1
|
Wang H, Jin H, Zhao S. Expression and clinical significance of RHCG in endometrial cancer. Histol Histopathol 2024; 39:611-621. [PMID: 37732703 DOI: 10.14670/hh-18-663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Endometrial cancer (EC) is the most common gynecological cancer. Rhesus family, C glycoprotein (RHCG) has been evidenced to be involved in the occurrence and development of various tumors. This study aimed to investigate the expression and clinical significance of RHCG in EC. Bioinformatics analysis was based on the RNAseq counts data from TCGA database, and the prognosis analysis was performed using the Kaplan-Meier method; 4 cases of endometrioid adenocarcinomas samples and 4 cases of normal proliferative endometrium were collected for qPCR and western blot; immunohistochemistry analysis was employed to assess the expression of RHCG in a tissue microarray; the correlation between RHCG and clinicopathological factors was analyzed through Mann-Whitney U test. The lentiviral interference vector was further constructed. The results demonstrated that RHCG was highly expressed in EC tissues, and RHCG was an independent factor affecting the overall survival of patients. Additionally, the expression of RHCG was related to FIGO stage and tumor infiltrate. After interfering with shRHCG, the proliferation activity of EC cells decreased, the migration ability of cells decreased, the apoptosis of cells increased, and the tumor outgrowth was arrested. In summary, RHCG promotes the malignant proliferation and migration of EC, and makes the cells have anti-apoptotic activity. Our study provides a theoretical basis for RHCG to become a potential therapeutic target for EC in the future.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, PR China
- Department of Gynecology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province, PR China
| | - Haihong Jin
- Department of Gynecology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province, PR China
| | - Sufen Zhao
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, PR China.
| |
Collapse
|
2
|
Quijada-Rodriguez AR, Fehsenfeld S, Marini AM, Wilson JM, Nash MT, Sachs M, Towle DW, Weihrauch D. Branchial CO 2 and ammonia excretion in crustaceans: Involvement of an apical Rhesus-like glycoprotein. Acta Physiol (Oxf) 2024; 240:e14078. [PMID: 38205922 DOI: 10.1111/apha.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
AIM To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sandra Fehsenfeld
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Anna-Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Bruxelles, Belgium
- WELBIO, Wavre, Belgium
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Mikyla T Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W Towle
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Thies AB, Quijada-Rodriguez AR, Zhouyao H, Weihrauch D, Tresguerres M. A Rhesus channel in the coral symbiosome membrane suggests a novel mechanism to regulate NH 3 and CO 2 delivery to algal symbionts. SCIENCE ADVANCES 2022; 8:eabm0303. [PMID: 35275725 PMCID: PMC8916725 DOI: 10.1126/sciadv.abm0303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Reef-building corals maintain an intracellular photosymbiotic association with dinoflagellate algae. As the algae are hosted inside the symbiosome, all metabolic exchanges must take place across the symbiosome membrane. Using functional studies in Xenopus oocytes, immunolocalization, and confocal Airyscan microscopy, we established that Acropora yongei Rh (ayRhp1) facilitates transmembrane NH3 and CO2 diffusion and that it is present in the symbiosome membrane. Furthermore, ayRhp1 abundance in the symbiosome membrane was highest around midday and lowest around midnight. We conclude that ayRhp1 mediates a symbiosomal NH4+-trapping mechanism that promotes nitrogen delivery to algae during the day-necessary to sustain photosynthesis-and restricts nitrogen delivery at night-to keep algae under nitrogen limitation. The role of ayRhp1-facilitated CO2 diffusion is less clear, but it may have implications for metabolic dysregulation between symbiotic partners and bleaching. This previously unknown mechanism expands our understanding of symbioses at the immediate animal-microbe interface, the symbiosome.
Collapse
Affiliation(s)
- Angus B. Thies
- Marine Biology research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author. (A.B.T.); (M.T.)
| | | | - Haonan Zhouyao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Tresguerres
- Marine Biology research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author. (A.B.T.); (M.T.)
| |
Collapse
|
4
|
Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, Wang D, Zeise BS, Zhao P, Malmstadt N, Vahedi-Faridi A, Tajkhorshid E, Boron WF. Carbon dioxide transport across membranes. Interface Focus 2021; 11:20200090. [PMID: 33633837 PMCID: PMC7898146 DOI: 10.1098/rsfs.2020.0090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Carbon dioxide (CO2) movement across cellular membranes is passive and governed by Fick's law of diffusion. Until recently, we believed that gases cross biological membranes exclusively by dissolving in and then diffusing through membrane lipid. However, the observation that some membranes are CO2 impermeable led to the discovery of a gas molecule moving through a channel; namely, CO2 diffusion through aquaporin-1 (AQP1). Later work demonstrated CO2 diffusion through rhesus (Rh) proteins and NH3 diffusion through both AQPs and Rh proteins. The tetrameric AQPs exhibit differential selectivity for CO2 versus NH3 versus H2O, reflecting physico-chemical differences among the small molecules as well as among the hydrophilic monomeric pores and hydrophobic central pores of various AQPs. Preliminary work suggests that NH3 moves through the monomeric pores of AQP1, whereas CO2 moves through both monomeric and central pores. Initial work on AQP5 indicates that it is possible to create a metal-binding site on the central pore's extracellular face, thereby blocking CO2 movement. The trimeric Rh proteins have monomers with hydrophilic pores surrounding a hydrophobic central pore. Preliminary work on the bacterial Rh homologue AmtB suggests that gas can diffuse through the central pore and three sets of interfacial clefts between monomers. Finally, initial work indicates that CO2 diffuses through the electrogenic Na/HCO3 cotransporter NBCe1. At least in some cells, CO2-permeable proteins could provide important pathways for transmembrane CO2 movements. Such pathways could be amenable to cellular regulation and could become valuable drug targets.
