1
|
Li Y, Luo W, Wang Q, Chen Y, Bai F, Zeng Q, Long Z, Li H. Anion gap predicting 90-Day mortality and guiding furosemide use in ARDS. Sci Rep 2025; 15:4954. [PMID: 39930113 PMCID: PMC11811161 DOI: 10.1038/s41598-025-89163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The objective of this study was to investigate whether serum anion gap (AG), which may serve as an indicator for multiple organic dysfunctions in the condition of hypoxia, could be utilized as a reliable prognostic marker for short-term mortality and a potential therapeutic target in patients with acute respiratory distress syndrome (ARDS). A retrospective cohort study was conducted using data from the Medical Information Mart for Intensive Care (MIMIC-IV) electronic database (version 2.2), including 11,227 confirmed patients with ARDS. Multivariate Cox proportional hazards analysis revealed a significant association between elevated AG levels and all-cause mortality. After adjusting for confounding factors, elevated AG levels were strongly correlated with 90-day mortality [adjusted hazard ratio (HR) 1.23; 95% confidence interval (CI) 1.10-1.37; P < 0.001]. Restricted cubic splines and Kaplan-Meier curves demonstrated an increased risk of all-cause mortality with higher AG levels. Subgroup analysis results emphasized the significance of furosemide as a pivotal therapeutic option, which was further supported by subsequent Kaplan-Meier curves and Cox proportional hazards analysis showing its protective effects in patients with elevated serum AG levels. Even after adjusting for relevant confounding factors, furosemide continued to exhibit a significant protective effect in the group with the highest AG level (Q4: adjusted HR 0.57; 95% CI 0.50-0.65; P < 0.001); however, no significant protective effect was observed in the intermediate level groups (Q2 and Q3). In summary, this research demonstrated a significant association between heightened serum AG levels and increased mortality risk among ARDS patients, which was mitigated by administration of furosemide.
Collapse
Affiliation(s)
- Yu Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Wenjian Luo
- Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Qiuyue Wang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Yanjuan Chen
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Fuhai Bai
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Qinya Zeng
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Zonghong Long
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China.
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Gopakumar G, Coppo MJ, Diaz-Méndez A, Hartley CA, Devlin JM. Host-virus interactions during infection with a wild-type ILTV strain or a glycoprotein G deletion mutant ILTV vaccine strain in an ex vivo system. Microbiol Spectr 2025; 13:e0118324. [PMID: 39804092 PMCID: PMC11792554 DOI: 10.1128/spectrum.01183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/22/2024] [Indexed: 02/05/2025] Open
Abstract
Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other. Although no viral genes (except for gG) were differentially regulated between the two ILTV-infected TOCs, pair-wise comparison of the transcriptomes of the ∆gG-ILTV or the CSW-1 ILTV-infected TOCs (each compared with mock-infected TOCs) identified the similarities and differences in host gene transcription between them. Several immune checkpoint inhibitors with likely roles in ILTV-mediated immune augmentation, and gene ontologies indicating cytokine response, and cytokine signaling were upregulated in both TOCs. Additionally, several other biological processes, molecular functions, and cellular components were enriched uniquely in the ∆gG-ILTV-infected TOCs, including those that indicated modifications to tracheal extracellular matrix (ECM) structural components, which may have a role in immune modulation in vivo. This study has revealed that the modifications of transcription of host genes during the early stages of ILTV infection are not limited to changes in cytokine or chemokine gene transcription, but several other immune-related genes and ECM components. Moreover, their differential regulation in the ex vivo system appears to be influenced by gG expression, potentially affecting the outcome of ILTV infection in vivo.IMPORTANCEInfectious laryngotracheitis virus (ILTV) remains a serious threat to poultry industries worldwide, causing significant economic losses. The glycoprotein G (gG) of ILTV is a virulence factor and a chemokine-binding protein with immunoregulatory functions. The influence of gG on the transcription of select host chemokine and cytokine genes has been demonstrated previously. This study extends our understanding of the early and localized host-ILTV interactions using genome-wide transcriptome analysis of ILTV-infected chicken tracheal organ cultures, and the role of gG during the process. Differential regulation of genes encoding immune checkpoint inhibitors observed in this study may have a role in ILTV-induced inhibition of type I interferon response, or negative regulation of T cell responses, bringing clarity to these ILTV immune-evasion mechanisms. Furthermore, differential regulation of genes encoding certain structural components and receptors with roles in cell migration, in the absence of gG, is consistent with the immunomodulatory role of ILTV gG.