1
|
Li Y, Anand-Srivastava MB. Downregulation of natriuretic peptide receptor-C in vascular smooth muscle cells from spontaneously hypertensive rats contributes to vascular remodeling. Peptides 2022; 158:170894. [PMID: 36243172 DOI: 10.1016/j.peptides.2022.170894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/27/2022]
Abstract
Hypertension is associated with vascular remodeling due to hyperproliferation and hypertrophy of vascular smooth muscle cells (VSMC). VSMC from several animal models of hypertensive rats including spontaneously hypertensive rats (SHR) exhibit hyperproliferation, hypertrophy and decreased expression of natriuretic peptide receptor-C (NPR-C). In addition, angiotensin II (Ang II) and growth factors that promotes vascular remodeling have also been shown to attenuate the expression of NPR-C in VSMC. The present study investigates the relationship between the decreased expression of NPR-C and vascular remodeling in SHR and the underlying molecular mechanisms. Aortic VSMC from SHR and their control Wistar Kyoto (WKY) rats were transfected with cDNA of NPR-C and used for the vascular remodeling studies. Transfection of VSMC with cDNA of NPR-C augmented the expression of NPR-C in both VSMC from SHR and WKY rats and resulted in the attenuation of hyperproliferation and hypertrophy of VSMC from SHR. The overexpression of NPR-C also resulted in the attenuation of increased expression of epidermal growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), cell cycle proteins, cyclin D1, cyclin-dependent kinase 4 (Cdk4), phospho-retinoblastoma (pRb) and Giα-2 proteins, all these signaling molecules implicated in the hyperproliferation/hypertrophy of VSMC from SHR. In summary, these results indicate that augmenting the decreased expression of NPR-C in VSMC from SHR improves vascular remodeling by attenuating hyperproliferation and hypertrophy through decreasing the overexpression of several signaling molecules. It may be suggested that NPR-C plays a vasculoprotective role and that the downregulation of NPR-C contributes to the vascular remodeling in SHR.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
2
|
Kolb TM, Johnston L, Damarla M, Kass DA, Hassoun PM. PDE9A deficiency does not prevent chronic-hypoxic pulmonary hypertension in mice. Physiol Rep 2021; 9:e15057. [PMID: 34569183 PMCID: PMC8474007 DOI: 10.14814/phy2.15057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/31/2022] Open
Abstract
Inhibition of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterases (PDEs) is a cornerstone of pulmonary arterial hypertension (PAH)-specific therapy. PDE9A, expressed in the heart and lung tissue, has the highest affinity for cGMP of all known PDEs. PDE9A deficiency protects mice against chronic left ventricular (LV) pressure overload via increased natriuretic peptide (NP)-dependent cGMP signaling. Chronic-hypoxic pulmonary hypertension (CH-PH) is a model of chronic right ventricular (RV) pressure overload, and previous studies have demonstrated a protective role for NPs in the murine model. Therefore, we hypothesized that PDE9A deficiency would promote NP-dependent cGMP signaling and prevent RV remodeling in the CH-PH model, analogous to findings in the LV. We exposed wild-type and PDE9A-deficient (Pde9a-/- ) C57BL/6 mice to CH-PH for 3 weeks. We measured RV pressure, hypertrophy, and levels of lung and RV cGMP, PDE9A, PDE5A, and phosphorylation of the protein kinase G substrate VASP (vasodilatory-stimulated phosphoprotein) after CH-PH. In wild-type mice, CH-PH was associated with increased circulating ANP and lung PDE5A, but no increase in cGMP, PDE9A, or VASP phosphorylation. Downstream effectors of cGMP were not increased in Pde9a-/- mice exposed to CH-PH compared with Pde9a+/+ littermates, and CH-PH induced increases in RV pressure and hypertrophy were not attenuated in knockout mice. Taken together, these findings argue against a prominent role for PDE9A in the murine CH-PH model.
Collapse
Affiliation(s)
- Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Laura Johnston
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - David A. Kass
- Division of CardiologyDepartment of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
3
|
Pandey KN. Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction. Int J Mol Sci 2019; 20:ijms20163946. [PMID: 31416126 PMCID: PMC6721781 DOI: 10.3390/ijms20163946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mice bearing targeted gene mutations that affect the functions of natriuretic peptides (NPs) and natriuretic peptide receptors (NPRs) have contributed important information on the pathogenesis of hypertension, kidney disease, and cardiovascular dysfunction. Studies of mice having both complete gene disruption and tissue-specific gene ablation have contributed to our understanding of hypertension and cardiovascular disorders. These phenomena are consistent with an oligogenic inheritance in which interactions among a few alleles may account for genetic susceptibility to hypertension, renal insufficiency, and congestive heart failure. In addition to gene knockouts conferring increased risks of hypertension, kidney disorders, and cardiovascular dysfunction, studies of gene duplications have identified mutations that protect against high blood pressure and cardiovascular events, thus generating the notion that certain alleles can confer resistance to hypertension and heart disease. This review focuses on the intriguing phenotypes of Npr1 gene disruption and gene duplication in mice, with emphasis on hypertension and cardiovascular events using mouse models carrying Npr1 gene knockout and/or gene duplication. It also describes how Npr1 gene targeting in mice has contributed to our knowledge of the roles of NPs and NPRs in dose-dependently regulating hypertension and cardiovascular events.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Forte M, Madonna M, Schiavon S, Valenti V, Versaci F, Zoccai GB, Frati G, Sciarretta S. Cardiovascular Pleiotropic Effects of Natriuretic Peptides. Int J Mol Sci 2019; 20:3874. [PMID: 31398927 PMCID: PMC6719167 DOI: 10.3390/ijms20163874] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone belonging to the family of natriuretic peptides (NPs). ANP exerts diuretic, natriuretic, and vasodilatory effects that contribute to maintain water-salt balance and regulate blood pressure. Besides these systemic properties, ANP displays important pleiotropic effects in the heart and in the vascular system that are independent of blood pressure regulation. These functions occur through autocrine and paracrine mechanisms. Previous works examining the cardiac phenotype of loss-of-function mouse models of ANP signaling showed that both mice with gene deletion of ANP or its receptor natriuretic peptide receptor A (NPR-A) developed cardiac hypertrophy and dysfunction in response to pressure overload and chronic ischemic remodeling. Conversely, ANP administration has been shown to improve cardiac function in response to remodeling and reduces ischemia-reperfusion (I/R) injury. ANP also acts as a pro-angiogenetic, anti-inflammatory, and anti-atherosclerotic factor in the vascular system. Pleiotropic effects regarding brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were also reported. In this review, we discuss the current evidence underlying the pleiotropic effects of NPs, underlying their importance in cardiovascular homeostasis.