Collapse
Affiliation(s)
- Marie Michenkova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew C. Blosser
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Hyea J. Hwang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Kowatz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fraser. J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Soumyo Sen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric Shinn
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Zeise
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pan Zhao
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Ardeschir Vahedi-Faridi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
5
|
Grishin D, Kasap E, Izotov A, Lisitsa A. Multifaceted ammonia transporters. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1812443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- D.V. Grishin
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - E.Y. Kasap
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.A. Izotov
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.V. Lisitsa
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| |
Collapse
|
6
|
Browning JR, Derr P, Derr K, Doudican N, Michael S, Lish SR, Taylor NA, Krueger JG, Ferrer M, Carucci JA, Gareau DS. A 3D biofabricated cutaneous squamous cell carcinoma tissue model with multi-channel confocal microscopy imaging biomarkers to quantify antitumor effects of chemotherapeutics in tissue. Oncotarget 2020; 11:2587-2596. [PMID: 32676161 PMCID: PMC7343636 DOI: 10.18632/oncotarget.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) causes approximately 10,000 deaths annually in the U. S. Current therapies are largely ineffective against metastatic and locally advanced cSCC. There is a need to identify novel, effective, and less toxic small molecule cSCC therapeutics. We developed a 3-dimensional bioprinted skin (3DBPS) model of cSCC tumors together with a microscopy assay to test chemotherapeutic effects in tissue. The full thickness SCC tissue model was validated using hematoxylin and eosin (H&E) and immunohistochemical histological staining, confocal microscopy, and cDNA microarray analysis. A nondestructive, 3D fluorescence confocal imaging assay with tdTomato-labeled A431 SCC and ZsGreen-labeled keratinocytes was developed to test efficacy and general toxicity of chemotherapeutics. Fluorescence-derived imaging biomarkers indicated that 50% of cancer cells were killed in the tissue after 1μM 5-Fluorouracil 48-hour treatment, compared to a baseline of 12% for untreated controls. The imaging biomarkers also showed that normal keratinocytes were less affected by treatment (11% killed) than the untreated tissue, which had no significant killing effect. Data showed that 5-Fluorouracil selectively killed cSCC cells more than keratinocytes. Our 3DBPS assay platform provides cellular-level measurement of cell viability and can be adapted to achieve nondestructive high-throughput screening (HTS) in bio-fabricated tissues.
Collapse
Affiliation(s)
- James R Browning
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Paige Derr
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Nicole Doudican
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Samantha R Lish
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Nicholas A Taylor
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - John A Carucci
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Daniel S Gareau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
7
|
Chen P, Liu C, Li P, Wang Q, Gao X, Wu H, Huang J. High RhCG expression predicts poor survival and promotes migration and proliferation of gastric cancer via keeping intracellular alkaline. Exp Cell Res 2020; 386:111740. [PMID: 31756312 DOI: 10.1016/j.yexcr.2019.111740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022]
Abstract
Advanced gastric cancer (GC) is aggressive with a high mortality rate. Rhesus family, C glycoprotein (RhCG) participates in tumor progression in many cancers, however its function in GC is still unknown. Here, we showed that RhCG was overexpressed in GC tissues at mRNA (P = 0.036) and protein levels (P < 0.05) compared with normal tissues. High RhCG level was correlated with poor differentiation (P = 0.037), TNM stage (P < 0.001), high HER-2 level (P = 0.018) and worse prognosis (P < 0.001). Cox proportional hazard model indicated that RhCG level was an independent prognostic biomarker. RhCG knockdown significantly decreased pHi and impeded tumor cellular proliferation, migration and invasion and repressed β-catenin and c-myc expression in GC cells. Moreover, GC cells with high RhCG level had reduced oxaliplatin efficacy suggesting a role for RhCG as a therapeutic target for GC. Our findings revealed a function of RhCG in cancer pathogenesis, invasion and metastasis in human GC. We suggest that RhCG act may as a novel prognostic indicator and a therapeutic target for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Pei Chen
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Can Liu
- Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Xiaodong Gao
- Department of General Surgery, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - JianFei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
8
|
Osis G, Webster KL, Harris AN, Lee HW, Chen C, Fang L, Romero MF, Khattri RB, Merritt ME, Verlander JW, Weiner ID. Regulation of renal NaDC1 expression and citrate excretion by NBCe1-A. Am J Physiol Renal Physiol 2019; 317:F489-F501. [PMID: 31188034 PMCID: PMC6732450 DOI: 10.1152/ajprenal.00015.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022] Open
Abstract