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Mauricio J.C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Spinelli E, Perez J, Chiavieri V, Leali M, Mansour N, Madotto F, Rosso L, Panigada M, Grasselli G, Vaira V, Mauri T. Pathophysiological Markers of Acute Respiratory Distress Syndrome Severity Are Correlated With Ventilation-Perfusion Mismatch Measured by Electrical Impedance Tomography. Crit Care Med 2025; 53:e42-e53. [PMID: 39445936 DOI: 10.1097/ccm.0000000000006458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Pulmonary ventilation/perfusion (V/Q) mismatch measured by electrical impedance tomography (EIT) is associated with the outcome of patients with the acute respiratory distress syndrome (ARDS), but the underlying pathophysiological mechanisms have not been fully elucidated. The present study aimed to verify the correlation between relevant pathophysiological markers of ARDS severity and V/Q mismatch. DESIGN Prospective observational study. SETTING General ICU of a university-affiliated hospital. PATIENTS Deeply sedated intubated adult patients with ARDS under controlled mechanical ventilation. INTERVENTIONS Measures of V/Q mismatch by EIT, respiratory mechanics, gas exchange, lung imaging, and plasma biomarkers. MEASUREMENTS AND MAIN RESULTS Unmatched V/Q units were assessed by EIT as the fraction of ventilated nonperfused plus perfused nonventilated lung units. At the same time, plasma biomarkers with proven prognostic and mechanistic significance for ARDS (carbonic anhydrase 9 [CA9], hypoxia-inducible factor 1 [HIF1], receptor for advanced glycation endproducts [RAGE], angiopoietin 2 [ANG2], gas exchange, respiratory mechanics, and quantitative chest CT scans were measured. Twenty-five intubated ARDS patients were included with median unmatched V/Q units of 37.1% (29.2-49.2%). Unmatched V/Q units were correlated with plasma levels of CA9 (rho = 0.47; p = 0.01), HIF1 (rho = 0.40; p = 0.05), RAGE (rho = 0.46; p = 0.02), and ANG2 (rho = 0.42; p = 0.03). Additionally, unmatched V/Q units correlated with plateau pressure ( r = 0.38; p = 0.05) and with the number of quadrants involved on chest radiograph ( r = 0.73; p < 0.01). Regional unmatched V/Q units were correlated with the corresponding fraction of poorly aerated lung tissue ( r = 0.62; p = 0.01) and of lung tissue weight (rho: 0.51; p = 0.04) measured by CT scan. CONCLUSIONS In ARDS patients, unmatched V/Q units are correlated with pathophysiological markers of lung epithelial and endothelial dysfunction, increased lung stress, and lung edema. Unmatched V/Q units could represent a comprehensive marker of ARDS severity, reflecting the complex organ pathophysiology and reinforcing their prognostic significance.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Joaquin Perez
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Chiavieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nadia Mansour
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Kato Y, Mawatari K. Clinical significance of acidic extracellular microenvironment modulated genes. Front Oncol 2024; 14:1380679. [PMID: 39372863 PMCID: PMC11449683 DOI: 10.3389/fonc.2024.1380679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/21/2024] [Indexed: 10/08/2024] Open
Abstract
Background The extracellular pH (pH e ) is known to be acidic. We investigated the effect of mild (pH e 6.8) and severe (pH e 5.9) acidosis on gene expression in mouse B16-BL6 melanoma cells using cDNA microarray analysis and compared them with the acidic pH e dependence of human tumors. Methods B16-BL6 cells were treated with pH e 7.4 (control), pH e 6.8, and pH e 5.9. The mRNA expression was analyzed by using the cDNA microarray. Heat map, volcano plot, and gene ontology enrichment analysis were performed. The data were compared with the gene signatures of published data GSE52031 and GSE8401 and compared with the pathological staging by GEPIA2, and the prognostic signature of proteins was searched by the Human Protein Atlas database. If the acidic pH e -induced and -reduced genes were correlated with shortened and prolonged survival times, respectively, and also correlated with pathological staging, we defined it as "hit" and counted the sum of hit points of eight types of tumors such as breast, colorectal, prostate, gastric, liver, prostate, lung, and head and neck and melanoma. Results Gene expression was differentially and commonly regulated by both pH e s. The number of genes upregulated fourfold or more at pH e 6.8 and 5.9 only for 25 and 131 genes, respectively, and 85 genes were common. The number of genes downregulated fourfold or less at pH e 6.8 and 5.9 only for 63 and 82 genes, respectively, and 118 genes were common. Compared with human mRNA expression data (GSE8401), there is no correlation with the overall pattern of the signature. In seven types of cancer (breast, colorectal, gastric, liver, prostate, lung, and head and neck) and melanoma, the relationship between acidic pH e -modulated gene expression and overall survival was evaluated. As a result, acidic pH e dependency contributing to prognosis was higher in colorectal, lung, and head and neck cancers and lower in prostate cancer. Conclusion Tumor classification based on response to extracellular acidic pH e will provide new insights into chemotherapy strategy for patients with tumors.
