1
|
Singla B, Lin HP, Ghoshal P, Cherian-Shaw M, Csányi G. PKCδ stimulates macropinocytosis via activation of SSH1-cofilin pathway. Cell Signal 2018; 53:111-121. [PMID: 30261270 DOI: 10.1016/j.cellsig.2018.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
Macropinocytosis is an actin-dependent endocytic mechanism mediating internalization of extracellular fluid and associated solutes into cells. The present study was designed to identify the specific protein kinase C (PKC) isoform(s) and downstream effectors regulating actin dynamics during macropinocytosis. We utilized various cellular and molecular biology techniques, pharmacological inhibitors and genetically modified mice to study the signaling mechanisms mediating macropinocytosis in macrophages. The qRT-PCR experiments identified PKCδ as the predominant PKC isoform in macrophages. Scanning electron microscopy and flow cytometry analysis of FITC-dextran internalization demonstrated the functional role of PKCδ in phorbol ester- and hepatocyte growth factor (HGF)-induced macropinocytosis. Western blot analysis demonstrated that phorbol ester and HGF stimulate activation of slingshot phosphatase homolog 1 (SSH1) and induce cofilin Ser-3 dephosphorylation via PKCδ in macrophages. Silencing of SSH1 inhibited cofilin dephosphorylation and macropinocytosis stimulation. Interestingly, we also found that incubation of macrophages with BMS-5, a potent inhibitor of LIM kinase, does not stimulate macropinocytosis. In conclusion, the findings of the present study demonstrate a previously unidentified mechanism by which PKCδ via activation of SSH1 and cofilin dephosphorylation stimulates membrane ruffle formation and macropinocytosis. The results of the present study may contribute to a better understanding of the regulatory mechanisms during macrophage macropinocytosis.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Hui-Ping Lin
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Pushpankur Ghoshal
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
2
|
The Role of Phospholipase C Signaling in Macrophage-Mediated Inflammatory Response. J Immunol Res 2018; 2018:5201759. [PMID: 30057916 PMCID: PMC6051040 DOI: 10.1155/2018/5201759] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/06/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022] Open
Abstract
Macrophages are crucial members of the mononuclear phagocyte system essential to protect the host from invading pathogens and are central to the inflammatory response with their ability to acquire specialized phenotypes of inflammatory (M1) and anti-inflammatory (M2) and to produce a pool of inflammatory mediators. Equipped with a broad range of receptors, such as Toll-like receptor 4 (TLR4), CD14, and Fc gamma receptors (FcγRs), macrophages can efficiently recognize and phagocytize invading pathogens and secrete cytokines by triggering various secondary signaling pathways. Phospholipase C (PLC) is a family of enzymes that hydrolyze phospholipids, the most significant of which is phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Cleavage at the internal phosphate ester generates two second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), both of which mediate in diverse cellular functions including the inflammatory response. Recent studies have shown that some PLC isoforms are involved in multiple stages in TLR4-, CD14-, and FcγRs-mediated activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and interferon regulatory factors (IRFs), all of which are associated with the regulation of the inflammatory response. Therefore, secondary signaling by PLC is implicated in the pathogenesis of numerous inflammatory diseases. This review provides an overview of our current knowledge on how PLC signaling regulates the macrophage-mediated inflammatory response.
Collapse
|
3
|
McCubbrey AL, Nelson JD, Stolberg VR, Blakely PK, McCloskey L, Janssen WJ, Freeman CM, Curtis JL. MicroRNA-34a Negatively Regulates Efferocytosis by Tissue Macrophages in Part via SIRT1. THE JOURNAL OF IMMUNOLOGY 2015; 196:1366-75. [PMID: 26718338 DOI: 10.4049/jimmunol.1401838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/19/2015] [Indexed: 01/22/2023]
Abstract
Apoptotic cell (AC) clearance (efferocytosis) is an evolutionarily conserved process essential for immune health, particularly to maintain self-tolerance. Despite identification of many recognition receptors and intracellular signaling components of efferocytosis, its negative regulation remains incompletely understood and has not previously been known to involve microRNAs (miRs). In this article, we show that miR-34a (gene ID 407040), well recognized as a p53-dependent tumor suppressor, mediates coordinated negative regulation of efferocytosis by resident murine and human tissue macrophages (Mø). The miR-34a expression varied greatly between Mø from different tissues, correlating inversely with their capacity for AC uptake. Transient or genetic knockdown of miR-34a increased efferocytosis, whereas miR-34a overexpression decreased efferocytosis, without altering recognition of live, necrotic, or Ig-opsonized cells. The inhibitory effect of miR-34a was mediated both by reduced expression of Axl, a receptor tyrosine kinase known to recognize AC, and of the deacetylase silent information regulator T1, which had not previously been linked to efferocytosis by tissue Mø. Exposure to AC downregulated Mø miR-34a expression, resulting in a positive feedback loop that increased subsequent capacity to engulf AC. These findings demonstrate that miR-34a both specifically regulates and is regulated by efferocytosis. Given the ability of efferocytosis to polarize ingesting Mø uniquely and to reduce their host-defense functions, dynamic negative regulation by miR-34a provides one means of fine-tuning Mø behavior toward AC in specific tissue environments with differing potentials for microbial exposure.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Joshua D Nelson
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | | | - Pennelope K Blakely
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Lisa McCloskey
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - William J Janssen
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Medicine, National Jewish Health, Denver, CO 80262; and
| | - Christine M Freeman
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Jeffrey L Curtis
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| |
Collapse
|
4
|
Rhein BA, Powers LS, Rogers K, Anantpadma M, Singh BK, Sakurai Y, Bair T, Miller-Hunt C, Sinn P, Davey RA, Monick MM, Maury W. Interferon-γ Inhibits Ebola Virus Infection. PLoS Pathog 2015; 11:e1005263. [PMID: 26562011 PMCID: PMC4643030 DOI: 10.1371/journal.ppat.1005263] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks. Filovirus outbreaks occur sporadically, but with increasing frequency. With no current approved filovirus therapeutics, the 2014 Makona Ebola virus epidemic in Guinea, Sierra Leone and Liberia emphasizes the need for effective treatments against this highly pathogenic family of viruses. The use of this FDA-approved drug to inhibit Ebola virus infection would allow rapid implementation of a novel antiviral therapy for future crises. Interferon gamma elicits an antiviral state in antigen-presenting cells and stimulates cellular immune responses. We demonstrate that interferon gamma profoundly inhibits Ebola virus infection of macrophages, which are early cellular targets of Ebola virus. We also identify novel interferon gamma-stimulated genes in human macrophage populations that have not been previously appreciated to inhibit filoviruses or other negative strand RNA viruses. Finally and most importantly, we show that interferon gamma given 24 hours prior to or after virus infection protects mice from lethal Ebola virus challenge, suggesting that this drug may serve as an effective prophylactic and/or therapeutic strategy against this deadly virus.
