1
|
Stoyek MR, Doane SE, Dallaire SE, Long ZD, Ramia JM, Cassidy-Nolan DL, Poon KL, Brand T, Quinn TA. POPDC1 Variants Cause Atrioventricular Node Dysfunction and Arrhythmogenic Changes in Cardiac Electrophysiology and Intracellular Calcium Handling in Zebrafish. Genes (Basel) 2024; 15:280. [PMID: 38540339 PMCID: PMC10969970 DOI: 10.3390/genes15030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/15/2024] Open
Abstract
Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by β-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Sarah E. Doane
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Shannon E. Dallaire
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Zachary D. Long
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Jessica M. Ramia
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Donovan L. Cassidy-Nolan
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Kar-Lai Poon
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK; (K.-L.P.); (T.B.)
| | - Thomas Brand
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK; (K.-L.P.); (T.B.)
| | - T. Alexander Quinn
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Liu M, Zou X, Fu M, Bai X, Zhao Y, Chen X, Wang X, Wang P, Huang S. Mild cold stress specifically disturbs clustering movement of DFCs and sequential organ left-right patterning in zebrafish. Front Cell Dev Biol 2022; 10:952844. [PMID: 36211472 PMCID: PMC9539758 DOI: 10.3389/fcell.2022.952844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
In poikilothermic animals, the distinct acclimatization ability of different organs has been previously addressed, while the tissue-specific role of cold stress in early development is largely unknown. In this study, we discovered that despite its role in delaying embryonic development, mild cold stress (22°C) does not disturb multiple-organ progenitor specification, but does give rise to organ left-right (LR) patterning defects. Regarding the mechanism, the data showed that mild cold stress downregulated the expression of cell-adhesion genes cdh1 and cdh2 during gastrulation, especially in dorsal forerunner cells (DFCs), which partially disturbed the clustering movement of DFCs, Kupffer’s vesicle (KV) morphogenesis, and ciliogenesis. As a result, the defects of KV/cilia disrupted asymmetric nodal signaling and subsequent heart and liver LR patterning. In conclusion, our data novelly identified that, in early development, DFCs are more sensitive to mild cold stress, and mild cold stress repressed the expression of cell adhesion-related gene cdh1 and cdh2. This role partially disturbed the clustering movement of DFCs, which resulted in defective KV/cilia development and sequential organ LR patterning defects.
Collapse
Affiliation(s)
- Min Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Cardiology, the First Affiliated Hospital, Chengdu Medical College, Chengdu, China
| | - Xinyu Zou
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Mao Fu
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xinping Bai
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yongyan Zhao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xin Chen
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Xiaoyu Wang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Peijian Wang
- Department of Cardiology, the First Affiliated Hospital, Chengdu Medical College, Chengdu, China
- *Correspondence: Peijian Wang, ; Sizhou Huang,
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- *Correspondence: Peijian Wang, ; Sizhou Huang,
| |
Collapse
|
3
|
Liu J, Kasuya G, Zempo B, Nakajo K. Two HCN4 Channels Play Functional Roles in the Zebrafish Heart. Front Physiol 2022; 13:901571. [PMID: 35846012 PMCID: PMC9281569 DOI: 10.3389/fphys.2022.901571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The HCN4 channel is essential for heart rate regulation in vertebrates by generating pacemaker potentials in the sinoatrial node. HCN4 channel abnormality may cause bradycardia and sick sinus syndrome, making it an important target for clinical research and drug discovery. The zebrafish is a popular animal model for cardiovascular research. They are potentially suitable for studying inherited heart diseases, including cardiac arrhythmia. However, it has not been determined how similar the ion channels that underlie cardiac automaticity are in zebrafish and humans. In the case of HCN4, humans have one gene, whereas zebrafish have two ortholog genes (DrHCN4 and DrHCN4L; ‘Dr’ referring to Danio rerio). However, it is not known whether the two HCN4 channels have different physiological functions and roles in heart rate regulation. In this study, we characterized the biophysical properties of the two zebrafish HCN4 channels in Xenopus oocytes and compared them to those of the human HCN4 channel. We found that they showed different gating properties: DrHCN4L currents showed faster activation kinetics and a more positively shifted G-V curve than did DrHCN4 and human HCN4 currents. We made chimeric channels of DrHCN4 and DrHCN4L and found that cytoplasmic domains were determinants for the faster activation and the positively shifted G-V relationship in DrHCN4L. The use of a dominant-negative HCN4 mutant confirmed that DrHCN4 and DrHCN4L can form a heteromultimeric channel in Xenopus oocytes. Next, we confirmed that both are sensitive to common HCN channel inhibitors/blockers including Cs+, ivabradine, and ZD7288. These HCN inhibitors successfully lowered zebrafish heart rate during early embryonic stages. Finally, we knocked down the HCN4 genes using antisense morpholino and found that knocking down either or both of the HCN4 channels caused a temporal decrease in heart rate and tended to cause pericardial edema. These findings suggest that both DrHCN4 and DrHCN4L play a significant role in zebrafish heart rate regulation.
Collapse
|
4
|
Reid CH, Patrick PH, Rytwinski T, Taylor JJ, Willmore WG, Reesor B, Cooke SJ. An updated review of cold shock and cold stress in fish. JOURNAL OF FISH BIOLOGY 2022; 100:1102-1137. [PMID: 35285021 DOI: 10.1111/jfb.15037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Temperature is critical in regulating virtually all biological functions in fish. Low temperature stress (cold shock/stress) is an often-overlooked challenge that many fish face as a result of both natural events and anthropogenic activities. In this study, we present an updated review of the cold shock literature based on a comprehensive literature search, following an initial review on the subject by M.R. Donaldson and colleagues, published in a 2008 volume of this journal. We focus on how knowledge on cold shock and fish has evolved over the past decade, describing advances in the understanding of the generalized stress response in fish under cold stress, what metrics may be used to quantify cold stress and what knowledge gaps remain to be addressed in future research. We also describe the relevance of cold shock as it pertains to environmental managers, policymakers and industry professionals, including practical applications of cold shock. Although substantial progress has been made in addressing some of the knowledge gaps identified a decade ago, other topics (e.g., population-level effects and interactions between primary, secondary and tertiary stress responses) have received little or no attention despite their significance to fish biology and thermal stress. Approaches using combinations of primary, secondary and tertiary stress responses are crucial as a research priority to better understand the mechanisms underlying cold shock responses, from short-term physiological changes to individual- and population-level effects, thereby providing researchers with better means of quantifying cold shock in laboratory and field settings.