Citrate is critical for acid-base homeostasis and to prevent calcium nephrolithiasis. Both metabolic acidosis and hypokalemia decrease citrate excretion and increase expression of Na+-dicarboxylate cotransporter 1 (NaDC1; SLC13A2), the primary protein involved in citrate reabsorption. However, the mechanisms transducing extracellular signals and mediating these responses are incompletely understood. The purpose of the present study was to determine the role of the Na+-coupled electrogenic bicarbonate cotransporter (NBCe1) A variant (NBCe1-A) in citrate metabolism under basal conditions and in response to acid loading and hypokalemia. NBCe1-A deletion increased citrate excretion and decreased NaDC1 expression in the proximal convoluted tubules (PCT) and proximal straight tubules (PST) in the medullary ray (PST-MR) but not in the PST in the outer medulla (PST-OM). Acid loading wild-type (WT) mice decreased citrate excretion. NaDC1 expression increased only in the PCT and PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice, the acid loading change in citrate excretion was unaffected, changes in PCT NaDC1 expression were blocked, and there was an adaptive increase in PST-MR. Hypokalemia in WT mice decreased citrate excretion; NaDC1 expression increased only in the PCT and PST-MR. NBCe1-A KO blocked both the citrate and NaDC1 changes. We conclude that 1) adaptive changes in NaDC1 expression in response to metabolic acidosis and hypokalemia occur specifically in the PCT and PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is necessary for normal basal, metabolic acidosis and hypokalemia-stimulated citrate metabolism and does so by regulating NaDC1 expression in cortical proximal tubule segments; and 3) adaptive increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice in response to acid loading that do not occur in WT mice.
Collapse
Affiliation(s)
- Gunars Osis
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Kierstin L Webster
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Ram B Khattri
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
9
|
Fang L, Lee HW, Chen C, Harris AN, Romero MF, Verlander JW, Weiner ID. Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney. Am J Physiol Renal Physiol 2018; 315:F417-F428. [PMID: 29631353 PMCID: PMC6172571 DOI: 10.1152/ajprenal.00515.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study's purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.
Collapse
Affiliation(s)
- Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
10
|
Wang W, Lu H, Lu X, Wang D, Wang Z, Dai W, Wang J, Liu P. Effect of tumor necrosis factor-α on the expression of the ammonia transporter Rhcg in the brain in mice with acute liver failure. J Neuroinflammation 2018; 15:234. [PMID: 30134917 PMCID: PMC6106833 DOI: 10.1186/s12974-018-1264-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ammonia and tumor necrosis factor-alpha (TNF-α) play important roles in the mechanisms of hepatic encephalopathy (HE). Rhesus glycoprotein C (Rhcg) is important for ammonia transport especially in the kidney. The aim of the present study was to investigate the role of Rhcg in the brain in acute liver failure (ALF) and the effect of TNF-α on Rhcg expression. METHODS ALF mouse models were generated by treatment with D-galactosamine (D-GalN) and lipopolysaccharide (LPS), or D-GalN and TNF-α. ALF induction was blocked by pretreatment with anti-TNF-α IgG. The levels of serum TNF-α were determined by ELISA. Blood ammonia and brain ammonia concentrations were detected using an ammonia assay kit. The expression and distribution of Rhcg in the brain tissues of ALF mice were examined by western blotting, real-time PCR, immunohistochemical, and immunofluorescence analyses. RESULTS Serum TNF-α levels were increased in the LPS/D-GalN group. Blood and brain ammonia were increased in the LPS/D-GalN- and TNF-α/D-GalN-induced ALF groups. Rhcg mRNA and protein levels were elevated in both ALF groups, consistent with the increase in blood and brain ammonia. Rhcg was mainly expressed in vascular endothelial cells and astrocytes. Pretreatment with anti-TNF-α IgG antibody downregulated Rhcg in brain tissues in the LPS/D-GalN group, prevented the occurrence of ALF, and reduced blood and brain ammonia levels in the LPS/D-GalN group. CONCLUSION TNF-α promoted the transport of ammonia from the blood to brain tissues and exacerbated the toxic effects of ammonia by upregulating Rhcg.
Collapse
Affiliation(s)
- Wen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Hui Lu
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xu Lu
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Donglei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaohan Wang
- Gastroenterology and Hepatology Department, Jiangxi Provincial People's Hospital, Nanchang City, Jiangxi Province, People's Republic of China
| | - Wenying Dai
- Department of Intervention, the Sixth People's Hospital of Shenyang, Shenyang City, Liaoning Province, People's Republic of China
| | - Jinyong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Pei Liu
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, People's Republic of China. .,The Institute of Liver Diseases of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
11
|
Calender A, Rollat Farnier PA, Buisson A, Pinson S, Bentaher A, Lebecque S, Corvol H, Abou Taam R, Houdouin V, Bardel C, Roy P, Devouassoux G, Cottin V, Seve P, Bernaudin JF, Lim CX, Weichhart T, Valeyre D, Pacheco Y, Clement A, Nathan N. Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med Genomics 2018; 11:23. [PMID: 29510755 PMCID: PMC5839022 DOI: 10.1186/s12920-018-0338-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology. METHODS From the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) ( https://clinicaltrials.gov ) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST - 2 - REF IRB 00009118 - September 21, 2016). RESULTS We identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis. CONCLUSIONS Whole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.
