1
|
Campos-Sánchez JC, Guardiola FA, Esteban MÁ. In vitro immune-depression and anti-inflammatory activities of cantharidin on gilthead seabream (Sparus aurata) leucocytes activated by λ-carrageenan. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109470. [PMID: 38442766 DOI: 10.1016/j.fsi.2024.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Cantharidin is a natural compound with known therapeutic applications in humans. The aim of this study was to investigate the in vitro effects of cantharidin on gilthead seabream (Sparus aurata) head kidney leucocytes (HKL) stimulated with λ-carrageenan. HKLs were incubated for 24 h with cantharidin (0, 2.5 and 5 μg mL-1) and λ-carrageenan (0 and 1000 μg mL-1). The results showed that HKL viability only decreased by 15.2% after incubated with 5 μg mL-1 of cantharidin and λ-carrageenan. Cantharidin increased the peroxidase activity of HKLs only when incubated in combination with λ-carrageenan. Besides this, cantharidin inhibited the respiratory burst and phagocytic activities. Furthermore, cantharidin induced morphological changes in HKLs (apoptotic and vacuolization signs) that were enhanced when incubated with λ-carrageenan. Considering the analysis of the selected gene expression studied in HKLs [NF-κB subunits (rela, relb, crel, nfkb1, nfkb2), proinflammatory cytokines (il1b, tnfa), anti-inflammatory cytokines (il10, tgfb) and caspases (casp1, casp3, casp8, casp9)], although λ-carrageenan up-regulated the expression of the proinflammatory gene il1b, λ-carrageenan and cantharidin down-regulated its expression in HKLs. In addition, cantharidin up-regulated casp3 and casp9 expression. The casp3 and casp9 gene expression was down-regulated while casp1 gene expression was up-regulated in HKLs incubated with both cantharidin and λ-carrageenan. All the effects of cantharidin are related to its inhibitory effect on protein phosphatases, which induce apoptosis at long exposure times, and minimize the effects of λ-carrageenan. The present results provide detailed insight into the immune-depressive and anti-inflammatory properties of cantharidin on immune cells, which could be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Campos-Sánchez JC, Guardiola FA, Esteban MÁ. In vitro effects of cantharidin on gilthead seabream (Sparus aurata) head-kidney leucocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 123:20-35. [PMID: 35218974 DOI: 10.1016/j.fsi.2022.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Cantharidin is a toxic vesicant terpene used in folk and traditional medicine due to its various therapeutic effects. Since there are no previous data on the effect of cantharidin in fish, this study aimed to investigate the in vitro related-inflammatory effects of cantharidin in gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs). In the first experiment, the HKLs were incubated with 0, 5 and 10 μg mL-1 of cantharidin for 24 h to delimit its possible toxic effects. In a second experiment, leucocytes were incubated with ranging concentrations from 0 to 10 μg mL-1 for 3, 6, or 12 h. Cell viability was higher in acidophilic granulocytes than in monocytes/macrophages and lymphocytes. Cantharidin caused apoptosis as was evidenced by transmission electron microscopy. In addition, cantharidin produced a time- and dose-dependent decrease of respiratory burst and phagocytic activities in HKLs, while their peroxidase activity was increased at 24 h of incubation with 5 and 10 μg mL-1 of cantharidin. Different changes in the gene expression were observed after incubation with cantharidin. While the gene expression of tnfa, il1b and crel was up-regulated in HKLs, the nfkb1 and igmh genes were down-regulated in comparison to the expression found in control HKLs. Present results offer a first view of the possible effects and action mechanisms of cantharidin in HKLs, as well as its implication in the inflammatory process, which could be of interest not only for basic research but also in the aquaculture sector.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Ozel B, Kipcak S, Biray Avci C, Gunduz C, Saydam G, Aktan C, Selvi Gunel N. Combination of dasatinib and okadaic acid induces apoptosis and cell cycle arrest by targeting protein phosphatase PP2A in chronic myeloid leukemia cells. Med Oncol 2022; 39:46. [PMID: 35092492 DOI: 10.1007/s12032-021-01643-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a cancer type of the white blood cells and because of BCR-ABL translocation it results in increased tyrosine kinase activity. For this purpose, dasatinib is the second-generation tyrosine kinase inhibitor that is used for inhibition of BCR-ABL. Effectively and safetly, dasatinib has been used for imatinib-intolerant/resistant CML patients. Protein phosphatase 2A (PP2A) is the major serine/threonine phosphatase ensuring cellular homeostasis in cells and is associated with many cancer types including leukemias. In this study, we aimed to investigate the effects of dasatinib and okadaic acid (OA), either alone or in combination, on apoptosis and cell cycle arrest and dasatinib effect on enzyme activity and protein-level changes of PP2A in K562 cell line. The cytotoxic effects of dasatinib were evaluated by WST-1 analysis. Apoptosis was determined by Annexin V and Apo-Direct assays by flow cytometry. Cell cycle arrest analysis was performed for the investigation of the cytostatic effect. We also used OA as a PP2A inhibitor to assess apoptosis and cell cycle arrest changes in case of reducing the level of PP2A. PP2A enyzme activity and protein levels of PP2A were examined by serine/threonine phosphatase assay and Western blot analysis, respectively. Apoptosis was increased with dasatinib and OA combination. Cell cycle arrest was determined especially after OA treatment. The enzyme activity was decreased depending on time after dasatinib application. PP2A regulatory and catalytic subunit protein levels were decreased compared to control. Targeting the PP2A by dasatinib and OA has potential for CML treatment.