Collapse
Affiliation(s)
- Connor H Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Trina Rytwinski
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jessica J Taylor
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Sacconi L, Silvestri L, Rodríguez EC, Armstrong GA, Pavone FS, Shrier A, Bub G. KHz-rate volumetric voltage imaging of the whole Zebrafish heart. BIOPHYSICAL REPORTS 2022; 2:100046. [PMID: 36425080 PMCID: PMC9680780 DOI: 10.1016/j.bpr.2022.100046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 05/11/2023]
Abstract
Fast volumetric imaging is essential for understanding the function of excitable tissues such as those found in the brain and heart. Measuring cardiac voltage transients in tissue volumes is challenging, especially at the high spatial and temporal resolutions needed to give insight to cardiac function. We introduce a new imaging modality based on simultaneous illumination of multiple planes in the tissue and parallel detection with multiple cameras, avoiding compromises inherent in any scanning approach. The system enables imaging of voltage transients in situ, allowing us, for the first time to our knowledge, to map voltage activity in the whole heart volume at KHz rates. The high spatiotemporal resolution of our method enabled the observation of novel dynamics of electrical propagation through the zebrafish atrioventricular canal.
Collapse
Affiliation(s)
- Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Corresponding author
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | - Gary A.B. Armstrong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Francesco S. Pavone
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Canada
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
- Corresponding author
| |
Collapse
|
6
|
Stoyek MR, MacDonald EA, Mantifel M, Baillie JS, Selig BM, Croll RP, Smith FM, Quinn TA. Drivers of Sinoatrial Node Automaticity in Zebrafish: Comparison With Mechanisms of Mammalian Pacemaker Function. Front Physiol 2022; 13:818122. [PMID: 35295582 PMCID: PMC8919049 DOI: 10.3389/fphys.2022.818122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac excitation originates in the sinoatrial node (SAN), due to the automaticity of this distinct region of the heart. SAN automaticity is the result of a gradual depolarisation of the membrane potential in diastole, driven by a coupled system of transarcolemmal ion currents and intracellular Ca2+ cycling. The frequency of SAN excitation determines heart rate and is under the control of extra- and intracardiac (extrinsic and intrinsic) factors, including neural inputs and responses to tissue stretch. While the structure, function, and control of the SAN have been extensively studied in mammals, and some critical aspects have been shown to be similar in zebrafish, the specific drivers of zebrafish SAN automaticity and the response of its excitation to vagal nerve stimulation and mechanical preload remain incompletely understood. As the zebrafish represents an important alternative experimental model for the study of cardiac (patho-) physiology, we sought to determine its drivers of SAN automaticity and the response to nerve stimulation and baseline stretch. Using a pharmacological approach mirroring classic mammalian experiments, along with electrical stimulation of intact cardiac vagal nerves and the application of mechanical preload to the SAN, we demonstrate that the principal components of the coupled membrane- Ca2+ pacemaker system that drives automaticity in mammals are also active in the zebrafish, and that the effects of extra- and intracardiac control of heart rate seen in mammals are also present. Overall, these results, combined with previously published work, support the utility of the zebrafish as a novel experimental model for studies of SAN (patho-) physiological function.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Melissa Mantifel
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Bailey M. Selig
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Frank M. Smith
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
7
|
The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (Danio rerio) during incremental warming. Curr Res Physiol 2022; 5:48-54. [PMID: 35128467 PMCID: PMC8803472 DOI: 10.1016/j.crphys.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Blebbistatin potently inhibits actin-myosin interaction, preventing contractile activity of excitable cells including cardiac myocytes, despite electrical excitation of an action potential (AP). We collected intracellular microelectrode recordings of pacemaker cells located in the sinoatrial region (SAR) of the zebrafish heart at room temperature and during acute warming to investigate whether or not blebbistatin inhibition of contraction significantly alters pacemaker cell electrophysiology. Changes were evaluated based on 16 variables that characterized the AP waveform. None of these AP variables nor the spontaneous heart rate were significantly modified with the application of 10 μM blebbistatin when recordings were made at room temperature. Compared with the control group, the blebbistatin-treated group showed minor changes in the rate of spontaneous diastolic depolarization (P = 0.027) and the 50% and 80% repolarization (P = 0.008 and 0.010, respectively) in the 26°C–29°C temperature bin, but not at higher temperatures. These findings suggest that blebbistatin is an effective excitation-contraction uncoupler that does not appreciably affect APs generated in pacemaking cells of the SAR and can, therefore, be used in zebrafish cardiac studies. Blebbistatin uncouples excitation-contraction in zebrafish cardiomyocytes. Blebbistatin does not modify the pacemaker action potential variables. Temperature does not modify the effect of blebbistatin. First validation of the use of blebbistatin in adult fish. Methodology of intracellular microelectrode recording of zebrafish pacemaker cells.