Collapse
Affiliation(s)
- Alain Calender
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | | | - Adrien Buisson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Abderrazzaq Bentaher
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Serge Lebecque
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
| | - Harriet Corvol
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
| | - Rola Abou Taam
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
| | - Véronique Houdouin
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
| | - Claire Bardel
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Pascal Roy
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Gilles Devouassoux
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
| | - Vincent Cottin
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
| | - Pascal Seve
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
| | | | - Clarice X. Lim
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Dominique Valeyre
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
| | - Yves Pacheco
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Annick Clement
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - Nadia Nathan
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - in the frame of GSF (Groupe Sarcoïdose France)
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
- Histology and Tumor Biology, ER2 UPMC, Hôpital Tenon, Paris, France
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| |
Collapse
|
12
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
13
|
Vaziri ND, Khazaeli M, Nunes ACF, Harley KT, Said H, Alipour O, Lau WL, Pahl MV. Effects of end-stage renal disease and dialysis modalities on blood ammonia level. Hemodial Int 2016; 21:343-347. [PMID: 27804262 DOI: 10.1111/hdi.12510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Uremia results in a characteristic breath odor (uremic fetor) which is largely due to its high ammonia content. Earlier studies have shown a strong correlation between breath ammonia and blood urea levels and a 10-fold reduction in breath ammonia after hemodialysis in patients with chronic kidney disease. Potential sources of breath ammonia include: (i) local ammonia production from hydrolysis of urea in the oropharyngeal and respiratory tracts by bacterial flora, and (ii) release of circulating blood ammonia by the lungs. While the effects of uremia and hemodialysis on breath ammonia are well known their effects on blood ammonia are unknown and were explored here. METHODS Blood samples were obtained from 23 hemodialysis patients (immediately before and after dialysis), 14 peritoneal dialysis patients, and 10 healthy controls. Blood levels of ammonia, creatinine, urea, and electrolytes were measured. FINDINGS No significant difference was found in baseline blood ammonia between hemodialysis, peritoneal dialysis and control groups. Hemodialysis procedure led to a significant reduction in urea concentration (P < 0.001) which was paradoxically accompanied by a modest but significant (P < 0.05) rise in blood ammonia level in 10 of the 23 patients studied. Change in blood ammonia pre- and post-hemodialysis correlated with change in serum bicarbonate levels (r = 0.61, P < 0.01). On subgroup analysis of patients who had a rise in blood ammonia levels after dialysis, there was a strong correlation with drop in mean arterial pressure (r = 0.88, P < 0.01). The nadir intradialytic systolic blood pressure trended lower in the hemodialysis patients who had a rise in blood ammonia compared to the patients who manifested a fall in blood ammonia (124 ± 8 vs. 136 ± 6 mmHg respectively, P = 0.27). DISCUSSION Fall in blood urea following hemodialysis in ESRD patients was paradoxically accompanied by a modest rise in blood ammonia levels in 43% of the patients studied, contrasting prior reported effects of hemodialysis on breath ammonia. In this subgroup of patients, changes in blood ammonia during hemodialysis correlated with rise in blood bicarbonate and fall in mean arterial blood pressure.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Ane C F Nunes
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Kevin T Harley
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Hyder Said
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Omeed Alipour
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Wei Ling Lau
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Madeleine V Pahl
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
14
|
Caner T, Abdulnour-Nakhoul S, Brown K, Islam MT, Hamm LL, Nakhoul NL. Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins. Am J Physiol Cell Physiol 2015; 309:C747-58. [PMID: 26354748 DOI: 10.1152/ajpcell.00085.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023]
Abstract
In this study we characterized ammonia and ammonium (NH3/NH4(+)) transport by the rhesus-associated (Rh) glycoproteins RhAG, Rhbg, and Rhcg expressed in Xenopus oocytes. We used ion-selective microelectrodes and two-electrode voltage clamp to measure changes in intracellular pH, surface pH, and whole cell currents induced by NH3/NH4(+) and methyl amine/ammonium (MA/MA(+)). These measurements allowed us to define signal-specific signatures to distinguish NH3 from NH4(+) transport and to determine how transport of NH3 and NH4(+) differs among RhAG, Rhbg, and Rhcg. Our data indicate that expression of Rh glycoproteins in oocytes generally enhanced NH3/NH4(+) transport and that cellular changes induced by transport of MA/MA(+) by Rh proteins were different from those induced by transport of NH3/NH4(+). Our results support the following conclusions: 1) RhAG and Rhbg transport both the ionic NH4(+) and neutral NH3 species; 2) transport of NH4(+) is electrogenic; 3) like Rhbg, RhAG transport of NH4(+) masks NH3 transport; and 4) Rhcg is likely to be a predominantly NH3 transporter, with no evidence of enhanced NH4(+) transport by this transporter. The dual role of Rh proteins as NH3 and NH4(+) transporters is a unique property and may be critical in understanding how transepithelial secretion of NH3/NH4(+) occurs in the renal collecting duct.
