1
|
Tian X, Wang S, Zhang C, Prakash YS, Vassallo R. Blocking IL-23 Signaling Mitigates Cigarette Smoke-Induced Murine Emphysema. ENVIRONMENTAL TOXICOLOGY 2024; 39:5334-5346. [PMID: 39221838 PMCID: PMC11567802 DOI: 10.1002/tox.24405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/15/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory cell infiltration is a characteristic feature of COPD and correlates directly with the severity of the disease. Interleukin-23 (IL-23) is a pro-inflammatory cytokine that regulates Th-17 inflammation, which mediates many pathophysiological events in COPD. The primary goal of this study was to determine the role of IL-23 as a mediator of key pathologic processes in cigarette smoke-induced COPD. In this study, we report an increase in IL23 gene expression in the lung biopsies of COPD patients compared to controls and identified a positive correlation between IL23 gene expression and disease severity. In a cigarette smoke-induced murine emphysema model, the suppression of IL-23 with a monoclonal blocking antibody reduced the severity of cigarette smoke-induced murine emphysema. Mechanistically, the suppression of IL-23 was associated with a reduction in immune cell infiltration, oxidative stress injury, and apoptosis, suggesting a role for IL-23 as an essential immune mediator of the inflammatory processes in the pathogenesis of CS-induced emphysema.
Collapse
Affiliation(s)
- Xue Tian
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Chujie Zhang
- Department of Cardiology, Xi-Jing Hospital, Fourth Military Medical University, Xi’an, 710000, China
| | - YS Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
| |
Collapse
|
2
|
Wei K, Li Y, Du B, Wu J. Differences in Airway Remodeling and Emphysematous Lesions between Rats Exposed to Smoke from New-Type and Conventional Tobacco Varieties. Antioxidants (Basel) 2024; 13:511. [PMID: 38790616 PMCID: PMC11117731 DOI: 10.3390/antiox13050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Genes from Perilla frutescens and Ocimum basilicum were introduced into N. tabacum L. var. HHY via distant hybridization, and the new-type tobacco varieties "Zisu" and "Luole" were developed, with noticeable differences in chemical composition. Smoking is the leading cause of chronic obstructive pulmonary disease (COPD), and its pathogenesis is complex. In the present study, 48 male Sprague-Dawley (SD) rats were randomly divided into four groups, namely, the control, "HHY", "Zisu" and "Luole", and then exposed to fresh air/cigarette smoke (CS) for 30 days and 60 days. The COPD model was constructed, and their health hazards were compared and evaluated. CS from different tobacco varieties influenced rats in varying degrees at the tissue, cell and molecular levels. The rats in the "HHY" group showed obvious symptoms, such as cough and dyspnea, which were less severe in the "Zisu" and "Luole" groups. Pathological and morphological analyses, including scores, MLI, MAN, WAt/Pbm and WAm/Pbm, showed that "Zisu" and "Luole" caused less damage to the airways and lung parenchyma than "HHY". Significant increases in the numbers of total leukocytes and neutrophils in the BALF were found in "HHY" compared to those in "Zisu" and "Luole". Moreover, they caused less oxidative stress and apoptosis in lung tissues, as reflected by indicators such as ROS, MDA, T-AOC, GSH, the apoptotic index and the ratio of Bcl-2 to Bax. "Zisu" and "Luole" even altered the ratios of MMP-9/TIMP-1 and IFN-γ/IL-4 in lung tissues to a lesser degree. These differences between CS-exposed rats may be closely related to the altered expression of Nrf2, p38 MAPK and p-p38 MAPK. Changes in chemical composition via introducing genes from some medicinal plants may be an attractive strategy for tobacco harm reduction.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | | | | | | |
Collapse
|
3
|
Kopa-Stojak PN, Pawliczak R. Comparison of the effects of active and passive smoking of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response markers. A systematic review. Inhal Toxicol 2024; 36:75-89. [PMID: 38394073 DOI: 10.1080/08958378.2024.2319315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES This work attempts to summarize current knowledge on the effects of active and passive smoking of cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response mediators, and on their possible impact on chronic obstructive pulmonary disease development. MATERIALS AND METHODS The literature was searched by the terms: 'smoking', 'active smoking', 'passive smoking', 'main-stream smoke', 'side-stream smoke', 'secondhand smoke', 'cigarette' 'THP', 'tobacco heating product', 'ENDS', 'electronic nicotine delivery system', 'e-cigarette', 'electronic cigarette', oxidative stress', inflammatory response' and 'gene expression'. RESULTS Cigarette smoking (active and passive) induces oxidative stress and inflammatory response in the airways. We present the effect of active smoking of e-cigarettes (EC) and heat-not-burn (HnB) products on the increased expression and secretion of oxidative stress and inflammatory response markers. However, there is only a limited number of studies on the effect of their second-hand smoking, and those available mainly describe aerosol composition. DISCUSSION The literature provides data which confirm that active and passive cigarette smoking induces oxidative stress and inflammatory response in the airways and is a key risk factor of COPD development. Currently, there is a limited number of data about ENDS and THP active and passive smoking effects on the health of smokers and never-smokers. It is particularly important to assess the effect of such products during long-term use by never-smokers who choose them as the first type of cigarettes, and for never-smokers who are passively exposed to their aerosol.
Collapse
Affiliation(s)
- Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Blackburn JB, Li NF, Bartlett NW, Richmond BW. An update in club cell biology and its potential relevance to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L652-L665. [PMID: 36942863 PMCID: PMC10110710 DOI: 10.1152/ajplung.00192.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ngan Fung Li
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Byrd AL, Qu X, Lukyanchuk A, Liu J, Chen F, Naughton KJ, DuCote TJ, Song X, Bowman HC, Zhao Y, Edgin AR, Wang C, Liu J, Brainson CF. Dysregulated Polycomb Repressive Complex 2 contributes to chronic obstructive pulmonary disease by rewiring stem cell fate. Stem Cell Reports 2022; 18:289-304. [PMID: 36525966 PMCID: PMC9860081 DOI: 10.1016/j.stemcr.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Aberrant lung cell differentiation is a hallmark of many lung diseases including chronic obstructive pulmonary disease (COPD). The EZH2-containing Polycomb Repressive Complex 2 (PRC2) regulates embryonic lung stem cell fate, but its role in adult lung is obscure. Histological analysis of patient tissues revealed that loss of PRC2 activity was correlated with aberrant bronchiolar cell differentiation in COPD lung. Histological and single-cell RNA-sequencing analyses showed that loss of EZH2 in mouse lung organoids led to lowered self-renewal capability, increased squamous morphological development, and marked shifts in progenitor cell populations. Evaluation of in vivo models revealed that heterozygosity of Ezh2 in mice with ovalbumin-induced lung inflammation led to epithelial cell differentiation patterns similar to those in COPD lung. We also identified cystathionine-β-synthase as a possible upstream factor for PRC2 destabilization. Our findings suggest that PRC2 is integral to facilitating proper lung stem cell differentiation in humans and mice.
Collapse
Affiliation(s)
- Aria L. Byrd
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xufeng Qu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexsandr Lukyanchuk
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Fan Chen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Kassandra J. Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Tanner J. DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xiulong Song
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Hannah C. Bowman
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Yanming Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Abigail R. Edgin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Christine Fillmore Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Ban WH, Rhee CK. Role of nuclear factor erythroid 2-related factor 2 in chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul) 2022; 85:221-226. [PMID: 35255667 PMCID: PMC9263341 DOI: 10.4046/trd.2021.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation due to chronic airway inflammation and destruction of the alveolar structure from persistent exposure to oxidative stress. The body has various antioxidant mechanisms for efficiently coping with such oxidative stress. The nuclear factor erythroid 2-related factor 2 (Nrf2)–antioxidant response element (ARE) is a representative system. Dysregulation of the Nrf2-ARE pathway is responsible for the development and promotion of COPD. Furthermore, COPD severity is also closely related to this pathway. There has been a clinical impetus to use Nrf2 for diagnostic and therapeutic purposes. Therefore, in this work, we systematically reviewed the clinical significance of Nrf2 in COPD patients, and discuss the value of Nrf2 as a potential COPD biomarker.
Collapse
Affiliation(s)
- Woo Ho Ban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Address for correspondence Chin Kook Rhee, M.D., Ph.D. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul 06591, Republic of Korea Phone 82-2-2258-6067 Fax 82-2-599-3589 E-mail
| |
Collapse
|
8
|
Blaskovic S, Donati Y, Ruchonnet-Metrailler I, Avila Y, Schittny D, Schlepütz CM, Schittny JC, Barazzone-Argiroffo C. Early life exposure to nicotine modifies lung gene response after elastase-induced emphysema. Respir Res 2022; 23:44. [PMID: 35241086 PMCID: PMC8895880 DOI: 10.1186/s12931-022-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is among the top 5 causes of mortality in the world and can develop as a consequence of genetic and/or environmental factors. Current efforts are focused on identifying early life insults and how these contribute to COPD development. In line with this, our study focuses on the influence of early life nicotine exposure and its potential impact on (a) lung pulmonary functions, and (b) elastase-induced emphysema in adulthood.
Methods To address this hypothesis, we developed a model of 2 hits, delivered at different time points: mouse pups were first exposed to nicotine/placebo in utero and during lactation, and then subsequently received elastase/placebo at the age of 11 weeks. The effect of nicotine pretreatment and elastase instillation was assessed by (a) measurement of pulmonary function at post-elastase day (ped) 21, and (b) transcriptomic profiling at ped3 and 21, and complementary protein determination. Statistical significance was determined by 3- and 2-way ANOVA for pulmonary functions, and RNAseq results were analyzed using the R project.