Collapse
Affiliation(s)
| | | | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Giacomo Frati
- IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS NEUROMED, 86077 Pozzilli, Italy.
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| |
Collapse
|
5
|
Ozcan N, Ozcan A, Kaymak C, Basar H, Kotanoglu M, Kose B. Comparison of prognostic value of N-terminal pro-brain natriuretic peptide in septic and non-septic intensive care patients. Arch Med Sci 2017; 13:418-425. [PMID: 28261297 PMCID: PMC5332440 DOI: 10.5114/aoms.2015.54196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/25/2015] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The aim of this study is to compare the prognostic value of N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in septic and non-septic intensive care patients. MATERIAL AND METHODS Fifty consecutive patients admitted to the intensive care unit (ICU) were enrolled in either the septic or non-septic group according to the criteria in the International Sepsis Definitions Conference in 2001. Demographic and clinical data, procalcitonin and lactate levels at admission, and death within 28 days were registered. Five blood samples were collected from all patients for NT-proBNP measurements. RESULTS Septic patients had higher APACHE II (19 (16.00-24.25) vs. 16 (13.00-18.25)), and SOFA (8 (5-10) vs. 6 (4-7)) scores (p <0.05). Procalcitonin levels were also higher in septic patients (3.33 (1.06-10.96) vs. 0.46 (0.26-1.01) ng/ml) and more patients required vasopressors in this group (9 (36%) vs. 2 (8%)) (p < 0.05). In the septic group, the correlation between mortality and the level of NT-proBNP was significant for each measurement, starting from the admission. In the non-septic group the correlation between mortality and the level of NT-proBNP was significant only at the 120th h. CONCLUSIONS We concluded that the level of NT-proBNP at admission is well correlated with 28-day mortality in septic ICU patients. However, single measurement of NT-proBNP levels in non-septic patients does not correlate with the 28-day mortality. Repeated measurements and an increasing trend of the NT-proBNP levels may show a correlation with mortality in non-septic intensive care patients.
Collapse
Affiliation(s)
- Namik Ozcan
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, Ankara, Turkey
| | - Ayse Ozcan
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, Ankara, Turkey
| | - Cetin Kaymak
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, Ankara, Turkey
| | - Hulya Basar
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, Ankara, Turkey
| | - Mustafa Kotanoglu
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, Ankara, Turkey
| | - Bektas Kose
- Department of Anesthesiology and Reanimation, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Rivers EP, McCord J, Otero R, Jacobsen G, Loomba M. Clinical Utility of B-Type Natriuretic Peptide in Early Severe Sepsis and Septic Shock. J Intensive Care Med 2016; 22:363-73. [DOI: 10.1177/0885066607307523] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-type natriuretic peptide (BNP) has diagnostic, therapeutic, and prognostic utility in critically ill patients. For severe sepsis and septic shock patients in particular, similar clinical utility from the most proximal aspects of hospital presentation to the intensive care unit has not been examined. BNP levels were measured at 0, 3, 6, 12, 24, 36, 48, 60, and 72 hours in 252 patients presenting to the emergency department with severe sepsis and septic shock. The clinicians were blinded to the BNP levels. Elevated BNP levels (>100 pg/mL) were seen in 42% and 69% of patients on presentation and at 24 hours, respectively. Elevated BNP ranges (>230 pg/mL) were significantly associated with myocardial dysfunction and severity of global tissue hypoxia. When adjusted for age, gender, history of heart failure, renal function, organ dysfunction, and mean arterial pressure, a BNP greater than 210 pg/mL at 24 hours was the most significant independent indicator of increased mortality: odds ratio 1.061 (1.026-1.097), P < .001, 95% confidence interval. Patients with severe sepsis and septic shock often have elevated BNP levels, which are significantly associated with organ and myocardial dysfunction, global tissue hypoxia, and mortality. Serial BNP levels may be a useful adjunct in the early detection, stratification, treatment, and prognostication of high-risk patients.
Collapse
Affiliation(s)
- Emanuel P. Rivers
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, Michigan, Department of Surgery, Henry Ford Hospital, Wayne State University, Detroit, Michigan,
| | - James McCord
- Department of Cardiology, Henry Ford Hospital, Wayne State University, Detroit, Michigan
| | - Ronny Otero
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, Michigan
| | - Gordon Jacobsen
- Department of Biostatistics and Epidemiology (GJ), Henry Ford Hospital, Wayne State University, Detroit, Michigan
| | - Manisha Loomba
- Department of Anesthesiology, Henry Ford Hospital, Wayne State University Detroit, Michigan
| |
Collapse
|
7
|
Patent Highlight. Pharm Pat Anal 2016. [DOI: 10.4155/ppa.15.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
8
|
Nozik-Grayck E, Woods C, Taylor JM, Benninger RKP, Johnson RD, Villegas LR, Stenmark KR, Harrison DG, Majka SM, Irwin D, Farrow KN. Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L868-76. [PMID: 25326578 PMCID: PMC4254965 DOI: 10.1152/ajplung.00096.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/08/2014] [Indexed: 02/04/2023] Open
Abstract
Excess superoxide has been implicated in pulmonary hypertension (PH). We previously found lung overexpression of the antioxidant extracellular superoxide dismutase (EC-SOD) attenuates PH and pulmonary artery (PA) remodeling. Although comprising a small fraction of total SOD activity in most tissues, EC-SOD is abundant in arteries. We hypothesize that the selective loss of vascular EC-SOD promotes hypoxia-induced PH through redox-sensitive signaling pathways. EC-SOD(loxp/loxp) × Tg(cre/SMMHC) mice (SMC EC-SOD KO) received tamoxifen to conditionally deplete smooth muscle cell (SMC)-derived EC-SOD. Mice were exposed to hypobaric hypoxia for 35 days, and PH was assessed by right ventricular systolic pressure measurements and right ventricle hypertrophy. Vascular remodeling was evaluated by morphometric analysis and two-photon microscopy for collagen. We examined cGMP content and soluble guanylate cyclase expression and activity in lung, lung phosphodiesterase 5 (PDE5) expression and activity, and expression of endothelial nitric oxide synthase and GTP cyclohydrolase-1 (GTPCH-1), the rate-limiting enzyme in tetrahydrobiopterin synthesis. Knockout of SMC EC-SOD selectively decreased PA EC-SOD without altering total lung EC-SOD. PH and vascular remodeling induced by chronic hypoxia was augmented in SMC EC-SOD KO. Depletion of SMC EC-SOD did not impact content or activity of lung soluble guanylate cyclase or PDE5, yet it blunted the hypoxia-induced increase in cGMP. Although total eNOS was not altered, active eNOS and GTPCH-1 decreased with hypoxia only in SMC EC-SOD KO. We conclude that the localized loss of PA EC-SOD augments chronic hypoxic PH. In addition to oxidative inactivation of NO, deletion of EC-SOD seems to reduce eNOS activity, further compromising pulmonary vascular function.
