1
|
Bobin P, Mitanchez D, Castellano B, Grit I, Moyon T, Raux A, Vambergue A, Winer N, Darmaun D, Michel C, Le Drean G, Alexandre-Gouabau MC. A specific metabolomic and lipidomic signature reveals the postpartum resolution of gestational diabetes mellitus or its evolution to type 2 diabetes in rat. Am J Physiol Endocrinol Metab 2025; 328:E493-E512. [PMID: 39947887 DOI: 10.1152/ajpendo.00396.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 02/01/2025] [Indexed: 04/01/2025]
Abstract
Gestational diabetes mellitus (GDM) represents a major public health concern due to adverse maternal postpartum and long-term outcomes. Current strategies to manage GDM fail to reduce the maternal risk to develop later impaired glucose tolerance (IGT) and type 2 diabetes (T2D). In a rodent model of diet-induced GDM without obesity, we explored the perinatal metabolic adaptations in dams with gestational IGT followed by either persistent or resolved postpartum IGT. Female Sprague-Dawley rats were fed a high-fat high-sucrose (HFHS) or a chow [control group (CTL)] diet, 1 wk before mating and throughout gestation (G). Following parturition, HFHS dams were randomized to two subgroups: one switched to a chow diet and the other one maintained on an HFHS diet throughout lactation (L). Oral glucose tolerance tests (OGTTs) were performed, and plasma metabolome-lipidome were characterized at G12 and L12. We found that 1) in GDM-pregnant dams, IGT was associated with incomplete fatty acid oxidation (FAO), enhanced gluconeogenesis, altered insulin signaling, and oxidative stress; 2) improved glucose tolerance postpartum seemed to restore complete FAO along with elevation of nervonic acid-containing sphingomyelins, assumed to impart β-cell protection; and 3) persistence of IGT after delivery was associated with metabolites known to predict the early onset of insulin and leptin resistance, with maintained liver dysfunction. Our findings shed light on the impact of postpartum IGT evolution on maternal metabolic outcome after an episode of GDM. They suggest innovative strategies, implemented shortly after delivery and targeted on these biomarkers, should be explored to curb or delay the transition from GDM to T2D in these mothers.NEW & NOTEWORTHY Specific metabolomic/lipidomic features are associated with GDM postpartum outcomes. GDM-pregnant dams exhibit partial fatty acid oxidation and boosted gluconeogenesis. Resolution of postpartum IGT relies on nervonic acid-sphingomyelin, a β-cell protector. Postpartum IGT persistence suggests muscle insulin resistance and liver dysfunction.
Collapse
Affiliation(s)
- Paul Bobin
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Delphine Mitanchez
- Department of Neonatology, Bretonneau Hospital, François Rabelais University, Tours, France
- INSERM UMRS_938, Centre de Recherche Saint Antoine, Paris, France
| | | | - Isabelle Grit
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Thomas Moyon
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Axel Raux
- Oniris, INRAE, LABERCA, Nantes, France
| | - Anne Vambergue
- Department of Diabetology, Hospital Huriez, CHRU de Lille, University of Lille, EGID-UMR 8199, Lille, France
| | - Norbert Winer
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
- Department of Obstetrics and Gynecology, CHU, Nantes University Hospital, Nantes, France
| | | | | | | | | |
Collapse
|
2
|
Dasgin H, Hay SM, Rees WD. Diet and deprivation in pregnancy: a rat model to investigate the effects of the maternal diet on the growth of the dam and its offspring. Br J Nutr 2024; 131:630-641. [PMID: 37795821 PMCID: PMC10803821 DOI: 10.1017/s0007114523002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
The offspring of women in the poorest socio-economic groups in Western societies have an increased risk of developing non-communicable disease in adult life. Deprivation is closely related to the consumption of a diet with an excess of energy (sugar and fat), salt and a shortage of key vitamins. To test the hypothesis that this diet adversely affects the development and long-term health of the offspring, we have formulated two rodent diets, one with a nutrient profile corresponding to the diet of pregnant women in the poorest socio-economic group (DEP) and a second that incorporated current UK recommendations for the diet in pregnancy (REC). Female rats were fed the experimental diets for the duration of gestation and lactation and the offspring compared with those from a reference group fed the AIN-93G diet. The growth trajectory of DEP and REC offspring was reduced compared with the AIN-93G. The REC offspring diet had a transient increase in adipose reserves at weaning, but by 30 weeks of age the body composition of all three groups was similar. The maternal diet had no effect on the homoeostatic model assessment index or the insulin tolerance of the offspring. Changes in hepatic gene expression in the adult REC offspring were consistent with an increased hepatic utilisation of fatty acids and a reduction in de novo lipogenesis. These results show that despite changes in growth and adiposity maternal metabolic adaptation minimises the adverse consequences of the imbalanced maternal diet on the metabolism of the offspring.