Results We did not observe any impact of nicotine pre- and early post-natal exposure compared to control samples on lung pulmonary functions in adulthood, as measured by FLEXIVENT technology. After elastase instillation, substantial lung damage was detected by x-ray tomography and was accompanied by loss in body weight at ped3 as well as an increase in cell numbers, inflammatory markers in BAL and lung volume at ped21. Lung functions showed a decrease in elastance and an increase in deep inflation volume and pressure volume (pv) loop area in animals with emphysema at ped21. Nicotine had no effect on elastance and deep inflation volume, but did affect the pv loop area in animals with emphysema at ped21. Extensive transcriptomic changes were induced by elastase at ped3 both in the nicotine-pretreated and the control samples, with several pathways common to both groups, such as for cell cycle, DNA adhesion and DNA damage. Nicotine pretreatment affected the number of lymphocytes present in BAL after elastase instillation and some of the complement pathway related proteins, arguing for a slight modification of the immune response, as well as changes related to general body metabolism. The majority of elastase-induced transcriptomic changes detected at ped3 had disappeared at ped21. In addition, transcriptomic profiling singled out a common gene pool that was independently activated by nicotine and elastase. Conclusions Our study reports a broad spectrum of transient transcriptomic changes in mouse emphysema and identifies nicotine as influencing the emphysema-associated immune system response. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01956-4.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Yves Donati
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Ruchonnet-Metrailler
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yannick Avila
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland. .,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Ma Y, Liu X, Luo L, Li H, Zeng Z, Chen Y. Effect of pirfenidone protecting against cigarette smoke
extract induced apoptosis. Tob Induc Dis 2022; 20:24. [PMID: 35291559 PMCID: PMC8886422 DOI: 10.18332/tid/146169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/15/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Apoptosis of lung structural cells is a significant upstream event involved in COPD pathogenesis. This study was designed to explore whether pirfenidone (PFD) was able to attenuate apoptosis induced by cigarette smoke extract (CSE). METHODS A method of intraperitoneal CSE injection to BALB/C mice was used to establish emphysema mouse model. Terminal deoxynucleotidyl transferase dUTPnick end labeling (TUNEL) assay was applied to evaluate apoptotic cell ratio in mouse lung tissue. The cell viability of HBECs exposed to different concentrations of PFD was measured by Cell Counting Kit-8 (CCK-8) assay. The apoptosis index (AI) of HBECs was tested by flow cytometry. Levels of apoptosis-related protein were determined by Western blotting. RESULTS PFD treatment significantly decreased the AI value in emphysema mouse lung tissue by TUNEL. In HBECs, flow cytometry showed that PFD could significantly reduce AI led by CSE. Both in vitro and in vivo, protein levels of Bax and Cleaved-caspase 3 in CSE group significantly increased in contrast with the control group; while Bcl-2 protein level in CSE group was significantly decreased; moreover, PFD significantly reversed protein level changes of Bcl-2, Bax, and Cleaved-caspase 3 led by CSE. CONCLUSIONS This study reveals that PFD may potentially protect against CSE induced apoptosis.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Liu D, Xu W, Tang Y, Cao J, Chen R, Wu D, Chen H, Su B, Xu J. Nebulization of risedronate alleviates airway obstruction and inflammation of chronic obstructive pulmonary diseases via suppressing prenylation-dependent RAS/ERK/NF-κB and RhoA/ROCK1/MLCP signaling. Respir Res 2022; 23:380. [PMID: 36575527 PMCID: PMC9795678 DOI: 10.1186/s12931-022-02274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive disorder that causes airway obstruction and lung inflammation. The first-line treatment of COPD is the bronchodilators of β2-agonists and antimuscarinic drugs, which can help control the airway obstruction, but the long-term use might render the drug tolerance. Bisphosphonates are widely used in osteoclast-mediated bone diseases treatment for decades. For drug repurposing, can delivery of a third generation of nitrogen-containing bisphosphonate, risedronate (RIS) ameliorate the progression of COPD? METHODS COPD rats or mice models have been established through cigarette-smoking and elastase injection, and then the animals are received RIS treatment via nebulization. Lung deposition of RIS was primarily assessed by high-performance liquid chromatography (HPLC). The respiratory parameters of airway obstruction in COPD rats and mice were documented using plethysmography method and resistance-compliance system. RESULTS High lung deposition and bioavailability of RIS was monitored with 88.8% of RIS input dose. We found that RIS could rescue the lung function decline of airspace enlargement and mean linear intercept in the COPD lung. RIS could curb the airway obstruction by suppressing 60% of the respiratory resistance and elevating the airway's dynamic compliance, tidal volume and mid-expiratory flow. As an inhibitor of farnesyl diphosphate synthase (FDPS), RIS suppresses FDPS-mediated RAS and RhoA prenylation to obstruct its membrane localization in airway smooth muscle cells (ASMCs), leading to the inhibition of downstream ERK-MLCK and ROCK1-MLCP pathway to cause ASMCs relaxation. Additionally, RIS nebulization impeded pro-inflammatory cell accumulation, particularly macrophages infiltration in alveolar parenchyma. The NF-κB, tumor necrosis factor-alpha, IL-1β, IL-8, and IL-6 declined in microphages following RIS nebulization. Surprisingly, nebulization of RIS could overcome the tolerance of β2-agonists in COPD-rats by increasing the expression of β2 receptors. CONCLUSIONS Nebulization of RIS could alleviate airway obstruction and lung inflammation in COPD, providing a novel strategy for treating COPD patients, even those with β2-agonists tolerance.
Collapse
Affiliation(s)
- Di Liu
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.24516.340000000123704535Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Wen Xu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yuan Tang
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.252957.e0000 0001 1484 5512Basic Medical College, Bengbu Medical College, Bengbu, People’s Republic of China
| | - Jingxue Cao
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.24516.340000000123704535Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ran Chen
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Dingwei Wu
- Zhejiang Xianju Pharmaceutical Co., Ltd, Xianju, People’s Republic of China
| | - Hongpeng Chen
- Zhejiang Xianju Pharmaceutical Co., Ltd, Xianju, People’s Republic of China
| | - Bo Su
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.252957.e0000 0001 1484 5512School of Life Sciences, Bengbu Medical College, Bengbu, People’s Republic of China
| | - Jinfu Xu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Xu X, Huang K, Dong F, Qumu S, Zhao Q, Niu H, Ren X, Gu X, Yu T, Pan L, Yang T, Wang C. The Heterogeneity of Inflammatory Response and Emphysema in Chronic Obstructive Pulmonary Disease. Front Physiol 2021; 12:783396. [PMID: 34950055 PMCID: PMC8689000 DOI: 10.3389/fphys.2021.783396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by chronic inflammation, emphysema, airway remodeling, and altered lung function. Despite the canonical classification of COPD as a neutrophilic disease, blood and airway eosinophilia are found in COPD patients. Identifying the tools to assess eosinophilic airway inflammation in COPD models during stable disease and exacerbations will enable the development of novel anti-eosinophilic treatments. We developed different animal models to mimic the pathological features of COPD. Our results show that eosinophils accumulated in the lungs of pancreatic porcine elastase-treated mice, with emphysema arising from the alveolar septa. A lipopolysaccharide challenge significantly increased IL-17 levels and induced a swift change from a type-2 response to an IL-17-driven inflammatory response. However, lipopolysaccharides can exacerbate cigarette smoking-induced airway inflammation dominated by neutrophil infiltration and airway remodeling in COPD models. Our results suggest that eosinophils may be associated with emphysema arising from the alveolar septa, which may be different from the small airway disease-associated emphysema that is dominated by neutrophilic inflammation in cigarette smoke-induced models. The characterization of heterogeneity seen in the COPD-associated inflammatory signature could pave the way for personalized medicine to identify new and effective therapeutic approaches for COPD.
Collapse
Affiliation(s)
- Xia Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fen Dong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Shiwei Qumu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qichao Zhao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxia Ren
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tao Yu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lin Pan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ting Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Wong ET, Szostak J, Titz B, Lee T, Wong SK, Lavrynenko O, Merg C, Corciulo M, Simicevic J, Auberson M, Peric D, Dulize R, Bornand D, Loh GJ, Lee KM, Zhang J, Miller JH, Schlage WK, Guedj E, Schneider T, Phillips B, Leroy P, Choukrallah MA, Sierro N, Buettner A, Xiang Y, Kuczaj A, Ivanov NV, Luettich K, Vanscheeuwijck P, Peitsch MC, Hoeng J. A 6-month inhalation toxicology study in Apoe -/- mice demonstrates substantially lower effects of e-vapor aerosol compared with cigarette smoke in the respiratory tract. Arch Toxicol 2021; 95:1805-1829. [PMID: 33963423 PMCID: PMC8113187 DOI: 10.1007/s00204-021-03020-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.
Collapse
Affiliation(s)
- Ee Tsin Wong
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Tom Lee
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Sin Kei Wong
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Maica Corciulo
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Jovan Simicevic
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Mehdi Auberson
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - David Bornand
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Guo Jie Loh
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | | | - Jingjie Zhang
- Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - John H Miller
- Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | | | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Yang Xiang
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Arkadiusz Kuczaj
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
13
|
Li X, Noell G, Tabib T, Gregory AD, Trejo Bittar HE, Vats R, Kaminski TW, Sembrat J, Snyder ME, Chandra D, Chen K, Zou C, Zhang Y, Sundd P, McDyer JF, Sciurba F, Rojas M, Lafyatis R, Shapiro SD, Faner R, Nyunoya T. Single cell RNA sequencing identifies IGFBP5 and QKI as ciliated epithelial cell genes associated with severe COPD. Respir Res 2021; 22:100. [PMID: 33823868 PMCID: PMC8022543 DOI: 10.1186/s12931-021-01675-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background Whole lung tissue transcriptomic profiling studies in chronic obstructive pulmonary disease (COPD) have led to the identification of several genes associated with the severity of airflow limitation and/or the presence of emphysema, however, the cell types driving these gene expression signatures remain unidentified. Methods To determine cell specific transcriptomic changes in severe COPD, we conducted single-cell RNA sequencing (scRNA seq) on n = 29,961 cells from the peripheral lung parenchymal tissue of nonsmoking subjects without underlying lung disease (n = 3) and patients with severe COPD (n = 3). The cell type composition and cell specific gene expression signature was assessed. Gene set enrichment analysis (GSEA) was used to identify the specific cell types contributing to the previously reported transcriptomic signatures. Results T-distributed stochastic neighbor embedding and clustering of scRNA seq data revealed a total of 17 distinct populations. Among them, the populations with more differentially expressed genes in cases vs. controls (log fold change >|0.4| and FDR = 0.05) were: monocytes (n = 1499); macrophages (n = 868) and ciliated epithelial cells (n = 590), respectively. Using GSEA, we found that only ciliated and cytotoxic T cells manifested a trend towards enrichment of the previously reported 127 regional emphysema gene signatures (normalized enrichment score [NES] = 1.28 and = 1.33, FDR = 0.085 and = 0.092 respectively). Among the significantly altered genes present in ciliated epithelial cells of the COPD lungs, QKI and IGFBP5 protein levels were also found to be altered in the COPD lungs. Conclusions scRNA seq is useful for identifying transcriptional changes and possibly individual protein levels that may contribute to the development of emphysema in a cell-type specific manner. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01675-2.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.,VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Guillaume Noell
- Centro Investigación Biomedica en Red (CIBERES), Institut D'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Tracy Tabib
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | | | - Ravi Vats
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomasz W Kaminski
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Mark E Snyder
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.,VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Prithu Sundd
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Steve D Shapiro
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Rosa Faner
- Centro Investigación Biomedica en Red (CIBERES), Institut D'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA. .,VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Kogel U, Wong ET, Szostak J, Tan WT, Lucci F, Leroy P, Titz B, Xiang Y, Low T, Wong SK, Guedj E, Ivanov NV, Schlage WK, Peitsch MC, Kuczaj A, Vanscheeuwijck P, Hoeng J. Impact of whole-body versus nose-only inhalation exposure systems on systemic, respiratory, and cardiovascular endpoints in a 2-month cigarette smoke exposure study in the ApoE -/- mouse model. J Appl Toxicol 2021; 41:1598-1619. [PMID: 33825214 PMCID: PMC8519037 DOI: 10.1002/jat.4149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.