Collapse
Affiliation(s)
- Bethany A. Rhein
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kai Rogers
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Brajesh K. Singh
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Yasuteru Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Thomas Bair
- Iowa Institute for Human Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Catherine Miller-Hunt
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick Sinn
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Martha M. Monick
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Wendy Maury
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
5
|
Malavez Y, Voss OH, Gonzalez-Mejia ME, Parihar A, Doseff AI. Distinct contribution of protein kinase Cδ and protein kinase Cε in the lifespan and immune response of human blood monocyte subpopulations. Immunology 2015; 144:611-20. [PMID: 25322815 DOI: 10.1111/imm.12412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Monocytes, key components of the immune system, are a heterogeneous population comprised of classical monocytes (CD16(-) ) and non-classical monocytes (CD16(+) ). Monocytes are short lived and undergo spontaneous apoptosis, unless stimulated. Dysregulation of monocyte numbers contribute to the pathophysiology of inflammatory diseases, yet the contribution of each subset remains poorly characterized. Protein kinase C (PKC) family members are central to monocyte biology; however, their role in regulating lifespan and immune function of CD16(-) and CD16(+) monocytes has not been studied. Here, we evaluated the contribution of PKCδ and PKCε in the lifespan and immune response of both monocyte subsets. We showed that CD16(+) monocytes are more susceptible to spontaneous apoptosis because of the increased caspase-3, -8 and -9 activities accompanied by higher kinase activity of PKCδ. Silencing of PKCδ reduced apoptosis in both CD16(+) and CD16(-) monocytes. CD16(+) monocytes express significantly higher levels of PKCε and produce more tumour necrosis factor-α in CD16(+) compared with CD16(-) monocytes. Silencing of PKCε affected the survival and tumour necrosis factor-α production. These findings demonstrate a complex network with similar topography, yet unique regulatory characteristics controlling lifespan and immune response in each monocyte subset, helping define subset-specific coordination programmes controlling monocyte function.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Molecular Genetics, Department of Internal Medicine, Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
6
|
Gross TJ, Powers LS, Boudreau RL, Brink B, Reisetter A, Goel K, Gerke AK, Hassan IH, Monick MM. A microRNA processing defect in smokers' macrophages is linked to SUMOylation of the endonuclease DICER. J Biol Chem 2014; 289:12823-34. [PMID: 24668803 PMCID: PMC4007470 DOI: 10.1074/jbc.m114.565473] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Despite the fact that alveolar macrophages play an important role in smoking-related disease, little is known about what regulates their pathophysiologic phenotype. Evaluating smoker macrophages, we found significant down-regulation of multiple microRNAs (miRNAs). This work investigates the hypothesis that cigarette smoke alters mature miRNA expression in lung macrophages by inhibiting processing of primary miRNA transcripts. Studies on smoker alveolar macrophages showed a defect in miRNA maturation. Studies on the miRNA biogenesis machinery led us to focus on the cytosolic RNA endonuclease, DICER. DICER cleaves the stem-loop structure from pre-miRNAs, allowing them to dissociate into their mature 20-22-nucleotide single-stranded form. DICER activity assays confirmed impaired DICER activity following cigarette smoke exposure. Further protein studies demonstrated a decreased expression of the native 217-kDa form of DICER and an accumulation of high molecular weight forms with cigarette smoke exposure. This molecular mass shift was shown to contain SUMO moieties and could be blocked by silencing RNA directed at the primary SUMOylating ligase, Ubc9. In determining the cigarette smoke components responsible for changes in DICER, we found that N-acetylcysteine, an antioxidant and anti-aldehyde, protected DICER protein and activity from cigarette smoke extract. This massive down-regulation of miRNAs (driven in part by alterations in DICER) may be an important regulator of the disease-promoting macrophage phenotype found in the lungs of smokers.
Collapse
Affiliation(s)
- Thomas J. Gross
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Linda S. Powers
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ryan L. Boudreau
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Brandi Brink
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Anna Reisetter
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Khushboo Goel
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Alicia K. Gerke
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ihab H. Hassan
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Martha M. Monick
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
7
|
Macrophages in tuberculosis: friend or foe. Semin Immunopathol 2013; 35:563-83. [PMID: 23864058 DOI: 10.1007/s00281-013-0388-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis (Mtb), is acquired by the respiratory route. It is exquisitely human adapted and a prototypic intracellular pathogen of macrophages, with alveolar macrophages (AMs) being the primary conduit of infection and disease. The outcome of primary infection is most often a latently infected healthy human host, in whom the bacteria are held in check by the host immune response. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the host immune response fails to control the growth of bacilli, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols coughed out into the environment and inhaled by new hosts. The molecular details of the Mtb-macrophage interaction continue to be elucidated. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. Macrophages demonstrate tremendous phenotypic heterogeneity and functional plasticity which, depending on the site and stage of infection, facilitate the diverse outcomes. Moreover, host responses vary depending on the specific characteristics of the infecting Mtb strain. In this chapter, we describe a contemporary view of the behavior of AMs and their interaction with various Mtb strains in generating unique immunologic lung-specific responses.
Collapse
|
8
|
Radhika A, Sudhakaran PR. Upregulation of macrophage-specific functions by oxidized LDL: lysosomal degradation-dependent and -independent pathways. Mol Cell Biochem 2012; 372:181-90. [PMID: 23054190 DOI: 10.1007/s11010-012-1459-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/14/2012] [Indexed: 02/02/2023]
Abstract
Formation of foam cells from macrophages, which are formed by the differentiation of blood-borne monocytes, is a critical early event in atherogenesis. To examine how pre-exposure of monocytes to modified proteins, such as oxLDL, influences their differentiation to macrophages, an in vitro model system using isolated PBMC maintained in culture in the presence of oxLDL was used. Pretreatment of monocytes with oxLDL caused a faster rate of expression of macrophage-specific functions and loss of monocyte-specific functions compared to unmodified LDL. The effect of oxidation of lipid component of LDL by CuSO(4) and its protein component by HOCl, on mo-mϕ differentiation was studied by monitoring the upregulation of macrophage-specific functions, particularly MMP-9. Chloroquine, a lysosomal degradation blocker, significantly reversed the effect mediated by CuSO(4) oxLDL, indicating the involvement of lysosomal degradation products, while no such effect was observed in HOCl oxLDL-treated cells, indicating the existence of a pathway independent of its lysosomal degradation products. Reversal of the effect of oxLDL by NAC and Calphostin C, an inhibitor of PKC, suggested the activation of RO-mediated signaling pathways. Use of inhibitors of signaling pathways showed that CuSO(4) oxLDL upregulated mϕ-specific MMP-9 through p38 MAPK and Akt-dependent pathways, while HOCl oxLDL utilized ERK ½ and Akt. Further analysis showed the activation of PPARγ and AP-1 in CuSO(4) oxLDL, while HOCl-oxLDL-mediated effect involved NFκB and AP-1. These results suggest that lipid oxLDL- and protein oxLDL-mediated upregulation of mo-mϕ-specific functions involve lysosomal degradation-dependent and -independent activation of intracellular signaling pathways.
