cells (AMCs). SIGIRR knockdown may increase NF-κB activity via TRAF6 regulation by the classical but not the nonclassical NF-κB signaling pathway. Such modulation between TRAF6 and SIGIRR could affect cytokine secretion and exacerbate the immune response; the IL-8, NFKB1, and NFKBIA mRNA levels were reduced after SIGIRR overexpression. The current study reveals the molecular mechanisms of the negative regulatory roles of SIGIRR on the innate immune response related to the LPS/TLR-4 signaling pathway and provides evidence for strategies to clinically treat inflammatory diseases.
Collapse
|
23
|
Xu J, Pan T, Qi X, Tan R, Wang X, Liu Z, Tao Z, Qu H, Zhang Y, Chen H, Wang Y, Zhang J, Wang J, Liu J. Increased mortality of acute respiratory distress syndrome was associated with high levels of plasma phenylalanine. Respir Res 2020; 21:99. [PMID: 32354336 PMCID: PMC7193408 DOI: 10.1186/s12931-020-01364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background There is a dearth of drug therapies available for the treatment of acute respiratory distress syndrome (ARDS). Certain metabolites play a key role in ARDS and could serve as potential targets for developing therapies against this respiratory disorder. The present study was designed to determine such “functional metabolites” in ARDS using metabolomics and in vivo experiments in a mouse model. Methods Metabolomic profiles of blood plasma from 42 ARDS patients and 28 healthy controls were captured using Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) assay. Univariate and multivariate statistical analysis were performed on metabolomic profiles from blood plasma of ARDS patients and healthy controls to screen for “functional metabolites”, which were determined by variable importance in projection (VIP) scores and P value. Pathway analysis of all the metabolites was performed. The mouse model of ARDS was established to investigate the role of “functional metabolites” in the lung injury and mortality caused by the respiratory disorder. Results The metabolomic profiles of patients with ARDS were significantly different from healthy controls, difference was also observed between metabolomic profiles of the non-survivors and the survivors among the ARDS patient pool. Levels of Phenylalanine, D-Phenylalanine and Phenylacetylglutamine were significantly increased in non-survivors compared to the survivors of ARDS. Phenylalanine metabolism was the most notably altered pathway between the non-survivors and survivors of ARDS patients. In vivo animal experiments demonstrated that high levels of Phenylalanine might be associated with the severer lung injury and increased mortality of ARDS. Conclusion Increased mortality of acute respiratory distress syndrome was associated with high levels of plasma Phenylalanine. Trial registration Chinese Clinical Trial Registry, ChiCTR1800015930. Registered 29 April 2018, http://www.chictr.org.cn/edit.aspx?pid=25609&htm=4
Collapse
Affiliation(s)
- Jing Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Qi
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheying Tao
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hong Chen
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Wang
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Zhang
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Yanuck SF, Pizzorno J, Messier H, Fitzgerald KN. Evidence Supporting a Phased Immuno-physiological Approach to COVID-19 From Prevention Through Recovery. Integr Med (Encinitas) 2020; 19:8-35. [PMID: 32425712 PMCID: PMC7190003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents an evidence-based strategy for improving clinical outcomes in COVID-19. Recommendations are based on the phases of the disease, because optimal interventions for one phase may not be appropriate for a different phase. The four phases addressed are: Prevention, Infection, Inflammation and Recovery. Underlying this phased approach is recognition of emerging evidence for two different components of pathophysiology, early infection and late stage severe complications. These two aspects of the disease suggest two different patterns of clinical emphasis that seem on the surface to be not entirely concordant. We describe the application of therapeutic strategies and appropriate tactics that address four main stages of disease progression for COVID-19. Emerging evidence in COVID-19 suggests that the SARS-CoV-2 virus may both evade the innate immune response and kill macrophages. Delayed innate immune response and a depleted population of macrophages can theoretically result in a blunted antigen presentation, delaying and diminishing activation of the adaptive immune response. Thus, one clinical strategy involves supporting patient innate and adaptive immune responses early in the time course of illness, with the goal of improving the timeliness, readiness, and robustness of both the innate and adaptive immune responses. At the other end of the disease pathology spectrum, risk of fatality in COVID-19 is driven by excessive and persistent upregulation of inflammatory mechanisms associated with cytokine storm. Thus, the second clinical strategy is to prevent or mitigate excessive inflammatory response to prevent the cytokine storm associated with high mortality risk. Clinical support for immune system pathogen clearance mechanisms involves obligate activation of immune response components that are inherently inflammatory. This puts the goals of the first clinical strategy (immune activation) potentially at odds with the goals of the second strategy(mitigation of proinflammatory effects). This creates a need for discernment about the time course of the illness and with that, understanding of which components of an overall strategy to apply at each phase of the time course of the illness. We review evidence from early observational studies and the existing literature on both outcomes and mechanisms of disease, to inform a phased approach to support the patient at risk for infection, with infection, with escalating inflammation during infection, and at risk of negative sequelae as they move into recovery.