Collapse
Affiliation(s)
- Ulrike Kogel
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Justyna Szostak
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Wei Teck Tan
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Francesco Lucci
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrice Leroy
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Bjoern Titz
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Yang Xiang
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Tiffany Low
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Sin Kei Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Emmanuel Guedj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, Bergisch Gladbach, Germany
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| |
Collapse
|
15
|
Kumar A, Kogel U, Talikka M, Merg C, Guedj E, Xiang Y, Kondylis A, Titz B, Ivanov NV, Hoeng J, Peitsch M, Allen J, Gupta A, Skowronek A, Lee KM. A 7-month inhalation toxicology study in C57BL/6 mice demonstrates reduced pulmonary inflammation and emphysematous changes following smoking cessation or switching to e-vapor products. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/2397847321995875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoking causes serious diseases, including lung cancer, atherosclerotic coronary artery disease, peripheral vascular disease, chronic bronchitis, and emphysema. While cessation remains the most effective approach to minimize smoking-related disease, alternative non-combustible tobacco-derived nicotine-containing products may reduce disease risks among those unable or unwilling to quit. E-vapor aerosols typically contain significantly lower levels of smoke-related harmful and potentially harmful constituents; however, health risks of long-term inhalation exposures are unknown. We designed a 7-month inhalation study in C57BL/6 mice to evaluate long-term respiratory toxicity of e-vapor aerosols compared to cigarette smoke and to assess the impact of smoking cessation (Cessation group) or switching to an e-vapor product (Switching group) after 3 months of exposure to 3R4F cigarette smoke (CS). There were no significant changes in in-life observations (body weights, clinical signs) in e-vapor groups compared to the Sham Control. The 3R4F CS group showed reduced respiratory function during exposure and had lower body weight and showed transient signs of distress post-exposure. Following 7 months of exposure, e-vapor aerosols resulted in no or minimal increase in pulmonary inflammation, while exposure to 3R4F CS led to impairment of lung function and caused marked lung inflammation and emphysematous changes. Biological changes observed in the Switching group were similar to the Cessation group. 3R4F CS exposure dysregulated the lung and nasal tissue transcriptome, while these molecular effects were substantially lower in the e-vapor group. Results from this study demonstrate that in comparison with 3R4F CS, e-vapor aerosols induce substantially lower biological responses including pulmonary inflammation and emphysematous changes, and that complete switching from CS to e-vapor products significantly reduces biological changes associated with CS in C57BL/6 mice.
Collapse
Affiliation(s)
| | - Ulrike Kogel
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Yang Xiang
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel Peitsch
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Tanimura K, Nyunoya T. Loss of Endothelial WWOX: A Risk Factor for ARDS in Smokers? Am J Respir Cell Mol Biol 2021; 64:10-11. [PMID: 33105088 PMCID: PMC7780999 DOI: 10.1165/rcmb.2020-0444ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kazuya Tanimura
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and
| | - Toru Nyunoya
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and.,Medical Specialty Service Line Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Rahman L, Williams A, Gelda K, Nikota J, Wu D, Vogel U, Halappanavar S. 21st Century Tools for Nanotoxicology: Transcriptomic Biomarker Panel and Precision-Cut Lung Slice Organ Mimic System for the Assessment of Nanomaterial-Induced Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000272. [PMID: 32347014 DOI: 10.1002/smll.202000272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
There is an urgent need for reliable toxicity assays to support the human health risk assessment of an ever increasing number of engineered nanomaterials (ENMs). Animal testing is not a suitable option for ENMs. Sensitive in vitro models and mechanism-based targeted in vitro assays that enable accurate prediction of in vivo responses are not yet available. In this proof-of-principle study, publicly available mouse lung transcriptomics data from studies investigating xenobiotic-induced lung diseases are used and a 17-gene biomarker panel (PFS17) applicable to the assessment of lung fibrosis is developed. The PFS17 is validated using a limited number of in vivo mouse lung transcriptomics datasets from studies investigating ENM-induced responses. In addition, an ex vivo precision-cut lung slice (PCLS) model is optimized for screening of potentially inflammogenic and pro-fibrotic ENMs. Using bleomycin and a multiwalled carbon nanotube, the practical application of the PCLS method as a sensitive alternative to whole animal tests to screen ENMs that may potentially induce inhalation toxicity is shown. Conditional to further optimization and validation, it is established that a combination of PFS17 and the ex vivo PCLS method will serve as a robust and sensitive approach to assess lung inflammation and fibrosis induced by ENMs.
Collapse
Affiliation(s)
- Luna Rahman
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Krishna Gelda
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Jake Nikota
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, 2100, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Building 101A 2800 Copenhagen, Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Sir Frederick G Banting Research Centre, 251 Sir Frederick Banting Driveway, Building 22, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
18
|
Szostak J, Wong ET, Titz B, Lee T, Wong SK, Low T, Lee KM, Zhang J, Kumar A, Schlage WK, Guedj E, Phillips B, Leroy P, Buettner A, Xiang Y, Martin F, Sewer A, Kuczaj A, Ivanov NV, Luettich K, Vanscheeuwijck P, Peitsch MC, Hoeng J. A 6-month systems toxicology inhalation study in ApoE -/- mice demonstrates reduced cardiovascular effects of E-vapor aerosols compared with cigarette smoke. Am J Physiol Heart Circ Physiol 2020; 318:H604-H631. [PMID: 31975625 DOI: 10.1152/ajpheart.00613.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE-/-) mice. The mice were exposed to aerosols from three different E-vapor formulations: 1) carrier (propylene glycol and vegetable glycerol), 2) base (carrier and nicotine), or 3) test (base and flavor) or to CS from 3R4F reference cigarettes for up to 6 mo. Concentrations of CS and base or test aerosols were matched at 35 µg nicotine/L. Exposure to CS, compared with sham-exposed fresh air controls, accelerated atherosclerotic plaque formation, whereas no such effect was seen for any of the three E-vapor aerosols. Molecular changes indicated disease mechanisms related to oxidative stress and inflammation in general, plus changes in calcium regulation, and altered cytoskeletal organization and microtubule dynamics in the left ventricle. While ejection fraction, fractional shortening, cardiac output, and isovolumic contraction time remained unchanged following E-vapor aerosols exposure, the nicotine-containing base and test aerosols caused an increase in isovolumic relaxation time similar to CS. A nicotine-related increase in pulse wave velocity and arterial stiffness was also observed, but it was significantly lower for base and test aerosols than for CS. These results demonstrate that in comparison with CS, E-vapor aerosols induce substantially lower biological responses associated with smoking-related cardiovascular diseases.NEW & NOTEWORTHY Analysis of key urinary oxidative stress markers and proinflammatory cytokines showed an absence of oxidative stress and inflammation in the animals exposed to E-vapor aerosols. Conversely, animals exposed to conventional cigarette smoke had high urinary levels of these markers. When compared with conventional cigarette smoke, E-vapor aerosols induced smaller atherosclerotic plaque surface area and volume. Systolic and diastolic cardiac function, as well as endothelial function, were further significantly less affected by electronic cigarette aerosols than conventional cigarette smoke. Molecular analysis demonstrated that E-vapor aerosols induce significantly smaller transcriptomic dysregulation in the heart and aorta compared with conventional cigarette smoke.
Collapse
Affiliation(s)
- Justyna Szostak
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research and development, Philip Morris International Research Laboratories, Singapore
| | - Bjoern Titz
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Tom Lee
- Philip Morris International Research and development, Philip Morris International Research Laboratories, Singapore
| | - Sin Kei Wong
- Philip Morris International Research and development, Philip Morris International Research Laboratories, Singapore
| | - Tiffany Low
- Philip Morris International Research and development, Philip Morris International Research Laboratories, Singapore
| | | | | | | | | | - Emmanuel Guedj
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Blaine Phillips
- Philip Morris International Research and development, Philip Morris International Research Laboratories, Singapore
| | - Patrice Leroy
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | | | - Yang Xiang
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Karsta Luettich
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products, Neuchâtel, Switzerland
| |
Collapse
|
19
|
Chelvanambi S, Bogatcheva NV, Bednorz M, Agarwal S, Maier B, Alves NJ, Li W, Syed F, Saber MM, Dahl N, Lu H, Day RB, Smith P, Jolicoeur P, Yu Q, Dhillon NK, Weissmann N, Twigg Iii HL, Clauss M. HIV-Nef Protein Persists in the Lungs of Aviremic Patients with HIV and Induces Endothelial Cell Death. Am J Respir Cell Mol Biol 2019; 60:357-366. [PMID: 30321057 DOI: 10.1165/rcmb.2018-0089oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It remains a mystery why HIV-associated end-organ pathologies persist in the era of combined antiretroviral therapy (ART). One possible mechanism is the continued production of HIV-encoded proteins in latently HIV-infected T cells and macrophages. The proapoptotic protein HIV-Nef persists in the blood of ART-treated patients within extracellular vesicles (EVs) and peripheral blood mononuclear cells. Here we demonstrate that HIV-Nef is present in cells and EVs isolated from BAL of patients on ART. We hypothesize that HIV-Nef persistence in the lung induces endothelial apoptosis leading to endothelial dysfunction and further pulmonary vascular pathologies. The presence of HIV-Nef in patients with HIV correlates with the surface expression of the proapoptotic endothelial-monocyte-activating polypeptide II (EMAPII), which was implicated in progression of pulmonary emphysema via mechanisms involving endothelial cell death. HIV-Nef protein induces EMAPII surface expression in human embryonic kidney 293T cells, T cells, and human and mouse lung endothelial cells. HIV-Nef packages itself into EVs and increases the amount of EVs secreted from Nef-expressing T cells and Nef-transfected human embryonic kidney 293T cells. EVs from BAL of HIV+ patients and Nef-transfected cells induce apoptosis in lung microvascular endothelial cells by upregulating EMAPII surface expression in a PAK2-dependent fashion. Transgenic expression of HIV-Nef in vascular endothelial-cadherin+ endothelial cells leads to lung rarefaction, characterized by reduced alveoli and overall increase in lung inspiratory capacity. These changes occur concomitantly with lung endothelial cell apoptosis. Together, these data suggest that HIV-Nef induces endothelial cell apoptosis via an EMAPII-dependent mechanism that is sufficient to cause pulmonary vascular pathologies even in the absence of inflammation.