Collapse
Affiliation(s)
- Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of
Dentistry, Koriyama, Japan
| | | |
Collapse
|
5
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
6
|
García-Llorca A, Carta F, Supuran CT, Eysteinsson T. Carbonic anhydrase, its inhibitors and vascular function. Front Mol Biosci 2024; 11:1338528. [PMID: 38348465 PMCID: PMC10859760 DOI: 10.3389/fmolb.2024.1338528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
It has been known for some time that Carbonic Anhydrase (CA, EC 4.2.1.1) plays a complex role in vascular function, and in the regulation of vascular tone. Clinically employed CA inhibitors (CAIs) are used primarily to lower intraocular pressure in glaucoma, and also to affect retinal blood flow and oxygen saturation. CAIs have been shown to dilate vessels and increase blood flow in both the cerebral and ocular vasculature. Similar effects of CAIs on vascular function have been observed in the liver, brain and kidney, while vessels in abdominal muscle and the stomach are unaffected. Most of the studies on the vascular effects of CAIs have been focused on the cerebral and ocular vasculatures, and in particular the retinal vasculature, where vasodilation of its vessels, after intravenous infusion of sulfonamide-based CAIs can be easily observed and measured from the fundus of the eye. The mechanism by which CAIs exert their effects on the vasculature is still unclear, but the classic sulfonamide-based inhibitors have been found to directly dilate isolated vessel segments when applied to the extracellular fluid. Modification of the structure of CAI compounds affects their efficacy and potency as vasodilators. CAIs of the coumarin type, which generally are less effective in inhibiting the catalytically dominant isoform hCA II and unable to accept NO, have comparable vasodilatory effects as the primary sulfonamides on pre-contracted retinal arteriolar vessel segments, providing insights into which CA isoforms are involved. Alterations of the lipophilicity of CAI compounds affect their potency as vasodilators, and CAIs that are membrane impermeant do not act as vasodilators of isolated vessel segments. Experiments with CAIs, that shed light on the role of CA in the regulation of vascular tone of vessels, will be discussed in this review. The role of CA in vascular function will be discussed, with specific emphasis on findings with the effects of CA inhibitors (CAI).
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fabrizio Carta
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Ophthalmology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
Lee JY, Stevens RP, Pastukh VV, Pastukh VM, Kozhukhar N, Alexeyev MF, Reisz JA, Nerguizian D, D’Alessandro A, Koloteva A, Gwin MS, Roberts JT, Borchert GM, Wagener BM, Pittet JF, Graham BB, Stenmark KR, Stevens T. PFKFB3 Inhibits Fructose Metabolism in Pulmonary Microvascular Endothelial Cells. Am J Respir Cell Mol Biol 2023; 69:340-354. [PMID: 37201952 PMCID: PMC10503305 DOI: 10.1165/rcmb.2022-0443oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/17/2023] [Indexed: 05/20/2023] Open
Abstract
Pulmonary microvascular endothelial cells contribute to the integrity of the lung gas exchange interface, and they are highly glycolytic. Although glucose and fructose represent discrete substrates available for glycolysis, pulmonary microvascular endothelial cells prefer glucose over fructose, and the mechanisms involved in this selection are unknown. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is an important glycolytic enzyme that drives glycolytic flux against negative feedback and links glycolytic and fructolytic pathways. We hypothesized that PFKFB3 inhibits fructose metabolism in pulmonary microvascular endothelial cells. We found that PFKFB3 knockout cells survive better than wild-type cells in fructose-rich medium under hypoxia. Seahorse assays, lactate and glucose measurements, and stable isotope tracing showed that PFKFB3 inhibits fructose-hexokinase-mediated glycolysis and oxidative phosphorylation. Microarray analysis revealed that fructose upregulates PFKFB3, and PFKFB3 knockout cells increase fructose-specific GLUT5 (glucose transporter 5) expression. Using conditional endothelial-specific PFKFB3 knockout mice, we demonstrated that endothelial PFKFB3 knockout increases lung tissue lactate production after fructose gavage. Last, we showed that pneumonia increases fructose in BAL fluid in mechanically ventilated ICU patients. Thus, PFKFB3 knockout increases GLUT5 expression and the hexokinase-mediated fructose use in pulmonary microvascular endothelial cells that promotes their survival. Our findings indicate that PFKFB3 is a molecular switch that controls glucose versus fructose use in glycolysis and help better understand lung endothelial cell metabolism during respiratory failure.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology
- Division of Pulmonary and Critical Care Medicine
- Department of Internal Medicine
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Reece P. Stevens
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktoriya V. Pastukh
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktor M. Pastukh
- Department of Pharmacology, and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | | | | | | | - Anna Koloteva
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Meredith S. Gwin
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Justin T. Roberts
- Department of Pharmacology, and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Glen M. Borchert
- Department of Pharmacology, and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Brant M. Wagener
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Jean-François Pittet
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Brian B. Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, California
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Troy Stevens
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
8
|
Development of potent nanosized carbonic anhydrase inhibitor for targeted therapy of hypoxic solid tumors. Int J Pharm 2023; 631:122537. [PMID: 36572260 DOI: 10.1016/j.ijpharm.2022.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Overexpression of two carbonic anhydrase (CA) isoforms, CA IX and XII, in several hypoxic solid tumors provides an extracellular hypoxic microenvironment, interferes with extra- and intracellular pH regulation, thus favoring hypoxic tumor cell survival, proliferation and metastasis. In the current study, a selective inhibitor for human CA isoforms IX and XII (isatin-bearing sulfonamide, WEG-104), was incorporated into nanosized spherical niosomes at high encapsulation efficiency to allow for an enhanced and sustained antitumor activity. In vivo, administration of WEG-104 that is either free (10 mg/kg) or loaded into niosomes (5 mg/kg) into a mice model of Ehrlich ascites solid tumor resulted in comparable efficacy in terms of reduction of tumor weight and volume. Administration of WEG-104-loaded niosomes (10 mg/kg) exhibited superior antitumor activity compared to the free drug, evidenced by reduced tumor weight and volume, marked reduction in the activity of CA IX and XII, and suppression of HIF-1α and MMP-2. Moreover, prominent increase of caspase 3 and pronounced decrease in VEGF immune expression were observed in the treated animals. Hence, loading of molecularly designed compounds that targets CAs in hypoxic solid tumors into nanosized delivery systems provided an auspicious strategy for limiting solid tumor progression and malignancy.
Collapse
|
9
|
Luo A, Hao R, Zhou X, Jia Y, Tang H. Integrative Proteomic and Phosphoproteomic Analyses of Hypoxia-Treated Pulmonary Artery Smooth Muscle Cells. Proteomes 2022; 10:proteomes10030023. [PMID: 35893764 PMCID: PMC9326561 DOI: 10.3390/proteomes10030023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the main causes of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Hypoxia is an important factor related to PAH and can induce the excessive proliferation of PASMCs and inhibit apoptosis. To explore the possible mechanism of hypoxia-related PAH, human PASMCs are exposed to hypoxia for 24 h and tandem mass tag (TMT)-based quantitative proteomic and phosphoproteomic analyses are performed. Proteomic analysis revealed 134 proteins are significantly changed (p < 0.05, |log2 (fold change)| > log2 [1.1]), of which 48 proteins are upregulated and 86 are downregulated. Some of the changed proteins are verified by using qRT-PCR and Western blotting. Phosphoproteomic analysis identified 404 significantly changed (p < 0.05, |log2 (fold change)| > log2 [1.1]) phosphopeptides. Among them, 146 peptides are upregulated while 258 ones are downregulated. The kinase-substrate enrichment analysis revealed kinases such as P21 protein-activated kinase 1/2/4 (PAK1/2/4), protein-kinase cGMP-dependent 1 and 2 (PRKG1/2), and mitogen-activated protein-kinase 4/6/7 (MAP2K4/6/7) are significantly enriched and activated. For all the significantly changed proteins or phosphoproteins, a comprehensive pathway analysis is performed. In general, this study furthers our understanding of the mechanism of hypoxia-induced PAH.
Collapse
Affiliation(s)
- Ang Luo
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.H.); (X.Z.); (Y.J.)
- Correspondence: (A.L.); (H.T.)
| | - Rongrong Hao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.H.); (X.Z.); (Y.J.)
| | - Xia Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.H.); (X.Z.); (Y.J.)
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.H.); (X.Z.); (Y.J.)