Collapse
Affiliation(s)
- Halil Dasgin
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Susan M. Hay
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - William D. Rees
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Kim J, Choi A, Kwon YH. Maternal low-protein diet alters hepatic lipid accumulation and gene expression related to glucose metabolism in young adult mouse offspring fed a postweaning high-fat diet. Biochem Biophys Res Commun 2023; 682:193-198. [PMID: 37820455 DOI: 10.1016/j.bbrc.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Maternal consumption of low-protein (LP) diet during pregnancy has been demonstrated to increase the chances of adult offspring developing metabolic syndrome, and this risk can be exacerbated when the postnatal diets do not align with the prenatal conditions. However, in our previous study, focusing on serum parameters and gene expression patterns within adipose tissue, we discovered the presence of "healthy obesity" in young adult offspring from dams that were fed an LP, as a response to a postweaning high-fat (HF) diet. Here, we subsequently investigated the role played by the liver and skeletal muscle in alleviation of insulin resistance in male offspring that were fed either control (C/C group) or HF diet (C/HF and LP/HF groups) for 22 weeks. While a postweaning HF diet increased liver weight and hepatic triglyceride (TG) and cholesterol levels in offspring of control dams, these levels were lower in the LP/HF group compared to the C/HF group. Analysis of the liver transcriptome identified 430 differentially expressed genes (DEGs) in the LP/HF and C/HF comparison. Especially, downregulated DEGs were enriched in carbohydrate metabolism and the levels of DEGs were significantly correlated with the levels of markers for serum glucose homeostasis and hepatic lipid accumulation. In the LP/HF group compared to the C/HF group, there was a decrease in the gastrocnemius muscle weight, while no differences were observed in gene expression levels associated with muscle fiber phenotype, mitochondrial function, and inflammation. In conclusion, maternal LP diet induced changes in lipid and glucose metabolism within the liver, similar to what was observed in adipose tissue, while there were no alterations in metabolic functions in the skeletal muscle in young offspring mice fed an HF diet. Further research that investigating the enduring impact of nutritional transition on offspring is essential to gain a comprehensive grasp of developmental programming throughout their entire lifespan.
Collapse
Affiliation(s)
- Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea; Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Erkosar B, Dupuis C, Cavigliasso F, Savary L, Kremmer L, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Evolutionary adaptation to juvenile malnutrition impacts adult metabolism and impairs adult fitness in Drosophila. eLife 2023; 12:e92465. [PMID: 37847744 PMCID: PMC10637773 DOI: 10.7554/elife.92465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Juvenile undernutrition has lasting effects on adult metabolism of the affected individuals, but it is unclear how adult physiology is shaped over evolutionary time by natural selection driven by juvenile undernutrition. We combined RNAseq, targeted metabolomics, and genomics to study the consequences of evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to Control populations maintained on standard diet, Selected populations maintained for over 230 generations on a nutrient-poor larval diet evolved major changes in adult gene expression and metabolite abundance, in particular affecting amino acid and purine metabolism. The evolved differences in adult gene expression and metabolite abundance between Selected and Control populations were positively correlated with the corresponding differences previously reported for Selected versus Control larvae. This implies that genetic variants affect both stages similarly. Even when well fed, the metabolic profile of Selected flies resembled that of flies subject to starvation. Finally, Selected flies had lower reproductive output than Controls even when both were raised under the conditions under which the Selected populations evolved. These results imply that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness. Thus, juvenile and adult metabolism do not appear to evolve independently from each other even in a holometabolous species where the two life stages are separated by a complete metamorphosis.