Collapse
Affiliation(s)
- Sarvesh Chelvanambi
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Natalia V Bogatcheva
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Mariola Bednorz
- 3 Excellence Cluster Cardiopulmonary System, Universities of Giessen and Marburg Lung Center, member of Deutsches Zentrum für Lungenforschung, Justus Liebig University, Giessen, Germany
| | - Stuti Agarwal
- 4 Department of Medicine, Kansas University Medical Center, Kansas City, Kansas
| | - Bernhard Maier
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nathan J Alves
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Li
- 5 Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
| | - Farooq Syed
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Manal M Saber
- 6 Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt; and
| | - Noelle Dahl
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Hongyan Lu
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Richard B Day
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Patricia Smith
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul Jolicoeur
- 7 Institut de Recherches Cliniques de Montreal, Montreal, Canada
| | - Qigui Yu
- 5 Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
| | - Navneet K Dhillon
- 4 Department of Medicine, Kansas University Medical Center, Kansas City, Kansas
| | - Norbert Weissmann
- 3 Excellence Cluster Cardiopulmonary System, Universities of Giessen and Marburg Lung Center, member of Deutsches Zentrum für Lungenforschung, Justus Liebig University, Giessen, Germany
| | - Homer L Twigg Iii
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthias Clauss
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
20
|
Lee JH, Hailey KL, Vitorino SA, Jennings PA, Bigby TD, Breen EC. Cigarette Smoke Triggers IL-33-associated Inflammation in a Model of Late-Stage Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 61:567-574. [PMID: 30973786 PMCID: PMC6827064 DOI: 10.1165/rcmb.2018-0402oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/10/2019] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide threat. Cigarette smoke (CS) exposure causes cardiopulmonary disease and COPD and increases the risk for pulmonary tumors. In addition to poor lung function, patients with COPD are susceptible to bouts of dangerous inflammation triggered by pollutants or infection. These severe inflammatory episodes can lead to additional exacerbations, hospitalization, further deterioration of lung function, and reduced survival. Suitable models of the inflammatory conditions associated with CS, which potentiate the downward spiral in patients with COPD, are lacking, and the underlying mechanisms that trigger exacerbations are not well understood. Although initial CS exposure activates a protective role for vascular endothelial growth factor (VEGF) functions in barrier integrity, chronic exposure depletes the pulmonary VEGF guard function in severe COPD. Thus, we hypothesized that mice with compromised VEGF production and challenged with CS would trigger human-like severe inflammatory progression of COPD. In this model, we discovered that CS exposure promotes an amplified IL-33 cytokine response and severe disease progression. Our VEGF-knockout model combined with CS recapitulates severe COPD with an influx of IL-33-expressing macrophages and neutrophils. Normally, IL-33 is quickly inactivated by a post-translational disulfide bond formation. Our results reveal that BAL fluid from the CS-exposed, VEGF-deficient cohort promotes a significantly prolonged lifetime of active proinflammatory IL-33. Taken together, our data demonstrate that with the loss of a VEGF-mediated protective barrier, the CS response switches from a localized danger to an uncontrolled long-term and long-range, amplified, IL-33-mediated inflammatory response that ultimately destroys lung function.
Collapse
Affiliation(s)
| | - Kendra L. Hailey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; and
| | | | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; and
| | - Timothy D. Bigby
- Department of Medicine and
- Pulmonary and Critical Care, Veterans Affairs San Diego, La Jolla, California
| | | |
Collapse
|
21
|
Ma B, Huang Z, Wang Q, Zhang J, Zhou B, Wu J. Integrative analysis of genetic and epigenetic profiling of lung squamous cell carcinoma (LSCC) patients to identify smoking level relevant biomarkers. BioData Min 2019; 12:18. [PMID: 31641374 PMCID: PMC6802182 DOI: 10.1186/s13040-019-0207-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Incidence and mortality of lung cancer have dramatically decreased during the last decades, yet still approximately 160,000 deaths per year occurred in United States. Smoking intensity, duration, starting age, as well as environmental cofactors including air-pollution, showed strong association with major types of lung cancer. Lung squamous cell carcinoma is a subtype of non-small cell lung cancer, which represents 25% of the cases. Thus, exploring the molecular pathogenic mechanisms of lung squamous cell carcinoma plays crucial roles in lung cancer clinical diagnosis and therapy. RESULTS In this study, we performed integrative analyses on 299 comparative datasets of RNA-seq and methylation data, collected from 513 lung squamous cell carcinoma cases in The Cancer Genome Atlas. The data were divided into high and low smoking groups based on smoking intensity (Numbers of packs per year). We identified 1002 significantly up-regulated genes and 534 significantly down-regulated genes, and explored their cellular functions and signaling pathways by bioconductor packages GOseq and KEGG. Global methylation status was analyzed and visualized in circular plot by CIRCOS. RNA-and methylation data were correlatively analyzed, and 24 unique genes were identified, for further investigation of regional CpG sites' interactive patterns by bioconductor package coMET. AIRE, PENK, and SLC6A3 were the top 3 genes in the high and low smoking groups with significant differences. CONCLUSIONS Gene functions and DNA methylation patterns of these 24 genes are important and useful in disclosing the differences of gene expression and methylation profiling caused by different smoking levels.
Collapse
Affiliation(s)
- Bidong Ma
- Department of Medical Oncology, Zhe Jiang Chinese Medicine University affiliated Chinese Medicine Hospital, Wen Zhou, Zhe Jiang province People’s Republic of China
| | - Zhiyou Huang
- Department of Medical Oncology, Zhe Jiang Chinese Medicine University affiliated Chinese Medicine Hospital, Wen Zhou, Zhe Jiang province People’s Republic of China
| | - Qian Wang
- Tianjia Genomes Tech CO., LTD., No. 6 Longquan Road, Anhui Chaohu economic develop zone, Hefei, 238014 People’s Republic of China
| | - Jizhou Zhang
- Department of Medical Oncology, Zhe Jiang Chinese Medicine University affiliated Chinese Medicine Hospital, Wen Zhou, Zhe Jiang province People’s Republic of China
| | - Bin Zhou
- Department of Medical Oncology, Zhe Jiang Chinese Medicine University affiliated Chinese Medicine Hospital, Wen Zhou, Zhe Jiang province People’s Republic of China
| | - Jiaohong Wu
- Department of Gynecology and Oncology, Wen Zhou Medical University affiliated People’s Hospital, Wen Zhou, Zhe Jiang province People’s Republic of China
| |
Collapse
|
22
|
Vanderstocken G, Dvorkin-Gheva A, Shen P, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Identification of Drug Candidates to Suppress Cigarette Smoke-induced Inflammation via Connectivity Map Analyses. Am J Respir Cell Mol Biol 2019; 58:727-735. [PMID: 29256623 DOI: 10.1165/rcmb.2017-0202oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease, and to date, existing pharmacologic interventions have been ineffective at controlling inflammatory processes associated with the disease. To address this issue, we used the Connectivity Map (cMap) database to identify drug candidates with the potential to attenuate cigarette smoke-induced inflammation. We queried cMap using three independent in-house cohorts of healthy nonsmokers and smokers. Potential drug candidates were validated against four publicly available human datasets, as well as six independent datasets from cigarette smoke-exposed mice. Overall, these analyses yielded two potential drug candidates: kaempferol and bethanechol. Subsequently, the efficacy of each drug was validated in vivo in a model of cigarette smoke-induced inflammation. BALB/c mice were exposed to room air or cigarette smoke and treated with each of the two candidate drugs either prophylactically or therapeutically. We found that kaempferol, but not bethanechol, was able to reduce cigarette smoke-induced neutrophilia, both when administered prophylactically and when administered therapeutically. Mechanistically, kaempferol decreased expression of IL-1α and CXCL5 concentrations in the lung. Our data suggest that cMap analyses may serve as a useful tool to identify novel drug candidates against cigarette smoke-induced inflammation.
Collapse
Affiliation(s)
- Gilles Vanderstocken
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Anna Dvorkin-Gheva
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Pamela Shen
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Corry-Anke Brandsma
- 3 Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ma'en Obeidat
- 4 The University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Yohan Bossé
- 5 Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada; and.,6 Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - John A Hassell
- 2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Martin R Stampfli
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,7 Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Kim DY, Kim WJ, Kim JH, Hong SH, Choi SS. Identification of Putative Regulatory Alterations Leading to Changes in Gene Expression in Chronic Obstructive Pulmonary Disease. Mol Cells 2019; 42:333-344. [PMID: 31085807 PMCID: PMC6530641 DOI: 10.14348/molcells.2019.2442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Various genetic and environmental factors are known to be associated with chronic obstructive pulmonary disease (COPD). We identified COPD-related differentially expressed genes (DEGs) using 189 samples accompanying either adenocarcinoma (AC) or squamous cell carcinoma (SC), comprising 91 normal and 98 COPD samples. DEGs were obtained from the intersection of two DEG sets separately identified for AC and SC to exclude the influence of different cancer backgrounds co-occurring with COPD. We also measured patient samples named group 'I', which were unable to be determined as normal or COPD based on alterations in gene expression. The Gene Ontology (GO) analysis revealed significant alterations in the expression of genes categorized with the 'cell adhesion', 'inflammatory response', and 'mitochondrial functions', i.e., well-known functions related to COPD, in samples from patients with COPD. Multi-omics data were subsequently integrated to decipher the upstream regulatory changes linked to the gene expression alterations in COPD. COPD-associated expression quantitative trait loci (eQTLs) were located at the upstream regulatory regions of 96 DEGs. Additionally, 45 previously identified COPD-related miRNAs were predicted to target 66 of the DEGs. The eQTLs and miRNAs might affect the expression of 'respiratory electron transport chain' genes and 'cell proliferation' genes, respectively, while both eQTLs and miRNAs might affect the expression of 'apoptosis' genes. We think that our present study will contribute to our understanding of the molecular etiology of COPD accompanying lung cancer.