Collapse
Affiliation(s)
- Eva Nozik-Grayck
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado;
| | - Crystal Woods
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Joann M Taylor
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Richard K P Benninger
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Leah R Villegas
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - David G Harrison
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Susan M Majka
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - David Irwin
- Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - Kathryn N Farrow
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| |
Collapse
|
9
|
Tankersley CG, Georgakopoulos D, Tang WY, Abston E, Bierman A, Sborz N. Effects of ozone and particulate matter on cardiac mechanics: role of the atrial natriuretic peptide gene. Toxicol Sci 2012; 131:95-107. [PMID: 22977167 DOI: 10.1093/toxsci/kfs273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A positive association between air pollution exposure and increased human risk of chronic heart disease progression is well established. In the current study, we test two hypotheses: (1) the cardiac compensatory changes in response to air pollution are dependent on its composition and (2) specific cardiac adaptations are regulated by atrial natriuretic peptide (ANP). We address these hypotheses by initially examining the exposure effects of ozone (O(3)) and/or particulate matter (PM) on cardiac function in C57Bl/6J (B6) mice. Subsequently, the results are compared with cardiac functional changes to the same exposures in Nppa (the precursor gene for ANP) knockout (KO) mice. Separate groups of mice underwent 3 consecutive days of the same exposure sequence for 3h each consisting of the following: (1) 6h of filtered air (FAFA), (2) O(3) then FA (O(3)FA), (3) FA then carbon black (FACB), or (4) O(3) then CB. Cardiac function was assessed using a conductance catheter to generate cardiac pressure-volume loops 8-10h following each exposure sequence. As compared with FAFA, each sequence led to a substantial drop (as much as 33%) in stroke volume and cardiac output. However, these losses of cardiac function occurred by different compensatory mechanisms dependent on the pollutant composition. For example, O(3)FA exposure led to reductions in both end-systolic and end-diastolic left ventricular (LV) volumes, whereas FACB exposure led an increase in end-diastolic LV volume. These same cardiac compensatory changes were largely abolished in Nppa KO mice following O(3)FA or FACB exposure. These results suggest that cardiac functional changes in response to air pollution exposure are strongly dependent on the pollutant constituents, especially related to O(3) and/or PM. Furthermore, ANP regulation appears to be crucial to these cardiac compensatory mechanisms induced by air pollution.
Collapse
Affiliation(s)
- Clarke G Tankersley
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Prognostic utility of changes in N-terminal pro-brain natriuretic Peptide combined with sequential organ failure assessment scores in patients with acute lung injury/acute respiratory distress syndrome concomitant with septic shock. Shock 2012; 36:109-14. [PMID: 21478812 DOI: 10.1097/shk.0b013e31821d8f2d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the prognostic utility of changes in N-terminal pro-brain natriuretic peptide (NT-proBNP) in combination with Sequential Organ Failure Assessment (SOFA) score in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) concomitant with septic shock. Forty-nine mechanically ventilated patients with ALI/ARDS concomitant with septic shock were studied. N-terminal pro-brain natriuretic peptide levels were measured on the first 3 days (days 0, 1, and 2) in the intensive care unit. The median NT-proBNP levels in survivors and nonsurvivors were 3,999 vs. 2,819 pg/mL on day 0 (P = 0.719); 4,495 vs. 5,397 pg/mL on day 1 (P = 0.543); and 2,325 vs. 14,173 pg/mL on day 2 (P = 0.028). N-terminal pro-brain natriuretic peptide levels increased significantly from baseline values in nonsurvivors only. We observed a monotonic increase in 28-day mortality associated with increasing quartiles of percent change in NT-proBNP on day 2 (P < 0.0001). Kaplan-Meier survival analysis revealed that mortality was significantly higher in patients with a change in NT-proBNP of 30% or more (log-rank P < 0.0001). On day 2, areas under the receiver operating characteristic curves for predicting 28-day mortality were 0.74 for SOFA alone and 0.85 (P = 0.028) for SOFA combined with percent change in NT-proBNP. In conclusion, in patients with ALI/ARDS concomitant with septic shock, a rising trend (high percent change) in NT-proBNP levels had better prognostic utility than absolute levels. The combination of percent change in NT-proBNP with SOFA may provide superior prognostic accuracy to SOFA alone.
Collapse
|
11
|
Woods D, Hooper T, Mellor A, Hodkinson P, Wakeford R, Peaston B, Ball S, Green N. Brain natriuretic peptide and acute hypobaric hypoxia in humans. J Physiol Sci 2011; 61:217-20. [PMID: 21431981 PMCID: PMC10717752 DOI: 10.1007/s12576-011-0141-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/03/2011] [Indexed: 11/25/2022]
Abstract
In animal models, the secretion of the cardiac hormone, brain natriuretic peptide (BNP), and its closely related peptide, atrial natriuretic peptide (ANP), are stimulated by acute hypoxia. There is extensive human evidence for a rise in ANP under acute hypoxic conditions but very little evidence regarding the BNP response to acute hypoxia in humans. We therefore subjected seven healthy subjects to an acute hypobaric hypoxic stimulus to examine if BNP secretion increases rapidly. Significant hypoxaemia (mean nadir oxygen saturation 62.3%) was induced but no significant rise in BNP occurred. This suggests that either such acute hypoxaemia is well tolerated by the healthy human heart or it is not a stimulus for BNP secretion.
Collapse
Affiliation(s)
- David Woods
- Newcastle and Northumbria NHS Trust, Tyne and Wear, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Casserly B, Klinger JR. Brain natriuretic peptide in pulmonary arterial hypertension: biomarker and potential therapeutic agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 3:269-87. [PMID: 20054445 PMCID: PMC2802126 DOI: 10.2147/dddt.s4805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
B-type natriuretic peptide (BNP) is a member of the natriuretic peptide family, a group of widely distributed, but evolutionarily conserved, polypeptide mediators that exert myriad cardiovascular effects. BNP is a potent vasodilator with mitogenic, hypertrophic and pro-inflammatory properties that is upregulated in pulmonary hypertensive diseases. Circulating levels of BNP correlate with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with pulmonary arterial hypertension (PAH). Elevated plasma BNP levels are associated with increased mortality in patients with PAH and a fall in BNP levels after therapy is associated with improved survival. These findings have important clinical implications in that a noninvasive blood test may be used to identify PAH patients at high-risk of decompensation and to guide pulmonary vasodilator therapy. BNP also has several biologic effects that could be beneficial to patients with PAH. However, lack of a convenient method for achieving sustained increases in circulating BNP levels has impeded the development of BNP as a therapy for treating pulmonary hypertension. New technologies that allow transdermal or oral administration of the natriuretic peptides have the potential to greatly accelerate research into therapeutic use of BNP for cor pulmonale and pulmonary vascular diseases. This review will examine the basic science and clinical research that has led to our understanding of the role of BNP in cardiovascular physiology, its use as a biomarker of right ventricular function and its therapeutic potential for managing patients with pulmonary vascular disease.