Collapse
Affiliation(s)
- Berra Erkosar
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Laurent Kremmer
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
5
|
Moullé VS, Frapin M, Amarger V, Parnet P. Maternal Protein Restriction in Rats Alters Postnatal Growth and Brain Lipid Sensing in Female Offspring. Nutrients 2023; 15:nu15020463. [PMID: 36678336 PMCID: PMC9863736 DOI: 10.3390/nu15020463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Perinatal nutrition is a key player in the susceptibility to developing metabolic diseases in adulthood, leading to the concept of "metabolic programming". The aim of this study was to assess the impact of maternal protein restriction during gestation and lactation on glucose homeostasis and eating behaviour in female offspring. Pregnant rats were fed a normal or protein-restricted (PR) diet and followed throughout gestation and lactation. Body weight, glucose homeostasis, and eating behaviour were evaluated in offspring, especially in females. Body weight gain was lower in PR dams during lactation only, despite different food and water intakes throughout gestation and lactation. Plasma concentration of leptin, adiponectin and triglycerides increased drastically before delivery in PR dams in relation to fat deposits. Although all pups had identical birth body weight, PR offspring body weight differed from control offspring around postnatal day 10 and remained lower until adulthood. Offspring glucose homeostasis was mildly impacted by maternal PR, although insulin secretion was reduced for PR rats at adulthood. Food intake, satiety response, and cerebral activation were examined after a lipid preload and demonstrated some differences between the two groups of rats. Maternal PR during gestation and lactation does induce extrauterine growth restriction, accompanied by alterations in maternal plasma leptin and adiponectin levels, which may be involved in programming the alterations in eating behaviour observed in females at adulthood.
Collapse
|
6
|
Papandreou P, Amerikanou C, Vezou C, Gioxari A, Kaliora AC, Skouroliakou M. Improving Adherence to the Mediterranean Diet in Early Pregnancy Using a Clinical Decision Support System; A Randomised Controlled Clinical Trial. Nutrients 2023; 15:nu15020432. [PMID: 36678303 PMCID: PMC9866975 DOI: 10.3390/nu15020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Prenatal health is important for both mother and child. Additionally, the offspring’s development is affected by the mother’s diet. The aim of this study was to assess whether a Clinical Decision Support System (CDSS) can improve adherence to the Mediterranean diet in early pregnancy and whether this change is accompanied by changes in nutritional status and psychological parameters. We designed a three month randomised controlled clinical trial which was applied to 40 healthy pregnant women (20 in the CDSS and 20 in the control group). Medical history, biochemical, anthropometric measurements, dietary, and a psychological distress assessment were applied before and at the end of the intervention. Pregnant women in the CDSS group experienced a greater increase in adherence to the Mediterranean diet, as assessed via MedDietScore, in the first trimester of their pregnancy compared to women in the control group (p < 0.01). Furthermore, an improved nutritional status was observed in pregnant women who were supported by CDSS. Anxiety and depression levels showed a greater reduction in the CDSS group compared to the control group (p = 0.048). In conclusion, support by a CDSS during the first trimester of pregnancy may be beneficial for the nutritional status of the mother, as well as for her anxiety and depression status.
Collapse
Affiliation(s)
| | - Charalampia Amerikanou
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Chara Vezou
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Aristea Gioxari
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
- Department of Nutritional Science and Dietetics, School of Health Science, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Andriana C. Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
- Correspondence: ; Tel.: +30-2109549226
| | - Maria Skouroliakou
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| |
Collapse
|
7
|
Prates KV, Pavanello A, Gongora AB, Moreira VM, de Moraes AMP, Rigo KP, Vieira E, Mathias PCDF. Time-restricted feeding during embryonic development leads to metabolic dysfunction in adult rat offspring. Nutrition 2022; 103-104:111776. [DOI: 10.1016/j.nut.2022.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
|
8
|
Prenatal Low-Protein Diet Affects Mitochondrial Structure and Function in the Skeletal Muscle of Adult Female Offspring. Nutrients 2022; 14:nu14061158. [PMID: 35334815 PMCID: PMC8954615 DOI: 10.3390/nu14061158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Gestational low-protein (LP) diet leads to glucose intolerance and insulin resistance in adult offspring. We had earlier demonstrated that LP programming affects glucose disposal in females. Mitochondrial health is crucial for normal glucose metabolism in skeletal muscle. In this study, we sought to analyze mitochondrial structure, function, and associated genes in skeletal muscles to explore the molecular mechanism of insulin resistance LP-programmed female offspring. On day four of pregnancy, rats were assigned to a control diet containing 20% protein or an isocaloric 6% protein-containing diet. Standard laboratory diet was given to the dams after delivery until the end of weaning and to pups after weaning. Gestational LP diet led to changes in mitochondrial ultrastructure in the gastrocnemius muscles, including a nine-fold increase in the presence of giant mitochondria along with unevenly formed cristae. Further, functional analysis showed that LP programming caused impaired mitochondrial functions. Although the mitochondrial copy number did not show significant changes, key genes involved in mitochondrial structure and function such as Fis1, Opa1, Mfn2, Nrf1, Nrf2, Pgc1b, Cox4b, Esrra, and Vdac were dysregulated. Our study shows that prenatal LP programming induced disruption in mitochondrial ultrastructure and function in the skeletal muscle of female offspring.