Collapse
Affiliation(s)
- Dong-Yeop Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Jung-Hyun Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
24
|
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Citation(s) in RCA: 922] [Impact Index Per Article: 153.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development. However, challenges regarding target specificity, pharmacodynamic properties, efficacy and safety remain.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Phillips B, Szostak J, Titz B, Schlage WK, Guedj E, Leroy P, Vuillaume G, Martin F, Buettner A, Elamin A, Sewer A, Sierro N, Choukrallah MA, Schneider T, Ivanov NV, Teng C, Tung CK, Lim WT, Yeo YS, Vanscheeuwijck P, Peitsch MC, Hoeng J. A six-month systems toxicology inhalation/cessation study in ApoE -/- mice to investigate cardiovascular and respiratory exposure effects of modified risk tobacco products, CHTP 1.2 and THS 2.2, compared with conventional cigarettes. Food Chem Toxicol 2019; 126:113-141. [PMID: 30763686 DOI: 10.1016/j.fct.2019.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Smoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.2 (CHTP1.2) and tobacco heating system 2.2 (THS 2.2), on the cardiorespiratory system over a 6-month period. In addition, cessation or switching to CHTP1.2 after 3 months of CS exposure was assessed. A systems toxicology approach combining physiology, histology and molecular measurements was used to evaluate the impact of MRTP aerosols in comparison to CS. CHTP1.2 and THS2.2 aerosols, compared with CS, demonstrated lower impact on the cardiorespiratory system, including low to absent lung inflammation and emphysematous changes, and reduced atherosclerotic plaque formation. Molecular analyses confirmed the lower engagement of pathological mechanisms by MRTP aerosols than CS. Both cessation and switching to CHTP1.2 reduced the observed CS effects to almost sham exposure levels.
Collapse
Affiliation(s)
- Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Charles Teng
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ching Keong Tung
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Wei Ting Lim
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ying Shan Yeo
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
26
|
Cheng LC, Lin CJ, Liu HJ, Li LA. Health risk of metal exposure via inhalation of cigarette sidestream smoke particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10835-10845. [PMID: 30778946 DOI: 10.1007/s11356-019-04257-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Cigarette sidestream smoke particulate matter (CSSP) is a major source of airborne metals in the indoor environment. However, the health impacts of inhalation of CSSP-bound metals are rarely studied. In this study, we quantify the amount of 37 metals discharged through CSSP from a leading Taiwan brand of cigarette, Long Life. We also estimate cancer and non-cancer risks due to inhalation of these metals and investigate possible modes of toxic action. Long Life CSSP exhibits a distinctive carcinogenic metal profile compared with Western brands. When released to a 60-m3 poorly ventilated room, Long Life CSSP metals increase the risk for cancer by a 9.26 or 20.90 in a million chance and the hazard quotient for non-cancer toxicity by 0.496 or 0.286 per cigarette depending on risk estimation system. Cd accounts for more than 90% and 80% of cancer and non-cancer risk, respectively. Long Life CSSP also contains considerable amounts of Al, Ba, and Fe. Metals are not responsible for CSSP-induced cytotoxicity, oxidative stress, and transactivation activity of AhR, Nrf2, and ERα. However, they diminish resveratrol-activated Nrf2 activity and downstream antioxidant gene expression in low-AhR-expressing lung cells. Our results suggest that chronic exposure to Long Life CSSP elevates Cd-associated cancer and non-cancer risks. Furthermore, exposure to Long Life CSSP metals may impair Nrf2-mediated antioxidant protection.
Collapse
Affiliation(s)
- Li-Chuan Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan, Republic of China
| | - Chun-Ju Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan, Republic of China
| | - Huei-Ju Liu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan, Republic of China
| | - Lih-Ann Li
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan, Republic of China.
| |
Collapse
|
27
|
Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019; 20:22. [PMID: 30626320 PMCID: PMC6325884 DOI: 10.1186/s12864-018-5409-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is affected by genetic and environmental factors, and cigarette smoking is strongly associated with accumulation of senescent cells. In this study, we wanted to identify genes that may potentially be beneficial for cell survival in response to cigarette smoke and thereby may contribute to development of cellular senescence. RESULTS Primary human bronchial epithelial cells from five healthy donors were cultured, treated with or without 1.5% cigarette smoke extract (CSE) for 24 h or were passaged into replicative senescence. Transcriptome changes were monitored using RNA-seq in CSE and non-CSE exposed cells and those passaged into replicative senescence. We found that, among 1534 genes differentially regulated during senescence and 599 after CSE exposure, 243 were altered in both conditions, representing strong enrichment. Pathways and gene sets overrepresented in both conditions belonged to cellular processes that regulate reactive oxygen species, proteasome degradation, and NF-κB signaling. CONCLUSIONS Our results offer insights into gene expression responses during cellular aging and cigarette smoke exposure, and identify potential molecular pathways that are altered by cigarette smoke and may also promote airway epithelial cell senescence.
Collapse
Affiliation(s)
- Hannah Voic
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Xiuying Li
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Jun-Ho Jang
- 0000 0004 0454 5075grid.417046.0Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA USA
| | - Chunbin Zou
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Prithu Sundd
- 0000 0004 1936 9000grid.21925.3dVascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Jonathan Alder
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Mauricio Rojas
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Divay Chandra
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Scott Randell
- 0000 0001 1034 1720grid.410711.2Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC USA
| | - Rama K. Mallampalli
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, COPD program, Albuquerque, NM USA
| | - Tyrone Ryba
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Toru Nyunoya
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| |
Collapse
|
28
|
Sidhaye VK, Holbrook JT, Burke A, Sudini KR, Sethi S, Criner GJ, Fahey JW, Berenson CS, Jacobs MR, Thimmulappa R, Wise RA, Biswal S. Compartmentalization of anti-oxidant and anti-inflammatory gene expression in current and former smokers with COPD. Respir Res 2019; 20:190. [PMID: 31429757 PMCID: PMC6700818 DOI: 10.1186/s12931-019-1164-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) have high oxidative stress associated with the severity of the disease. Nuclear factor erythroid-2 related factor 2 (Nrf2)-directed stress response plays a critical role in the protection of lung cells to oxidative stress by upregulating antioxidant genes in response to tobacco smoke. There is a critical gap in our knowledge about Nrf-2 regulated genes in active smokers and former-smokers with COPD in different cell types from of lungs and surrogate peripheral tissues. METHODS We compared the expression of Nrf2 and six of its target genes in alveolar macrophages, nasal, and bronchial epithelium and peripheral blood mononuclear cells (PBMCs) in current and former smokers with COPD. We compared cell-type specific of Nrf2 and its target genes as well as markers of oxidative and inflammatory stress. RESULTS We enrolled 89 patients; expression all Nrf2 target gene measured were significantly higher in the bronchial epithelium from smokers compared to non-smokers. None were elevated in alveolar macrophages and only one was elevated in each of the other compartments. CONCLUSION Bronchial epithelium is the most responsive tissue for transcriptional activation of Nrf2 target genes in active smokers compared to former-smokers with COPD that correlated with oxidative stress and inflammatory markers. There were no consistent trends in gene expression in other cell types tested. TRIAL REGISTRATION Clinicaltrials.gov : NCT01335971.
Collapse
Affiliation(s)
- Venkataramana K. Sidhaye
- 0000 0001 2171 9311grid.21107.35School of Medicine, Johns Hopkins University, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA ,0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Janet T. Holbrook
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Alyce Burke
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Kuladeep R. Sudini
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Sanjay Sethi
- 0000 0004 1936 9887grid.273335.3University at Buffalo, SUNY, and VA WNY Healthcare System, Buffalo, NY USA
| | - Gerard J. Criner
- 0000 0001 2248 3398grid.264727.2Lewis Katz School of Medicine at Temple University, Philadelphia, PA USA
| | - Jed W. Fahey
- 0000 0001 2171 9311grid.21107.35School of Medicine, Johns Hopkins University, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA ,0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Charles S. Berenson
- 0000 0004 1936 9887grid.273335.3University at Buffalo, SUNY, and VA WNY Healthcare System, Buffalo, NY USA
| | - Michael R. Jacobs
- 0000 0001 2248 3398grid.264727.2Lewis Katz School of Medicine at Temple University, Philadelphia, PA USA
| | - Rajesh Thimmulappa
- 0000 0004 1765 9514grid.414778.9JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India
| | - Robert A. Wise
- 0000 0001 2171 9311grid.21107.35School of Medicine, Johns Hopkins University, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| | - Shyam Biswal
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., E7622, Baltimore, MD 21205 USA
| |
Collapse
|
29
|
Liu TC, Kern JT, VanDussen KL, Xiong S, Kaiko GE, Wilen CB, Rajala MW, Caruso R, Holtzman MJ, Gao F, McGovern DP, Nunez G, Head RD, Stappenbeck TS. Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. J Clin Invest 2018; 128:5110-5122. [PMID: 30137026 DOI: 10.1172/jci120453] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
It is suggested that subtyping of complex inflammatory diseases can be based on genetic susceptibility and relevant environmental exposure (G+E). We propose that using matched cellular phenotypes in human subjects and corresponding preclinical models with the same G+E combinations is useful to this end. As an example, defective Paneth cells can subtype Crohn's disease (CD) subjects; Paneth cell defects have been linked to multiple CD susceptibility genes and are associated with poor outcome. We hypothesized that CD susceptibility genes interact with cigarette smoking, a major CD environmental risk factor, to trigger Paneth cell defects. We found that both CD subjects and mice with ATG16L1T300A (T300A; a prevalent CD susceptibility allele) developed Paneth cell defects triggered by tobacco smoke. Transcriptional analysis of full-thickness ileum and Paneth cell-enriched crypt base cells showed the T300A-smoking combination altered distinct pathways, including proapoptosis, metabolic dysregulation, and selective downregulation of the PPARγ pathway. Pharmacologic intervention by either apoptosis inhibitor or PPARγ agonist rosiglitazone prevented smoking-induced crypt apoptosis and Paneth cell defects in T300A mice and mice with conditional Paneth cell-specific knockout of Atg16l1. This study demonstrates how explicit G+E can drive disease-relevant phenotype and provides rational strategies for identifying actionable targets.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gerard E Kaiko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael W Rajala
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Roberta Caruso
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Dermot Pb McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gabriel Nunez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Richard D Head
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
30
|
Sears CR, Zhou H, Justice MJ, Fisher AJ, Saliba J, Lamb I, Wicker J, Schweitzer KS, Petrache I. Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development. Am J Respir Cell Mol Biol 2018; 58:402-411. [PMID: 29111769 DOI: 10.1165/rcmb.2017-0251oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.