Collapse
Affiliation(s)
- Brian Casserly
- Division of Pulmonary and Critical Care Medicine, The Memorial Hospital of Rhode Island, Pawtucket, RI, USA
| | | |
Collapse
|
13
|
Yu J, Feng HS, Chen BY, Qu P, Liu LB, Chen JK, Tie R, Huang XJ, Zhao YF, Zhu XX, Zhu MZ. Protective effects of vasonatrin peptide against hypobaric hypoxia-induced pulmonary hypertension in rats. Clin Exp Pharmacol Physiol 2009; 37:69-74. [PMID: 19566831 DOI: 10.1111/j.1440-1681.2009.05240.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The aim of the present study was to investigate the in vivo effects of vasonatrin peptide (VNP) on hypoxia-induced pulmonary hypertension (HPH). 2. The HPH model was developed by subjecting rats to hypobaric hypoxia. The HPH rats were then treated with either VNP (50 microg/kg per day, i.p.) or saline (0.5 mL, i.p.) every day for 7 days. Haemodynamic indices, right ventricular hypertrophy (RVH) and remodelling of the pulmonary arteries were evaluated. In addition, plasma levels of atrial natriuretic peptide (ANP), endothelin (ET)-1 and angiotensin II (AngII) were determined, as was natriuretic peptide receptor-C (NPR-C) mRNA expression in the right ventricle. 3. Hypobaric hypoxia induced severe HPH compared with the normoxic control group. Treatment of HPH rats with VNP for 1 week significantly reduced mean pulmonary arterial pressure, pulmonary vascular resistance, RVH and muscularization of the pulmonary arteries, although pulmonary blood flow was increased in this group. In addition, significantly lower levels of plasma ET-1 and AngII and cardiac NPR-C mRNA expression were observed in VNP-treated compared with saline-treated HPH rats, whereas higher plasma concentrations of ANP were found in the former group. Acute intravenous administration of 50 microg/kg VNP significantly ameliorated pulmonary haemodynamics in HPH rats. 4. Taken together, the date indicate that VNP has certain preventative and therapeutic effects against HPH.
Collapse
Affiliation(s)
- Jun Yu
- Center of Teaching Experiment, School of Basic Medical Science, Xi'an
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arjamaa O, Nikinmaa M. Natriuretic peptides in hormonal regulation of hypoxia responses. Am J Physiol Regul Integr Comp Physiol 2008; 296:R257-64. [PMID: 19005014 DOI: 10.1152/ajpregu.90696.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possibility that natriuretic peptides' effects are important in hypoxia responses of vertebrates is reviewed. Both the transcription and release of natriuretic peptides are affected by oxygen tension. Furthermore, many of the effects observed in hypoxia, such as diuresis and a reduction of plasma volume, are also caused by treatment of the animal with natriuretic peptides. Also, several clinical observations about changes in natriuretic peptide levels in, e.g., sleep apnea and cyanotic congenital heart disease, are consistent with the idea that hypoxia is involved in the etiology of conditions, in which natriuretic peptide levels increase. Virtually all published information on the relationship between oxygen and natriuretic peptides is based on human studies. Because hypoxic conditions are more common in aquatic than terrestrial environments, future studies about the possible role of natriuretic peptides in hypoxia, as well as the role of hypoxia in the evolution of natriuretic peptides, including the different subtypes, should increasingly involve also aquatic organisms.
Collapse
Affiliation(s)
- Olli Arjamaa
- Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | | |
Collapse
|
15
|
Promises, promises: N-terminal proB-type natriuretic peptide as a biomarker in acute lung injury*. Crit Care Med 2008; 36:2461-2. [DOI: 10.1097/ccm.0b013e31818112eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Hayashi T, Yamashita C. [Animal models to evaluate cardiovascular remodeling due to hypoxia]. Nihon Yakurigaku Zasshi 2008; 131:441-5. [PMID: 18552446 DOI: 10.1254/fpj.131.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Dodd-o JM, Hristopoulos ML, Kibler K, Gutkowska J, Mukaddam-Daher S, Gonzalez A, Welsh-Servinsky LE, Pearse DB. The role of natriuretic peptide receptor-A signaling in unilateral lung ischemia-reperfusion injury in the intact mouse. Am J Physiol Lung Cell Mol Physiol 2008; 294:L714-23. [PMID: 18223163 DOI: 10.1152/ajplung.00185.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion (IR) causes human lung injury in association with the release of atrial and brain natriuretic peptides (ANP and BNP), but the role of ANP/BNP in IR lung injury is unknown. ANP and BNP bind to natriuretic peptide receptor-A (NPR-A) generating cGMP and to NPR-C, a clearance receptor that can decrease intracellular cAMP. To determine the role of NPR-A signaling in IR lung injury, we administered the NPR-A blocker anantin in an in vivo SWR mouse preparation of unilateral lung IR. With uninterrupted ventilation, the left pulmonary artery was occluded for 30 min and then reperfused for 60 or 150 min. Anantin administration decreased IR-induced Evans blue dye extravasation and wet weight in the reperfused left lung, suggesting an injurious role for NPR-A signaling in lung IR. In isolated mouse lungs, exogenous ANP (2.5 nM) added to the perfusate significantly increased the filtration coefficient sevenfold only if lungs were subjected to IR. This effect of ANP was also blocked by anantin. Unilateral in vivo IR increased endogenous plasma ANP, lung cGMP concentration, and lung protein kinase G (PKG(I)) activation. Anantin enhanced plasma ANP concentrations and attenuated the increase in cGMP and PKG(I) activation but had no effect on lung cAMP. These data suggest that lung IR triggered ANP release and altered endothelial signaling so that NPR-A activation caused increased pulmonary endothelial permeability.