Collapse
|
8
|
Stoyek MR, Hortells L, Quinn TA. From Mice to Mainframes: Experimental Models for Investigation of the Intracardiac Nervous System. J Cardiovasc Dev Dis 2021; 8:149. [PMID: 34821702 PMCID: PMC8620975 DOI: 10.3390/jcdd8110149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
The intracardiac nervous system (IcNS), sometimes referred to as the "little brain" of the heart, is involved in modulating many aspects of cardiac physiology. In recent years our fundamental understanding of autonomic control of the heart has drastically improved, and the IcNS is increasingly being viewed as a therapeutic target in cardiovascular disease. However, investigations of the physiology and specific roles of intracardiac neurons within the neural circuitry mediating cardiac control has been hampered by an incomplete knowledge of the anatomical organisation of the IcNS. A more thorough understanding of the IcNS is hoped to promote the development of new, highly targeted therapies to modulate IcNS activity in cardiovascular disease. In this paper, we first provide an overview of IcNS anatomy and function derived from experiments in mammals. We then provide descriptions of alternate experimental models for investigation of the IcNS, focusing on a non-mammalian model (zebrafish), neuron-cardiomyocyte co-cultures, and computational models to demonstrate how the similarity of the relevant processes in each model can help to further our understanding of the IcNS in health and disease.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg–Bad Krozingen, 79110 Freiburg, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
- School of Biomedical Engineering, Dalhousie University, Halifax, NS 15000, Canada
| |
Collapse
|
9
|
Takase B, Higashimura Y, Asahina H, Ishihara M, Sakai H. Liposome-encapsulated hemoglobin (HbV) transfusion rescues rats undergoing progressive lethal 85% hemorrhage as a result of an anti-arrhythmogenic effect on the myocardium. Artif Organs 2021; 45:1391-1404. [PMID: 34219238 DOI: 10.1111/aor.14033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022]
Abstract
Liposome-encapsulated hemoglobin vesicles (HbV) can serve as a blood substitute with oxygen-carrying capacity comparable to that of human blood and lethal hemorrhage is associated with lethal arrhythmias. To investigate the resuscitation effect of HbV on lethal hemorrhage and anti-arrhythmogenesis, we performed optical mapping analysis (OMP) and electrophysiological study (EPS) in graded blood exchange (85% blood loss) in the rat model. We also measured cardiac autonomic activity, as assessed by heart rate variability (HRV), and changes in plasma norepinephrine and left ventricle ejection fraction (LVEF) by echocardiography. Pathological study on Connexin43 was performed. A 5% albumin (ALB group), washed rat erythrocytes (wRBC group), and HbV (HbV group) were used as a resuscitation fluid. The survival effects over 24 hours were examined. All rats died in the ALB group, whereas almost all survived for 24-hours period in wRBC and HbV groups. OMP showed impaired action potential duration dispersion (APDd) in the ALB group, whereas normal APDs in HbV and wRBC groups. Lethal arrhythmias were induced by EPS in the ALB group, but not in wRBC and HbV groups. HRV indices, LVEF, Connexin43 were preserved in HbV and wRBC groups. Lethal hemorrhage causes lethal arrhythmias in the presence of impaired APDd. HbV acutely rescues lethal hemorrhage by preventing lethal arrhythmias and preserving arrhythmogenic factors.
Collapse
Affiliation(s)
- Bonpei Takase
- Department of Intensive Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yuko Higashimura
- Department of Intensive Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Haruka Asahina
- Department of Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Hiromi Sakai
- Department of Chemistry, School of Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
10
|
Duong T, Rose R, Blazeski A, Fine N, Woods CE, Thole JF, Sotoodehnia N, Soliman EZ, Tung L, McCallion AS, Arking DE. Development and optimization of an in vivo electrocardiogram recording method and analysis program for adult zebrafish. Dis Model Mech 2021; 14:dmm048827. [PMID: 34378773 PMCID: PMC8380046 DOI: 10.1242/dmm.048827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Clinically pertinent electrocardiogram (ECG) data from model systems, such as zebrafish, are crucial for illuminating factors contributing to human cardiac electrophysiological abnormalities and disease. Current zebrafish ECG collection strategies have not adequately addressed the consistent acquisition of high-quality traces or sources of phenotypic variation that could obscure data interpretation. Thus, we developed a novel platform to ensure high-quality recording of in vivo subdermal adult zebrafish ECGs and zebrafish ECG reading GUI (zERG), a program to acquire measurements from traces that commercial software cannot examine owing to erroneous peak calling. We evaluate normal ECG trait variation, revealing highly reproducible intervals and wave amplitude variation largely driven by recording artifacts, and identify sex and body size as potential confounders to PR, QRS and QT intervals. With this framework, we characterize the effect of the class I anti-arrhythmic drug flecainide acetate on adults, provide support for the impact of a Long QT syndrome model, and establish power calculations for this and other studies. These results highlight our pipeline as a robust approach to evaluate zebrafish models of human cardiac electrophysiological phenotypes.
Collapse
Affiliation(s)
- ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adriana Blazeski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Noah Fine
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Courtney E. Woods
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph F. Thole
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA 98101, USA
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, NC 27101, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew S. McCallion
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Arslanova A, Shafaattalab S, Lin E, Barszczewski T, Hove-Madsen L, Tibbits GF. Investigating inherited arrhythmias using hiPSC-derived cardiomyocytes. Methods 2021; 203:542-557. [PMID: 34197925 DOI: 10.1016/j.ymeth.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Fundamental to the functional behavior of cardiac muscle is that the cardiomyocytes are integrated as a functional syncytium. Disrupted electrical activity in the cardiac tissue can lead to serious complications including cardiac arrhythmias. Therefore, it is important to study electrophysiological properties of the cardiac tissue. With advancements in stem cell research, protocols for the production of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been established, providing great potential in modelling cardiac arrhythmias and drug testing. The hiPSC-CM model can be used in conjunction with electrophysiology-based platforms to examine the electrical activity of the cardiac tissue. Techniques for determining the myocardial electrical activity include multielectrode arrays (MEAs), optical mapping (OM), and patch clamping. These techniques provide critical approaches to investigate cardiac electrical abnormalities that underlie arrhythmias.