Collapse
Affiliation(s)
| | | | - Matthew J Justice
- 1 Department of Medicine and.,2 Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colorado
| | - Amanda J Fisher
- 3 Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana; and
| | | | | | | | - Kelly S Schweitzer
- 1 Department of Medicine and.,2 Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colorado
| | - Irina Petrache
- 1 Department of Medicine and.,2 Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colorado
| |
Collapse
|
31
|
Vishweswaraiah S, George L, Purushothaman N, Ganguly K. A candidate gene identification strategy utilizing mouse to human big-data mining: "3R-tenet" in COPD genetic research. Respir Res 2018; 19:92. [PMID: 29871630 PMCID: PMC5989378 DOI: 10.1186/s12931-018-0795-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life impairments leading to lower lung function by adulthood are considered as risk factors for chronic obstructive pulmonary disease (COPD). Recently, we compared the lung transcriptomic profile between two mouse strains with extreme total lung capacities to identify plausible pulmonary function determining genes using microarray analysis (GSE80078). Advancement of high-throughput techniques like deep sequencing (eg. RNA-seq) and microarray have resulted in an explosion of genomic data in the online public repositories which however remains under-exploited. Strategic curation of publicly available genomic data with a mouse-human translational approach can effectively implement “3R- Tenet” by reducing screening experiments with animals and performing mechanistic studies using physiologically relevant in vitro model systems. Therefore, we sought to analyze the association of functional variations within human orthologs of mouse lung function candidate genes in a publicly available COPD lung RNA-seq data-set. Methods Association of missense single nucleotide polymorphisms, insertions, deletions, and splice junction variants were analyzed for susceptibility to COPD using RNA-seq data of a Korean population (GSE57148). Expression of the associated genes were studied using the Gene Paint (mouse embryo) and Human Protein Atlas (normal adult human lung) databases. The genes were also assessed for replication of the associations and expression in COPD−/mouse cigarette smoke exposed lung tissues using other datasets. Results Significant association (p < 0.05) of variations in 20 genes to higher COPD susceptibility have been detected within the investigated cohort. Association of HJURP, MCRS1 and TLR8 are novel in relation to COPD. The associated ADAM19 and KIT loci have been reported earlier. The remaining 15 genes have also been previously associated to COPD. Differential transcript expression levels of the associated genes in COPD- and/ or mouse emphysematous lung tissues have been detected. Conclusion Our findings suggest strategic mouse-human datamining approaches can identify novel COPD candidate genes using existing datasets in the online repositories. The candidates can be further evaluated for mechanistic role through in vitro studies using appropriate primary cells/cell lines. Functional studies can be limited to transgenic animal models of only well supported candidate genes. This approach will lead to a significant reduction of animal experimentation in respiratory research. Electronic supplementary material The online version of this article (10.1186/s12931-018-0795-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India
| | - Natarajan Purushothaman
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM University, Chennai, 603203, India
| | - Koustav Ganguly
- SRM Research Institute, SRM University, Chennai, 603203, India. .,Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
32
|
Zuo H, Han B, Poppinga WJ, Ringnalda L, Kistemaker LEM, Halayko AJ, Gosens R, Nikolaev VO, Schmidt M. Cigarette smoke up-regulates PDE3 and PDE4 to decrease cAMP in airway cells. Br J Pharmacol 2018; 175:2988-3006. [PMID: 29722436 PMCID: PMC6016635 DOI: 10.1111/bph.14347] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE cAMP is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease, a lung disease primarily provoked by cigarette smoke (CS), the activation of cAMP-dependent pathways, via inhibition of hydrolyzing PDEs, is a major therapeutic strategy. Mechanisms that disrupt cAMP signalling in airway cells, in particular regulation of endogenous PDEs, are poorly understood. EXPERIMENTAL APPROACH We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mice in vivo, ex vivo precision cut lung slices (PCLS) and in human cell models, in vitro, to track the effects of CS exposure. KEY RESULTS Under fenoterol stimulation, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein up-regulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed down-regulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways. CONCLUSION AND IMPLICATIONS Exposure to CS, in vitro or in vivo, up-regulated expression and activity of both PDE3 and PDE4, which affected real-time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS-induced pulmonary pathophysiology.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands.,Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bing Han
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Wilfred J Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Lennard Ringnalda
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| |
Collapse
|
33
|
Kopa PN, Pawliczak R. Effect of smoking on gene expression profile – overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 2018; 28:397-409. [DOI: 10.1080/15376516.2018.1461289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Natalia Kopa
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
34
|
Atorvastatin dose-dependently promotes mouse lung repair after emphysema induced by elastase. Biomed Pharmacother 2018; 102:160-168. [PMID: 29554594 DOI: 10.1016/j.biopha.2018.03.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 02/08/2023] Open
Abstract
Emphysema results in a proteinase - antiproteinase imbalance, inflammation and oxidative stress. Our objective was to investigate whether atorvastatin could repair mouse lungs after elastase-induced emphysema. Vehicle (50 μL) or porcine pancreatic elastase (PPE) was administered on day 1, 3, 5 and 7 at 0.6 U intranasally. Male mice were divided into a control group (sham), PPE 32d (sacrificed 24 h after 32 days), PPE 64d (sacrificed 24 h after 64 days), and atorvastatin 1, 5 and 20 mg treated from day 33 until day 64 and sacrificed 24 h later (A1 mg, A5 mg and A20 mg, respectively). Treatment with atorvastatin was performed via inhalation for 10 min once a day. We observed that emphysema at day 32 was similar to emphysema at day 64. The mean airspace chord length (Lm) indicated a recovery of pulmonary morphology in groups A5 mg and A20 mg, as well as recovery of collagen and elastic fibers in comparison to the PPE group. Bronchoalveolar lavage fluid (BALF) leukocytes were reduced in all atorvastatin-treated groups. However, tissue macrophages were reduced only in the A20 mg group compared with the PPE group, while tissue neutrophils were reduced in the A5 mg and A20 mg groups. The redox balance was restored mainly in the A20 mg group compared with the PPE group. Finally, atorvastatin at doses of 5 and 20 mg reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and matrix metalloproteinase-12 (MMP-12) compared with the PPE group. In conclusion, atorvastatin was able to induce lung tissue repair in emphysematous mice.
Collapse
|
35
|
Kumar K, Ghanghas P, Sanyal SN. Chemopreventive action of Imatinib, a tyrosine kinase inhibitor in the regulation of angiogenesis and apoptosis in rat model of lung cancer. Mol Cell Biochem 2018; 447:47-61. [PMID: 29453608 DOI: 10.1007/s11010-018-3292-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
The present study explored the events of angiogenesis and apoptosis in 7,12-dimethyl benz(a)anthracene (DMBA)-induced lung cancer in rat and its chemoprevention with Imatinib, a receptor tyrosine kinase inhibitor. Further, it includes lipopolysaccharide (LPS) mediating inflammation along with DMBA for the promotion of lung carcinogenesis. The animals received a single intratracheal instillation of DMBA (20 mg/kg body weight) in olive oil and LPS (0.6 mg/kg body weight) to induce tumors in 16 weeks. Besides morphology and histology of the lung tissues, RT-PCR, western blots, and immunofluorescence were performed for the expression of apoptotic and angiogenic proteins. Apoptosis was studied by mitochondrial Bcl-2/Bax ratio and staining with the dyes Acridine orange/ethidium bromide of the isolated Broncho epithelial cells. Also, mitochondrial membrane potential (ΔΨM) was studied by JC-1. The study revealed that the expression of VEGF, MMP-2, MMP-9, and the chemokine MCP-1 to be very high in DMBA and DMBA + LPS groups, while Bcl-2 also shows an elevated expression. These results were restored with Imatinib treatment. The pro-apoptotic proteins, Bax, Bad, Apaf-1, and Caspase-3 were highly diminished in DMBA and DMBA + LPS groups which were recovered with Imatinib treatment.
Collapse
Affiliation(s)
- Kulvinder Kumar
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Preety Ghanghas
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - S N Sanyal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
36
|
Kyung SY, Kim YJ, Son ES, Jeong SH, Park JW. The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells. Tuberc Respir Dis (Seoul) 2018; 81:138-147. [PMID: 29589382 PMCID: PMC5874143 DOI: 10.4046/trd.2017.0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/01/2022] Open
Abstract
Background Recent studies show that mitophagy, the autophagy-dependent turnover of mitochondria, mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure and contributes to the development of emphysema in vivo during chronic cigarette smoke (CS) exposure, although the underlying mechanisms remain unclear. Methods In this study, we investigated the role of mitophagy in the regulation of CSE-exposed lung bronchial epithelial cell (Beas-2B) death. We also investigated the role of a phosphodiesterase 4 inhibitor, roflumilast, in CSE-induced mitophagy-dependent cell death. Results Our results demonstrated that CSE induces mitophagy in Beas-2B cells through mitochondrial dysfunction and increased the expression levels of the mitophagy regulator protein, PTEN-induced putative kinase-1 (PINK1), and the mitochondrial fission protein, dynamin-1-like protein (DRP1). CSE-induced epithelial cell death was significantly increased in Beas-2B cells exposed to CSE but was decreased by small interfering RNA-dependent knockdown of DRP1. Treatment with roflumilast in Beas-2B cells inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting the expression of phospho-DRP1 and -PINK1. Roflumilast protected against cell death and increased cell viability, as determined by the lactate dehydrogenase release test and the MTT assay, respectively, in Beas-2B cells exposed to CSE. Conclusion These findings suggest that roflumilast plays a protective role in CS-induced mitophagy-dependent cell death.
Collapse
Affiliation(s)
- Sun Young Kyung
- Division of Pulmonary, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Yu Jin Kim
- Division of Pulmonary, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Eun Suk Son
- Division of Pulmonary, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea.,Department of Biomedical Chemistry, Konkuk University, Chungju, Korea.,Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | - Sung Hwan Jeong
- Division of Pulmonary, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea.,Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | - Jeong Woong Park
- Division of Pulmonary, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea.,Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea.
| |
Collapse
|
37
|
Williams A, Halappanavar S. Application of bi-clustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials. Data Brief 2017; 15:933-940. [PMID: 29159232 PMCID: PMC5683856 DOI: 10.1016/j.dib.2017.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023] Open
Abstract
This article contains data related to the research article ‘Application of bi-clustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials’ (Williams and Halappanavar, 2015) [1]. The presence of diverse types of nanomaterials (NMs) in commerce has grown significantly in the past decade and as a result, human exposure to these materials in the environment is inevitable. The traditional toxicity testing approaches that are reliant on animals are both time- and cost- intensive; employing which, it is not possible to complete the challenging task of safety assessment of NMs currently on the market in a timely manner. Thus, there is an urgent need for comprehensive understanding of the biological behavior of NMs, and efficient toxicity screening tools that will enable the development of predictive toxicology paradigms suited to rapidly assessing the human health impacts of exposure to NMs. In an effort to predict the long term health impacts of acute exposure to NMs, in Williams and Halappanavar (2015) [1], we applied bi-clustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related bi-clusters showing similar gene expression profiles were identified. The identified bi-clusters were then used to conduct a gene set enrichment analysis on lung gene expression profiles derived from mice exposed to nano-titanium dioxide, carbon black or carbon nanotubes (nano-TiO2, CB and CNTs) to determine the disease significance of these data-driven gene sets. The results of the analysis correctly identified all NMs to be inflammogenic, and only CB and CNTs as potentially fibrogenic. Here, we elaborate on the details of the statistical methods and algorithms used to derive the disease relevant gene signatures. These details will enable other investigators to use the gene signature in future Gene Set Enrichment Analysis studies involving NMs or as features for clustering and classifying NMs of diverse properties.