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
- Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Correspondence: (A.L.); (H.T.)
| |
Collapse
|
10
|
Stevens RP, Alexeyev MF, Kozhukhar N, Pastukh V, Paudel SS, Bell J, Tambe DT, Stevens T, Lee JY. Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L48-L57. [PMID: 35672011 DOI: 10.1152/ajplung.00337.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is comprised of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) The PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Jessica Bell
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dhananjay T Tambe
- Department of Mechanical, Aerospace, and Biomedical Engineering, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
11
|
Adams D, Choi CS, Sayner SL. Pulmonary endothelial cells from different vascular segments exhibit unique recovery from acidification and Na+/H+ exchanger isoform expression. PLoS One 2022; 17:e0266890. [PMID: 35503765 PMCID: PMC9064095 DOI: 10.1371/journal.pone.0266890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Sodium-hydrogen exchangers (NHEs) tightly regulate intracellular pH (pHi), proliferation, migration and cell volume. Heterogeneity exists between pulmonary endothelial cells derived from different vascular segments, yet the activity and isoform expression of NHEs between these vascular segments has not been fully examined. Utilizing the ammonium-prepulse and recovery from acidification technique in a buffer lacking bicarbonate, pulmonary microvascular and pulmonary artery endothelial cells exhibited unique recovery rates from the acid load dependent upon the concentration of the sodium transport inhibitor, amiloride; further, pulmonary artery endothelial cells required a higher dose of amiloride to inhibit sodium-dependent acid recovery compared to pulmonary microvascular endothelial cells, suggesting a unique complement of NHEs between the different endothelial cell types. While NHE1 has been described in pulmonary endothelial cells, all NHE isoforms have not been accounted for. To address NHE expression in endothelial cells, qPCR was performed. Using a two-gene normalization approach, Sdha and Ywhag were identified for qPCR normalization and analysis of NHE isoforms between pulmonary microvascular and pulmonary artery endothelial cells. NHE1 and NHE8 mRNA were equally expressed between the two cell types, but NHE5 expression was significantly higher in pulmonary microvascular versus pulmonary artery endothelial cells, which was confirmed at the protein level. Thus, pulmonary microvascular and pulmonary artery endothelial cells exhibit unique NHE isoform expression and have a unique response to acid load revealed through recovery from cellular acidification.
Collapse
Affiliation(s)
- Dylan Adams
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Sarah L. Sayner
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
12
|
Cytotoxic tau released from lung microvascular endothelial cells upon infection with Pseudomonas aeruginosa promotes neuronal tauopathy. J Biol Chem 2021; 298:101482. [PMID: 34896150 PMCID: PMC8718960 DOI: 10.1016/j.jbc.2021.101482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Patients who recover from nosocomial pneumonia oftentimes exhibit long-lasting cognitive impairment comparable with what is observed in Alzheimer’s disease patients. We previously hypothesized that the lung endothelium contributes to infection-related neurocognitive dysfunction, because bacteria-exposed endothelial cells release a form(s) of cytotoxic tau that is sufficient to impair long-term potentiation in the hippocampus. However, the full-length lung and endothelial tau isoform(s) have yet to be resolved and it remains unclear whether the infection-induced endothelial cytotoxic tau triggers neuronal tau aggregation. Here, we demonstrate that lung endothelial cells express a big tau isoform and three additional tau isoforms that are similar to neuronal tau, each containing four microtubule-binding repeat domains, and that tau is expressed in lung capillaries in vivo. To test whether infection elicits endothelial tau capable of causing transmissible tau aggregation, the cells were infected with Pseudomonas aeruginosa. The infection-induced tau released from endothelium into the medium-induced neuronal tau aggregation in reporter cells, including reporter cells that express either the four microtubule-binding repeat domains or the full-length tau. Infection-induced release of pathological tau variant(s) from endothelium, and the ability of the endothelial-derived tau to cause neuronal tau aggregation, was abolished in tau knockout cells. After bacterial lung infection, brain homogenates from WT mice, but not from tau knockout mice, initiated tau aggregation. Thus, we conclude that bacterial pneumonia initiates the release of lung endothelial-derived cytotoxic tau, which is capable of propagating a neuronal tauopathy.
Collapse
|
13
|
Wang Y, Yin L, Cui Y, Wang L, Wu J, Wang J, Zhao H, Liu C, Cui Y, Zhang Y, Li X, Zhu Z, Yang L. Prognostic Significance of Membranous Carbonic Anhydrase IX Expression in Patients with Nonmetastatic Clear Cell Renal Cell Carcinoma of Different Tumor Stages. Cancer Biother Radiopharm 2021; 37:494-502. [PMID: 34714117 DOI: 10.1089/cbr.2020.3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: There are paradoxical results regarding whether carbonic anhydrase IX (CAIX) is a prognostic biomarker for patients with clear cell renal cell carcinoma (ccRCC). The objective of this study was to evaluate prognostic significance of CAIX in nonmetastatic ccRCC patients of different stages. Materials and Methods: This is a retrospective study on 1263 patients with nonmetastatic ccRCC from January 2005 to June 2018. Patients were stratified into eight subgroups (pT1a, pT1b, pT2a, pT2b, pT3a, pT3b, pT3c, and pT4) according to the 2016 TNM classification system. Immunohistochemical staining of membranous CAIX was quantified. Cancer-specific survival (CSS) rates in patients with high (>85%) and low (<85%) CAIX expressions were compared by Kaplan-Meier curves with log-rank test. Results: There were 220 tumors (17.42%) with low CAIX expression and 1043 tumors (82.58%) with high CAIX expression. The cumulative CSS rates were statistically significant between all patients with low and high CAIX expression (p-value <0.001). In pT2a, pT2b, and pT3a subgroups, the patients with low CAIX expression exhibited markedly decreased cumulative CSS rates compared to patients with high CAIX expression (p-value <0.05). Univariable and multivariable Cox regression analysis showed that CAIX expression was an independent predictor of prognosis in patients with pT2a, pT2b, and pT3a ccRCC (p-value <0.05), rather than in all nonmetastatic patients. Conclusion: CAIX expression is of independent prognostic value for ccRCC patients in pT2a, pT2b, and pT3a stages. CAIX expression combined with tumor stage would further improve risk stratification of nonmetastatic ccRCC patients and provide directions for therapies.