Collapse
Affiliation(s)
- Buket Ozel
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Sezgi Kipcak
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guray Saydam
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cagdas Aktan
- Medical Biology Department, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | - Nur Selvi Gunel
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
4
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
5
|
Li X, Zhuang J, Uhal BD. Local activation of the pulmonary extravascular angiotensin system induces epithelial apoptosis and lung fibrosis. ACTA ACUST UNITED AC 2018; 5:192-200. [PMID: 32524006 DOI: 10.15406/jlprr.2018.05.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous work suggests that a local extravascular angiotensin system plays an important role in the development of pulmonary fibrosis through stimulation of alveolar epithelial cell (AEC) apoptosis and collagen deposition. To demonstrate a causative role for the local tissue angiotensin (ANG) system in lung fibrosis, we hypothesize that overexpression of the angiotensinogen (AGT) gene or pharmacologic elevation of lung tissue ANG II levels might cause apoptosis of AECs and lung fibrosis. ANGII levels were elevated in rat or mouse lung tissue by intratracheal instillation of either purified ANGII or an adenovirus expressing AGT, or by ubiquitous overexpression of AGT in transgenic mice. Intratracheal instillation of purified ANGII caused significant collagen accumulation in lung tissue, both ex vivo and in vivo. Ubiquitous overexpression of AGT enhanced the profibrotic effect of bleomycin given at suboptimal doses. Intratracheal delivery of an adenoviral vector expressing mouse AGT (Ad-AGT) overexpressed AGT primarily in AECs and caused both apoptosis of AECs and pulmonary fibrosis. The lung collagen accumulation and AEC apoptosis caused by Ad-AGT was blocked by the caspase inhibitor ZVAD-fmk, by the ANG receptor AT1 antagonist Losartan or by the non-selective ANGII receptor antagonist Saralasin. Together, these data support the hypothesis that elevated pulmonary expression of AGT and its conversion to angiotensin II plays a causative role in the development of lung fibrosis through its induction of AEC apoptosis.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Pediatrics, Michigan State University, USA
| | - Jiaju Zhuang
- Department of Physiology, Bethune Military Medical College, China
| | - Bruce D Uhal
- Department of Pediatrics, Michigan State University, USA
| |
Collapse
|
6
|
Sun Y, Zhang D, Mao M, Lu Y, Jiao N. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line. Exp Ther Med 2017; 14:1809-1817. [PMID: 28810654 DOI: 10.3892/etm.2017.4704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the inhibitory effect of compound cantharides capsules (CCCs) on the viability and apoptosis of human gastric cancer cell lines, BGC-823 and SGC-7901, and to detect its regulation of gene expression levels, as well as its inhibition mechanisms. Each cell line was grouped into a control group, CCC serum group, 5-fluorouracil (5-FU) group, combination therapy group (CCC serum + 5-FU) and serum control group. Growth curves were measured and flow cytometry was used to detect cell apoptosis and cell viability. The mRNA expression level of proliferation-related C-MYC and p53 genes were assayed by reverse transcription-quantitative polymerase chain reaction. Protein phosphorylation levels of proliferating cell nuclear antigen, p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, c-Jun N-terminal kinase (JNK) and IκB were assayed by western blotting. The combined CCC serum and 5-FU group exhibited a higher inhibition rate in both cell lines and CCC serum therapy demonstrated a similar effect to 5-FU treatment, as demonstrated in the MTT and cell growth assay. Combined therapy significantly decreased the C-MYC mRNA expression levels and increased p53 mRNA expression levels (P<0.05). Combined therapy of 5-FU and CCC was more significant compared with CCC serum or 5-FU only (P<0.05). P38 and JNK-related protein phosphorylation are involved in apoptosis initiated by CCC combined 5-FU therapy. Combined therapy was able to significantly inhibit human gastric cancer cell growth (P<0.05), and advance cell apoptosis compared with CCC serum only. CCC serum resulted in downregulation of the c-Myc gene and upregulation of the p53 gene. p38 and JNK-related protein phosphorylation is involved in the inhibition of cell viability and apoptosis of human gastric cancer cell lines.