Collapse
Affiliation(s)
- Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
38
|
Yun JH, Morrow J, Owen CA, Qiu W, Glass K, Lao T, Jiang Z, Perrella MA, Silverman EK, Zhou X, Hersh CP. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. Am J Respir Cell Mol Biol 2017; 57:47-58. [PMID: 28248572 DOI: 10.1165/rcmb.2016-0328oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip+/-, and Fam13a-/- murine strains exposed chronically to CS. The CS-resistant Fam13a-/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a-/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.
Collapse
Affiliation(s)
- Jeong H Yun
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Caroline A Owen
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,3 The Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | - Taotao Lao
- 1 Channing Division of Network Medicine, and
| | | | - Mark A Perrella
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,4 Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin K Silverman
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaobo Zhou
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Craig P Hersh
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Gene and metabolite time-course response to cigarette smoking in mouse lung and plasma. PLoS One 2017; 12:e0178281. [PMID: 28575117 PMCID: PMC5456044 DOI: 10.1371/journal.pone.0178281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
Prolonged cigarette smoking (CS) causes chronic obstructive pulmonary disease (COPD), a prevalent serious condition that may persist or progress after smoking cessation. To provide insight into how CS triggers COPD, we investigated temporal patterns of lung transcriptome expression and systemic metabolome changes induced by chronic CS exposure and smoking cessation. Whole lung RNA-seq data was analyzed at transcript and exon levels from C57Bl/6 mice exposed to CS for 1- or 7 days, for 3-, 6-, or 9 months, or for 6 months followed by 3 months of cessation using age-matched littermate controls. We identified previously unreported dysregulation of pyrimidine metabolism and phosphatidylinositol signaling pathways and confirmed alterations in glutathione metabolism and circadian gene pathways. Almost all dysregulated pathways demonstrated reversibility upon smoking cessation, except the lysosome pathway. Chronic CS exposure was significantly linked with alterations in pathways encoding for energy, phagocytosis, and DNA repair and triggered differential expression of genes or exons previously unreported to associate with CS or COPD, including Lox, involved in matrix remodeling, Gp2, linked to goblet cells, and Slc22a12 and Agpat3, involved in purine and glycerolipid metabolism, respectively. CS-induced lung metabolic pathways changes were validated using metabolomic profiles of matched plasma samples, indicating that dynamic metabolic gene regulation caused by CS is reflected in the plasma metabolome. Using advanced technologies, our study uncovered novel pathways and genes altered by chronic CS exposure, including those involved in pyrimidine metabolism, phosphatidylinositol signaling and lysosome function, highlighting their potential importance in the pathogenesis or diagnosis of CS-associated conditions.
Collapse
|
40
|
Tura-Ceide O, Lobo B, Paul T, Puig-Pey R, Coll-Bonfill N, García-Lucio J, Smolders V, Blanco I, Barberà JA, Peinado VI. Cigarette smoke challenges bone marrow mesenchymal stem cell capacities in guinea pig. Respir Res 2017; 18:50. [PMID: 28330488 PMCID: PMC5363047 DOI: 10.1186/s12931-017-0530-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/03/2017] [Indexed: 01/03/2023] Open
Abstract
Background Cigarette smoke (CS) is associated with lower numbers of circulating stem cells and might severely affect their mobilization, trafficking and homing. Our study was designed to demonstrate in an animal model of CS exposure whether CS affects the homing and functional capabilities of bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods Guinea pigs (GP), exposed or sham-exposed to CS, were administered via tracheal instillation or by vascular administration with 2.5 × 106 BM-MSCs obtained from CS-exposed or sham-exposed animal donors. Twenty-four hours after cell administration, animals were sacrificed and cells were visualised into lung structures by optical microscopy. BM-MSCs from 8 healthy GP and from 8 GP exposed to CS for 1 month were isolated from the femur, cultured in vitro and assessed for their proliferation, migration, senescence, differentiation potential and chemokine gene expression profile. Results CS-exposed animals showed greater BM-MSCs lung infiltration than sham-exposed animals regardless of route of administration. The majority of BM-MSCs localized in the alveolar septa. BM-MSCs obtained from CS-exposed animals showed lower ability to engraft and lower proliferation and migration. In vitro, BM-MSCs exposed to CS extract showed a significant reduction of proliferative, cellular differentiation and migratory potential and an increase in cellular senescence in a dose dependent manner. Conclusion Short-term CS exposure induces BM-MSCs dysfunction. Such dysfunction was observed in vivo, affecting the cell homing and proliferation capabilities of BM-MSCs in lungs exposed to CS and in vitro altering the rate of proliferation, senescence, differentiation and migration capacity. Additionally, CS induced a reduction in CXCL9 gene expression in the BM from CS-exposed animals underpinning a potential mechanistic action of bone marrow dysfunction. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0530-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain.,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Borja Lobo
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Tanja Paul
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Raquel Puig-Pey
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Núria Coll-Bonfill
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Valérie Smolders
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain.,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain.,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Víctor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain. .,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
41
|
Sugiyama Y, Asai K, Yamada K, Kureya Y, Ijiri N, Watanabe T, Kanazawa H, Hirata K. Decreased levels of irisin, a skeletal muscle cell-derived myokine, are related to emphysema associated with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; 12:765-772. [PMID: 28424548 PMCID: PMC5344413 DOI: 10.2147/copd.s126233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Cigarette smoking-induced oxidant–antioxidant imbalance is a factor that contributes to the pathogenesis of COPD through epithelial cell apoptosis. Irisin is a skeletal muscle cell-derived myokine associated with physical activity. Irisin is also known to decrease oxidant-induced apoptosis in patients with diabetes mellitus. However, the correlation between irisin and emphysema in COPD and its role in epithelial cell apoptosis remains unknown. Subjects and methods Forty patients with COPD were enrolled in this study. Pulmonary function tests and measurements of the percentage of low-attenuation area on high-resolution computed tomography images were performed, and the results were evaluated for correlation with serum irisin levels. The effect of irisin on cigarette-smoke extract-induced A549 cell apoptosis and the expression of Nrf2, a transcription factor for antioxidants, was also examined in vitro. Results Serum irisin levels were significantly correlated with lung diffusing capacity for carbon monoxide divided by alveolar volume (r=0.56, P<0.01) and percentage of low-attenuation area (r=−0.79, P<0.01). Moreover, irisin significantly enhanced Nrf2 expression (P<0.05) and reduced cigarette-smoke extract-induced A549 cell apoptosis (P<0.05). Conclusion Decreased serum irisin levels are related to emphysema in patients with COPD and involved in epithelial apoptosis, resulting in emphysema. Irisin could be a novel treatment for emphysema in patients with COPD.
Collapse
Affiliation(s)
- Yukari Sugiyama
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yuko Kureya
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naoki Ijiri
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Kanazawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuto Hirata
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
42
|
Jang JH, Chand HS, Bruse S, Doyle-Eisele M, Royer C, McDonald J, Qualls C, Klingelhutz AJ, Lin Y, Mallampalli R, Tesfaigzi Y, Nyunoya T. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity. COPD 2016; 14:228-237. [PMID: 28026993 DOI: 10.1080/15412555.2016.1262340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.
Collapse
Affiliation(s)
- Jun-Ho Jang
- a Department of Medicine , University of Pittsburgh , Pittsburgh , PA , USA.,b VA Pittsburgh Healthcare System , Pittsburgh , PA , USA
| | - Hitendra S Chand
- c Department of Immunology , Herbert Wertheim College of Medicine, Florida International University Miami , Miami , FL , USA
| | | | - Melanie Doyle-Eisele
- e COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Christopher Royer
- e COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Jacob McDonald
- e COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | | | - Aloysius J Klingelhutz
- g Department of Microbiology , University of Iowa, Roy J. and Lucille A. Carver College of Medicine , Iowa City , IA , USA
| | - Yong Lin
- e COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Rama Mallampalli
- a Department of Medicine , University of Pittsburgh , Pittsburgh , PA , USA.,b VA Pittsburgh Healthcare System , Pittsburgh , PA , USA
| | - Yohannes Tesfaigzi
- e COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Toru Nyunoya
- a Department of Medicine , University of Pittsburgh , Pittsburgh , PA , USA.,b VA Pittsburgh Healthcare System , Pittsburgh , PA , USA
| |
Collapse
|
43
|
Sakhatskyy P, Wang Z, Borgas D, Lomas-Neira J, Chen Y, Ayala A, Rounds S, Lu Q. Double-hit mouse model of cigarette smoke priming for acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L56-L67. [PMID: 27864287 PMCID: PMC5283923 DOI: 10.1152/ajplung.00436.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023] Open
Abstract
Epidemiological studies indicate that cigarette smoking (CS) increases the risk and severity of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The mechanism is not understood, at least in part because of lack of animal models that reproduce the key features of the CS priming process. In this study, using two strains of mice, we characterized a double-hit mouse model of ALI induced by CS priming of injury caused by lipopolysaccharide (LPS). C57BL/6 and AKR mice were preexposed to CS briefly (3 h) or subacutely (3 wk) before intratracheal instillation of LPS and ALI was assessed 18 h after LPS administration by measuring lung static compliance, lung edema, vascular permeability, inflammation, and alveolar apoptosis. We found that as little as 3 h of exposure to CS enhanced LPS-induced ALI in both strains of mice. Similar exacerbating effects were observed after 3 wk of preexposure to CS. However, there was a strain difference in susceptibility to CS priming for ALI, with a greater effect in AKR mice. The key features we observed suggest that 3 wk of CS preexposure of AKR mice is a reproducible, clinically relevant animal model that is useful for studying mechanisms and treatment of CS priming for a second-hit-induced ALI. Our data also support the concept that increased susceptibility to ALI/ARDS is an important adverse health consequence of CS exposure that needs to be taken into consideration when treating critically ill individuals.