Collapse
Affiliation(s)
- Yongqiang Wang
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Likui Yin
- Clinical Laboratory, Dongying People's Hospital, Dongying, P.R. China
| | - Yupeng Cui
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Lin Wang
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Jitao Wu
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Jipeng Wang
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Hongwei Zhao
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Chu Liu
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Yuanshan Cui
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Yongfu Zhang
- Department of Urology, Affiliated Yantai Hospital of Binzhou Medical University, Yantai, P.R. China
| | - Xiaofei Li
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, School of Medicine, La Jolla, California, USA
| | - Liqing Yang
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| |
Collapse
|
14
|
Leligdowicz A, Matthay MA. Carbonic Anhydrase IX: Scaring Away the Grim Reaper in Acute Lung Injury? Am J Respir Cell Mol Biol 2021; 65:573-575. [PMID: 34375573 PMCID: PMC8641805 DOI: 10.1165/rcmb.2021-0310ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Michael A Matthay
- Cardiovascular Research Institute (CVRI), University of San Francisco, Medicine and Anesthesia, San Francisco, California, United States;
| |
Collapse
|
15
|
Stevens RP, Paudel SS, Johnson SC, Stevens T, Lee JY. Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L358-L376. [PMID: 34159794 PMCID: PMC8384476 DOI: 10.1152/ajplung.00131.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Santina C Johnson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Biomolecular Engineering, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
16
|
Lee JY, Stevens RP, Kash M, Alexeyev MF, Balczon R, Zhou C, Renema P, Koloteva A, Kozhukhar N, Pastukh V, Gwin MS, Voth S, deWeever A, Wagener BM, Pittet JF, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Fouty BW, Audia JP, Alvarez DF, Stevens T. Carbonic Anhydrase IX and Hypoxia Promote Rat Pulmonary Endothelial Cell Survival During Infection. Am J Respir Cell Mol Biol 2021; 65:630-645. [PMID: 34251286 DOI: 10.1165/rcmb.2020-0537oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Low tidal volume ventilation protects the lung in mechanically ventilated patients. The impact of the accompanying permissive hypoxemia and hypercapnia on endothelial cell recovery from injury is poorly understood. Carbonic anhydrase IX (CA IX) is expressed in pulmonary microvascular endothelial cells (PMVECs), where it contributes to CO2 and pH homeostasis, bioenergetics and angiogenesis. We hypothesized that CA IX is important for PMVEC survival, and CA IX expression and release from PMVECs are increased during infection. While plasma CA IX was unchanged in human and rat pneumonia, there was a trend towards increasing CA IX in bronchoalveolar fluid of mechanically ventilated critically ill pneumonia patients and a significant increase in CA IX in lung tissue lysate of rat pneumonia. To investigate functional implications of the lung CA IX increase, we generated PMVEC cell lines harboring domain-specific CA IX mutations. Using these cells, we found that infection promotes intracellular expression, release and metalloproteinase-mediated extracellular cleavage of CA IX in PMVECs. Intracellular domain deletion uniquely impaired CA IX membrane localization. Loss of the CA IX intracellular domain promoted cell death following infection, suggesting the important role of intracellular domain in PMVEC survival. We also found that hypoxia improves survival, whereas hypercapnia reverses the protective effect of hypoxia, during infection. Thus, we report that: (1) CA IX increases in rat pneumonia lung; and, (2) the CA IX intracellular domain and hypoxia promote PMVEC survival during infection.