Collapse
Affiliation(s)
- SF Yanuck
- Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine; Yanuck Center for Life & Health; Cogence Immunology; Chapel Hill, NC, USA
| | - J Pizzorno
- Editor-in-Chief, Integrative Medicine, A Clinicians Journal; Coauthor, Textbook of Natural Medicine; Chair, Board of Directors, Institute for Functional Medicine; Founding President, Bastyr University; Seattle, WA, USA
| | - H Messier
- Medical Director, Altum Medical; Chief Medical Officer, Medical Intelligence Learning Labs; San Francisco, CA, USA
| | - KN Fitzgerald
- Clinic Director, Sandy Hook Functional Medicine; Sandy Hook, CT, USA
| |
Collapse
|
25
|
Caraballo C, Jaimes F. Organ Dysfunction in Sepsis: An Ominous Trajectory From Infection To Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:629-640. [PMID: 31866778 PMCID: PMC6913810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Sepsis is a highly complex and lethal syndrome with highly heterogeneous clinical manifestations that makes it difficult to detect and treat. It is also one of the major and most urgent global public health challenges. More than 30 million people are diagnosed with sepsis each year, with 5 million attributable deaths and long-term sequalae among survivors. The current international consensus defines sepsis as a life-threatening organ dysfunction caused by a dysregulated host response to an infection. Over the past decades substantial research has increased the understanding of its pathophysiology. The immune response induces a severe macro and microcirculatory dysfunction that leads to a profound global hypoperfusion, injuring multiple organs. Consequently, patients with sepsis might present dysfunction of virtually any system, regardless of the site of infection. The organs more frequently affected are kidneys, liver, lungs, heart, central nervous system, and hematologic system. This multiple organ failure is the hallmark of sepsis and determines patients' course from infection to recovery or death. There are tools to assess the severity of the disease that can also help to guide treatment, like the Sequential Organ Failure Assessment (SOFA) score. However, sepsis disease process is vastly heterogeneous, which could explain why interventions targeted to directly intervene its mechanisms have shown unsuccessful results and predicting outcomes with accuracy is still elusive. Thus, it is required to implement strong public health strategies and leverage novel technologies in research to improve outcomes and mitigate the burden of sepsis and septic shock worldwide.
Collapse
Affiliation(s)
- César Caraballo
- Center for Outcomes Research and Evaluation, Yale New Haven Health, New Haven, CT, USA
| | - Fabián Jaimes
- Academic Group of Clinical Epidemiology, School of Medicine, University of Antioquia, Medellín, Colombia,Department of Internal Medicine, School of Medicine, University of Antioquia, Medellín, Colombia,Research Direction, San Vicente Foundation University Hospital, Medellín, Colombia,To whom all correspondence should be addressed: Dr. Fabián Jaimes, Hospital San Vicente Fundación, Calle 64 # 51 D-154, Medellín, Antioquia, Colombia; Tel: +57 (4) 2192433,
| |
Collapse
|
26
|
Evans CE. Hypoxia and HIF activation as a possible link between sepsis and thrombosis. Thromb J 2019; 17:16. [PMID: 31423111 PMCID: PMC6693167 DOI: 10.1186/s12959-019-0205-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Risk factors for thrombosis include hypoxia and sepsis, but the mechanisms that control sepsis-induced thrombus formation are incompletely understood. A recent article published in Thrombosis Journal: (i) reviews the role of endothelial cells in the pathogenesis of sepsis-associated microthrombosis; (ii) describes a novel ‘two-path unifying theory’ of hemostatic discorders; and (iii) refers to hypoxia as a consequence of microthrombus formation in sepsis patients. The current article adds to this review by describing how sepsis and thrombus formation could be linked through hypoxia and activation of hypoxia-inducible transcription factors (HIFs). In other words, hypoxia and HIF activation may be a cause as well as a consequence of thrombosis in sepsis patients. While microthrombosis reduces microvascular blood flow causing local hypoxia and tissue ischemia, sepsis-induced increases in HIF1 activation could conversely increase the expression of coagulant factors and integrins that promote thrombus formation, and stimulate the formation of pro-thrombotic neutrophil extracellular traps. A better understanding of the role of cell-specific HIFs in thrombus formation could lead to the development of novel prophylactic therapies for individuals at risk of thrombosis.