Collapse
Affiliation(s)
- A Radhika
- Department of Biochemistry, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | | |
Collapse
|
9
|
Graff JW, Powers LS, Dickson AM, Kim J, Reisetter AC, Hassan IH, Kremens K, Gross TJ, Wilson ME, Monick MM. Cigarette smoking decreases global microRNA expression in human alveolar macrophages. PLoS One 2012; 7:e44066. [PMID: 22952876 PMCID: PMC3430644 DOI: 10.1371/journal.pone.0044066] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/30/2012] [Indexed: 01/21/2023] Open
Abstract
Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs) could control, in part, the unique messenger RNA (mRNA) expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory) and M2 (anti-inflammatory) polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.
Collapse
Affiliation(s)
- Joel W. Graff
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veteran Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anne M. Dickson
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jongkwang Kim
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anna C. Reisetter
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ihab H. Hassan
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Karol Kremens
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas J. Gross
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mary E. Wilson
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veteran Affairs Medical Center, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Martha M. Monick
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
10
|
Lee HD, Koo B, Kim YH, Jeon O, Kim D. Exosome release of ADAM15 and the functional implications of human macrophage‐derived ADAM15 exosomes. FASEB J 2012; 26:3084-95. [DOI: 10.1096/fj.11-201681] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hee Doo Lee
- Department of BiochemistryCollege of Life Science and Biotechnology, Yonsei University Seoul Korea
| | - Bon‐Hun Koo
- Department of BiochemistryCollege of Life Science and Biotechnology, Yonsei University Seoul Korea
| | - Yeon Hyang Kim
- Department of BiochemistryCollege of Life Science and Biotechnology, Yonsei University Seoul Korea
| | - Ok‐Hee Jeon
- Department of BiochemistryCollege of Life Science and Biotechnology, Yonsei University Seoul Korea
| | - Doo‐Sik Kim
- Department of BiochemistryCollege of Life Science and Biotechnology, Yonsei University Seoul Korea
| |
Collapse
|
11
|
Petrusca DN, Gu Y, Adamowicz JJ, Rush NI, Hubbard WC, Smith PA, Berdyshev EV, Birukov KG, Lee CH, Tuder RM, Twigg HL, Vandivier RW, Petrache I. Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J Biol Chem 2010; 285:40322-32. [PMID: 20956540 DOI: 10.1074/jbc.m110.137604] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Indiana University, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Curtis JL, Todt JC, Hu B, Osterholzer JJ, Freeman CM. Tyro3 receptor tyrosine kinases in the heterogeneity of apoptotic cell uptake. Front Biosci (Landmark Ed) 2009; 14:2631-46. [PMID: 19273223 DOI: 10.2741/3401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mononuclear phagocytes comprise a mobile, broadly dispersed and highly adaptable system that lies at the very epicenter of host defense against pathogens and the interplay of the innate and adaptive arms of immunity. Understanding the molecular mechanisms that control the response of mononuclear phagocytes to apoptotic cells and the anti-inflammatory consequences of that response is an important goal with implications for multiple areas of biomedical sciences. This review details current understanding of the heterogeneity of apoptotic cell uptake by different members of the mononuclear phagocyte family in humans and mice. It also recounts the unique role of the Tyro3 family of receptor tyrosine kinases, best characterized for Mertk, in the signal transduction leading both to apoptotic cell ingestion and the anti-inflammatory effects that result.
Collapse
Affiliation(s)
- Jeffrey L Curtis
- Pulmonary and Critical Care Medicine, Department of Veterans Affairs Healthsystem and University of Michigan Health System, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
13
|
Turnbull CM, Marcarino P, Sheldrake TA, Lazzarato L, Cena C, Fruttero R, Gasco A, Fox S, Megson IL, Rossi AG. A novel hybrid aspirin-NO-releasing compound inhibits TNFalpha release from LPS-activated human monocytes and macrophages. JOURNAL OF INFLAMMATION-LONDON 2008; 5:12. [PMID: 18671842 PMCID: PMC2525633 DOI: 10.1186/1476-9255-5-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 07/31/2008] [Indexed: 01/04/2023]
Abstract
Background The cytoprotective nature of nitric oxide (NO) led to development of NO-aspirins in the hope of overcoming the gastric side-effects of aspirin. However, the NO moiety gives these hybrids potential for actions further to their aspirin-mediated anti-platelet and anti-inflammatory effects. Having previously shown that novel NO-aspirin hybrids containing a furoxan NO-releasing group have potent anti-platelet effects, here we investigate their anti-inflammatory properties. Here we examine their effects upon TNFα release from lipopolysaccharide (LPS)-stimulated human monocytes and monocyte-derived macrophages and investigate a potential mechanism of action through effects on LPS-stimulated nuclear factor-kappa B (NF-κB) activation. Methods Peripheral venous blood was drawn from the antecubital fossa of human volunteers. Mononuclear cells were isolated and cultured. The resultant differentiated macrophages were treated with pharmacologically relevant concentrations of either a furoxan-aspirin (B8, B7; 10 μM), their respective furazan NO-free counterparts (B16, B15; 10 μM), aspirin (10 μM), existing nitroaspirin (NCX4016; 10 μM), an NO donor (DEA/NO; 10 μM) or dexamethasone (1 μM), in the presence and absence of LPS (10 ng/ml; 4 h). Parallel experiments were conducted on undifferentiated fresh monocytes. Supernatants were assessed by specific ELISA for TNFα release and by lactate dehydrogenase (LDH) assay for cell necrosis. To assess NF-κB activation, the effects of the compounds on the loss of cytoplasmic inhibitor of NF-κB, IκBα (assessed by western blotting) and nuclear localisation (assessed by immunofluorescence) of the p65 subunit of NF-κB were determined. Results B8 significantly reduced TNFα release from LPS-treated macrophages to 36 ± 10% of the LPS control. B8 and B16 significantly inhibited monocyte TNFα release to 28 ± 5, and 49 ± 9% of control, respectively. The B8 effect was equivalent in magnitude to that of dexamethasone, but was not shared by 10 μM DEA/NO, B7, the furazans, aspirin or NCX4016. LDH assessment revealed none of the treatments caused significant cell lysis. LPS stimulated loss of cytoplasmic IκBα and nuclear translocation of the p65 NF-κB subunit was inhibited by the active NO-furoxans. Conclusion Here we show that furoxan-aspirin, B8, significantly reduces TNFα release from both monocytes and macrophages and suggest that inhibition of NF-κB activation is a likely mechanism for the effect. This anti-inflammatory action highlights a further therapeutic potential of drugs of this class.