Collapse
Affiliation(s)
- Yonghao Sun
- Department of Internal Medicine, Zibo City Hospital of Traditional Chinese Medicine, Zibo, Shandong 255300, P.R. China
| | - Dejuan Zhang
- Clinical Medical Research Laboratory, Zibo City Hospital of Traditional Chinese Medicine, Zibo, Shandong 255300, P.R. China
| | - Mao Mao
- Department of Internal Medicine, Zibo City Hospital of Traditional Chinese Medicine, Zibo, Shandong 255300, P.R. China
| | - Yangping Lu
- Department of Internal Medicine, Zibo City Hospital of Traditional Chinese Medicine, Zibo, Shandong 255300, P.R. China
| | - Ning Jiao
- Department of Internal Medicine, Zibo City Hospital of Traditional Chinese Medicine, Zibo, Shandong 255300, P.R. China
| |
Collapse
|
7
|
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted phosphoprotein 1 is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 2015; 51:637-51. [PMID: 24816281 DOI: 10.1165/rcmb.2013-0471oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14-P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1((-/-)) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1((+/+)) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1((-/-)) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1((-/-)) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice.
Collapse
Affiliation(s)
- Koustav Ganguly
- 1 Department of Environmental and Occupational Health, Graduate School of Public Health
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tan AW, Tay L, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B. Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO₂ nanofibrous surfaces. Int J Nanomedicine 2014; 9:5389-401. [PMID: 25473278 PMCID: PMC4247135 DOI: 10.2147/ijn.s72659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two important criteria of an ideal biomaterial in the field of stem cells research are to regulate the cell proliferation without the loss of its pluripotency and to direct the differentiation into a specific cell lineage when desired. The present study describes the influence of TiO2 nanofibrous surface structures on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). TiO2 nanofiber arrays were produced in situ onto Ti-6Al-4V substrate via a thermal oxidation process and the successful fabrication of these nanostructures was confirmed by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and contact angle measurement. ADSCs were seeded on two types of Ti-6Al-4V surfaces (TiO2 nanofibers and flat control), and their morphology, proliferation, and stemness expression were analyzed using FESEM, AlamarBlue assay, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) after 2 weeks of incubation, respectively. The results show that ADSCs exhibit better adhesion and significantly enhanced proliferation on the TiO2 nanofibrous surfaces compared to the flat control surfaces. The greater proliferation ability of TiO2 nanofibrous surfaces was further confirmed by the results of cell cycle assay. More importantly, TiO2 nanofibrous surfaces significantly upregulate the expressions of stemness markers Sox-2, Nanog3, Rex-1, and Nestin. These results demonstrate that TiO2 nanofibrous surfaces can be used to enhance cell adhesion and proliferation while simultaneously maintaining the stemness of ADSCs, thereby representing a promising approach for their potential application in the field of bone tissue engineering as well as regenerative therapies.
Collapse
Affiliation(s)
- Ai Wen Tan
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Lelia Tay
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Roslina Ahmad
- Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheikh Ali Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
9
|
Greer RM, Miller JD, Okoh VO, Halloran BA, Prince LS. Epithelial-mesenchymal co-culture model for studying alveolar morphogenesis. Organogenesis 2014; 10:340-9. [PMID: 25482312 DOI: 10.4161/org.29198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Division of large, immature alveolar structures into smaller, more numerous alveoli increases the surface area available for gas exchange. Alveolar division requires precise epithelial-mesenchymal interactions. However, few experimental models exist for studying how these cell-cell interactions produce changes in 3-dimensional structure. Here we report an epithelial-mesenchymal cell co-culture model where 3-dimensional peaks form with similar cellular orientation as alveolar structures in vivo. Co-culturing fetal mouse lung mesenchyme with A549 epithelial cells produced tall peaks of cells covered by epithelia with cores of mesenchymal cells. These structures did not form when using adult lung fibroblasts. Peak formation did not require localized areas of cell proliferation or apoptosis. Mesenchymal cells co-cultured with epithelia adopted an elongated cell morphology closely resembling myofibroblasts within alveolar septa in vivo. Because inflammation inhibits alveolar formation, we tested the effects of E. coli lipopolysaccharide on 3-dimensional peak formation. Confocal and time-lapse imaging demonstrated that lipopolysaccharide reduced mesenchymal cell migration, resulting in fewer, shorter peaks with mesenchymal cells present predominantly at the base. This epithelial-mesenchymal co-culture model may therefore prove useful in future studies of mechanisms regulating alveolar morphogenesis.