Collapse
Affiliation(s)
- Alia Arslanova
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Eric Lin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada
| | - Tiffany Barszczewski
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
12
|
Santiago CF, Huttner IG, Fatkin D. Mechanisms of TTNtv-Related Dilated Cardiomyopathy: Insights from Zebrafish Models. J Cardiovasc Dev Dis 2021; 8:jcdd8020010. [PMID: 33504111 PMCID: PMC7912658 DOI: 10.3390/jcdd8020010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder characterized by ventricular dilation and contractile dysfunction that is associated with significant morbidity and mortality. New insights into disease mechanisms and strategies for treatment and prevention are urgently needed. Truncating variants in the TTN gene, which encodes the giant sarcomeric protein titin (TTNtv), are the most common genetic cause of DCM, but exactly how TTNtv promote cardiomyocyte dysfunction is not known. Although rodent models have been widely used to investigate titin biology, they have had limited utility for TTNtv-related DCM. In recent years, zebrafish (Danio rerio) have emerged as a powerful alternative model system for studying titin function in the healthy and diseased heart. Optically transparent embryonic zebrafish models have demonstrated key roles of titin in sarcomere assembly and cardiac development. The increasing availability of sophisticated imaging tools for assessment of heart function in adult zebrafish has revolutionized the field and opened new opportunities for modelling human genetic disorders. Genetically modified zebrafish that carry a human A-band TTNtv have now been generated and shown to spontaneously develop DCM with age. This zebrafish model will be a valuable resource for elucidating the phenotype modifying effects of genetic and environmental factors, and for exploring new drug therapies.
Collapse
Affiliation(s)
- Celine F. Santiago
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Inken G. Huttner
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cardiology Department, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- Correspondence:
| |
Collapse
|
13
|
Sieliwonczyk E, Matchkov VV, Vandendriessche B, Alaerts M, Bakkers J, Loeys B, Schepers D. Inherited Ventricular Arrhythmia in Zebrafish: Genetic Models and Phenotyping Tools. Rev Physiol Biochem Pharmacol 2021; 184:33-68. [PMID: 34533615 DOI: 10.1007/112_2021_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the last years, the field of inheritable ventricular arrhythmia disease modelling has changed significantly with a push towards the use of novel cellular cardiomyocyte based models. However, there is a growing need for new in vivo models to study the disease pathology at the tissue and organ level. Zebrafish provide an excellent opportunity for in vivo modelling of inheritable ventricular arrhythmia syndromes due to the remarkable similarity between their cardiac electrophysiology and that of humans. Additionally, many state-of-the-art methods in gene editing and electrophysiological phenotyping are available for zebrafish research. In this review, we give a comprehensive overview of the published zebrafish genetic models for primary electrical disorders and arrhythmogenic cardiomyopathy. We summarise and discuss the strengths and weaknesses of the different technical approaches for the generation of genetically modified zebrafish disease models, as well as the electrophysiological approaches in zebrafish phenotyping. By providing this detailed overview, we aim to draw attention to the potential of the zebrafish model for studying arrhythmia syndromes at the organ level and as a platform for personalised medicine and drug testing.
Collapse
Affiliation(s)
- Ewa Sieliwonczyk
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| | - Vladimir V Matchkov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Bert Vandendriessche
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Jeroen Bakkers
- Hubrecht Institute for Developmental and Stem Cell Biology, Utrecht, The Netherlands
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Dorien Schepers
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Vityazev VA, Azarov JE. Stretch-excitation correlation in the toad heart. J Exp Biol 2020; 223:jeb228882. [PMID: 33161379 DOI: 10.1242/jeb.228882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022]
Abstract
The activation sequence of the ventricular myocardium in ectotherms is a matter of debate. We studied the correlation between the ventricular activation sequence and the pattern of local stretches in 13 toads (Bufo bufo). Epicardial potential mapping was done with a 56-lead sock array. Activation times were determined as dV/dt (min) in each lead. Initial epicardial foci of activation were found on the left side of the ventricular base, whereas regions on the apex and the right side of the base demonstrated late activation. Video recordings (50 frames s-1) showed that the median presystolic stretch in left-side ventricular regions was greater than that in right-side regions [4.70% (interquartile range 3.25-8.85%) versus 1.45% (interquartile range 0.38-3.05%), P=0.028, respectively]. Intracardiac bolus injection elicited ventricular activation with a similar sequence and duration. Thus, ventricular areas of earliest activation were associated with greater presystolic stretch, implying the existence of a stretch-excitation relationship in ectotherm hearts.
Collapse
Affiliation(s)
- Vladimir A Vityazev
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Komi Republic, Russia
| | - Jan E Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Komi Republic, Russia
- Department of Biochemistry and Physiology, Institute of Medicine of the Pitirim Sorokin Syktyvkar State University, Syktyvkar, 167001, Komi Republic, Russia
| |
Collapse
|
15
|
Bazmi M, Escobar AL. Excitation-Contraction Coupling in the Goldfish ( Carassius auratus) Intact Heart. Front Physiol 2020; 11:1103. [PMID: 33041845 PMCID: PMC7518121 DOI: 10.3389/fphys.2020.01103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac physiology of fish models is an emerging field given the ease of genome editing and the development of transgenic models. Several studies have described the cardiac properties of zebrafish (Denio rerio). The goldfish (Carassius auratus) belongs to the same family as the zebrafish and has emerged as an alternative model with which to study cardiac function. Here, we propose to acutely study electrophysiological and systolic Ca2+ signaling in intact goldfish hearts. We assessed the Ca2+ dynamics and the electrophysiological cardiac function of goldfish, zebrafish, and mice models, using pulsed local field fluorescence microscopy, intracellular microelectrodes, and flash photolysis in perfused hearts. We observed goldfish ventricular action potentials (APs) and Ca2+ transients to be significantly longer when compared to the zebrafish. The action potential half duration at 50% (APD50) of goldfish was 370.38 ± 8.8 ms long, and in the zebrafish they were observed to be only 83.9 ± 9.4 ms. Additionally, the half duration of the Ca2+ transients was also longer for goldfish (402.1 ± 4.4 ms) compared to the zebrafish (99.1 ± 2.7 ms). Also, blocking of the L-type Ca2+ channels with nifedipine revealed this current has a major role in defining the amplitude and the duration of goldfish Ca2+ transients. Interestingly, nifedipine flash photolysis experiments in the intact heart identified whether or not the decrease in the amplitude of Ca2+ transients was due to shorter APs. Moreover, an increase in temperature and heart rate had a strong shortening effect on the AP and Ca2+ transients of goldfish hearts. Furthermore, ryanodine (Ry) and thapsigargin (Tg) significantly reduced the amplitude of the Ca2+ transients, induced a prolongation in the APs, and altogether exhibited the degree to which the Ca2+ release from the sarcoplasmic reticulum contributed to the Ca2+ transients. We conclude that the electrophysiological properties and Ca2+ signaling in intact goldfish hearts strongly resembles the endocardial layer of larger mammals.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| |
Collapse
|
16
|
Machikhin AS, Burlakov AB, Volkov MV, Khokhlov DD. Imaging photoplethysmography and videocapillaroscopy enable noninvasive study of zebrafish cardiovascular system functioning. JOURNAL OF BIOPHOTONICS 2020; 13:e202000061. [PMID: 32306547 DOI: 10.1002/jbio.202000061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
We report on the noninvasive method for in vivo study of fish's cardiovascular system, that is, the heart and the structure of vessels that carry blood throughout the body. The proposed approach is based on combined photoplethysmographic and videocapillaroscopic microscopic imaging and enables noncontact two-dimensional mapping of blood volume changes. We demonstrate that the obtained data allows precise measurements of heartbeat, blood flow velocity and other important parameters (see Videos S1 and S2). To validate the developed image processing technique, we have carried out multiple experiments on zebrafish-a well-proven informative model organism widely used to understand cardiac development. The proposed approach may be effective for the study of cardiovascular system formation and functioning as well as the impact of various influencing factors on them.