Collapse
Affiliation(s)
- Pavlo Sakhatskyy
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Zhengke Wang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Diana Borgas
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Joanne Lomas-Neira
- Division of Surgical Research, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, Rhode Island
| | - Yaping Chen
- Division of Surgical Research, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Rhode Island Hospital/Alpert Medical School of Brown University, Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
44
|
Dvorkin-Gheva A, Vanderstocken G, Yildirim AÖ, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Total particulate matter concentration skews cigarette smoke's gene expression profile. ERJ Open Res 2016; 2:00029-2016. [PMID: 27995131 PMCID: PMC5165723 DOI: 10.1183/23120541.00029-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Exposure of small animals to cigarette smoke is widely used as a model to study the pathogenesis of chronic obstructive pulmonary disease. However, protocols and exposure systems utilised vary substantially and it is unclear how these different systems compare. We analysed the gene expression profile of six publically available murine datasets from different cigarette smoke-exposure systems and related the gene signatures to three clinical cohorts. 234 genes significantly regulated by cigarette smoke in at least one model were used to construct a 55-gene network containing 17 clusters. Increasing numbers of differentially regulated clusters were associated with higher total particulate matter concentrations in the different datasets. Low total particulate matter-induced genes mainly related to xenobiotic/detoxification responses, while higher total particulate matter activated immune/inflammatory processes in addition to xenobiotic/detoxification responses. To translate these observations to the clinic, we analysed the regulation of the revealed network in three human cohorts. Similar to mice, we observed marked differences in the number of regulated clusters between the cohorts. These differences were not determined by pack-year. Although none of the experimental models exhibited a complete alignment with any of the human cohorts, some exposure systems showed higher resemblance. Thus, depending on the cohort, clinically observed changes in gene expression may be mirrored more closely by specific cigarette smoke exposure systems. This study emphasises the need for careful validation of animal models.
Collapse
Affiliation(s)
- Anna Dvorkin-Gheva
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
- These authors contributed equally
| | - Gilles Vanderstocken
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- These authors contributed equally
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Neuherberg, Germany, Member of the German Center for Lung Research (DZL)
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC research institute, Groningen, The Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
- Dept of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - John A. Hassell
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
| | - Martin R. Stampfli
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Dept of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Kim YS, Kokturk N, Kim JY, Lee SW, Lim J, Choi SJ, Oh W, Oh YM. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells. Mol Cells 2016; 39:728-733. [PMID: 27802588 PMCID: PMC5104880 DOI: 10.14348/molcells.2016.0095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.
Collapse
Affiliation(s)
- You-Sun Kim
- University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan Institute for Life Sciences, Seoul 05505,
Korea
| | - Nurdan Kokturk
- Department of Pulmonology, Gazi University, Ankara,
Turkey
| | - Ji-Young Kim
- Asan Institute for Life Sciences, Seoul 05505,
Korea
| | - Sei Won Lee
- University of Ulsan College of Medicine, Seoul 05505,
Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul 05505,
Korea
| | - Jaeyun Lim
- University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul,
Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul,
Korea
| | - Yeon-Mok Oh
- University of Ulsan College of Medicine, Seoul 05505,
Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul 05505,
Korea
| |
Collapse
|
46
|
Kim C, Lee JM, Park SW, Kim KS, Lee MW, Paik S, Jang AS, Kim DJ, Uh S, Kim Y, Park CS. Attenuation of Cigarette Smoke-Induced Emphysema in Mice by Apolipoprotein A-1 Overexpression. Am J Respir Cell Mol Biol 2016; 54:91-102. [PMID: 26086425 DOI: 10.1165/rcmb.2014-0305oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation, oxidative stress, and proteolysis participate primarily in the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. COPD is a highly prevalent smoking-related disease for which no effective therapy exists to improve the disease course. Although apolipoprotein A-1 (ApoA1) has antiinflammatory and antioxidant properties as well as cholesterol efflux potential, its role in cigarette smoke (CS)-induced emphysema has not been determined. Therefore, we investigated whether human ApoA1 transgenic (TG) mice, with conditionally induced alveolar epithelium to overexpress ApoA1, are protected against the CS-induced lung inflammatory response and development of emphysema. In this study, ApoA1 levels were significantly decreased in the lungs of patients with COPD and in the lungs of mice exposed to CS. ApoA1 TG mice did not develop emphysema when chronically exposed to CS. Compared with the control TG mice, ApoA1 overexpression attenuated lung inflammation, oxidative stress, metalloprotease activation, and apoptosis in CS-exposed mouse lungs. To explore a plausible mechanism of antiapoptotic activity of ApoA1, alveolar epithelial cells (A549) were treated with CS extract (CSE). ApoA1 prevented CSE-induced translocation of Fas and downstream death-inducing signaling complex into lipid rafts, thereby inhibiting Fas-mediated apoptosis. Taken together, the data showed that ApoA1 overexpression attenuated CS-induced lung inflammation and emphysema in mice. Augmentation of ApoA1 in the lung may have therapeutic potential in preventing smoking-related COPD/emphysema.
Collapse
Affiliation(s)
- Chorong Kim
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Ji-Min Lee
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Sung-Woo Park
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Ki-Sun Kim
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Myoung Won Lee
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Sanghyun Paik
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - An Soo Jang
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Do Jin Kim
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| | - Sootaek Uh
- 2 Division of Allergy and Respiratory Medicine, Soonchunhyang University Seoul Hospital, Hannam-dong, Yongsan-gu, Seoul; and
| | - Yonghoon Kim
- 3 Division of Allergy and Respiratory Medicine, Soonchunhyang University Cheonan Hospital, Bongmyeong-dong, Cheonan, Chungcheongnam-do, South Korea
| | - Choon-Sik Park
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do
| |
Collapse
|
47
|
Khedoe PPSJ, Rensen PCN, Berbée JFP, Hiemstra PS. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1011-27. [PMID: 26993520 DOI: 10.1152/ajplung.00013.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, the Netherlands; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
48
|
Tiwari N, Marudamuthu AS, Tsukasaki Y, Ikebe M, Fu J, Shetty S. p53- and PAI-1-mediated induction of C-X-C chemokines and CXCR2: importance in pulmonary inflammation due to cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 2016; 310:L496-506. [PMID: 26747783 PMCID: PMC4888555 DOI: 10.1152/ajplung.00290.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/02/2016] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that tumor suppressor protein p53 augments plasminogen activator inhibitor-1 (PAI-1) expression in alveolar epithelial cells (AECs) during chronic cigarette smoke (CS) exposure-induced lung injury. Chronic lung inflammation with elevated p53 and PAI-1 expression in AECs and increased susceptibility to and exacerbation of respiratory infections are all associated with chronic obstructive pulmonary disease (COPD). We recently demonstrated that preventing p53 from binding to the endogenous PAI-1 mRNA in AECs by either suppressing p53 expression or blockading p53 interactions with the PAI-1 mRNA mitigates apoptosis and lung injury. Within this context, we now show increased expression of the C-X-C chemokines (CXCL1 and CXCL2) and their receptor CXCR2, and the intercellular cellular adhesion molecule-1 (ICAM-1), in the lung tissues of patients with COPD. We also found a similar increase in lung tissues and AECs from wild-type (WT) mice exposed to passive CS for 20 wk and in primary AECs treated with CS extract in vitro. Interestingly, passive CS exposure of mice lacking either p53 or PAI-1 expression resisted an increase in CXCL1, CXCL2, CXCR2, and ICAM-1. Furthermore, inhibition of p53-mediated induction of PAI-1 expression by treatment of WT mice exposed to passive CS with caveolin-1 scaffolding domain peptide reduced CXCL1, CXCL2, and CXCR2 levels and lung inflammation. Our study reveals that p53-mediated induction of PAI-1 expression due to chronic CS exposure exacerbates lung inflammation through elaboration of CXCL1, CXCL2, and CXCR2. We further provide evidence that targeting this pathway mitigates lung injury associated with chronic CS exposure.
Collapse
Affiliation(s)
- Nivedita Tiwari
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Amarnath S Marudamuthu
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Yoshikazu Tsukasaki
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Mitsuo Ikebe
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Jian Fu
- Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Sreerama Shetty
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| |
Collapse
|
49
|
Williams A, Halappanavar S. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:2438-48. [PMID: 26885455 PMCID: PMC4734442 DOI: 10.3762/bjnano.6.252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND The presence of diverse types of nanomaterials (NMs) in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2), carbon black (CB) or carbon nanotubes (CNTs) to determine the disease significance of these data-driven gene sets. RESULTS Biclusters representing inflammation (chemokine activity), DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS) and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032). The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles. CONCLUSION The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several previously defined, functionally relevant gene sets, the present study also identified two novel genes sets: a gene set associated with pulmonary fibrosis and a gene set associated with ROS, underlining the advantage of using a data-driven approach to identify novel, functionally related gene sets. The results can be used in future gene set enrichment analysis studies involving NMs or as features for clustering and classifying NMs of diverse properties.
Collapse
Affiliation(s)
- Andrew Williams
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa K1A 0K9, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa K1A 0K9, Canada
| |
Collapse
|
50
|
Hsiao HM, Thatcher TH, Colas RA, Serhan CN, Phipps RP, Sime PJ. Resolvin D1 Reduces Emphysema and Chronic Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3189-201. [PMID: 26468975 DOI: 10.1016/j.ajpath.2015.08.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/14/2015] [Accepted: 08/14/2015] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease is characterized, in part, by chronic inflammation that persists even after smoking cessation, suggesting that a failure to resolve inflammation plays an important role in the pathogenesis of the disease. It is widely recognized that the resolution of inflammation is an active process, governed by specialized proresolving lipid mediators, including lipoxins, resolvins, maresins, and protectins. Here, we report that proresolving signaling and metabolic pathways are disrupted in lung tissue from patients with chronic obstructive pulmonary disease, suggesting that supplementation with proresolving lipid mediators might reduce the development of emphysema by controlling chronic inflammation. Groups of mice were exposed long-term to cigarette smoke and treated with the proresolving mediator resolvin D1. Resolvin D1 was associated with a reduced development of cigarette smoke-induced emphysema and airspace enlargement, with concurrent reductions in inflammation, oxidative stress, and cell death. Interestingly, resolvin D1 did not promote the differentiation of M2 macrophages and did not promote tissue fibrosis. Taken together, our results suggest that cigarette smoking disrupts endogenous proresolving pathways and that supplementation with specialized proresolving lipid mediators is an important therapeutic strategy in chronic lung disease, especially if endogenous specialized proresolving lipid mediator signaling is impaired.
Collapse
Affiliation(s)
- Hsi-Min Hsiao
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine and Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine and Harvard Medical School, Boston, Massachusetts
| | - Richard P Phipps
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Patricia J Sime
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|