Collapse
Affiliation(s)
- Colin E Evans
- 1Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA.,2Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
27
|
Mu S, Liu Y, Jiang J, Ding R, Li X, Li X, Ma X. Unfractionated heparin ameliorates pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization in acute lung injury. Respir Res 2018; 19:220. [PMID: 30442128 PMCID: PMC6238311 DOI: 10.1186/s12931-018-0925-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background Endothelial barrier dysfunction is central to the pathogenesis of sepsis-associated acute lung injury (ALI). Microtubule (MT) dynamics in vascular endothelium are crucial for the regulation of endothelial barrier function. Unfractionated heparin (UFH) possesses various biological activities, such as anti-inflammatory activity and endothelial barrier protection during sepsis. Methods Here, we investigated the effects and underlying mechanisms of UFH on lipopolysaccharide (LPS)-induced endothelial barrier dysfunction. C57BL/6 J mice were randomized into vehicle, UFH, LPS and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received intravenous UFH 0.5 h prior to LPS injection. Human pulmonary microvascular endothelial cells (HPMECs) were cultured for analyzing the effects of UFH on LPS-induced and nocodazole-induced hyperpermeability, F-actin remodeling, and LPS-induced p38 MAPK activation. Results UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes, and increased the lung W/D ratio and Evans blue accumulation in vivo. Both in vivo and in vitro studies showed that UFH pretreatment blocked the LPS-induced increase in guanine nucleotide exchange factor (GEF-H1) expression and myosin phosphatase target subunit 1 (MYPT1) phosphorylation, and microtubule (MT) disassembly in LPS-induced ALI mouse model and human pulmonary microvascular endothelial cells (HPMECs). These results suggested that UFH ameliorated LPS-induced endothelial barrier dysfunction by inhibiting MT disassembly and GEF-H1 expression. In addition, UFH attenuated LPS-induced hyperpermeability of HPMECs and F-actin remodeling. In vitro, UFH pretreatment inhibited LPS-induced increase in monomeric tubulin expression and decrease in tubulin polymerization and acetylation. Meanwhile, UFH ameliorates nocodazole-induced MTs disassembly and endothelial barrier dysfunction.Additionally, UFH decreased p38 phosphorylation and activation, which was similar to the effect of the p38 MAPK inhibitor, SB203580. Conclusions UFH exert its protective effects on pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization and is associated with the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shengtian Mu
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yina Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jing Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xu Li
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xin Li
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xiaochun Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of China Medical University, No. 92 Bei-er Road, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
28
|
Yang F, Wang Y. Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis. Exp Ther Med 2018; 15:4637-4642. [PMID: 29805480 PMCID: PMC5952067 DOI: 10.3892/etm.2018.6026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a type of systemic inflammatory response syndrome with high morbidity and mortality. Skeletal muscle dysfunction is one of the major complications of sepsis that may also influence the outcome of sepsis. The aim of the present study was to explore and identify potential mechanisms and therapeutic targets of sepsis. Systemic bioinformatics analysis of skeletal muscle gene expression profiles from the Gene Expression Omnibus was performed. Differentially expressed genes (DEGs) in samples from patients with sepsis and control samples were screened out using the limma package. Differential co-expression and coregulation (DCE and DCR, respectively) analysis was performed based on the Differential Co-expression Analysis package to identify differences in gene co-expression and coregulation patterns between the control and sepsis groups. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of DEGs were identified using the Database for Annotation, Visualization and Integrated Discovery, and inflammatory, cancer and skeletal muscle development-associated biological processes and pathways were identified. DCE and DCR analysis revealed several potential therapeutic targets for sepsis, including genes and transcription factors. The results of the present study may provide a basis for the development of novel therapeutic targets and treatment methods for sepsis.