Collapse
Affiliation(s)
- Alexander S Machikhin
- Laboratory of Acoustooptical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Alexander B Burlakov
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail V Volkov
- Department of Applied Optics, University ITMO, Saint Petersburg, Russia
| | - Demid D Khokhlov
- Laboratory of Acoustooptical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Shi YP, Pang Z, Venkateshappa R, Gunawan M, Kemp J, Truong E, Chang C, Lin E, Shafaattalab S, Faizi S, Rayani K, Tibbits GF, Claydon VE, Claydon TW. The hERG channel activator, RPR260243, enhances protective IKr current early in the refractory period reducing arrhythmogenicity in zebrafish hearts. Am J Physiol Heart Circ Physiol 2020; 319:H251-H261. [PMID: 32559136 DOI: 10.1152/ajpheart.00038.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human ether-à-go-go related gene (hERG) K+ channels are important in cardiac repolarization, and their dysfunction causes prolongation of the ventricular action potential, long QT syndrome, and arrhythmia. As such, approaches to augment hERG channel function, such as activator compounds, have been of significant interest due to their marked therapeutic potential. Activator compounds that hinder channel inactivation abbreviate action potential duration (APD) but carry risk of overcorrection leading to short QT syndrome. Enhanced risk by overcorrection of the APD may be tempered by activator-induced increased refractoriness; however, investigation of the cumulative effect of hERG activator compounds on the balance of these effects in whole organ systems is lacking. Here, we have investigated the antiarrhythmic capability of a hERG activator, RPR260243, which primarily augments channel function by slowing deactivation kinetics in ex vivo zebrafish whole hearts. We show that RPR260243 abbreviates the ventricular APD, reduces triangulation, and steepens the slope of the electrical restitution curve. In addition, RPR260243 increases the post-repolarization refractory period. We provide evidence that this latter effect arises from RPR260243-induced enhancement of hERG channel-protective currents flowing early in the refractory period. Finally, the cumulative effect of RPR260243 on arrhythmogenicity in whole organ zebrafish hearts is demonstrated by the restoration of normal rhythm in hearts presenting dofetilide-induced arrhythmia. These findings in a whole organ model demonstrate the antiarrhythmic benefit of hERG activator compounds that modify both APD and refractoriness. Furthermore, our results demonstrate that targeted slowing of hERG channel deactivation and enhancement of protective currents may provide an effective antiarrhythmic approach.NEW & NOTEWORTHY hERG channel dysfunction causes long QT syndrome and arrhythmia. Activator compounds have been of significant interest due to their therapeutic potential. We used the whole organ zebrafish heart model to demonstrate the antiarrhythmic benefit of the hERG activator, RPR260243. The activator abbreviated APD and increased refractoriness, the combined effect of which rescued induced ventricular arrhythmia. Our findings show that the targeted slowing of hERG channel deactivation and enhancement of protective currents caused by the RPR260243 activator may provide an effective antiarrhythmic approach.
Collapse
Affiliation(s)
- Yu Patrick Shi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - ZhaoKai Pang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Ravichandra Venkateshappa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Marvin Gunawan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Jacob Kemp
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Elson Truong
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Cherlene Chang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Shoaib Faizi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
18
|
Yan J, Li H, Bu H, Jiao K, Zhang AX, Le T, Cao H, Li Y, Ding Y, Xu X. Aging-associated sinus arrest and sick sinus syndrome in adult zebrafish. PLoS One 2020; 15:e0232457. [PMID: 32401822 PMCID: PMC7219707 DOI: 10.1371/journal.pone.0232457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Because of its powerful genetics, the adult zebrafish has been increasingly used for studying cardiovascular diseases. Considering its heart rate of ~100 beats per minute at ambient temperature, which is very close to human, we assessed the use of this vertebrate animal for modeling heart rhythm disorders such as sinus arrest (SA) and sick sinus syndrome (SSS). We firstly optimized a protocol to measure electrocardiogram in adult zebrafish. We determined the location of the probes, implemented an open-chest microsurgery procedure, measured the effects of temperature, and determined appropriate anesthesia dose and time. We then proposed an PP interval of more than 1.5 seconds as an arbitrary criterion to define an SA episode in an adult fish at ambient temperature, based on comparison between the current definition of an SA episode in humans and our studies of candidate SA episodes in aged wild-type fish and Tg(SCN5A-D1275N) fish (a fish model for inherited SSS). With this criterion, a subpopulation of about 5% wild-type fish can be considered to have SA episodes, and this percentage significantly increases to about 25% in 3-year-old fish. In response to atropine, this subpopulation has both common SSS phenotypic traits that are shared with the Tg(SCN5A-D1275N) model, such as bradycardia; and unique SSS phenotypic traits, such as increased QRS/P ratio and chronotropic incompetence. In summary, this study defined baseline SA and SSS in adult zebrafish and underscored use of the zebrafish as an alternative model to study aging-associated SSS.