Collapse
Affiliation(s)
- Catriona M Turnbull
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Monick MM, Powers LS, Barrett CW, Hinde S, Ashare A, Groskreutz DJ, Nyunoya T, Coleman M, Spitz DR, Hunninghake GW. Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity. THE JOURNAL OF IMMUNOLOGY 2008; 180:7485-96. [PMID: 18490749 DOI: 10.4049/jimmunol.180.11.7485] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unique feature of human alveolar macrophages is their prolonged survival in the face of a stressful environment. We have shown previously that the ERK MAPK is constitutively active in these cells and is important in prolonging cell survival. This study examines the role of the ERK pathway in maintaining mitochondrial energy production. The data demonstrate that ATP levels in alveolar macrophages depend on intact mitochondria and optimal functioning of the electron transport chain. Significant levels of MEK and ERK localize to the mitochondria and inhibition of ERK activity induces an early and profound depletion in cellular ATP coincident with a loss of mitochondrial transmembrane potential. The effect of ERK suppression on ATP levels was specific, since it did not occur with PI3K/Akt, p38, or JNK suppression. ERK inhibition led to cytosolic release of mitochondrial proteins and caspase activation. Both ERK inhibition and mitochondrial blockers induced loss of plasma membrane permeability and cell death. The cell death induced by ERK inhibition had hallmarks of both apoptotic (caspase activation) and necrotic (ATP loss) cell death. By blocking ERK inhibition-induced reactive oxygen species, caspase activation was prevented, although necrotic pathways continued to induce cell death. This suggests that mitochondrial dysfunction caused by ERK inhibition generates both apoptotic and necrotic cell death-inducing pathways. As a composite, these data demonstrate a novel mitochondrial role for ERK in maintaining mitochondrial membrane potential and ATP production in human alveolar macrophages.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tephly LA, Carter AB. Asbestos-induced MKP-3 expression augments TNF-alpha gene expression in human monocytes. Am J Respir Cell Mol Biol 2008; 39:113-23. [PMID: 18314537 DOI: 10.1165/rcmb.2007-0356oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
TNF-alpha is associated with the development of interstitial fibrosis. We have demonstrated that the p38 mitogen-activated protein (MAP) kinase regulates TNF-alpha expression in monocytes exposed to asbestos. In this report, we asked if extracellular signal-regulated kinase (ERK) was also involved in TNF-alpha expression in monocytes exposed to asbestos. We found that p38 and ERK were differentially activated in alveolar macrophages obtained from patients with asbestosis compared with normal subjects. More specifically, p38 was constitutively active and ERK activation was suppressed. Since the upstream pathway leading to ERK was intact, we hypothesized that an ERK-specific phosphatase was, in part, responsible for the decreased ERK activity. We evaluated whether the dual specificity phosphatase MAP kinase phosphatase (MKP)-3, which is highly expressed in the lung and specifically dephosphorylates ERK, was increased after exposure to asbestos. We found that MKP-3 increased after exposure to asbestos, and its expression was regulated by p38. We found that p38 and ERK negatively regulated one another, and MKP-3 had a role in this differential activation. We also found that p38 was a positive regulator and ERK was a negative regulator of TNF-alpha gene expression. Cells overexpressing MKP-3 had a significant increase in TNF-alpha gene expression, suggesting than an environment favoring p38 MAP kinase activation is necessary for TNF-alpha production in monocytes exposed to asbestos. Taken together, these data demonstrate that the p38 MAP kinase down-regulates ERK via activation of MKP-3 in human monocytes exposed to asbestos to enhance TNF-alpha gene expression.
Collapse
Affiliation(s)
- Linda A Tephly
- Division of Pulmonary and Critical Care Medicine, C33 GH, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | |
Collapse
|
16
|
Garn H, Siese A, Stumpf S, Wensing A, Renz H, Gemsa D. Phenotypical and functional characterization of alveolar macrophage subpopulations in the lungs of NO2-exposed rats. Respir Res 2006; 7:4. [PMID: 16398938 PMCID: PMC1368986 DOI: 10.1186/1465-9921-7-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 01/06/2006] [Indexed: 11/25/2022] Open
Abstract
Background Alveolar macrophages (AM) are known to play an important role in the regulation of inflammatory reactions in the lung, e.g. during the development of chronic lung diseases. Exposure of rats to NO2 has recently been shown to induce a shift in the activation type of AM that is characterized by reduced TNF-α and increased IL-10 production. So far it is unclear, whether a functional shift in the already present AM population or the occurrence of a new, phenotypically different AM population is responsible for these observations. Methods AM from rat and mice were analyzed by flow cytometry for surface marker expression and in vivo staining with PKH26 was applied to characterize newly recruited macrophages. Following magnetic bead separation, AM subpopulations were further analyzed for cytokine, inducible NO synthase (iNOS) and matrix metalloproteinase (MMP) mRNA expression using quantitative RT-PCR. Following in vitro stimulation, cytokines were quantitated in the culture supernatants by ELISA. Results In untreated rats the majority of AM showed a low expression of the surface antigen ED7 (CD11b) and a high ED9 (CD172) expression (ED7-/ED9high). In contrast, NO2 exposure induced the occurrence of a subpopulation characterized by the marker combination ED7+/ED9low. Comparable changes were observed in mice and by in vivo labeling of resident AM using the dye PKH26 we could demonstrate that CD11b positive cells mainly comprise newly recruited AM. Subsequent functional analyses of separated AM subpopulations of the rat revealed that ED7+ cells showed an increased expression and production of the antiinflammatory cytokine IL-10 whereas TNF-α production was lower compared to ED7- AM. However, iNOS and IL-12 expression were also increased in the ED7+ subpopulation. In addition, these cells showed a significantly higher mRNA expression for the matrix metalloproteinases MMP-7, -8, -9, and -12. Conclusion NO2 exposure induces the infiltration of an AM subpopulation that, on the one hand may exert antiinflammatory functions by the production of high amounts of IL-10 but on the other hand may contribute to the pathology of NO2-induced lung damage by selective expression of certain matrix metalloproteinases.