Collapse
Affiliation(s)
- Ji Young Lee
- University of South Alabama, 5557, Mobile, Alabama, United States;
| | - Reece P Stevens
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Mary Kash
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Ronald Balczon
- University of South Alabama, 5557, Biochemistry and Molecular Biology, Mobile, Alabama, United States
| | - Chun Zhou
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Phoibe Renema
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Anna Koloteva
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | | | - Meredith S Gwin
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Sarah Voth
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Althea deWeever
- University of South Alabama College of Medicine, 12214, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Brant M Wagener
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | - Jean-François Pittet
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | | | - Waqar Siddiqui
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Talha Nawaz
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Brian W Fouty
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Jonathon P Audia
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Diego F Alvarez
- Sam Houston State University, 4038, Huntsville, Texas, United States
| | - Troy Stevens
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| |
Collapse
|
17
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol 2020; 12:603-617. [PMID: 33364855 DOI: 10.2147/jep.s265620] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII are overexpressed in many hypoxic tumors as a consequence of the hypoxia inducible factor (HIF) activation cascade, being present in limited amounts in normal tissues. These enzymes together with many others are involved in the pH regulation and metabolism of hypoxic cancer cells, and were validated as antitumor targets recently. A multitude of targeting strategies against these enzymes have been proposed and are reviewed in this article. The small molecule inhibitors, small molecule drug conjugates (SMDCs), antibody-drug conjugates (ADACs) or cytokine-drug conjugates but not the monoclonal antibodies against CA IX/XII will be discussed. Relevant synthetic chemistry efforts, coupled with a multitude of preclinical studies, demonstrated that CA IX/XII inhibition leads to the inhibition of growth of primary tumors and metastases and depletes cancer stem cell populations, all factors highly relevant in clinical settings. One small molecule inhibitor, sulfonamide SLC-0111, is the most advanced candidate, having completed Phase I and being now in Phase Ib/II clinical trials for the treatment of advanced hypoxic solid tumors.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence 50019, Italy
| |
Collapse
|
19
|
Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, Monti SM, Carradori S, Donald WA, Dedhar S, Supuran CT. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites 2020; 10:metabo10100412. [PMID: 33066524 PMCID: PMC7602163 DOI: 10.3390/metabo10100412] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Jean-Yves Winum
- IBMM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France;
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia, Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., 1048 Riga, Latvia;
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey;
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato, Cagliari, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources—National Research Council, via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - William A. Donald
- School of Chemistry, University of New South Wales, 1466 Sydney, Australia;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver Vancouver, BC V5Z 1L3, Canada;
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
- Correspondence:
| |
Collapse
|
20
|
Lee JY, Stevens RP, Kash M, Zhou C, Koloteva A, Renema P, Paudel SS, Stevens T. KD025 Shifts Pulmonary Endothelial Cell Bioenergetics and Decreases Baseline Lung Permeability. Am J Respir Cell Mol Biol 2020; 63:519-530. [PMID: 32628869 PMCID: PMC7528923 DOI: 10.1165/rcmb.2019-0435oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
KD025 is a ROCK2 inhibitor currently being tested in clinical trials for the treatment of fibrotic lung diseases. The therapeutic effects of KD025 are partly due to its inhibition of profibrotic pathways and fat metabolism. However, whether KD025 affects pulmonary microvascular endothelial cell (PMVEC) function is unknown, despite evidence that alveolar-capillary membrane disruption constitutes major causes of death in fibrotic lung diseases. We hypothesized that KD025 regulates PMVEC metabolism, pH, migration, and survival, a series of interrelated functional characteristics that determine pulmonary barrier integrity. We used PMVECs isolated from Sprague Dawley rats. KD025 dose-dependently decreased lactate production and glucose consumption. The inhibitory effect of KD025 was more potent compared with other metabolic modifiers, including 2-deoxy-glucose, extracellular acidosis, dichloroacetate, and remogliflozin. Interestingly, KD025 increased oxidative phosphorylation, whereas 2-deoxy-glucose did not. KD025 also decreased intracellular pH and induced a compensatory increase in anion exchanger 2. KD025 inhibited PMVEC migration, but fasudil (nonspecific ROCK inhibitor) did not. We tested endothelial permeability in vivo using Evans Blue dye in the bleomycin pulmonary fibrosis model. Baseline permeability was decreased in KD025-treated animals independent of bleomycin treatment. Under hypoxia, KD025 increased PMVEC necrosis as indicated by increased lactate dehydrogenase release and propidium iodide uptake and decreased ATP; it did not affect Annexin V binding. ROCK2 knockdown had no effect on PMVEC metabolism, pH, and migration, but it increased nonapoptotic caspase-3 activity. Together, we report that KD025 promotes oxidative phosphorylation; decreases glycolysis, intracellular pH, and migration; and strengthens pulmonary barrier integrity in a ROCK2-independent manner.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Division of Pulmonary and Critical Care Medicine