Collapse
Affiliation(s)
- Jianhua Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kunli Jiao
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Alex X. Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tai Le
- Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, California
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, California
- Department of Biomedical Engineering, UC Irvine, Irvine, California
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
19
|
Physiological phenotyping of the adult zebrafish heart. Mar Genomics 2020; 49:100701. [DOI: 10.1016/j.margen.2019.100701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022]
|
20
|
Marchant JL, Farrell AP. Membrane and calcium clock mechanisms contribute variably as a function of temperature to setting cardiac pacemaker rate in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 95:1265-1274. [PMID: 31429079 DOI: 10.1111/jfb.14126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax ) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide-gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.
Collapse
Affiliation(s)
- James L Marchant
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P Farrell
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Shafaattalab S, Lin E, Christidi E, Huang H, Nartiss Y, Garcia A, Lee J, Protze S, Keller G, Brunham L, Tibbits GF, Laksman Z. Ibrutinib Displays Atrial-Specific Toxicity in Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2019; 12:996-1006. [PMID: 31031187 PMCID: PMC6524928 DOI: 10.1016/j.stemcr.2019.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
Ibrutinib (IB) is an oral Bruton's tyrosine kinase (BTK) inhibitor that has demonstrated benefit in B cell cancers, but is associated with a dramatic increase in atrial fibrillation (AF). We employed cell-specific differentiation protocols and optical mapping to investigate the effects of IB and other tyrosine kinase inhibitors (TKIs) on the voltage and calcium transients of atrial and ventricular human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). IB demonstrated direct cell-specific effects on atrial hPSC-CMs that would be predicted to predispose to AF. Second-generation BTK inhibitors did not have the same effect. Furthermore, IB exposure was associated with differential chamber-specific regulation of a number of regulatory pathways including the receptor tyrosine kinase pathway, which may be implicated in the pathogenesis of AF. Our study is the first to demonstrate cell-type-specific toxicity in hPSC-derived atrial and ventricular cardiomyocytes, which reliably reproduces the clinical cardiotoxicity observed. hPSCs can be differentiated into atrial and ventricular cardiomyocytes (CMs) Drug effects can be measured using optical mapping of voltage and calcium transients Ibrutinib demonstrates cell-specific toxicity on atrial hPSC-CMs Ibrutinib exposure is associated with chamber-specific effects on regulatory pathways
Collapse
Affiliation(s)
- Sanam Shafaattalab
- Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1A6, Canada; British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Eric Lin
- Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1A6, Canada
| | - Effimia Christidi
- University of British Columbia, 170-6371 Crescent Road, Vancouver, BC V6T 1Z2, Canada
| | - Haojun Huang
- University of British Columbia, 170-6371 Crescent Road, Vancouver, BC V6T 1Z2, Canada
| | - Yulia Nartiss
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Analucia Garcia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jeehon Lee
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Liam Brunham
- University of British Columbia, 170-6371 Crescent Road, Vancouver, BC V6T 1Z2, Canada
| | - Glen F Tibbits
- Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1A6, Canada; British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Zachary Laksman
- Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1A6, Canada; University of British Columbia, 170-6371 Crescent Road, Vancouver, BC V6T 1Z2, Canada.
| |
Collapse
|
22
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
23
|
Stoyek MR, Rog-Zielinska EA, Quinn TA. Age-associated changes in electrical function of the zebrafish heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:91-104. [DOI: 10.1016/j.pbiomolbio.2018.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
|
24
|
Skarsfeldt MA, Bomholtz SH, Lundegaard PR, Lopez-Izquierdo A, Tristani-Firouzi M, Bentzen BH. Atrium-specific ion channels in the zebrafish-A role of I KACh in atrial repolarization. Acta Physiol (Oxf) 2018; 223:e13049. [PMID: 29412518 DOI: 10.1111/apha.13049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
AIM The zebrafish has emerged as a novel model for investigating cardiac physiology and pathology. The aim of this study was to investigate the atrium-specific ion channels responsible for shaping the atrial cardiac action potential in zebrafish. METHODS Using quantitative polymerase chain reaction, we assessed the expression level of atrium-specific potassium channels. The functional role of these channels was studied by patch clamp experiments on isolated atrial and ventricular cardiomyocytes and by optical mapping of explanted adult zebrafish hearts. Finally, surface ECGs were recorded to establish possible in vivo roles of atrial ion channels. RESULTS In isolated adult zebrafish hearts, we identified the expression of kcnk3, kcnk9, kcnn1, kcnn2, kcnn3, kcnj3 and kcnj5, the genes that encode the atrium-specific K2P , KCa 2.x and Kir 3.1/4 (KACh ) ion channels. The electrophysiological data indicate that the acetylcholine-activated inward-rectifying current, IKACh, plays a major role in the zebrafish atrium, whereas K2P 3.1/9.1 and KCa 2.x channels do not appear to be involved in regulating the action potential in the zebrafish heart. CONCLUSION We demonstrate that the acetylcholine-activated inward-rectifying current (IKACh ) current plays a major role in the zebrafish atrium and that the zebrafish could potentially be a cost-effective and reliable model for pharmacological testing of atrium-specific IKACh modulating compounds.