Collapse
|
9
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Differential and Synergistic Effects of Low Birth Weight and Western Diet on Skeletal Muscle Vasculature, Mitochondrial Lipid Metabolism and Insulin Signaling in Male Guinea Pigs. Nutrients 2021; 13:nu13124315. [PMID: 34959870 PMCID: PMC8704817 DOI: 10.3390/nu13124315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar “Western” diet (WD) modulates these changes. Muscle of 145-day-old male LBW glucose-tolerant offspring displayed diminished vessel density and altered acylcarnitine levels. Disrupted muscle insulin signaling despite maintained whole-body glucose homeostasis also occurred in both LBW and WD-fed male “lean” offspring. Additionally, postnatal WD unmasked LBW-induced impairment of mitochondrial lipid metabolism, as reflected by increased acylcarnitine accumulation. This study provides evidence that early markers of skeletal muscle metabolic dysfunction appear to be influenced by the in utero environment and interact with a high-fat/high-sugar postnatal environment to exacerbate altered mitochondrial lipid metabolism, promoting mitochondrial overload.
Collapse
|
11
|
Yau-Qiu ZX, Madrid-Gambin F, Brennan L, Palou A, Rodríguez AM. Leptin Supplementation During Lactation Restores Key Liver Metabolite Levels Malprogrammed by Gestational Calorie Restriction. Mol Nutr Food Res 2021; 65:e2001046. [PMID: 33900028 DOI: 10.1002/mnfr.202001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Perinatal nutritional factors can program offspring metabolic phenotype and risk to obesity. This study investigates the potential role of leptin supplementation (during lactation) in ameliorating the malprogrammed effects caused by mild maternal calorie restriction during gestation, on young rat offspring liver metabolic response. METHODS AND RESULTS Untargeted and targeted metabolomics studies on liver samples are performed by NMR and GC-MS, respectively. Global DNA methylation and the expression by RT-PCR of key genes involved in different pathways are also determined. By NMR, 15 liver metabolites are observed to be altered in the offspring of gestational calorie-restricted dams (CR group), at days 25-27 of life. Physiological leptin supplementation during lactation partially reverted the effect of CR condition for most of these metabolites. Moreover, targeted fatty acid analysis by GC-MS shows a significant decrease in the hepatic concentration of certain very long-chain fatty acids (VLCFA) in CR offspring, partially or totally reverted by leptin supplementation. No remarkable changes are found in global DNA methylation or mRNA expression. CONCLUSION Physiological leptin supplementation during lactation contributes to the reversion of changes caused by maternal mild calorie restriction on the liver metabolome. This agrees with a putative role of leptin supplementation preventing or reversing metabolic disturbances caused by gestational metabolic malprogramming.