Collapse
Affiliation(s)
- Holger Garn
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps University of Marburg, Biomedical Research Center, Hans-Meerwein-Str., 35043 Marburg, Germany
| | - Anette Siese
- Institute of Immunology, Philipps University of Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | - Sabine Stumpf
- Institute of Immunology, Philipps University of Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | - Anka Wensing
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps University of Marburg, Biomedical Research Center, Hans-Meerwein-Str., 35043 Marburg, Germany
| | - Harald Renz
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps University of Marburg, Biomedical Research Center, Hans-Meerwein-Str., 35043 Marburg, Germany
| | - Diethard Gemsa
- Institute of Immunology, Philipps University of Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| |
Collapse
|
17
|
Serezani CHC, Aronoff DM, Jancar S, Mancuso P, Peters-Golden M. Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood 2005; 106:1067-75. [PMID: 15718414 PMCID: PMC1895163 DOI: 10.1182/blood-2004-08-3323] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leukotrienes (LTs) are lipid mediators that participate in inflammatory diseases and innate immune function. We sought to investigate the importance of LTs in regulating the microbicidal activity of alveolar macrophages (AMs) and the molecular mechanisms by which this occurs. The role of LTs in enhancing AM microbicidal activity was evaluated pharmacologically and genetically using in vitro challenge with Klebsiella pneumoniae. Exogenous LTs increased AM microbicidal activity in a dose- and receptor-dependent manner, and endogenous production of LTs was necessary for optimal killing. Leukotriene B4 (LTB4) was more potent than cysteinyl LTs. An important role for nicotinamide adenine dinucleotide (NADPH) oxidase in LT-induced microbicidal activity was indicated by the fact that bacterial killing was abrogated by the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 microM) and in AMs derived from gp91phox-deficient mice. By contrast, LT-induced microbicidal activity was independent of the generation of nitric oxide. LTs increased H2O2 production, and LTB4 was again the more potent agonist. Both classes of LTs elicited translocation of p47phox to the cell membrane, and LTB4 induced phosphorylation of p47phox in a manner dependent on protein kinase C-delta (PKC-delta) activity. In addition, the enhancement of microbicidal activity by LTs was also dependent on PKC-delta activity. Our results demonstrate that LTs, especially LTB4, enhanceAM microbicidal activity through the PKC-delta-dependent activation of NADPH oxidase.
Collapse
Affiliation(s)
- Carlos H C Serezani
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0642, USA
| | | | | | | | | |
Collapse
|
18
|
Punturieri A, Alviani RS, Polak T, Copper P, Sonstein J, Curtis JL. Specific engagement of TLR4 or TLR3 does not lead to IFN-beta-mediated innate signal amplification and STAT1 phosphorylation in resident murine alveolar macrophages. THE JOURNAL OF IMMUNOLOGY 2004; 173:1033-42. [PMID: 15240691 PMCID: PMC2701405 DOI: 10.4049/jimmunol.173.2.1033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The innate immune response must be mobilized promptly yet judiciously via TLRs to protect the lungs against pathogens. Stimulation of murine peritoneal macrophage (PMphi) TLR4 or TLR3 by pathogen-associated molecular patterns (PAMPs) typically induces type I IFN-beta, leading to autocrine activation of the transcription factor STAT1. Because it is unknown whether STAT1 plays a similar role in the lungs, we studied the response of resident alveolar macrophages (AMphi) or control PMphi from normal C57BL/6 mice to stimulation by PAMPs derived from viruses (polyriboinosinic:polyribocytidylic acid, specific for TLR3) or bacteria (Pam(3)Cys, specific for TLR2, and repurified LPS, specific for TLR4). AMphi did not activate STAT1 by tyrosine phosphorylation on Y701 following stimulation of any of these three TLRs, but readily did so in response to exogenous IFN-beta. This unique AMphi response was not due to altered TLR expression, or defective immediate-early gene response, as measured by expression of TNF-alpha and three beta chemokines. Instead, AMphi differed from PMphi in not producing bioactive IFN-beta, as confirmed by ELISA and by the failure of supernatants from TLR-stimulated AMphi to induce STAT1 phosphorylation in PMphi. Consequently, AMphi did not produce the microbicidal effector molecule NO following TLR4 or TLR3 stimulation unless exogenous IFN-beta was also added. Thus, murine AMphi respond to bacterial or viral PAMPs by producing inflammatory cytokines and chemokines, but because they lack the feed-forward amplification typically mediated by autocrine IFN-beta secretion and STAT1 activation, require exogenous IFN to mount a second phase of host defense.
Collapse
Affiliation(s)
- Antonello Punturieri
- Pulmonary and Critical Care Medicine Section, and Research Service, Department of Veterans Affairs Medical Center, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Shepherd MC, Baillie GS, Stirling DI, Houslay MD. Remodelling of the PDE4 cAMP phosphodiesterase isoform profile upon monocyte-macrophage differentiation of human U937 cells. Br J Pharmacol 2004; 142:339-51. [PMID: 15066910 PMCID: PMC1574950 DOI: 10.1038/sj.bjp.0705770] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/13/2004] [Accepted: 03/01/2004] [Indexed: 11/08/2022] Open
Abstract
Monocytes and macrophages provide key targets for the action of novel anti-inflammatory therapeutics targeted at inhibition of PDE4 cAMP-specific phosphodiesterases. PDE4 enzymes provide the dominant cAMP phosphodiesterase activity in U937 human monocytic cells. Differentiation of U937 monocytic cells to a macrophage-like phenotype causes a marked reduction in total cellular PDE4 activity. Monocytic U937 cells express the long PDE4A4, PDE4D5 and PDE4D3 isoforms plus the short PDE4B2 isoform. Differentiation of U937 cells to a macrophage-like phenotype causes a marked downregulation of PDE4D3 and PDE4D5, elicits a marked upregulation of PDE4B2 and induces the novel PDE4A10 long isoform. Comparable patterns are found in human peripheral blood monocytes and macrophages differentiated from them. Immunopurification of PDE4 subfamilies identifies long PDE4D isoforms as providing the major PDE4 activity in U937 monocytic cells. In U937 macrophage-like cells, the activity of the short PDE4B2 isoform predominates. No indication of either the expression or induction of PDE4C was evident. Activation of ERK exerts an inhibitory effect on total PDE4 activity in monocytic U937 cells, where the activity of long PDE4 isoforms predominates. The effect of ERK activation is switched to one of overall stimulation of total PDE4 activity in macrophage U937 cells, where the activity of the short PDE4B2 isoform predominates.10 The profound differentiation-induced changes in PDE4 isoform profile identified here suggests that the development of inhibitors specific for particular PDE4 isoforms may allow for selective effects on monocytes and macrophages to be achieved.