Collapse
Affiliation(s)
- Tolga Caner
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange Abdulnour-Nakhoul
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Karen Brown
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - M Toriqul Islam
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Lee Hamm
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nazih L Nakhoul
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
15
|
Zhang W, Ogando DG, Bonanno JA, Obukhov AG. Human SLC4A11 Is a Novel NH3/H+ Co-transporter. J Biol Chem 2015; 290:16894-905. [PMID: 26018076 DOI: 10.1074/jbc.m114.627455] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Indexed: 12/13/2022] Open
Abstract
SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na(+), H(+) (OH(-)), bicarbonate, borate, and NH4 (+). Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4 (+), Na(+), and H(+) contributions to electrogenic ion transport through SLC4A11 stably expressed in Na(+)/H(+) exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4 (+)]o, and current amplitudes varied with the [H(+)] gradient. These currents were relatively unaffected by removal of Na(+), K(+), or Cl(-) from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H(+)-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H(+)). NH3-dependent currents were insensitive to 10 μM ethyl-isopropyl amiloride or 100 μM 4,4'- diisothiocyanatostilbene-2,2'-disulfonic acid. We propose that SLC4A11 is an NH3/2H(+) co-transporter exhibiting unique characteristics.
Collapse
Affiliation(s)
- Wenlin Zhang
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Diego G Ogando
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Joseph A Bonanno
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Alexander G Obukhov
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
16
|
Rubino JG, Zimmer AM, Wood CM. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism. Comp Biochem Physiol A Mol Integr Physiol 2014; 183:45-56. [PMID: 25545914 DOI: 10.1016/j.cbpa.2014.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
Abstract
In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport.
Collapse
Affiliation(s)
- Julian G Rubino
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Alex M Zimmer
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| | - Chris M Wood
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Dept. of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
17
|
Geyer RR, Parker MD, Toye AM, Boron WF, Musa-Aziz R. Relative CO₂/NH₃ permeabilities of human RhAG, RhBG and RhCG. J Membr Biol 2014; 246:915-26. [PMID: 24077989 DOI: 10.1007/s00232-013-9593-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (DpHS) caused by exposing the same oocyte to 5 % CO₂/33 mM HCO₃⁻ (an increase) or 0.5 mM NH₃/NH₄⁺ (a decrease). Subtracting the respective values for day-matched, H₂O-injected control oocytes yielded channel-specific values (*). (ΔpH*(S))(CO₂) and (-ΔpH*(S))(NH₃) were each significantly >0 for all channels, indicating that RhBG and RhCG--like RhAG--can carry CO₂ and NH₃. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH₃ transport. However, surface biotinylation experiments indicate the mutants RhBG(D178N) and RhCG(D177N) have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG--like RhAG--have significant CO₂ permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH₃ permeability. However, as evidenced by (ΔpH*(S))(CO₂)/ (-ΔpH*(S))(NH₃) values, we could not distinguish among the CO₂/ NH₃ permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH₃ but also CO₂ across the membranes of CD cells.
Collapse
|
18
|
Weiner ID, Verlander JW. Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 2014; 306:F1107-20. [PMID: 24647713 PMCID: PMC4024734 DOI: 10.1152/ajprenal.00013.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and
| |
Collapse
|
19
|
Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis. Bioanalysis 2014; 6:843-57. [DOI: 10.4155/bio.14.26] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The volatile metabolites present in trace amounts in exhaled breath of healthy individuals and patients, for example those with advanced chronic kidney disease (CKD), can now be detected and quantified by sensitive analytical techniques. In this review, special attention is given to the major retention metabolites resulting from dialysis-dependent CKD stage 5 and especially ammonia, as a potential estimator of the severity of uremia. However, other biomarkers are important, including the hydrocarbons isoprene, ethane and pentane, in that they are likely to indicate tissue injury associated with the dialysis treatment itself. Evaluation of over-hydration, a serious complication of CKD stage5 can be improved by analysis of deuterium in exhaled water vapor after ingestion of a known amount of deuterated water, so providing total body water measurements at the bedside to support clinical management of volume status.