Collapse
Key Words
- 3-D, 3-dimensional
- ATCC, American Type Culture Collection
- BALB/cJ, Bagg Albino
- BMP4, bone morphogenetic protein 4
- CO2, carbon dioxide
- DAPI, 4′, 6-Diamidino-2-Phenylindole, Dihydrochloride
- DEVD, acetyl-Asp-Glu-Val-Asp p-nitroanilide
- DMEM, Dulbecco's modified eagle medium
- DiI, 1, 1′-dioctadecyl-3, 3, 3′3′-tetramethylindocarbocyanine perchlorate
- E-cad, e-cadherin
- E. coli, Escherichia coli
- E15, embryonic day 15
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- LPS, lipopolysaccharide
- PDGF, platelet derived growth factor
- SHH, sonic hedgehog
- TGF-β, transforming growth factor beta
- TO-PRO-3, 4-[3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-1-[3-(trimethylammonio)propyl]-, diiodide
- VEGF, vascular endothelial growth factor
- Z-VAD-FMK, Z-Val-Ala-Asp-CH2F
- alveolarization
- bronchopulmonary dysplasia
- lung development
- myofibroblast
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Rachel M Greer
- a Department of Pediatrics ; University of California San Diego; Rady Children's Hospital, San Diego ; San Diego , CA USA
| | | | | | | | | |
Collapse
|
10
|
Nogueira-Silva C, Piairo P, Carvalho-Dias E, Veiga C, Moura RS, Correia-Pinto J. The role of glycoprotein 130 family of cytokines in fetal rat lung development. PLoS One 2013; 8:e67607. [PMID: 23826327 PMCID: PMC3691159 DOI: 10.1371/journal.pone.0067607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/24/2013] [Indexed: 11/24/2022] Open
Abstract
The glycoprotein 130 (gp130) dependent family of cytokines comprises interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) and oncostatin M (OSM). These cytokines share the membrane gp130 as a common signal transducer. Recently, it was demonstrated that IL-6 promotes, whereas LIF inhibits fetal lung branching. Thus, in this study, the effects on fetal lung morphogenesis of the other classical members of the gp130-type cytokines (IL-11, CLC, CNTF, CT-1 and OSM) were investigated. We also provide the first description of these cytokines and their common gp130 receptor protein expression patterns during rat lung development. Fetal rat lung explants were cultured in vitro with increasing concentrations of IL-11, CLC, CNTF, CT-1 and OSM. Treated lung explants were morphometrically analyzed and assessed for MAPK, PI3K/AKT and STAT3 signaling modifications. IL-11, which similarly to IL-6 acts through a gp130 homodimer receptor, significantly stimulated lung growth via p38 phosphorylation. On the other hand, CLC, CNTF, CT-1 and OSM, whose receptors are gp130 heterodimers, inhibited lung growth acting in different signal-transducing pathways. Thus, the present study demonstrated that although cytokines of the gp130 family share a common signal transducer, there are specific biological activities for each cytokine on lung development. Indeed, cytokine signaling through gp130 homodimers stimulate, whereas cytokine signaling through gp130 heterodimers inhibit lung branching.
Collapse
Affiliation(s)
- Cristina Nogueira-Silva
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| | - Paulina Piairo
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel Carvalho-Dias
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de Braga, Braga, Portugal
| | - Carla Veiga
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
- * E-mail:
| |
Collapse
|
11
|
Larsen KO, Lygren B, Sjaastad I, Krobert KA, Arnkvaern K, Florholmen G, Larsen AKR, Levy FO, Taskén K, Skjønsberg OH, Christensen G. Diastolic dysfunction in alveolar hypoxia: a role for interleukin-18-mediated increase in protein phosphatase 2A. Cardiovasc Res 2008; 80:47-54. [PMID: 18599478 DOI: 10.1093/cvr/cvn180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS Chronic obstructive pulmonary disease with alveolar hypoxia is associated with diastolic dysfunction in the right and left ventricle (LV). LV diastolic dysfunction is not caused by increased afterload, and we recently showed that reduced phosphorylation of phospholamban at serine (Ser) 16 may explain the reduced relaxation of the myocardium. Here, we study the mechanisms leading to the hypoxia-induced reduction in phosphorylation of phospholamban at Ser16. METHODS AND RESULTS In C57Bl/6j mice exposed to 10% oxygen, signalling molecules were measured in cardiac tissue, sarcoplasmic reticulum (SR)-enriched membrane preparations, and serum. Cardiomyocytes isolated from neonatal mice were exposed to interleukin (IL)-18 for 24 h. The beta-adrenergic pathway in the myocardium was not altered by alveolar hypoxia, as assessed by measurements of beta-adrenergic receptor levels, adenylyl cyclase activity, and subunits of cyclic AMP-dependent protein kinase. However, alveolar hypoxia led to a significantly higher amount (124%) and activity (234%) of protein phosphatase (PP) 2A in SR-enriched membrane preparations from LV compared with control. Serum levels of an array of cytokines were assayed, and a pronounced increase in IL-18 was observed. In isolated cardiomyocytes, treatment with IL-18 increased the amount and activity of PP2A, and reduced phosphorylation of phospholamban at Ser16 to 54% of control. CONCLUSION Our results indicate that the diastolic dysfunction observed in alveolar hypoxia might be caused by increased circulating IL-18, thereby inducing an increase in PP2A and a reduction in phosphorylation of phospholamban at Ser16.