Collapse
Affiliation(s)
- Malcolm C Shepherd
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical & Life Sciences, Wolfson Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - George S Baillie
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical & Life Sciences, Wolfson Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - David I Stirling
- Celgene Corporation, 7 Powder Horn Drive, Warren, NJ 07059, U.S.A
| | - Miles D Houslay
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical & Life Sciences, Wolfson Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
20
|
Todt JC, Hu B, Curtis JL. The receptor tyrosine kinase MerTK activates phospholipase C gamma2 during recognition of apoptotic thymocytes by murine macrophages. J Leukoc Biol 2004; 75:705-13. [PMID: 14704368 PMCID: PMC2441598 DOI: 10.1189/jlb.0903439] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apoptotic leukocytes must be cleared efficiently by macrophages (Mø). Apoptotic cell phagocytosis by Mø requires the receptor tyrosine kinase (RTK) MerTK (also known as c-Mer and Tyro12), the phosphatidylserine receptor (PS-R), and the classical protein kinase C (PKC) isoform betaII, which translocates to Mø membrane and cytoskeletal fractions in a PS-R-dependent manner. How these molecules cooperate to induce phagocytosis is unknown. As the phosphatidylinositol-specific phospholipase (PI-PLC) gamma2 is downstream of RTKs in some cell types and can activate classical PKCs, we hypothesized that MerTK signals via PLC gamma2. To test this hypothesis, we examined the interaction of MerTK and PLC gamma2 in resident, murine peritoneal (P)Mø and in the murine Mø cell line J774A.1 (J774) following exposure to apoptotic thymocytes. We found that as with PMø, J774 phagocytosis of apoptotic thymocytes was inhibited by antibody against MerTK. Western blotting and immunoprecipitation showed that exposure to apoptotic cells produced three time-dependent changes in PMø and J774: tyrosine phosphorylation of MerTK; association of PLC gamma2 with MerTK; and tyrosine phosphorylation of PLC gamma2. Cross-linking MerTK using antibody also induced phosphorylation of PLC gamma2 and its association with MerTK. A PI-PLC appears to be required for phagocytosis of apoptotic cells, as the PI-PLC inhibitor Et-18-OCH3 and the PLC inhibitor U73122, but not the inactive control U73343, blocked phagocytosis without impairing adhesion. On apoptotic cell adhesion to Mø, MerTK signals at least in part via PLC gamma2.
Collapse
Affiliation(s)
- Jill C. Todt
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System, Ann Arbor, MI, USA
| | - Bin Hu
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System, Ann Arbor, MI, USA
| | - Jeffrey L. Curtis
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Health Care System, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan Health Care System, Ann Arbor, MI, USA
- Pulmonary & Critical Care Medicine Section, Medical Service, Department of Veterans Affairs Care System, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Comalada M, Xaus J, Valledor AF, López-López C, Pennington DJ, Celada A. PKC epsilon is involved in JNK activation that mediates LPS-induced TNF-alpha, which induces apoptosis in macrophages. Am J Physiol Cell Physiol 2003; 285:C1235-45. [PMID: 12867362 DOI: 10.1152/ajpcell.00228.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lipopolysaccharide (LPS) is a powerful stimulator of macrophages and induces apoptosis in these cells. Using primary cultures of bone marrow-derived macrophages, we found that the autocrine production of tumor necrosis factor-alpha (TNF-alpha) has a major function in LPS-induced apoptosis. LPS activates PKC and regulates the different mitogen-activated protein kinases (MAPK). We aimed to determine its involvement either in the secretion of TNF-alpha or in the induction of apoptosis. Using specific inhibitors and mice with the gene for PKCepsilon disrupted, we found that LPS-induced TNF-alpha-dependent apoptosis is mostly mediated by PKCepsilon, which is not directly involved in the signaling mechanism of apoptosis but rather in the process of TNF-alpha secretion. In our cell model, all three MAPKs were involved in the regulation of TNF-alpha secretion, but at different levels. JNK mainly regulates TNF-alpha transcription and apoptosis, whereas ERK and p38 contribute to the regulation of TNF-alpha production, probably through posttranscriptional mechanisms. Only JNK activity is mediated by PKCepsilon in response to LPS and so plays a major role in TNF-alpha secretion and LPS-induced apoptosis. We demonstrated in macrophages that LPS involving PKCepsilon regulates JNK activity and produces TNF-alpha, which induces apoptosis.
Collapse
Affiliation(s)
- Mònica Comalada
- Macrophage Biology Group, Biomedical Research Institute of Barcelona-Science Park, University of Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The alveolar macrophage responds to bacterial infection with the production of inflammatory mediators that include TNFalpha. Early production of TNFalpha results in increased bacterial clearance, whereas too much TNFalpha results in many of the hallmarks of bacterial sepsis. TNFalpha production is regulated at many levels, including multiple signaling pathways, that lead to transcription, translation, and release of functional TNFalpha. Interactions of mitogen-activated protein (MAP) kinases, lipid signaling pathways, and oxidant-mediated mechanisms regulate the response of alveolar macrophages to infection. Animal models of sepsis support the central role played by macrophage-derived TNFalpha in sepsis.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa, USA.
| | | |
Collapse
|
23
|
Todt JC, Hu B, Punturieri A, Sonstein J, Polak T, Curtis JL. Activation of protein kinase C beta II by the stereo-specific phosphatidylserine receptor is required for phagocytosis of apoptotic thymocytes by resident murine tissue macrophages. J Biol Chem 2002; 277:35906-14. [PMID: 12114511 PMCID: PMC2640489 DOI: 10.1074/jbc.m202967200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed previously that protein kinase C (PKC) is required for phagocytosis of apoptotic leukocytes by murine alveolar (AMø) and peritoneal macrophages (PMø) and that such phagocytosis is markedly lower in AMø compared with PMø. In this study, we examined the roles of individual PKC isoforms in phagocytosis of apoptotic thymocytes by these two Mø populations. By immunoblotting, AMø expressed equivalent PKC eta but lower amounts of other isoforms (alpha, betaI, betaII, delta, epsilon, mu, and zeta), with the greatest difference in betaII expression. A requirement for PKC betaII for phagocytosis was demonstrated collectively by phorbol 12-myristate 13-acetate-induced depletion of PKC betaII, by dose-response to PKC inhibitor Ro-32-0432, and by use of PKC betaII myristoylated peptide as a blocker. Exposure of PMø to phosphatidylserine (PS) liposomes specifically induced translocation of PKC betaII and other isoforms to membranes and cytoskeleton. Both AMø and PMø expressed functional PS receptor, blockade of which inhibited PKC betaII translocation. Our results indicate that murine tissue Mø require PKC betaII for phagocytosis of apoptotic cells, which differs from the PKC isoform requirement previously described in Mø phagocytosis of other particles, and imply that a crucial action of the PS receptor in this process is PKC betaII activation.