Collapse
|
20
|
Jankowski J, Westhof T, Vaziri ND, Ingrosso D, Perna AF. Gases as Uremic Toxins: Is There Something in the Air? Semin Nephrol 2014; 34:135-50. [DOI: 10.1016/j.semnephrol.2014.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Lee HW, Verlander JW, Handlogten ME, Han KH, Weiner ID. Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis. Am J Physiol Renal Physiol 2013; 306:F389-400. [PMID: 24338819 DOI: 10.1152/ajprenal.00176.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3(-) were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1-5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na(+)/H(+) exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Div. of Nephrology, Hypertension, and Transplantation, Univ. of Florida College of Medicine, PO Box 100224, Gainesville, FL 32610.
| | | | | | | | | |
Collapse
|
22
|
Lee HW, Verlander JW, Handlogten ME, Han KH, Cooke PS, Weiner ID. Expression of the rhesus glycoproteins, ammonia transporter family members, RHCG and RHBG in male reproductive organs. Reproduction 2013; 146:283-96. [PMID: 23904565 DOI: 10.1530/rep-13-0154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rhesus glycoproteins, Rh B glycoprotein (RHBG) and Rh C glycoprotein (RHCG), are recently identified ammonia transporters. Rhcg expression is necessary for normal male fertility, but its specific cellular expression is unknown, and Rhbg has not been reported to be expressed in the male reproductive tract. This study sought to determine the specific cellular expression of Rhcg, to determine whether Rhbg is expressed in the male reproductive tract, and, if so, to determine which cells express Rhbg using real-time RT-PCR, immunoblot analysis, and immunohistochemistry. Both Rhbg and Rhcg were expressed throughout the male reproductive tract. In the testis, high levels of Rhbg were expressed in Leydig cells, and Rhcg was expressed in spermatids during the later stages of their maturation (steps 13-16) in stages I-VIII of the seminiferous epithelium cycle. In the epididymis, basolateral Rhbg was present in narrow cells in the initial segment, in principal cells in the upper corpus, and in clear cells throughout the epididymis. Apical Rhcg immunolabel was present in principal cells in the caput and upper corpus epididymidis and in clear cells in the middle and lower corpus and cauda epididymidis. In the vas deferens, apical Rhcg immunolabel and basolateral Rhbg immunolabel were present in some principal cells and colocalized with H(+)-ATPase immunolabel. We conclude that both Rhbg and Rhcg are highly expressed in specific cells in the male reproductive tract where they can contribute to multiple components of male fertility.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Medicine, University of Florida College of Medicine, P.O. Box 100224, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
24
|
Sethi RS, Schneberger D, Singh B. Characterization of the lung epithelium of wild-type and TLR9(-/-) mice after single and repeated exposures to chicken barn air. ACTA ACUST UNITED AC 2011; 65:357-64. [PMID: 22205119 DOI: 10.1016/j.etp.2011.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/09/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022]
Abstract
Exposure to chicken barn air causes lung injury resulting in lower and upper respiratory symptoms in the poultry workers, and mechanisms of which are not fully understood. The lung injury can initiate modifications such as proliferation of the airway epithelial cells such as Clara cells, type II alveolar (T2) cells and mucus producing goblet cells as part of the innate immune response. Toll-like receptors (TLR) have been suggested to play a role in cell division and proliferation. To understand the effect of TLR9 on Clara cells, T2 and mucus-producing goblet cells, we quantified the numbers of these cells in the lungs of wild-type (WT) and TLR9(-/-) mice exposed to chicken barn air. The mice were exposed for either one day or five or 20 days for 8 h/day. Clara cells and T2 cells were labelled with antibodies, and the mucus cells were identified with Periodic-acid Schiff stain, and quantified in per unit tissue section area. The data show decrease in the number of Clara cells and increase in mucus-producing goblet cells after exposure to chicken barn air in both WT and TLR9(-/-) mice. Numbers of T2 cells increased and decreased in WT and TLR9(-/-) mice, respectively, after exposure to poultry barn air. These data show that exposure to chicken barn air can affect major lung epithelial cells, and allude to the role of TLR9 in regulation of some of these responses.
Collapse
Affiliation(s)
- Ram Saran Sethi
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | | |
Collapse
|
25
|
Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 2011; 300:F11-23. [PMID: 21048022 PMCID: PMC3023229 DOI: 10.1152/ajprenal.00554.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022] Open
Abstract
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
26
|
Wagner CA, Devuyst O, Belge H, Bourgeois S, Houillier P. The rhesus protein RhCG: a new perspective in ammonium transport and distal urinary acidification. Kidney Int 2011; 79:154-61. [DOI: 10.1038/ki.2010.386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Endre ZH, Pickering JW, Storer MK, Hu WP, Moorhead KT, Allardyce R, McGregor DO, Scotter JM. Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas 2010; 32:115-30. [PMID: 21149927 DOI: 10.1088/0967-3334/32/1/008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-invasive monitoring of breath ammonia and trimethylamine using Selected-ion-flow-tube mass spectroscopy (SIFT-MS) could provide a real-time alternative to current invasive techniques. Breath ammonia and trimethylamine were monitored by SIFT-MS before, during and after haemodialysis in 20 patients. In 15 patients (41 sessions), breath was collected hourly into Tedlar bags and analysed immediately (group A). During multiple dialyses over 8 days, five patients breathed directly into the SIFT-MS analyser every 30 min (group B). Pre- and post-dialysis direct breath concentrations were compared with urea reduction, Kt/V and creatinine concentrations. Dialysis decreased breath ammonia, but a transient increase occurred mid treatment in some patients. Trimethylamine decreased more rapidly than reported previously. Pre-dialysis breath ammonia correlated with pre-dialysis urea in group B (r(2) = 0.71) and with change in urea (group A, r(2) = 0.24; group B, r(2) = 0.74). In group B, ammonia correlated with change in creatinine (r(2) = 0.35), weight (r(2) = 0.52) and Kt/V (r(2) = 0.30). The ammonia reduction ratio correlated with the urea reduction ratio (URR) (r(2) = 0.42) and Kt/V (r(2) = 0.38). Pre-dialysis trimethylamine correlated with Kt/V (r(2) = 0.21), and the trimethylamine reduction ratio with URR (r(2) = 0.49) and Kt/V (r(2) = 0.36). Real-time breath analysis revealed previously unmeasurable differences in clearance kinetics of ammonia and trimethylamine. Breath ammonia is potentially useful in assessment of dialysis efficacy.