Collapse
Affiliation(s)
- Zhi Xin Yau-Qiu
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and obesity), University of the Balearic Islands (UIB), Palma de Mallorca, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Francisco Madrid-Gambin
- UCD School of Agriculture and Food Science, Institute of Food and Health, Conway Institute, University College Dublin (UCD), Dublin, Ireland.,Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, Conway Institute, University College Dublin (UCD), Dublin, Ireland
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and obesity), University of the Balearic Islands (UIB), Palma de Mallorca, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and obesity), University of the Balearic Islands (UIB), Palma de Mallorca, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
12
|
Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest 2021; 51:e13482. [PMID: 33350459 DOI: 10.1111/eci.13482] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
The concept of developmental origins of health and disease (DOHaD) was initially supported by the low birth weight and higher risk of developing cardiovascular disease in adult life, caused by nutrition restriction during foetal development. However, other programming windows have been recognized in the last years, namely lactation, infancy, adolescence and even preconception. Although the concept has been developed in order to study the impact of foetal calorie restriction in adult life, it is now recognized that maternal overweight during programming windows is also harmful to the offspring. This article explores and summarizes the current knowledge about the impact of maternal obesity and obesogenic diets during lactation in the metabolic programming towards the development of metabolic syndrome in the adult life. The impact of maternal obesity and obesogenic diets in milk quality is discussed, including the alterations in specific micro and macronutrients, as well as the impact of such alterations in the development of metabolic syndrome-associated features in the newborn, such as insulin resistance and adiposity. Moreover, the impact of milk quality and formula feeding in infants' gut microbiota, immune system maturation and in the nutrient-sensing mechanisms, namely those related to gut hormones and leptin, are also discussed under the current knowledge.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma (Mallorca), Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma (Mallorca), Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma (Mallorca), Spain
| | - Flávio Reis
- Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Conceição Egas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Faculty of Medicine, Institute of Physiology and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
13
|
|
14
|
Abstract
Abstract
Lactation is a critical period during which maternal nutritional and environmental challenges affect milk composition and, therefore, organ differentiation, structure, and function in offspring during the early postnatal period. Evidence to date shows that lactation is a vulnerable time during which transient insults can have lasting effects, resulting in altered health outcomes in offspring in adult life. Despite the importance of the developmental programming that occurs during this plastic period of neonatal life, there are few comprehensive reviews of the multiple challenges—especially to the dam—during lactation. This review presents milk data from rodent studies involving maternal nutritional challenges and offspring outcome data from studies involving maternal manipulations during lactation. Among the topics addressed are maternal nutritional challenges and the effects of litter size and artificial rearing on offspring metabolism and neural and endocrine outcomes. The lactation period is an opportunity to correct certain functional deficits resulting from prenatal challenges to the fetus, but, if not personalized, can also lead to undesirable outcomes related to catch up-growth and overnutrition.
Collapse
|
15
|
Frapin M, Guignard S, Meistermann D, Grit I, Moullé VS, Paillé V, Parnet P, Amarger V. Maternal Protein Restriction in Rats Alters the Expression of Genes Involved in Mitochondrial Metabolism and Epitranscriptomics in Fetal Hypothalamus. Nutrients 2020; 12:nu12051464. [PMID: 32438566 PMCID: PMC7284977 DOI: 10.3390/nu12051464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal brain development is closely dependent on maternal nutrition and metabolic status. Maternal protein restriction (PR) is known to be associated with alterations in the structure and function of the hypothalamus, leading to impaired control of energy homeostasis and food intake. The objective of this study was to identify the cellular and molecular systems underlying these effects during fetal development. We combined a global transcriptomic analysis on the fetal hypothalamus from a rat model of maternal PR with in vitro neurosphere culture and cellular analyses. Several genes encoding proteins from the mitochondrial respiratory chain complexes were overexpressed in the PR group and mitochondrial metabolic activity in the fetal hypothalamus was altered. The level of the N6-methyladenosine epitranscriptomic mark was reduced in the PR fetuses, and the expression of several genes involved in the writing/erasing/reading of this mark was indeed altered, as well as genes encoding several RNA-binding proteins. Additionally, we observed a higher number of neuronal-committed progenitors at embryonic day 17 (E17) in the PR fetuses. Together, these data strongly suggest a metabolic adaptation to the amino acid shortage, combined with the post-transcriptional control of protein expression, which might reflect alterations in the control of the timing of neuronal progenitor differentiation.
Collapse
Affiliation(s)
- Morgane Frapin
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Simon Guignard
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | | | - Isabelle Grit
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Valentine S. Moullé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Patricia Parnet
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Valérie Amarger
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
- Correspondence:
| |
Collapse
|
16
|
Moullé VS, Parnet P. Effects of Nutrient Intake during Pregnancy and Lactation on the Endocrine Pancreas of the Offspring. Nutrients 2019; 11:nu11112708. [PMID: 31717308 PMCID: PMC6893668 DOI: 10.3390/nu11112708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
The pancreas has an essential role in the regulation of glucose homeostasis by secreting insulin, the only hormone with a blood glucose lowering effect in mammals. Several circulating molecules are able to positively or negatively influence insulin secretion. Among them, nutrients such as fatty acids or amino acids can directly act on specific receptors present on pancreatic beta cells. Dietary intake, especially excessive nutrient intake, is known to modify energy balance in adults, resulting in pancreatic dysfunction. However, gestation and lactation are critical periods for fetal development and pup growth and specific dietary nutrients are required for optimal growth. Feeding alterations during these periods will impact offspring development and increase the risk of developing metabolic disorders in adulthood, leading to metabolic programming. This review will focus on the influence of nutrient intake during gestation and lactation periods on pancreas development and function in offspring, highlighting the molecular mechanism of imprinting on this organ.