Collapse
Affiliation(s)
- M. A. Skarsfeldt
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
- Nora Eccles Harrison Cardiovascular Research and Training Institute; University of Utah; Salt Lake City UT USA
| | - S. H. Bomholtz
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| | - P. R. Lundegaard
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| | - A. Lopez-Izquierdo
- Nora Eccles Harrison Cardiovascular Research and Training Institute; University of Utah; Salt Lake City UT USA
| | - M. Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute; University of Utah; Salt Lake City UT USA
| | - B. H. Bentzen
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|
25
|
Stoyek MR, Schmidt MK, Wilfart FM, Croll RP, Smith FM. The in vitro zebrafish heart as a model to investigate the chronotropic effects of vapor anesthetics. Am J Physiol Regul Integr Comp Physiol 2017; 313:R669-R679. [PMID: 28877873 DOI: 10.1152/ajpregu.00467.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
In addition to their intended clinical actions, all general anesthetic agents in common use have detrimental intrasurgical and postsurgical side effects on organs and systems, including the heart. The major cardiac side effect of anesthesia is bradycardia, which increases the probability of insufficient systemic perfusion during surgery. These side effects also occur in all vertebrate species so far examined, but the underlying mechanisms are not clear. The zebrafish heart is a powerful model for studying cardiac electrophysiology, employing the same pacemaker system and neural control as do mammalian hearts. In this study, isolated zebrafish hearts were significantly bradycardic during exposure to the vapor anesthetics sevoflurane (SEVO), desflurane (DES), and isoflurane (ISO). Bradycardia induced by DES and ISO continued during pharmacological blockade of the intracardiac portion of the autonomic nervous system, but the chronotropic effect of SEVO was eliminated during blockade. Bradycardia evoked by vagosympathetic nerve stimulation was augmented during DES and ISO exposure; nerve stimulation during SEVO exposure had no effect. Together, these results support the hypothesis that the cardiac chronotropic effect of SEVO occurs via a neurally mediated mechanism, while DES and ISO act directly upon cardiac pacemaker cells via an as yet unknown mechanism.
Collapse
Affiliation(s)
- Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael K Schmidt
- Department of Anesthesia, Pain Management and Perioperative Care, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Florentin M Wilfart
- Department of Anesthesia, Pain Management and Perioperative Care, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
26
|
MacDonald EA, Stoyek MR, Rose RA, Quinn TA. Intrinsic regulation of sinoatrial node function and the zebrafish as a model of stretch effects on pacemaking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:198-211. [PMID: 28743586 DOI: 10.1016/j.pbiomolbio.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
Excitation of the heart occurs in a specialised region known as the sinoatrial node (SAN). Tight regulation of SAN function is essential for the maintenance of normal heart rhythm and the response to (patho-)physiological changes. The SAN is regulated by extrinsic (central nervous system) and intrinsic (neurons, peptides, mechanics) factors. The positive chronotropic response to stretch in particular is essential for beat-by-beat adaptation to changes in hemodynamic load. Yet, the mechanism of this stretch response is unknown, due in part to the lack of an appropriate experimental model for targeted investigations. We have been investigating the zebrafish as a model for the study of intrinsic regulation of SAN function. In this paper, we first briefly review current knowledge of the principal components of extrinsic and intrinsic SAN regulation, derived primarily from experiments in mammals, followed by a description of the zebrafish as a novel experimental model for studies of intrinsic SAN regulation. This mini-review is followed by an original investigation of the response of the zebrafish isolated SAN to controlled stretch. Stretch causes an immediate and continuous increase in beating rate in the zebrafish isolated SAN. This increase reaches a maximum part way through a period of sustained stretch, with the total change dependent on the magnitude and direction of stretch. This is comparable to what occurs in isolated SAN from most mammals (including human), suggesting that the zebrafish is a novel experimental model for the study of mechanisms involved in the intrinsic regulation of SAN function by mechanical effects.
Collapse
Affiliation(s)
- Eilidh A MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, Canada.
| |
Collapse
|
27
|
Stevens CM, Rayani K, Genge CE, Singh G, Liang B, Roller JM, Li C, Li AY, Tieleman DP, van Petegem F, Tibbits GF. Characterization of Zebrafish Cardiac and Slow Skeletal Troponin C Paralogs by MD Simulation and ITC. Biophys J 2017; 111:38-49. [PMID: 27410732 DOI: 10.1016/j.bpj.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Zebrafish, as a model for teleost fish, have two paralogous troponin C (TnC) genes that are expressed in the heart differentially in response to temperature acclimation. Upon Ca(2+) binding, TnC changes conformation and exposes a hydrophobic patch that interacts with troponin I and initiates cardiac muscle contraction. Teleost-specific TnC paralogs have not yet been functionally characterized. In this study we have modeled the structures of the paralogs using molecular dynamics simulations at 18°C and 28°C and calculated the different Ca(2+)-binding properties between the teleost cardiac (cTnC or TnC1a) and slow-skeletal (ssTnC or TnC1b) paralogs through potential-of-mean-force calculations. These values are compared with thermodynamic binding properties obtained through isothermal titration calorimetry (ITC). The modeled structures of each of the paralogs are similar at each temperature, with the exception of helix C, which flanks the Ca(2+) binding site; this region is also home to paralog-specific sequence substitutions that we predict have an influence on protein function. The short timescale of the potential-of-mean-force calculation precludes the inclusion of the conformational change on the ΔG of Ca(2+) interaction, whereas the ITC analysis includes the Ca(2+) binding and conformational change of the TnC molecule. ITC analysis has revealed that ssTnC has higher Ca(2+) affinity than cTnC for Ca(2+) overall, whereas each of the paralogs has increased affinity at 28°C compared to 18°C. Microsecond-timescale simulations have calculated that the cTnC paralog transitions from the closed to the open state more readily than the ssTnC paralog, an unfavorable transition that would decrease the ITC-derived Ca(2+) affinity while simultaneously increasing the Ca(2+) sensitivity of the myofilament. We propose that the preferential expression of cTnC at lower temperatures increases myofilament Ca(2+) sensitivity by this mechanism, despite the lower Ca(2+) affinity that we have measured by ITC.
Collapse
Affiliation(s)
- Charles M Stevens
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gurpreet Singh
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Bo Liang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Janine M Roller
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cindy Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alison Yueh Li
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - D Peter Tieleman
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Filip van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
28
|
Vargas RA. Effects of GABA, Neural Regulation, and Intrinsic Cardiac Factors on Heart Rate Variability in Zebrafish Larvae. Zebrafish 2017; 14:106-117. [DOI: 10.1089/zeb.2016.1365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rafael Antonio Vargas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
29
|
Crowcombe J, Dhillon SS, Hurst RM, Egginton S, Müller F, Sík A, Tarte E. 3D Finite Element Electrical Model of Larval Zebrafish ECG Signals. PLoS One 2016; 11:e0165655. [PMID: 27824910 PMCID: PMC5100939 DOI: 10.1371/journal.pone.0165655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace's equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions.