Collapse
Affiliation(s)
- Z H Endre
- Christchurch Kidney Research Group, Department of Medicine, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Recent studies have identified a new family of ammonia-specific transporters, Rh glycoproteins, which enable NH3-specific transport. The purpose of this review is to summarize recent evidence regarding the role of Rh glycoproteins in renal ammonia transport. RECENT FINDINGS The Rh glycoproteins, RhAG/Rhag, RhBG/Rhbg and RhCG/Rhcg, transport ammonia in the form of molecular NH3, although there is some evidence suggesting the possibility of NH4 transport. RhAG/Rhag is expressed only in erythrocytes, and not in the kidney. Rhbg and Rhcg are expressed in distal nephron sites, from the distal convoluted tubule through the inner medullary collecting duct, with basolateral Rhbg expression and both apical and basolateral Rhcg expression. Whether Rhbg contributes to renal ammonia transport remains controversial. Rhcg expression parallels ammonia excretion in multiple experimental models and genetic deletion studies, both global and collecting duct-specific, demonstrate a critical role for Rhcg in both basal and acidosis-stimulated renal ammonia excretion. X-ray crystallography has defined critical structural elements in Rh glycoprotein-mediated ammonia transport. Finally, Rh glycoproteins may also function as CO2 transporters. SUMMARY No longer can NH3 transport be considered to occur only through diffusive NH3 movement. Transporter-mediated NH3 movement is fundamental to ammonia metabolism.
Collapse
|
29
|
Abstract
The traditional dogma has been that all gases diffuse through all membranes simply by dissolving in the lipid phase of the membrane. Although this mechanism may explain how most gases move through most membranes, it is now clear that some membranes have no demonstrable gas permeability, and that at least two families of membrane proteins, the aquaporins (AQPs) and the Rhesus (Rh) proteins, can each serve as pathways for the diffusion of both CO2 and NH3. The knockout of RhCG in the renal collecting duct leads to the predicted consequences in acid–base physiology, providing a clear-cut role for at least one gas channel in the normal physiology of mammals. In our laboratory, we have found that surface-pH (pHS) transients provide a sensitive approach for detecting CO2 and NH3 movement across the cell membranes of Xenopus oocytes. Using this approach, we have found that each tested AQP and Rh protein has its own characteristic CO2/NH3 permeability ratio, which provides the first demonstration of gas selectivity by a channel. Our preliminary AQP1 data suggest that all the NH3 and less than half of the CO2 move along with H2O through the four monomeric aquapores. The majority of CO2 takes an alternative route through AQP1, possibly the central pore at the four-fold axis of symmetry. Preliminary data with two Rh proteins, bacterial AmtB and human erythroid RhAG, suggest a similar story, with all the NH3 moving through the three monomeric NH3 pores and the CO2 taking a separate route, perhaps the central pore at the three-fold axis of symmetry. The movement of different gases via different pathways is likely to underlie the gas selectivity that these channels exhibit.
Collapse
Affiliation(s)
- Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| |
Collapse
|
30
|
Bishop JM, Verlander JW, Lee HW, Nelson RD, Weiner AJ, Handlogten ME, Weiner ID. Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol 2010; 299:F1065-77. [PMID: 20719974 DOI: 10.1152/ajprenal.00277.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbg's role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2-4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.