Collapse
Affiliation(s)
- Jill C. Todt
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
| | - Bin Hu
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
| | - Antonello Punturieri
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
- Department of Veterans Affairs Care System; Ann Arbor, MI, USA
| | - Joanne Sonstein
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
| | - Timothy Polak
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
| | - Jeffrey L. Curtis
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
- Division of Pulmonary & Critical Care Medicine, the Comprehensive Cancer Center, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
- Division of Pulmonary & Critical Care Medicine, the Graduate Program in Immunology, University of Michigan Health Care System; and the Pulmonary & Critical Care Medicine Section, Medical Service, Ann Arbor, MI, USA
- Department of Veterans Affairs Care System; Ann Arbor, MI, USA
| |
Collapse
|
24
|
Hu B, Punturieri A, Todt J, Sonstein J, Polak T, Curtis JL. Recognition and phagocytosis of apoptotic T cells by resident murine tissue macrophages require multiple signal transduction events. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Bin Hu
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor; and
| | - Antonello Punturieri
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor; and
- Pulmonary & Critical Care Medicine Section, Medical Service, Department of Veterans Affairs Medical Center, Ann Arbor, Michigan
| | - Jill Todt
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor; and
| | - Joanne Sonstein
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor; and
| | - Timothy Polak
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor; and
| | - Jeffrey L. Curtis
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor; and
- Pulmonary & Critical Care Medicine Section, Medical Service, Department of Veterans Affairs Medical Center, Ann Arbor, Michigan
| |
Collapse
|
25
|
Bennasser Y, Bahraoui E. HIV-1 Tat protein induces interleukin-10 in human peripheral blood monocytes: involvement of protein kinase C-betaII and -delta. FASEB J 2002; 16:546-54. [PMID: 11919157 DOI: 10.1096/fj.01-0775com] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In HIV-infected patients, production of interleukin-10 (IL-10), a highly immunosuppressive cytokine, is associated with the disease progression toward AIDS. We have previously shown that HIV-1 Tat induces IL-10 production by human monocytes via a protein kinase C (PKC) -dependent pathway. Here we show that PKC activation by Tat is essential for IL-10 induction. Among the eight PKC isoforms present in human monocytes, we investigated which isoform(s) plays this crucial role in Tat-mediated IL-10 production and show that 1) Tat can activate PKC-alpha, PKC-betaII, PKC-delta, and PKC-epsilon, 2) of these four potential candidates, only PKC-betaII, PKC-delta, and PKC-epsilon are activated by the active domain Tat 1-45, which is responsible for IL-10 production and depleted by long-term exposure to PMA, which abolishes Tat-mediated IL-10 production, 3) whereas selective inhibition of PKC-alpha and PKC-epsilon by specific antisense oligonucleotides has no effect on Tat-mediated IL-10 induction, inhibition of either PKC-betaII or PKC-delta partially inhibits IL-10 production; and 4) the simultaneous inhibition of PKC-betaII and PKC-delta totally inhibits Tat-mediated IL-10. Altogether, these results suggest that the induction of IL-10 by Tat is strictly dependent on the PKC-delta and -betaII isoforms.
Collapse
Affiliation(s)
- Yamina Bennasser
- Laboratoire d'Immuno-Virologie, EA 3038, Université Paul Sabatier, 31062 Toulouse, France
| | | |
Collapse
|
26
|
Ouadrhiri Y, Pilette C, Monteiro RC, Vaerman JP, Sibille Y. Effect of IgA on respiratory burst and cytokine release by human alveolar macrophages: role of ERK1/2 mitogen-activated protein kinases and NF-kappaB. Am J Respir Cell Mol Biol 2002; 26:315-32. [PMID: 11867340 DOI: 10.1165/ajrcmb.26.3.4590] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human alveolar macrophages (HAM) express FcalphaR receptors for immunoglobulin (Ig)A which could link humoral and cellular branches of lung immunity. Here, we investigate the effects of polymeric (p-IgA) and secretory (S-IgA) IgA interaction with Fc(alpha)R on lipopolysaccharide (LPS)- and phorbol myristate acetate (PMA)-activated respiratory burst and TNF-alpha release by HAM. Activation of HAM with LPS and PMA increases the respiratory burst and TNF-alpha release through activation of the extracellular signal-related protein kinases 1 and 2 (ERK1/2) pathway, because these effects are inhibited by treatment of HAM with PD98059, a selective inhibitor of mitogen-activated protein (MAP)/ERK kinases (MEK) pathway. S-IgA and p-IgA downregulate the LPS-increased respiratory burst in HAM through an inhibition of ERK1/2 activity. In contrast, p- and S-IgA induce an increase in the respiratory burst of PMA-treated HAM. This effect is associated with an upregulation by IgA of the PMA-induced phosphorylation of ERK1/2 and is also inhibited by PD98059. Moreover, p-IgA and S-IgA enhance TNF-alpha release by HAM through an alternative pathway distinct from ERK1/2. Because LPS is known to activate nuclear factor-kappaB (NF-kappaB) in HAM, we evaluate the effect of IgA on NF-kappaB. Treatment of HAM with LPS, p- and S-IgA, but not PMA, induces NF-kappaB activation through IkappaBalpha phosphorylation and subsequent proteolysis. Antioxidants, namely N-acetylcysteine (NAC) and glutathione (GSH), have no effects on IgA-mediated NF-kappaB nuclear translocation and only a minor and late effect on that of LPS, suggesting that reactive oxygen intermediates (ROI) play a minor role in HAM activation through NF-kappaB. TNF-alpha release by LPS-activated HAM is sensitive to NF-kappaB inhibition and only partly to oxidant scavenging. In contrast, TNF-alpha release by IgA-treated HAM is not dependent on oxidants and only partly dependent on NF-kappaB. Our results show a differential HAM regulation by IgA through both dependent and independent modulation of ERK pathway. In addition, IgA activates NF-kappaB and this effect was independent on oxidants. These data may help to understand the role of IgA in both lung protection and inflammation.