Collapse
Affiliation(s)
- Jeffrey M Dodd-o
- Department of Anesthesia and Critical Care, School of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287-9106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Metabolic Derangements in an Adult Patient With Tetralogy of Fallot: Possible Role of Chronic Systemic Hypoxia. Am J Med Sci 2007; 334:301-4. [DOI: 10.1097/maj.0b013e3180a6ecd2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Li P, Oparil S, Novak L, Cao X, Shi W, Lucas J, Chen YF. ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells. J Appl Physiol (1985) 2006; 102:390-8. [PMID: 17038494 DOI: 10.1152/japplphysiol.00468.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial natriuretic peptide (ANP) and transforming growth factor (TGF)-beta play important counterregulatory roles in pulmonary vascular adaptation to chronic hypoxia. To define the molecular mechanism of this important interaction, we tested whether ANP-cGMP-protein kinase G (PKG) signaling inhibits TGF-beta1-induced extracellular matrix (ECM) expression and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Rat pulmonary arterial smooth muscle cells (PASMCs) were treated with ANP (1 muM) or cGMP (1 mM) with or without pretreatment with PKG inhibitors KT-5823 (1 muM) or Rp-8-bromo-cGMP (Rp-8-Br-cGMP 50 muM), then exposed to TGF-beta1 (1 ng/ml) for 5-360 min (for pSmad nuclear translocation and protein analysis) or 24 h (for ECM mRNA expression). Nuclear translocation of pSmad2 and pSmad3 was assessed by fluorescent confocal microscopy. ANP and cGMP inhibited TGF-beta1-induced pSmad2 and pSmad3 nuclear translocation and expression of periostin, osteopontin, and plasminogen activator inhibitor-1 mRNA and protein, but not TGF-beta1-induced phosphorylation of Smad2 and Smad3. KT-5823 and Rp-8-Br-cGMP blocked ANP/cGMP-induced activation of PKG and inhibition of TGF-beta1-stimulated nuclear translocation of pSmad2 and pSmad3 in PASMCs. These results reveal for the first time a precise site at which ANP-cGMP-PKG signaling exerts its antifibrogenic effect on the profibrogenic TGF-beta1 signaling pathway: by blocking TGF-beta1-induced pSmad2 and pSmad3 nuclear translocation and ECM expression in PASMCs. Blocking nuclear translocation and subsequent binding of pSmad2 and pSmad3 to TGF-beta-Smad response elements in ECM genes may be responsible for the inhibitory effects of ANP on TGF-beta-induced expression of ECM molecules.
Collapse
Affiliation(s)
- Peng Li
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Natriuretic peptides (atrial natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide) are cardiac and vascular peptides with vasodilatory, diuretic, natriuretic, anti-inflammatory, antifibrotic and antimitogenic actions. Natriuretic peptides are implicated in normal pressure and volume homeostasis and in the defence against excessive increases in overload-related factors, vasopressive and cardiotoxic factors and their impact on the heart, blood vessels and brain. Genetic manipulation studies confirmed the importance of natriuretic peptides in these functions. Natriuretic peptides are metabolised by NPR-C (clearance receptors) and by enzymatic degradation by neutral endopeptidase. Natriuretic peptide levels (mainly brain natriuretic peptide) correlate with left ventricular hypertrophy and with the severity of heart failure, and are reduced by effective treatment, thus used as diagnostic and prognostic tools. Based on the multiple protective effects of natriuretic peptides, pharmacological therapy has been approved and includes potentiating natriuretic peptide levels by intravenous infusion or by inhibition of endogenous natriuretic peptide degradation. Because each approach has its limitations, the field remains open for improvement.
Collapse
Affiliation(s)
- Suhayla Mukaddam-Daher
- Centre Hospitalier de L'Université de Montréal Research Center, Laboratory of Cardiovascular Biochemistry, 3840 St-Urbain Street (6-816), Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Chen YF, Feng JA, Li P, Xing D, Zhang Y, Serra R, Ambalavanan N, Majid-Hassan E, Oparil S. Dominant negative mutation of the TGF-β receptor blocks hypoxia-induced pulmonary vascular remodeling. J Appl Physiol (1985) 2006; 100:564-71. [PMID: 16223981 DOI: 10.1152/japplphysiol.00595.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The present study utilized a novel transgenic mouse model that expresses an inducible dominant negative mutation of the transforming growth factor (TGF)-β type II receptor (DnTGFβRII mouse) to test the hypothesis that TGF-β signaling plays an important role in the pathogenesis of chronic hypoxia-induced increases in pulmonary arterial pressure and vascular and alveolar remodeling. Nine- to 10-wk-old male DnTGFβRII and control nontransgenic (NTG) mice were exposed to normobaric hypoxia (10% O2) or air for 6 wk. Expression of DnTGFβRII was induced by drinking 25 mM ZnSO4 water beginning 1 wk before hypoxic exposure. Hypoxia-induced increases in right ventricular pressure, right ventricular mass, pulmonary arterial remodeling, and muscularization were greatly attenuated in DnTGFβRII mice compared with NTG controls. Furthermore, the stimulatory effects of hypoxic exposure on pulmonary arterial and alveolar collagen content, appearance of α-smooth muscle actin-positive cells in alveolar parenchyma, and expression of extracellular matrix molecule (including collagen I and III, periostin, and osteopontin) mRNA in whole lung were abrogated in DnTGFβRII mice compared with NTG controls. Hypoxic exposure had no effect on systemic arterial pressure or heart rate in either strain. These data support the hypothesis that endogenous TGF-β plays an important role in pulmonary vascular adaptation to chronic hypoxia and that disruption of TGF-β signaling attenuates hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, pulmonary arterial hypertrophy and muscularization, alveolar remodeling, and expression of extracellular matrix mRNA in whole lung.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Collagen/genetics
- Collagen/metabolism
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Fibronectins/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypoxia/complications
- Hypoxia/metabolism
- Hypoxia/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- Protein Serine-Threonine Kinases
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Circulation
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Ventricular Pressure
Collapse
Affiliation(s)
- Yiu-Fai Chen
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Dept. of Medicine, Univ. of Alabama at Birmingham, UAB Station, Birmingham, AL 35294-0007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Michaels AD, Chatterjee K, De Marco T. Effects of intravenous nesiritide on pulmonary vascular hemodynamics in pulmonary hypertension. J Card Fail 2006; 11:425-31. [PMID: 16105633 DOI: 10.1016/j.cardfail.2005.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nesiritide is effective in the treatment of decompensated heart failure (HF). We evaluated the acute hemodynamic effects of nesiritide, a recombinant B-type natriuretic peptide, in patients with HF and pulmonary hypertension (PH). METHODS AND RESULTS Twenty patients with HF and PH (mean pulmonary arterial [PA] pressure >25 mm Hg) were enrolled: 10 with postpulmonary capillary wedge (PCW) >15 mm Hg and 10 with precapillary PH (PCW) < or =15. The pulmonary and systemic hemodynamics were determined by right heart catheterization at baseline and at 15 and 30 minutes after an intravenous nesiritide infusion (2 mcg/kg bolus and 0.01 mcg.kg.min). For the patients with postcapillary PH, the mean left ventricular ejection fraction was 28 +/- 15%. After the 30-minute nesiritide infusion, right atrial (RA) pressure decreased 48% (P < .0001), mean PA pressure decreased 29% (P < .0001), PCW pressure decreased 40% (P < .0001), cardiac index (CI) increased 35% (P = .009), pulmonary vascular resistance index (PVRI) decreased 35% (P = .01), and arteriovenous oxygen difference (AVDO(2)) decreased 27% (P = .0003). For precapillary PH patients, there was no change in RA, PA, or PCW pressure, nor any change in CI, PVRI, or AVDO(2). CONCLUSIONS Nesiritide acutely and significantly reduced PA pressure, PVRI, and biventricular filling pressures in patients with postcapillary PH. However, for patients with precapillary PH, nesiritide had no significant acute hemodynamic effect on the pulmonary hemodynamics. The lack of acute beneficial effects of nesiritide in patients with advanced precapillary PH may be related to their relatively fixed remodeling of the pulmonary vasculature.