Collapse
Affiliation(s)
- Karl-Otto Larsen
- Department of Pulmonary Medicine, Ullevål University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suh EJ, Kim TY, Kim SH. PP2Cgamma-mediated S-phase accumulation induced by the proteasome-dependent degradation of p21(WAF1/CIP1). FEBS Lett 2006; 580:6100-4. [PMID: 17054950 DOI: 10.1016/j.febslet.2006.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 09/25/2006] [Accepted: 10/04/2006] [Indexed: 11/26/2022]
Abstract
Serine/threonine phosphatases such as PP1, PP2A, and PP2B are well known to regulate the transition phase of the cell cycle. However, the function of PP2Cgamma in cell cycle progression is still unclear. In the present study, we report the characterization of PP2Cgamma in mammalian cells during the cell cycle. After release of synchronized cells from thymidine block, over-expression of PP2Cgamma led to accumulation in the S phase. The amount of endogenous p21(WAF1/CIP1) protein was markedly reduced by the expression of PP2Cgamma. The degradation of p21(WAF1/CIP1) induced by PP2Cgamma was mediated in a proteasome-dependent manner. In addition, the phosphatase activity of PP2Cgamma was capable of repressing the level of p21(WAF1/CIP1) protein. Phosphorylation of Rb was also reduced in cells expressing PP2Cgamma. Taken together, these results indicate that PP2Cgamma-induced S phase accumulation may be associated with proteasome-directed p21(WAF1/CIP1) degradation.
Collapse
Affiliation(s)
- Eun-Jung Suh
- Department of Biology, Kyung Hee University, Republic of Korea
| | | | | |
Collapse
|
13
|
Huan SKH, Lee HH, Liu DZ, Wu CC, Wang CC. Cantharidin-induced cytotoxicity and cyclooxygenase 2 expression in human bladder carcinoma cell line. Toxicology 2006; 223:136-43. [PMID: 16697099 DOI: 10.1016/j.tox.2006.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/27/2022]
Abstract
Mylabris is used in clinical therapy, but is always accompanied by cystitis. The toxic effects of mylabris on bladder are attributed to its active principle: cantharidin. In the present study, we explored how cantharidin induces cytotoxicity in the bladder. Human bladder carcinoma cell line T 24 cells were used as target cells, and human colon carcinoma HT 29 cells as native cells. Cantharidin exhibited acute cytotoxicity in the T 24 cells, and IC(50) was 21.8, 11.2 and 4.6 microM after treatment for 6, 24 and 48 h, respectively. The cytotoxicity of cantharidin was not significantly enhanced when T 24 cells were treated for a longer time. Moreover, PARP proteins and pro-caspase 3, Bcl-2 were significantly inhibited after cantharidin treatment in T 24 cells. Pretreatment with the caspase 3 inhibitor markedly inhibited cantharidin-induced cell death. Therefore, we suggested that cantharidin could induce apoptosis via active caspase 3 in T 24 cells. When T 24 cells were treated with cantharidin at a low dose, the cell cycle was arrested in the G(2)/M phase. Furthermore, p21(Cip1/Waf1) was enhanced, and cyclin A, B1 and cdk1 decreased. At a high dose (more 12.5 microM), cantharidin could stimulate T 24 cells to deplete a large number of ATP and induce secondary necrosis. In addition, cantharidin also stimulated COX 2 over-expression and PGE(2) production in T 24 cells, in a dose-dependent manner. However, cantharidin also induced apoptosis and G(2)/M phase arrest in HT 29 cells, but did not induce COX 2 over-expression. Therefore, we suggest that cantharidin may induce cystitis through secondary necrosis and COX 2 over-expression.
Collapse
Affiliation(s)
- Steven Kuan-Hua Huan
- .Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | | | | | | | | |
Collapse
|
14
|
Benson JM, Hutt JA, Rein K, Boggs SE, Barr EB, Fleming LE. The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon 2005; 45:691-8. [PMID: 15804518 PMCID: PMC2551753 DOI: 10.1016/j.toxicon.2005.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
Microcystins, a family of cyclic heptapeptides produced by the cyanobacteria, Microcystis aeruginosa, have documented hepatotoxic and tumor promoting activities. The purpose of this study was to evaluate the toxicity of inhaled microcystin LR (microcystin). Male BALB/c mice were exposed by nose-only inhalation to 260-265 microg microcystin/m(3) for 7 days. The low-, mid- and high-dose groups were exposed for 0.5, 1, and 2h, respectively. Control animals were sham exposed to aerosolized vehicle. Treatment-related microscopic lesions were observed only in the nasal cavity of the mid- and high-dose groups. These lesions consisted of minimal to moderate multifocal degeneration and necrosis of the respiratory epithelium, with variable neutrophilic inflammation and minimal to marked degeneration, necrosis, and atrophy of the olfactory epithelium. The no-adverse-effect dose for the nasal lesions was approximately 3 microg/kg body weight, or 20 ng/cm(2) of nasal epithelium. In serum, only two protein peaks, occurring at m/zs of 11,688 and 11,829 Da, exhibited decreases in intensity that were microcystin dose-dependent. While these proteins have not been positively identified, they may be useful in the future as biomarkers of microcystin exposure in humans.