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Reece P. Stevens
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Mary Kash
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Chun Zhou
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Anna Koloteva
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Phoibe Renema
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Sunita S. Paudel
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| |
Collapse
|
21
|
Network Pharmacology-Based Analysis of the Pharmacological Mechanisms of Aloperine on Cardiovascular Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5180716. [PMID: 32733582 PMCID: PMC7376400 DOI: 10.1155/2020/5180716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
Background Aloperine is an active component of Sophora alopecuroides Linn, which has been extensively applied for the treatment of cardiovascular disease (CVD). However, our current understanding of the molecular mechanisms supporting the effects of aloperine on CVD remains unclear. Methods Systematic network pharmacology was conducted to provide testable hypotheses about pharmacological mechanisms of the protective effects of aloperine against CVD. Detailed structure was obtained from Traditional Chinese Medicines Integrated Database (TCMID). Target genes of aloperine against CVD were collected from SwissTargetPrediction, DrugBank database, and Online Mendelian Inheritance in Man (OMIM) database. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway performance, and network construction were adopted to explore common target genes. Results Our findings showed that 25 candidate targets were the interacting genes between aloperine and CVD. GO analysis revealed biological process, cellular component, and molecular function of these target genes. More importantly, the majority of enrichment pathways was found to be highly associated with the nitrogen metabolism by KEGG analysis. Core genes particularly in nitrogen metabolism pathway including carbonic anhydrase (CA) III, CA IV, CA VA, CA VB, CA VI, CA VII, CA IX, CA XII, and CA XIV can be modulated by aloperine in the nitrogen metabolism. Conclusion Our work revealed the pharmacological and molecular mechanisms of aloperine against CVD and provided a feasible tool to identify the pharmacological mechanisms of single active ingredient of traditional Chinese medicines.
Collapse
|
22
|
Lee JY, Onanyan M, Garrison I, White R, Crook M, Alexeyev MF, Kozhukhar N, Pastukh V, Swenson ER, Supuran CT, Stevens T. Extrinsic acidosis suppresses glycolysis and migration while increasing network formation in pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L188-L201. [PMID: 31042076 DOI: 10.1152/ajplung.00544.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acidosis is common among critically ill patients, but current approaches to correct pH do not improve disease outcomes. During systemic acidosis, cells are either passively exposed to extracellular acidosis that other cells have generated (extrinsic acidosis) or they are exposed to acid that they generate and export into the extracellular space (intrinsic acidosis). Although endothelial repair following intrinsic acidosis has been studied, the impact of extrinsic acidosis on migration and angiogenesis is unclear. We hypothesized that extrinsic acidosis inhibits metabolism and migration but promotes capillary-like network formation in pulmonary microvascular endothelial cells (PMVECs). Extrinsic acidosis was modeled by titrating media pH. Two types of intrinsic acidosis were compared, including increasing cellular metabolism by chemically inhibiting carbonic anhydrases (CAs) IX and XII (SLC-0111) and with hypoxia. PMVECs maintained baseline intracellular pH for 24 h with both extrinsic and intrinsic acidosis. Whole cell CA IX protein expression was decreased by extrinsic acidosis but not affected by hypoxia. When extracellular pH was equally acidic, extrinsic acidosis suppressed glycolysis, whereas intrinsic acidosis did not. Extrinsic acidosis suppressed migration, but increased Matrigel network master junction and total segment length. CRISPR-Cas9 CA IX knockout PMVECs revealed an independent role of CA IX in promoting glycolysis, as loss of CA IX alone was accompanied by decreased hexokinase I and pyruvate dehydrogenase E1α expression and decreasing migration. 2-deoxy-d-glucose had no effect on migration but profoundly inhibited network formation and increased N-cadherin expression. Thus, we report that while extrinsic acidosis suppresses endothelial glycolysis and migration, it promotes network formation.
Collapse
Affiliation(s)
- Ji Young Lee
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Mher Onanyan
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ian Garrison
- College of Medicine, University of South Alabama, Mobile, Alabama
| | - Roderica White
- College of Medicine, University of South Alabama, Mobile, Alabama.,Center for Healthy Communities, University of South Alabama, Mobile, Alabama
| | - Maura Crook
- College of Medicine, University of South Alabama, Mobile, Alabama.,Office of Diversity and Inclusion, University of South Alabama, Mobile, Alabama
| | - Mikhail F Alexeyev
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Natalya Kozhukhar
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktoriya Pastukh
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Erik R Swenson
- Medical Service, VA Puget Sound Health Care System, University of Washington, Seattle, Washington
| | | | - Troy Stevens
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|