Collapse
Affiliation(s)
- Andrew D Michaels
- Division of Cardiology, Department of Medicine, University of California at San Francisco Medical Center, 94143, USA
| | | | | |
Collapse
|
23
|
Shanshan P, Yan Z, Aiyun L, Chen P. Effect of exercise on gene expression of atrial natriuretic peptide receptor of kidney. Life Sci 2005; 76:1921-8. [PMID: 15707875 DOI: 10.1016/j.lfs.2004.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 07/13/2004] [Indexed: 10/25/2022]
Abstract
To study the effect of exercise on gene expression of natriuretic peptide receptors (NPRs) in the kidney, with in situ hybridization and the computerized image analysis, we investigated the alterations of gene expression of NPRs on the animal model of exercise training of different intensity. We found that after exercise training of different intensity, renal NPR-A mRNA and NPR-C mRNA expression showed different changes, the expression of NPR-A mRNA upregulated and NPR-C mRNA downregulated in the kidney. With the increase exercise intensity, change in NPR-A mRNA expression was insignificant, but downregulation in NPR-C mRNA expression was more significant. The result suggested that the effect of exercise on renal NPRs mRNA expression was mainly on the modulation level of NPR-C mRNA, it could reduce the clearance rate of ANP, increase the level of ANP, and enhance the biological effect of ANP on the kidney and regulative action of kidney in exercise.
Collapse
Affiliation(s)
- Pan Shanshan
- Department of Exercise Science, Shanghai Institute of Physical Education, Shanghai, 200438 China.
| | | | | | | |
Collapse
|
24
|
Campese VM, Nadim MK. Natriuretic Peptides. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Irwin DC, Tissot van Patot MC, Tucker A, Bowen R. Direct ANP inhibition of hypoxia-induced inflammatory pathways in pulmonary microvascular and macrovascular endothelial monolayers. Am J Physiol Lung Cell Mol Physiol 2004; 288:L849-59. [PMID: 15618455 DOI: 10.1152/ajplung.00294.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial natriuretic peptide (ANP) has been shown to reduce hypoxia-induced pulmonary vascular leak in vivo, but no explanation of a mechanism has been offered other than its vasodilatory and natriuretic actions. Recently, data have shown that ANP can protect endothelial barrier functions in TNF-alpha-stimulated human umbilical vein endothelial cells. Therefore, we hypothesized that ANP actions would inhibit pulmonary vascular leak by inhibition of TNF-alpha secretion and F-actin formation. Bovine pulmonary microvascular (MVEC) and macrovascular endothelial cell (LEC) monolayers were stimulated with hypoxia, TNF-alpha, or bacterial endotoxin (LPS) in the presence or absence of ANP, and albumin flux, NF-kappa B activation, TNF-alpha secretion, p38 mitogen-activated protein kinase (MAPK), and F-actin (stress fiber) formation were assessed. In Transwell cultures, ANP reduced hypoxia-induced permeability in MVEC and TNF-alpha-induced permeability in MVEC and LEC. ANP inhibited hypoxia and LPS increased NF-kappa B activation and TNF-alpha synthesis in MVEC and LEC. Hypoxia decreased activation of p38 MAPK in MVEC but increased activation of p38 MAPK and stress fiber formation in LEC; TNF-alpha had the opposite effect. ANP inhibited an activation of p38 MAPK in MVEC or LEC. These data indicate that in endothelial cell monolayers, hypoxia activates a signal cascade analogous to that initiated by inflammatory agents, and ANP has a direct cytoprotective effect on the pulmonary endothelium other than its vasodilatory and natriuretic properties. Furthermore, our data show that MVEC and LEC respond differently to hypoxia, TNF-alpha-stimulation, and ANP treatment.
Collapse
Affiliation(s)
- D C Irwin
- Dept. of Biomedical Sciences, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
26
|
Yap LB, Mukerjee D, Timms PM, Ashrafian H, Coghlan JG. Natriuretic Peptides, Respiratory Disease, and the Right Heart. Chest 2004; 126:1330-6. [PMID: 15486400 DOI: 10.1378/chest.126.4.1330] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It is well-recognized that atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are raised in conditions with ventricular volume and pressure overload. In addition to this established role in left ventricular congestive cardiac failure, there is good evidence that BNP has a diagnostic role in right ventricular (RV) dysfunction and pulmonary arterial hypertension (PAH). For example, BNP levels can be used to differentiate between dyspneic patients with pure respiratory defects and those with RV dysfunction. Studies in patients with PAH have demonstrated significant correlations between BNP levels and mean pulmonary arterial pressure as well as pulmonary vascular resistance. Additionally, BNP has a prognostic role in patients with RV pressure overload and pulmonary hypertension, and it offers a noninvasive test that can be used to guide therapy in patients with PAH. However, although measured plasma proBNP levels are raised in conditions with RV overload, its biological significance is still not well-understood. In this article, we review the general physiologic and potential therapeutic role of natriuretic peptides in respiratory disease, RV dysfunction, and PAH. Furthermore, we assess the various clues toward natriuretic peptide action coming from laboratory studies. ANP and BNP knockout mice develop cardiac fibrosis and hypertrophy. Potentiation of the natriuretic pathway has been shown to reduce cardiac hypertrophy and PAH. This is likely to take place as a result of increased intracellular cyclic guanosine monophosphate levels and subsequent pulmonary vasorelaxant activity. In view of this evidence, there may be a rationale for the therapeutic use of recombinant BNP or neutral endopeptidase inhibitors under conditions of RV dysfunction and PAH.