Collapse
Affiliation(s)
- Janet M Benson
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Massicot F, Dutertre-Catella H, Pham-Huy C, Liu XH, Duc HT, Warnet JM. In vitro Assessment of Renal Toxicity and Inflammatory Events of Two Protein Phosphatase Inhibitors Cantharidin and Nor-Cantharidin*. Basic Clin Pharmacol Toxicol 2005; 96:26-32. [PMID: 15667592 DOI: 10.1111/j.1742-7843.2005.pto960104.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In China, cantharidin has been reported to be active against various human cancers, but with severe side effects such as nephrotoxicity. In order to reduce this toxicity, its demethylated analogue nor-cantharidin has been synthesized and used in cancer therapy, but with only few data regarding safety assessment. The aim of this study was to compare the in vitro effects of cantharidin and nor-cantharidin on renal toxicity and on inflammatory events associated with tumoural process where protein phosphatases could be involved (energy status, prostanoid production, glutathione and nitrite contents) on RAW 264.7 and LLC-PK1 cells. In macrophages, both cantharidin and nor-cantharidin decreased cell viability, in a concentration- and time-dependent manner. However, IC50 was lower with cantharidin than with nor-cantharidin. These two drugs significantly decreased the ATP level after 24 hr incubation. However, ATP decreased much more with cantharidin (up to 4 times) than with nor-cantharidin. When control macrophages were activated with lipopolysaccharide+interferon-gamma for 24 hr a significant increase in nitrite content and in prostanoids were observed. Addition of either drug decreased nitrite generation and prostanoids, however these decreases were greater with cantharidin than with nor-cantharidin. In LLC-PK1 cells, incubated with either cantharidin or nor-cantharidin, our results show significant differences between the two drugs, similar to those observed in peritoneal macrophages, except for GSH content with opposite variations in both cells. We provide a better understanding of the various mechanisms of cantharidin side effects, allowing an easier comparison with nor-cantharidin which could be an attractive therapeutic potential in cancer chemotherapy in western countries.
Collapse
Affiliation(s)
- France Massicot
- Laboratory of Toxicology, Faculty of Pharmaceutical and Biological Sciences, University René Descartes-Paris 5, 75270 Paris Cedex 06, France.
| | | | | | | | | | | |
Collapse
|
16
|
Huh JE, Kang KS, Chae C, Kim HM, Ahn KS, Kim SH. Roles of p38 and JNK mitogen-activated protein kinase pathways during cantharidin-induced apoptosis in U937 cells. Biochem Pharmacol 2004; 67:1811-8. [PMID: 15130758 DOI: 10.1016/j.bcp.2003.12.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 12/15/2003] [Indexed: 11/17/2022]
Abstract
Cantharidin is an active compound from blister beetles traditionally used for the treatment of cancer. It is known to exert its antitumor activity by inducing apoptosis in cancer cells. However, its signaling pathway still remains unclear. Therefore, we investigated the roles of the mitogen-activated protein kinases (MAPKs) and the tumor suppressor gene, p53, during cantharidin-induced apoptosis in U937 human leukemic cells. Cantharidin effectively activated ERK-1/2, p38 and JNK in U937 cells in a time- and dose-dependent manner. Cantharidin also exhibited a strong cytotoxicity and induced apoptosis in U937 cells. For the evaluation of the role of MAPKs, PD98059, SB202190 and SP600125 were used as MAPK inhibitors for ERK-1/2, p38 and JNK. PD98059 did not affect cantharidin-induced cytotoxicity and apoptosis, whereas SB202190 and SP600125 significantly interfered with cytotoxic and apoptotic activities induced by cantharidin. Cantharidin alone induced the apoptosis by phosphorylation of p53, up-regulation of downstream target genes, MDM2 and p21 and also cleaved caspase-3, whereas SB202190 and SP600125 caused the down-regulation of p53, MDM-2, p21 and cleaved caspase-3 after a co-treatment with cantharidin. Similarly, SB202190 and SP600125 significantly disturbed the caspase-3 activity after a co-treatment with cantharidin by colorimetric assay. Taken together, these results suggest that cantharidin can induce apoptosis by activation of p38 and JNK MAP kinase pathways associated with p53 and caspase-3.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Department of Oncology, Graduate School of East-West Medical Science, Kyunghee University, Yongin 449-701, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Li X, Rayford H, Uhal BD. Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2523-30. [PMID: 14633624 PMCID: PMC1892377 DOI: 10.1016/s0002-9440(10)63607-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis of alveolar epithelial cells (AECs) has been implicated as a key event in the pathogenesis of lung fibrosis. Recent studies demonstrated a role for the synthesis and binding of angiotensin II to receptor AT1 in the induction of AEC apoptosis by bleomycin (BLEO) and other proapoptotic stimuli. On this basis we hypothesized that BLEO-induced apoptosis and lung fibrosis in mice would be inhibited by the AT1 antagonist losartan (LOS) or by targeted deletion of the AT1 gene. Lung fibrosis was induced by intratracheal administration of BLEO (1 U/kg) to wild-type C57BL/6J mice. Co-administration of LOS abrogated BLEO-induced increases in total lung caspase 3 activity detected 6 hours after in vivo administration and reduced by 57% BLEO-induced caspase 3 activity in blood-depleted lung explants exposed to BLEO ex vivo (both P < 0.05). Co-administration of LOS in vivo reduced DNA fragmentation and immunoreactive caspase 3 (active form) in AECs, measured at 14 days after intratracheal BLEO, by 66% and 74%, respectively (both P < 0.05). LOS also inhibited the accumulation of lung hydroxyproline by 45%. The same three measures of apoptosis and lung fibrosis were reduced by 89%, 85%, and 75%, respectively (all P < 0.01), in mice with a targeted disruption of the AT1a receptor gene (C57BL/6J-Agtr1a(tm1Unc)). These data indicate an essential role for angiotensin receptor AT1a in the pathogenesis of BLEO-induced lung fibrosis in mice and suggest that AT1 receptor signaling is required for BLEO-induced apoptosis of AECs in mice as it is in rat and human AECs.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824-3320, USA
| | | | | |
Collapse
|
18
|
Everett AD, Kamibayashi C, Brautigan DL. Transgenic expression of protein phosphatase 2A regulatory subunit B56gamma disrupts distal lung differentiation. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1266-71. [PMID: 12003782 DOI: 10.1152/ajplung.00262.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal epithelium of the developing lung exhibits high-level expression of protein phosphatase 2A (PP2A), a vital signaling enzyme. Here we report the discovery that in the lung, the PP2A regulatory subunit B56gamma is expressed in a discrete developmental period, with the highest protein levels at embryonic day (e) 17, but no detectable protein in the newborn or adult. By in situ hybridization, B56gamma was highly expressed in the distal epithelium of newly forming airways and in mesenchymal cells. In contrast, expression of B56gamma was quite low in the bronchial epithelium and vascular smooth muscle. Transgenic expression of B56gamma using the lung-specific promoter for surfactant protein C (SP-C) resulted in neonatal death. Examination of lungs from SP-C-B56gamma transgenic e18 fetuses revealed proximal airways and normal blood vessels, but the tissue was densely populated with epithelial-type cells and was devoid of normal peripheral lung structure. A component of the Wnt signaling pathway, beta-catenin, was developmentally regulated in the normal lung and was absent in lung tissue from B-56gamma transgenic fetuses. We propose that B56gamma is expressed at a particular stage of lung development to modulate PP2A action on the Wnt/beta-catenin signaling pathway during lung airway morphogenesis.
Collapse
Affiliation(s)
- Allen D Everett
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
19
|
Kling DE, Lorenzo HK, Trbovich AM, Kinane TB, Donahoe PK, Schnitzer JJ. MEK-1/2 inhibition reduces branching morphogenesis and causes mesenchymal cell apoptosis in fetal rat lungs. Am J Physiol Lung Cell Mol Physiol 2002; 282:L370-8. [PMID: 11839529 DOI: 10.1152/ajplung.00200.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The roles of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinases-1 and -2 (ERK-1/2) in fetal lung development have not been extensively characterized. To determine if ERK-1/2 signaling plays a role in fetal lung branching morphogenesis, U-0126, an inhibitor of the upstream kinase MAP ERK kinase (MEK), was added to fetal lung explants in vitro. Morphometry as measured by branching, area, perimeter, and complexity were significantly reduced in U-0126-treated lungs. At the same time, U-0126 treatment reduced ERK-1/2, slightly increased p38 kinase, but did not change c-Jun NH(2)-terminal kinase activities, indicating that U-0126 specifically inhibited the ERK-1/2 enzymes. These changes were associated with increased apoptosis as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and immunofluorescent labeling of anti-active caspase-3 in the mesenchyme of explants after U-0126 treatment compared with the control. Mitosis characterized by immunolocalization of proliferating cell nuclear antigen was found predominantly in the epithelium and was reduced in U-0126-treated explants. Thus U-0126 causes specific inhibition of ERK-1/2 signaling, diminished branching morphogenesis, characterized by increased mesenchymal apoptosis, and decreased epithelial proliferation in fetal lung explants.