Collapse
|
17
|
Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM. Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction. Reprod Toxicol 2019; 89:74-82. [PMID: 31260803 DOI: 10.1016/j.reprotox.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are implicated in the developmental mis-programming of energy metabolism. This study examined the impact of combined gestational and lactational exposure to the fungicide tolylfluanid (TF) on metabolic physiology in adult offspring. C57BL/6 J dams received standard rodent chow or the same diet containing 67 mg/kg TF. Offspring growth and metabolism were assessed up to 22 weeks of age. TF-exposed offspring exhibited reduced weaning weight. Body weight among female offspring remained low throughout the study, while male offspring matched controls by 17 weeks of age. Female offspring exhibited reduced glucose tolerance, markedly enhanced systemic insulin sensitivity, reduced adiposity, and normal gluconeogenic capacity during adulthood. In contrast, male offspring exhibited impaired glucose tolerance with unchanged insulin sensitivity, no differences in adiposity, and increased gluconeogenic capacity. These data indicate that developmental exposure to TF induces sex-specific metabolic disruptions that recapitulate key aspects of other in utero growth restriction models.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Shane M Regnier
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; Pritzker School of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Andrew G Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Manami Hara
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Fidel Haro
- University of Chicago, Chicago, IL, United States
| | - Hani Aldirawi
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael P Dybala
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
18
|
Mendez-Garcia C, Trini A, Browne V, Kochansky CJ, Pontiggia L, D'mello AP. Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: roles of hepatic lipogenesis and lipid utilization in muscle and adipose tissue. Can J Physiol Pharmacol 2019; 97:952-962. [PMID: 31238009 DOI: 10.1139/cjpp-2018-0646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein restriction throughout pregnancy and lactation reduces liver triglyceride (TG) content in adult male rat offspring. The study determined the contribution of hepatic lipogenesis to the reduction in liver TG content. Rats received either control or protein-restricted diets throughout pregnancy and lactation. Offspring were sacrificed on day 65. Hepatic fatty acid uptake and de novo fatty acid and TG biosynthesis were similar between control and low-protein (LP) offspring. These results indicate that hepatic lipogenesis cannot mediate the decrease in liver TG content in LP offspring. We then determined whether increased lipid utilization in adipose tissue and muscle was responsible for the decrease in liver TG content. There was suggestive evidence of increased sympathetic nervous system tone in epididymal adipose tissue of LP offspring that increased fatty acid uptake, TG lipolysis, and utilization of fatty acids in mitochondrial thermogenesis. Measurement of similar parameters demonstrated that such alterations do not occur in gastrocnemius muscle, another major lipid-utilizing tissue. Our results suggest that the decrease in liver TG content in LP offspring is likely due to increased diversion of fatty acids to white and brown adipose tissue depots and their enhanced utilization to fuel mitochondrial thermogenesis.
Collapse
Affiliation(s)
- Claudia Mendez-Garcia
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Afsana Trini
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Veron Browne
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Christopher J Kochansky
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism (PPDM), Merck & Co., Inc. P.O. Box 4, 770 Sumneytown Pike, WP75A-203, West Point, PA 19486, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics, and Statistics, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Anil P D'mello
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Santos LS, Cordeiro GS, Perez GS, Santo DAE, Macêdo APA, Lima MS, Carneiro IBC, Machado MEPC, Deiró TCJ, Barreto-Medeiros JM. Influence of mother nutrition during pregnancy and/or lactation on offspring food preference in experimental models. BRAZ J BIOL 2019; 79:220-232. [DOI: 10.1590/1519-6984.179134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction Understanding associations between food preferences and maternal nutrition during pregnancy and lactation could inform efforts to understanding the obesity mechanisms and provide insight to prevent it. Objective: To identify studies that investigated the effects of nutritional interventions during the pregnancy and lactation on the food preferences of offspring. Method: The review was conducted with search for articles in the databases: Scopus, Pubmed, Medline, LILACS, Scielo and Science Direct. Exclusion criteria were used: reviews, human studies, studies with drugs or other substances not related to food. Results: At the end of the search in the databases, 176 references were found. After use the exclusion criteria, reading the titles, abstracts and full articles, were selected 11 articles to compose the review. Conclusion: The selected studies suggested that unbalanced nutrition in early life alters the food preference and neural components related to the consumption of fatty and sugary foods in offspring rodents.