Collapse
Affiliation(s)
- Lok Bin Yap
- Department of Cardiology, Homerton University Hospital, Homerton Row, London E9 6SR, UK.
| | | | | | | | | |
Collapse
|
27
|
Li P, Oparil S, Feng W, Chen YF. Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol (1985) 2004; 97:1550-8; discussion 1549. [PMID: 15121739 DOI: 10.1152/japplphysiol.01311.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study tested the hypothesis that expression of the novel adhesion molecule periostin (PN) and osteopontin (OPN) is increased in lung and in isolated pulmonary arterial smooth muscle cells (PASMCs) in response to the stress of hypoxia and explored the signaling pathways involved. Adult male rats were exposed to 10% O2 for 2 wk, and growth-arrested rat PASMCs were incubated under 1% O2 for 24 h. Hypoxia increased PN and OPN mRNA expression in rat lung. In PASMCs, hypoxia increased PN but not OPN expression. The hypoxia-responsive growth factors fibroblast growth factor-1 (FGF-1) and angiotensin II (ANG II) caused dose- and time-dependent increases in PN and OPN expression in PASMCs. FGF-1-induced PN expression was blocked by the FGF-1 receptor antagonist PD-166866 and by inhibitors of phosphatidylinositol 3-kinase (PI3K) (LY-294002, wortmannin), p70S6K (rapamycin), MEK1/2 (U-0126, PD-98059), and p38MAPK (SB-203580) but not of JNK (SP-600125). ANG II-induced PN expression was blocked by the AT(1)-receptor antagonist losartan and by inhibitors of PI3K and MEK1/2. In contrast, FGF-1-induced OPN expression was blocked by inhibitors of JNK or MEK1/2 but not of PI3K, p70S6K, or p38MAPK. Activation of p70S6K and p38MAPK by anisomycin robustly stimulated PN but not OPN expression. This study is the first to demonstrate that growth factor-induced expression of PN in PASMCs is mediated through PI3K/p70S6K, Ras/MEK1/2, and Ras/p38MAPK signaling pathways, whereas the expression of OPN is mediated through Ras/MEK1/2 and Ras/JNK signaling pathways. These differences in signaling suggest that PN and OPN may play different roles in pulmonary vascular remodeling under pathophysiological conditions.
Collapse
Affiliation(s)
- Peng Li
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
28
|
Li P, Oparil S, Sun JZ, Thompson JA, Chen YF. Fibroblast growth factor mediates hypoxia-induced endothelin-- a receptor expression in lung artery smooth muscle cells. J Appl Physiol (1985) 2003; 95:643-51; discussion 863. [PMID: 12851419 DOI: 10.1152/japplphysiol.00652.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that endothelin (ET)-1 and its subtype A receptor (ET-AR) expression are increased in lung under hypoxic conditions and that activation of ET-AR by ET-1 is a major mediator of hypoxia-induced pulmonary hypertension in the rat. The present study tested the hypothesis that the hypoxia-responsive tyrosine kinase receptor-activating growth factors fibroblast growth factor (FGF)-1, FGF-2, and platelet-derived growth factor (PDGF)-BB stimulate expression of the ET-AR in pulmonary arterial smooth muscle cells (PASMCs). Quiescent rat PASMCs were incubated under hypoxia (1% O2), or with FGF-1, FGF-2, PDGF-BB, vascular endothelial growth factor, ET-1, angiotensin II, or atrial natriuretic peptide under normoxic conditions for 24 h. FGF-1 and -2 and PDGF-BB, but not hypoxia, vascular endothelial growth factor, ET-1, angiotensin II, or atrial natriuretic peptide, significantly increased ET-AR mRNA levels. FGF-1-induced ET-AR expression was inhibited by FGF-receptor inhibitor PD-166866, MEK inhibitor U-0126, transcription inhibitor actinomycin D, and translation inhibitor cycloheximide. In contrast, the stimulatory effect of FGF-1 on ET-AR mRNA expression was not altered by PI3 kinase, PKA, PKC, or adenylate cyclase inhibitors. PASMC ET-AR gene transcription, assessed by nuclear-runoff analysis, was increased by FGF-1. These results provide novel finding that ET-AR in PASMCs in vitro is unresponsive to hypoxia per se but is robustly simulated by tyrosine kinase receptor-associated growth factors (FGF-1, FGF-2, PDGF-BB) that themselves are stimulated by hypoxia in lung. This observation suggests a novel signaling mechanism that may be responsible for overexpression of ET-AR in lung, and may contribute to the hypoxia-induced pulmonary vasoconstriction, hypertension, and vascular remodeling in hypoxia-adapted animal.
Collapse
Affiliation(s)
- Peng Li
- Department of Medicine, University of Alabama at Birmingham at Alabama, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
29
|
Tervonen V, Ruskoaho H, Lecklin T, Ilves M, Vuolteenaho O. Salmon cardiac natriuretic peptide is a volume-regulating hormone. Am J Physiol Endocrinol Metab 2002; 283:E353-61. [PMID: 12110542 DOI: 10.1152/ajpendo.00321.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tested the hypothesis that salmon cardiac peptide (sCP), a new member of the family of natriuretic peptides, has an important role in the regulation of fluid balance and cardiovascular function. Intra-arterial administration of sCP increased urine output in salmon. It had a diuretic effect in rat as well, but the potency was lower. sCP increased the sodium excretion in proportion to the increased urine flow. Blood pressure was not affected by sCP in either species. Acute volume expansion elevated the plasma level of sCP in salmon, and an acute transfer of salmon from fresh to sea water decreased the circulating sCP level. Cardiac immunoreactive sCP or sCP mRNA levels were not affected by transfer to sea water. These results indicate that sCP has an important physiological role in defending salmon against volume overload but that it does not appear to contribute to the short-term regulation of blood pressure. sCP provides an excellent model of the general mechanisms of regulation of the A-type (atrial) natriuretic peptide system.
Collapse
Affiliation(s)
- Virpi Tervonen
- Department of Physiology, Biocenter Oulu, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
30
|
Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E. Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart 2002; 87:368-74. [PMID: 11907014 PMCID: PMC1767056 DOI: 10.1136/heart.87.4.368] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To investigate how permanent inhibition of guanylyl cyclase A receptor (GC-A) affects cardiac function. METHODS Hearts of GC-A-/- and corresponding wild type mice (GC-A+/+) were characterised by histological, western blotting, and northern blotting analyses. Cardiac function was evaluated in isolated, working heart preparations. RESULTS At 4 months of age, GC-A-/- mice had global cardiac hypertrophy (about a 40% increase in cardiac weight) without interstitial fibrosis. Examination of heart function found a significant delay in the time of relaxation; all other parameters of cardiac contractility were similar to those in wild type mice. At 12 months, the hypertrophic changes were much more severe (about a 61% increase in cardiac weight), together with a shift in cardiac gene expression (enhanced concentrations of atrial natriuretic peptide (3.8-fold), B type natriuretic peptide (2-fold), beta myosin heavy chain (1.6-fold) and alpha skeletal actin (1.7-fold) mRNA), increased expression of cytoskeletal tubulin and desmin (by 29.6% and 25.6%, respectively), and pronounced interstitial fibrosis. These changes were associated with significantly impaired cardiac contractility (+dP/dt decreased by about 10%) and relaxation (-dP/dt decreased by 21%), as well as depressed contractile responses to pressure load (all p < 0.05). CONCLUSIONS Chronic hypertension in GC-A-/- mice is associated with progressive cardiac changes--namely, initially compensated cardiomyocyte hypertrophy, which is complicated by interstitial fibrosis and impaired cardiac contractility at later stages.