Collapse
Affiliation(s)
- Jesse M Bishop
- Div. of Nephrology, Hypertension, and Transplantation, P.O. Box 100224, Univ. of Florida College of Medicine, Gainesville, FL 32610-0224, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Han KH, Lee SY, Kim WY, Shin JA, Kim J, Weiner ID. Expression of ammonia transporter family members, Rh B glycoprotein and Rh C glycoprotein, in the developing rat kidney. Am J Physiol Renal Physiol 2010; 299:F187-98. [PMID: 20392801 PMCID: PMC2904167 DOI: 10.1152/ajprenal.00607.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/10/2010] [Indexed: 11/22/2022] Open
Abstract
Ammonia metabolism is a primary component of acid-base homeostasis but is incompletely developed at time of birth. Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg) are recently recognized ammonia transporter family members expressed in the mammalian kidney. This study's purpose was to establish the expression and localization of Rhbg and Rhcg during kidney development. We examined kidneys from fetal days 16 (E16), 18 (E18), and 20 (E20), and from the first 21 days of postnatal development. Rhbg was expressed initially at E18, with expression only in the connecting tubule (CNT); at E20, Rhbg was expressed in both the CNT and the medullary collecting duct (MCD). In contrast, Rhcg was first expressed at E16 with basal expression in the ureteric bud; at E18, it was expressed in a subset of CNT cells with an apical pattern, followed by apical and basolateral expression in the MCD at E20. In the cortex, Rhbg and Rhcg expression increased in the CNT before expression in the cortical collecting duct during fetal development. In the MCD, both Rhbg and Rhcg expression was initially in cells in the papillary tip, with gradual removal from the tip during the late fetal period and transition during the early neonatal period to an adult pattern with predominant expression in the outer MCD and only rare expression in cells in the initial inner MCD. Double-labeling with intercalated cell-specific markers identified that Rhbg and Rhcg were expressed initially in CNT cells, CNT A-type intercalated cells and non-A, non-B intercalated cells, and in MCD A-type intercalated cells. We conclude that expression of Rhbg and Rhcg parallels intercalated cell development and that immature Rhbg and Rhcg expression at birth contributes to incomplete ammonia excretion capacity.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Lee HW, Verlander JW, Bishop JM, Nelson RD, Handlogten ME, Weiner ID. Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion. Am J Physiol Renal Physiol 2010; 299:F369-79. [PMID: 20462967 DOI: 10.1152/ajprenal.00120.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
33
|
Mouro-Chanteloup I, Cochet S, Chami M, Genetet S, Zidi-Yahiaoui N, Engel A, Colin Y, Bertrand O, Ripoche P. Functional reconstitution into liposomes of purified human RhCG ammonia channel. PLoS One 2010; 5:e8921. [PMID: 20126667 PMCID: PMC2812482 DOI: 10.1371/journal.pone.0008921] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/08/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Rh glycoproteins (RhAG, RhBG, RhCG) are members of the Amt/Mep/Rh family which facilitate movement of ammonium across plasma membranes. Changes in ammonium transport activity following expression of Rh glycoproteins have been described in different heterologous systems such as yeasts, oocytes and eukaryotic cell lines. However, in these complex systems, a potential contribution of endogenous proteins to this function cannot be excluded. To demonstrate that Rh glycoproteins by themselves transport NH(3), human RhCG was purified to homogeneity and reconstituted into liposomes, giving new insights into its channel functional properties. METHODOLOGY/PRINCIPAL FINDINGS An HA-tag introduced in the second extracellular loop of RhCG was used to purify to homogeneity the HA-tagged RhCG glycoprotein from detergent-solubilized recombinant HEK293E cells. Electron microscopy analysis of negatively stained purified RhCG-HA revealed, after image processing, homogeneous particles of 9 nm diameter with a trimeric protein structure. Reconstitution was performed with sphingomyelin, phosphatidylcholine and phosphatidic acid lipids in the presence of the C(12)E(8) detergent which was subsequently removed by Biobeads. Control of protein incorporation was carried out by freeze-fracture electron microscopy. Particle density in liposomes was a function of the Lipid/Protein ratio. When compared to empty liposomes, ammonium permeability was increased two and three fold in RhCG-proteoliposomes, depending on the Lipid/Protein ratio (1/300 and 1/150, respectively). This strong NH(3) transport was reversibly inhibited by mercuric and copper salts and exhibited a low Arrhenius activation energy. CONCLUSIONS/SIGNIFICANCE This study allowed the determination of ammonia permeability per RhCG monomer, showing that the apparent Punit(NH3) (around 1x10(-3) microm(3)xs(-1)) is close to the permeability measured in HEK293E cells expressing a recombinant human RhCG (1.60x10(-3) microm(3)xs(-1)), and in human red blood cells endogenously expressing RhAG (2.18x10(-3) microm(3)xs(-1)). The major finding of this study is that RhCG protein is active as an NH(3) channel and that this function does not require any protein partner.
Collapse
|
34
|
Han KH, Kim HY, Weiner ID. Expression of rh glycoproteins in the Mammalian kidney. Electrolyte Blood Press 2009; 7:14-9. [PMID: 21468180 PMCID: PMC3041478 DOI: 10.5049/ebp.2009.7.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/21/2009] [Indexed: 11/05/2022] Open
Abstract
Ammonia metabolism is a fundamental process in the maintenance of life in all living organisms. Recent studies have identified ammonia transporter family proteins in yeast (Mep), plants (Amt), and mammals (Rh glycoproteins). In mammalian kidneys, where ammonia metabolism and transport are critically important for the regulation of systemic acid-base homeostasis, basolateral Rh B glycoprotein and apical/basolateral Rh C glycoprotein are expressed along the distal nephron segments. Data from experimental animal models and knockout mice suggest that the Rh glycoproteins appear to mediate important roles in urinary ammonia excretion.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|