Collapse
Affiliation(s)
- David E Kling
- Pediatric Surgical Research Laboratories, Pediatric Surgical Services, and the Department of Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
20
|
Strehl R, Schumacher K, de Vries U, Minuth WW. Proliferating cells versus differentiated cells in tissue engineering. TISSUE ENGINEERING 2002; 8:37-42. [PMID: 11886652 DOI: 10.1089/107632702753503036] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The efficiency of cell or tissue cultures is usually judged by how quickly confluence is reached within a Petri dish or on a scaffold. Growth factors and fetal bovine serum are employed to drive cultured cells from one mitosis to the next as quickly as possible. The tissue specific interphase is extremely short under these conditions, so that the degree of differentiation desired in tissue engineering cannot be achieved. To reach the goal of functional differentiation in vitro mitosis and interphase must be separated experimentally and tailored to the specific requirements of the cell-type used. This could be achieved by a three step concept for tissue-engineering in vitro as we present here. The expansion phase is followed by a phase in which tissue differentiation is initiated. The final phase serves to express and maintain histotypical differentiation of the generated tissue.
Collapse
Affiliation(s)
- Raimund Strehl
- Department of Anatomy, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
21
|
Wang RH, Liu CW, Avramis VI, Berndt N. Protein phosphatase 1alpha-mediated stimulation of apoptosis is associated with dephosphorylation of the retinoblastoma protein. Oncogene 2001; 20:6111-22. [PMID: 11593419 DOI: 10.1038/sj.onc.1204829] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2001] [Revised: 06/21/2001] [Accepted: 06/28/2001] [Indexed: 11/09/2022]
Abstract
Protein phosphatase 1 (PP1) plays important roles in many different aspects of cellular activities including cell cycle control. One important function of PP1 is to activate the retinoblastoma protein pRB. Here we show that pRB is one of PP1's downstream targets during apoptosis. When HL-60 cells synchronized at the G1/S boundary were treated with pro-apoptotic cytosine arabinoside (araC), PP1alpha protein increased twofold and PP1 activity about 30% within 1 h. This was followed by pRB dephosphorylation, pRB cleavage by caspases, DNA fragmentation, the appearance of cells with <2n DNA content and finally, dying and dead cells. In vitro, pRB was protected from caspase-3 digestion by prior Cdk-mediated phosphorylation, whereas PP1alpha converted phospho-pRB into an efficient substrate for caspase-3. Introduction of active PP1alpha into HL-60 cells by electroporation was sufficient to induce characteristics of apoptosis. Similarly, araC-resistant cells, normally unable to die in response to araC, initiated apoptosis when electroporated with active PP1alpha. This was also accompanied by pRB cleavage. In contrast, introduction of inhibitor-2 delayed the onset of araC-induced apoptosis, whereas concomitant introduction of PP1alpha and inhibitor-2 completely prevented PP1alpha-induced apoptosis. These results suggest that dephosphorylation of key proteins by PP1alpha may be crucial for the initiation of apoptosis and further support the concept of PP1 serving as a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- R H Wang
- Division of Hematology/Oncology, Childrens Hospital Los Angeles, University of Southern California School of Medicine, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
22
|
Gual P, Giordano S, Anguissola S, Parker PJ, Comoglio PM. Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling. Oncogene 2001; 20:156-66. [PMID: 11313945 DOI: 10.1038/sj.onc.1204047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2000] [Revised: 10/20/2000] [Accepted: 10/23/2000] [Indexed: 02/07/2023]
Abstract
Signal transduction by HGF receptor, the tyrosine kinase encoded by the MET oncogene, switches on a genetic program called 'invasive growth' inducing epithelial cell dissociation, migration, growth, and ultimately leading to differentiation into branched tubular structures. Sustained tyrosine phosphorylation of the downstream adaptor protein Gab1 is required for the HGF response. Here we show that serine/threonine phosphorylation of Gab1 provides a control mechanism for negative regulation. Treatment with okadaic acid, a potent inhibitor of the serine/threonine protein phosphatases PP1 and PP2A, was followed by activation of a number of serine/threonine kinases, hyper-phosphorylation in serine and threonine of Gab1 and severe inhibition of the HGF-induced biological responses. Under these conditions, Gab1 was found to be concomitantly hypo-phosphorylated in tyrosine, and thus endowed with reduced ability to recruit SH2 containing signal transducers such as PI3 kinase. Among the serine-threonine kinases activated by PP1 and PP2A inhibition, we found that PKC-alpha and PKC-beta1 are required for negative regulation of Gab1. These data provide a novel negative mechanism for the HGF receptor signaling pathways and highlight a potentially useful target for inhibitors of invasive growth.
Collapse
Affiliation(s)
- P Gual
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Str. Prov. 142, Km 3.95, 10060 Candiolo, Italy
| | | | | | | | | |
Collapse
|