Collapse
Affiliation(s)
- James Crowcombe
- School of Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Sundeep Singh Dhillon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rhiannon Mary Hurst
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Attila Sík
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Edward Tarte
- School of Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Vostarek F, Svatunkova J, Sedmera D. Acute temperature effects on function of the chick embryonic heart. Acta Physiol (Oxf) 2016; 217:276-86. [PMID: 27083765 DOI: 10.1111/apha.12691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 12/01/2022]
Abstract
AIM We analysed the effects of acute temperature change on the beating rate, conduction properties and calcium transients in the chick embryonic heart in vitro and in ovo. METHODS The effects of temperature change (34, 37 and 40 °C) on calcium dynamics in isolated ED4 chick hearts in vitro were investigated by high-speed calcium optical imaging. For comparison and validation of in vitro measurements, experiments were also performed in ovo using videomicroscopy. Artificial stimulation experiments were performed in vitro and in ovo to uncover conduction limits of heart segments. RESULTS Decrease in temperature from 37 to 34 °C in vitro led to a 22% drop in heart rate and unchanged amplitude of Ca(2+) transients, compared to a 25% heart rate decrease in ovo. Increase in temperature from 37 to 40 °C in vitro and in ovo led to 20 and 23% increases in heart rate, respectively, and a significant decrease in amplitude of Ca(2+) transients (atrium -35%, ventricle -38%). We observed a wide spectrum of arrhythmias in vitro, of which the most common was atrioventricular (AV) block (57%). There was variability of AV block locations. Pacing experiments in vitro and in ovo suggested that the AV blocks were likely caused by relative tissue hypoxia and not by the tachycardia itself. CONCLUSION The pacemaker and AV canal are the most temperature-sensitive segments of the embryonic heart. We suggest that the critical point for conduction is the connection of the ventricular trabecular network to the AV canal.
Collapse
Affiliation(s)
- F. Vostarek
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
- Faculty of Science; Charles University; Prague Czech Republic
| | - J. Svatunkova
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
| | - D. Sedmera
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
- First Faculty of Medicine; Institute of Anatomy; Charles University; Prague Czech Republic
| |
Collapse
|
31
|
Stoyek MR, Quinn TA, Croll RP, Smith FM. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function. Am J Physiol Heart Circ Physiol 2016; 311:H676-88. [PMID: 27342878 DOI: 10.1152/ajpheart.00330.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons.
Collapse
Affiliation(s)
- Matthew R Stoyek
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; and
| |
Collapse
|
32
|
Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation. Sci Rep 2016; 6:25073. [PMID: 27125643 PMCID: PMC4850402 DOI: 10.1038/srep25073] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/11/2016] [Indexed: 01/08/2023] Open
Abstract
The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations.
Collapse
|
33
|
Lee L, Genge CE, Cua M, Sheng X, Rayani K, Beg MF, Sarunic MV, Tibbits GF. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography. PLoS One 2016; 11:e0145163. [PMID: 26730947 PMCID: PMC4701665 DOI: 10.1371/journal.pone.0145163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.
Collapse
Affiliation(s)
- Ling Lee
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Christine E. Genge
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Michelle Cua
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Xiaoye Sheng
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mirza F. Beg
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
34
|
Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, Li AY, Talab SS, Claydon TW, Hove-Madsen L, Tibbits GF. The Zebrafish Heart as a Model of Mammalian Cardiac Function. Rev Physiol Biochem Pharmacol 2016; 171:99-136. [PMID: 27538987 DOI: 10.1007/112_2016_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.
Collapse
Affiliation(s)
- Christine E Genge
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Ling Lee
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - XiaoYe Sheng
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Charles M Stevens
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Sanam Shafaat Talab
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Thomas W Claydon
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Leif Hove-Madsen
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
35
|
Abstract
The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.
Collapse
Affiliation(s)
- Matti Vornanen
- a Department of Biology , University of Eastern Finland , Joensuu , Finland
| | - Minna Hassinen
- a Department of Biology , University of Eastern Finland , Joensuu , Finland
| |
Collapse
|
36
|
Lin E, Craig C, Lamothe M, Sarunic MV, Beg MF, Tibbits GF. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R755-68. [PMID: 25740339 DOI: 10.1152/ajpregu.00001.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented.
Collapse
Affiliation(s)
- Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Calvin Craig
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Marcel Lamothe
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Marinko V Sarunic
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby
| | - Mirza Faisal Beg
- Medical Image Analysis Lab, School of Engineering Science, Simon Fraser University, Burnaby, Canada; and
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada; Cardiovascular Sciences, Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
37
|
The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle. Pflugers Arch 2014; 467:1069-79. [PMID: 25539776 DOI: 10.1007/s00424-014-1678-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/13/2023]
Abstract
We studied the potassium current flowing through TREK-1 channels in rat cardiac ventricular myocytes. We separated the TREK-1 current from other current components by blocking most other channels with a blocker cocktail. We tried to inhibit the TREK-1 current by activating protein kinase A (PKA) with a mixture of forskolin and isobutyl-methylxanthine (IBMX). Activation of PKA blocked an outwardly rectifying current component at membrane potentials positive to -40 mV. At 37 °C, application of forskolin plus IBMX reduced the steady-state outward current measured at positive voltages by about 52 %. Application of the potassium channel blockers quinidine or tetrahexylammonium also reduced the steady-state outward current by about 50 %. Taken together, our results suggest that the increase in temperature from 22 to 37 °C increased the TREK-1 current by a factor of at least 5 and that the average density of the TREK-1 current in rat cardiomyocytes at 37 °C is about 1.5 pA/pF at +30 mV. The contribution of TREK-1 to the action potential was assessed by using a dynamic patch clamp technique. After subtraction of simulated TREK-1 currents, action potential duration at 50 or 90 % repolarisation was increased by about 12 %, indicating that TREK-1 may be functionally important in rat ventricular muscle. During sympathetic stimulation, inhibition of TREK-1 channels via PKA is expected to prolong the action potential primarily in subendocardial myocytes; this may decrease the transmural dispersion of repolarisation and thus may serve to prevent the occurrence of arrhythmias.
Collapse
|