Collapse
Affiliation(s)
- Fang Yang
- Department of Critical Care Medicine, Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| | - Yumei Wang
- Department of Critical Care Medicine, Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
29
|
Abstract
Experimental models of sepsis in small and large animals and a variety of in vitro preparations have established several basic mechanisms that drive endothelial injury. This review is focused on what can be learned from the results of clinical studies of plasma biomarkers of endothelial injury and inflammation in patients with sepsis. There is excellent evidence that elevated plasma levels of several biomarkers of endothelial injury, including von Willebrand factor antigen (VWF), angiopoietin-2 (Ang-2), and soluble fms-like tyrosine kinase 1 (sFLT-1), and biomarkers of inflammation, especially interleukin-8 (IL-8) and soluble tumor necrosis factor receptor (sTNFr), identify sepsis patients with a higher mortality. There are also some data that elevated levels of endothelial biomarkers can identify which patients with non-pulmonary sepsis will develop acute respiratory distress syndrome (ARDS). If ARDS patients are divided among those with indirect versus direct lung injury, then there is an association of elevated levels of endothelial biomarkers in indirect injury and markers of inflammation and alveolar epithelial injury in patients with direct lung injury. New research suggests that the combination of biologic and clinical markers may make it possible to segregate patients with ARDS into hypo- versus hyper-inflammatory phenotypes that may have implications for therapeutic responses to fluid therapy. Taken together, the studies reviewed here support a primary role of the microcirculation in the pathogenesis and prognosis of ARDS after sepsis. Biological differences identified by molecular patterns could explain heterogeneity of treatment effects that are not explained by clinical factors alone.
Collapse
Affiliation(s)
- Carolyn M. Hendrickson
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
- Michael A. Matthay, 505 Parnassus Avenue, San Francisco, CA 94117, USA.
| |
Collapse
|
30
|
Parthasarathi K. The Pulmonary Vascular Barrier: Insights into Structure, Function, and Regulatory Mechanisms. MOLECULAR AND FUNCTIONAL INSIGHTS INTO THE PULMONARY VASCULATURE 2018; 228:41-61. [DOI: 10.1007/978-3-319-68483-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7:117. [PMID: 29197958 PMCID: PMC5712298 DOI: 10.1186/s13613-017-0339-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Host infection by a micro-organism triggers systemic inflammation, innate immunity and complement pathways, but also haemostasis activation. The role of thrombin and fibrin generation in host defence is now recognised, and thrombin has become a partner for survival, while it was seen only as one of the "principal suspects" of multiple organ failure and death during septic shock. This review is first focused on pathophysiology. The role of contact activation system, polyphosphates and neutrophil extracellular traps has emerged, offering new potential therapeutic targets. Interestingly, newly recognised host defence peptides (HDPs), derived from thrombin and other "coagulation" factors, are potent inhibitors of bacterial growth. Inhibition of thrombin generation could promote bacterial growth, while HDPs could become novel therapeutic agents against pathogens when resistance to conventional therapies grows. In a second part, we focused on sepsis-induced coagulopathy diagnostic challenge and stratification from "adaptive" haemostasis to "noxious" disseminated intravascular coagulation (DIC) either thrombotic or haemorrhagic. Besides usual coagulation tests, we discussed cellular haemostasis assessment including neutrophil, platelet and endothelial cell activation. Then, we examined therapeutic opportunities to prevent or to reduce "excess" thrombin generation, while preserving "adaptive" haemostasis. The fail of international randomised trials involving anticoagulants during septic shock may modify the hypothesis considering the end of haemostasis as a target to improve survival. On the one hand, patients at low risk of mortality may not be treated to preserve "immunothrombosis" as a defence when, on the other hand, patients at high risk with patent excess thrombin and fibrin generation could benefit from available (antithrombin, soluble thrombomodulin) or ongoing (FXI and FXII inhibitors) therapies. We propose to better assess coagulation response during infection by an improved knowledge of pathophysiology and systematic testing including determination of DIC scores. This is one of the clues to allocate the right treatment for the right patient at the right moment.
Collapse
Affiliation(s)
- Xavier Delabranche
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| | - Julie Helms
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM, EFS Grand Est, BPPS UMR-S 949, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|