Collapse
Affiliation(s)
- M Kuhn
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Sun JZ, Chen SJ, Majid-Hasan E, Oparil S, Chen YF. Dietary salt supplementation selectively downregulates NPR-C receptor expression in kidney independently of ANP. Am J Physiol Renal Physiol 2002; 282:F220-7. [PMID: 11788435 DOI: 10.1152/ajprenal.0166.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial natriuretic peptide (ANP) has negative modulatory effects on a variety of pathophysiological mechanisms; i.e., it inhibits hypoxia-induced pulmonary vasoconstriction and vascular remodeling and facilitates natriuresis and vasorelaxation in NaCl-supplemented subjects. We have previously demonstrated organ-selective potentiation of ANP in the pulmonary circulation of hypoxia-adapted animals by local downregulation of its clearance receptor (NPR-C; Li H, Oparil S, Meng QC, Elton T, and Chen Y-F. Am J Physiol Lung Cell Mol Physiol 268: L328-L335, 1995). The present study tested the hypothesis that NPR-C expression is attenuated selectively in kidneys of NaCl-supplemented subjects. Adult male wild-type (ANP+/+) and homozygous mutant (ANP-/-) mice were studied after 5 wk of normal or high-salt diets. Mean arterial pressure (MAP) and left (LV) and right ventricular (RV) mass were greater in ANP-/- mice than in ANP+/+ mice fed the normal-salt diet; salt supplementation induced increases in plasma ANP in ANP+/+ mice and in MAP and LV, RV, and renal mass in ANP-/- mice but not in ANP+/+ mice. NPR-C mRNA levels were selectively and significantly reduced (>60%) in kidney, but not in lung, brain, LV, or RV, by dietary salt supplementation in both genotypes. NPR-A mRNA levels did not differ among diet-genotype groups in any organ studied. cGMP content was significantly increased in kidney, but not in lung or brain, by dietary salt supplementation in both genotypes. These findings suggest that selective downregulation of NPR-C in the kidney in response to dietary salt supplementation may contribute to local elevation in ANP levels and may be functionally significant in attenuating the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ju-Zhong Sun
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
32
|
Klinger JR, Warburton RR, Pietras L, Oliver P, Fox J, Smithies O, Hill NS. Targeted disruption of the gene for natriuretic peptide receptor-A worsens hypoxia-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2002; 282:H58-65. [PMID: 11748047 DOI: 10.1152/ajpheart.2002.282.1.h58] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Targeted disruption of the gene for natriuretic peptide receptor-A (NPR-A) worsens pulmonary hypertension and right ventricular hypertrophy during hypoxia, but its effect on left ventricular mass and systemic pressures is not known. We examined the effect of 3 wk of hypobaric hypoxia (0.5 atm) on right and left ventricular pressure and mass in mice with 2 (wild type), 1, or 0 copies of Npr1, the gene that encodes for NPR-A in mice. Under normoxic conditions, right ventricular peak pressure (RVPP) was greater in 0 than in 2 copy mice, but there were no genotype-related differences in carotid artery PP (CAPP). The left ventricular free wall weight-to-body weight (LV/body wt) ratio was greater in 0 than in 2 copy mice and there was a trend toward a greater right ventricular weight-to-body weight (RV/body wt) ratio. Three weeks of hypoxia increased RVPP and RV/body wt in all genotypes. The increase in RVPP was similar in all genotypes (11-14 mmHg), but the hypoxia-induced increase in RV/body wt was more than twice as great in 0 copy mice than in 2 copy mice (1.11 +/- 0.06 to 2.65 +/- 0.46 vs. 0.96 +/- 0.04 to 1.4 +/- 0.09, P < 0.05). Chronic hypoxia had no effect on CAPP in any genotype and did not effect LV/body wt in 1 or 2 copy mice, but increased LV/body wt 41% in 0 copy mice. We conclude that absent expression of NPR-A worsens right ventricular hypertrophy and causes left ventricular hypertrophy during exposure to chronic hypoxia without increasing pulmonary or systemic arterial pressure responses.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary, Sleep, and Critical Care Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI 02903, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sun JZ, Oparil S, Lucchesi P, Thompson JA, Chen YF. Tyrosine kinase receptor activation inhibits NPR-C in lung arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2001; 281:L155-63. [PMID: 11404258 DOI: 10.1152/ajplung.2001.281.1.l155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that expression of the atrial natriuretic peptide (ANP) clearance receptor (NPR-C) is reduced selectively in the lung of rats and mice exposed to hypoxia but not in pulmonary arterial smooth muscle cells (PASMCs) cultured under hypoxic conditions. The current study tested the hypothesis that hypoxia-responsive growth factors, fibroblast growth factors (FGF-1 and FGF-2) and platelet-derived growth factor-BB (PDGF-BB), that activate tyrosine kinase receptors can reduce expression of NPR-C in PASMCs independent of environmental oxygen tension. Growth-arrested rat PASMCs were incubated under hypoxic conditions (1% O2) for 24 h; with FGF-1, FGF-2, or PDGF-BB (0.1-20 ng/ml for 1-24 h); or with ANG II (1-100 nM), endothelin-1 (ET-1, 0.1 microM), ANP (0.1 microM), sodium nitroprusside (SNP, 0.1 microM), or 8-bromo-cGMP (0.1 mM) for 24 h under normoxic conditions. Steady-state NPR-C mRNA levels were assessed by Northern blot analysis. FGF-1, FGF-2, and PDGF-BB induced dose- and time-dependent reduction of NPR-C mRNA expression within 1 h at a threshold concentration of 1 ng/ml; hypoxia, ANG II, ET-1, ANP, SNP, or cGMP did not decrease NPR-C mRNA levels in PASMCs under the above conditions. Downregulation of NPR-C expression by FGF-1, FGF-2, and PDGF-BB was inhibited by the selective FGF-1 receptor tyrosine kinase inhibitor PD-166866 and mitogen-activated protein/extracellular signal-regulated kinase inhibitors U-0126 and PD-98059. These results indicate that activation of tyrosine kinase receptors by hypoxia-responsive growth factors, but neither hypoxia per se nor activation of G protein-coupled receptors, inhibits NPR-C gene expression in PASMCs. These results suggest that FGF-1, FGF-2, and PDGF-BB play a role in the signal transduction pathway linking hypoxia to altered NPR-C expression in lung.
Collapse
Affiliation(s)
- J Z Sun
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|