Collapse
Affiliation(s)
- Youssef Ouadrhiri
- Experimental Medicine Unit, Christian de Duve Institute of Cellular Pathology, University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
27
|
Flaherty DM, Monick MM, Carter AB, Peterson MW, Hunninghake GW. GM-CSF increases AP-1 DNA binding and Ref-1 amounts in human alveolar macrophages. Am J Respir Cell Mol Biol 2001; 25:254-9. [PMID: 11509337 DOI: 10.1165/ajrcmb.25.2.4446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar macrophages have been implicated in the pathogenesis of a number of acute and chronic lung disorders. A characteristic feature of many of the chronic lung diseases is that the types of macrophages in the lung change, and in most instances, the cells resemble monocyte-like cells. We have previously shown that normal human alveolar macrophages have a decreased capacity to express protein kinase C (PKC)-induced DNA binding activity of the transcription factor activator protein (AP)-1 compared with monocytes. This decrease in AP-1 DNA binding appears to be due to a defect in redox regulation of AP-1 proteins via a decrease in the redox active protein Ref-1. The hypothesis for this study is that there are factors generated during the development of chronic lung disease that increase AP-1 DNA binding activity and Ref-1 production in human alveolar macrophages. We have focused specifically on granulocyte-macrophage colony-stimulating factor (GM-CSF) as a prototype mediator that can be released by alveolar macrophages and is related to the fibrotic process in the lung. We found that after a 24-h incubation with GM-CSF, AP-1 DNA binding was significantly increased in both unstimulated, interleukin (IL)-13, and phorbol myristate acetate (PMA)-stimulated alveolar macrophages and that there was a corresponding increase in Ref-1 protein by Western blot analysis in the PMA-stimulated group. This suggests that disease-related cytokines such as GM-CSF and IL-13 may modulate AP-1 DNA binding activity in alveolar macrophages.
Collapse
Affiliation(s)
- D M Flaherty
- Department of Internal Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- K. Murali Krishna Rao
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
29
|
Yang JH, Sakamoto H, Xu EC, Lee RT. Biomechanical regulation of human monocyte/macrophage molecular function. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1797-804. [PMID: 10793091 PMCID: PMC1876939 DOI: 10.1016/s0002-9440(10)65051-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When the monocyte infiltrates a tissue, adhesion to the extracellular matrix provides structural anchors, and the cell may be deformed through these attachments. To test the hypothesis that human monocytes/macrophages are mechanically responsive, we studied the effects of small cyclic mechanical deformations on cultured human monocytes/macrophages. When monocytes/macrophages were subjected to 4% strain at 1 Hz for 24 hours, neither matrix metalloproteinase (MMP)-1 nor MMP-3 was induced; however, in the presence of phorbol myristate acetate, strain augmented MMP-1 expression by 5.1 +/- 0.7-fold (P < 0.05) and MMP-3 expression by 1. 6 +/- 0.1-fold (P < 0.05). In contrast, MMP-9 expression was not changed by mechanical strain in the presence or absence of phorbol myristate acetate. Deformation rapidly induced the immediate early response genes c-fos and c-jun. In addition, mechanical deformation induced the transcription factor PU.1, an ets family member that is essential in monocyte differentiation, as well as mRNA for the M-CSF receptor. These studies demonstrate that human monocytes/macrophages respond to mechanical deformation with selective augmentation of MMPs, induction of immediate early genes, and induction of the M-CSF receptor. In addition to enhancing the proteolytic activity of macrophages within repairing tissues, cellular deformation within tissues may play a role in monocyte differentiation.
Collapse
Affiliation(s)
- J H Yang
- Vascular Medicine and Atherosclerosis Unit, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
30
|
Valledor AF, Xaus J, Marquès L, Celada A. Macrophage Colony-Stimulating Factor Induces the Expression of Mitogen-Activated Protein Kinase Phosphatase-1 Through a Protein Kinase C-Dependent Pathway. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
M-CSF triggers the activation of extracellular signal-regulated protein kinases (ERK)-1/2. We show that inhibition of this pathway leads to the arrest of bone marrow macrophages at the G0/G1 phase of the cell cycle without inducing apoptosis. M-CSF induces the transient expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), which correlates with the inactivation of ERK-1/2. Because the time course of ERK activation must be finely controlled to induce cell proliferation, we studied the mechanisms involved in the induction of MKP-1 by M-CSF. Activation of ERK-1/2 is not required for this event. Therefore, M-CSF activates ERK-1/2 and induces MKP-1 expression through different pathways. The use of two protein kinase C (PKC) inhibitors (GF109203X and calphostin C) revealed that M-CSF induces MKP-1 expression through a PKC-dependent pathway. We analyzed the expression of different PKC isoforms in bone marrow macrophages, and we only detected PKCβI, PKCε, and PKCζ. PKCζ is not inhibited by GF109203X/calphostin C. Of the other two isoforms, PKCε is the best candidate to mediate MKP-1 induction. Prolonged exposure to PMA slightly inhibits MKP-1 expression in response to M-CSF. In bone marrow macrophages, this treatment leads to a complete depletion of PKCβI, but only a partial down-regulation of PKCε. Moreover, no translocation of PKCβI or PKCζ from the cytosol to particulate fractions was detected in response to M-CSF, whereas PKCε was constitutively present at the membrane and underwent significant activation in M-CSF-stimulated macrophages. In conclusion, we remark the role of PKC, probably isoform ε, in the negative control of ERK-1/2 through the induction of their specific phosphatase.
Collapse
Affiliation(s)
- Annabel F. Valledor
- Departament de Fisiologia (Biologia del Macròfag), Facultat de Biologia and Fundació August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Xaus
- Departament de Fisiologia (Biologia del Macròfag), Facultat de Biologia and Fundació August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Laura Marquès
- Departament de Fisiologia (Biologia del Macròfag), Facultat de Biologia and Fundació August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Celada
- Departament de Fisiologia (Biologia del Macròfag), Facultat de Biologia and Fundació August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Monick MM, Carter AB, Gudmundsson G, Mallampalli R, Powers LS, Hunninghake GW. A Phosphatidylcholine-Specific Phospholipase C Regulates Activation of p42/44 Mitogen-Activated Protein Kinases in Lipopolysaccharide-Stimulated Human Alveolar Macrophages. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
This study uses human alveolar macrophages to determine whether activation of a phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) is linked to activation of the p42/44 (ERK) kinases by LPS. LPS-induced ERK kinase activation was inhibited by tricyclodecan-9-yl xanthogenate (D609), a relatively specific inhibitor of PC-PLC. LPS also increased amounts of diacylglycerol (DAG), and this increase in DAG was inhibited by D609. LPS induction of DAG was, at least in part, derived from PC hydrolysis. Ceramide was also increased in LPS-treated alveolar macrophages, and this increase in ceramide was inhibited by D609. Addition of exogenous C2 ceramide or bacterial-derived sphingomyelinase to alveolar macrophages increased ERK kinase activity. LPS also activated PKC ζ, and this activation was inhibited by D609. LPS-activated PKC ζ phosphorylated MAP kinase kinase, the kinase directly upstream of the ERK kinases. LPS-induced cytokine production (RNA and protein) was also inhibited by D609. As an aggregate, these studies support the hypothesis that one way by which LPS activates the ERK kinases is via activation of PC-PLC and that activation of a PC-PLC is an important component of macrophage activation by LPS.
Collapse
Affiliation(s)
- Martha M. Monick
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Aaron Brent Carter
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Gunnar Gudmundsson
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Rama Mallampalli
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Linda S. Powers
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Gary W. Hunninghake
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| |
Collapse
|