Collapse
Affiliation(s)
- L. S. Santos
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - G. S. Cordeiro
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - G. S. Perez
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - D. A. E. Santo
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | | | | | - I. B. C. Carneiro
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - M. E. P. C. Machado
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | - T. C.B. J. Deiró
- Universidade Federal da Bahia, Brasil; Universidade Federal da Bahia, Brasil
| | | |
Collapse
|
20
|
Sarr O, Mathers KE, Zhao L, Dunlop K, Chiu J, Guglielmo CG, Bureau Y, Cheung A, Raha S, Lee TY, Regnault TRH. Western diet consumption through early life induces microvesicular hepatic steatosis in association with an altered metabolome in low birth weight Guinea pigs. J Nutr Biochem 2019; 67:219-233. [PMID: 30981986 DOI: 10.1016/j.jnutbio.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Uteroplacental insufficiency-induced low birth weight (LBW) and postnatal high saturated fat/high sucrose-fructose diet (Western Diet, WD) consumption have been independently associated with the development of hepatic steatosis, while their additive effect on fatty acid, acylcarnitine and amino acid profiles in early adulthood have not been widely reported. We employed LBW, generated via uterine artery ablation, and normal birth weight (NBW) male guinea pigs fed either a WD or control diet (CD) from weaning to postnatal day 150 (early adulthood). Hepatic steatosis was absent in CD-fed offspring, while NBW/WD offspring displayed macrovesicular steatosis and LBW/WD offspring exhibited microvesicular steatosis, both occurring in a lean phenotype. Life-long consumption of the WD, irrespective of birth weight, was associated with an increase in hepatic medium- and long-chain saturated fatty acids, monounsaturated fatty acids, acylcarnitines, reduced oxidative phosphorylation complex III activity and polyunsaturated fatty acids, and molecular evidence of disrupted hepatic insulin signaling. In NBW/WD, hepatic C15:1 and C16:1n-6 fatty acids in phospholipids, C16, C18 and C18:1 acylcarnitines, concentrations of aspartate, phenylalanine, tyrosine and tryptophan and expression of carnitine palmitoyltransferase 1 alpha (CPT1α) and uncoupling protein 2 (UCP2) genes were elevated compared to LBW/WD livers. Our results suggest that LBW and life-long WD combined are influential in promoting hepatic microvesicular steatosis in conjunction with a specific mitochondrial gene expression and metabolomic profile in early adulthood.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | | | - Lin Zhao
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada
| | - Kristyn Dunlop
- Department of Physiology and Pharmacology, Western University
| | - Jacky Chiu
- Department of Physiology and Pharmacology, Western University
| | | | - Yves Bureau
- Department of Medical Biophysics, Western University
| | - Anson Cheung
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Ting-Yim Lee
- Lawson Health Research Institute, London, Ontario, Canada; Departments of Medical Imaging, Medical Biophysics, and Oncology, Western University; Robarts Research Institute, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University.
| |
Collapse
|
21
|
Horton DM, Saint DA, Gatford KL, Kind KL, Owens JA. Sex-specific programming of adult insulin resistance in guinea pigs by variable perinatal growth induced by spontaneous variation in litter size. Am J Physiol Regul Integr Comp Physiol 2019; 316:R352-R361. [PMID: 30735437 DOI: 10.1152/ajpregu.00341.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrauterine growth restriction (IUGR) and subsequent neonatal catch-up growth are implicated in programming of insulin resistance later in life. Spontaneous IUGR in the guinea pig, due to natural variation in litter size, produces offspring with asymmetric IUGR and neonatal catch-up growth. We hypothesized that spontaneous IUGR and/or accelerated neonatal growth would impair insulin sensitivity in adult guinea pigs. Insulin sensitivity of glucose metabolism was determined by hyperinsulinemic-euglycemic clamp (HEC) in 38 (21 male, 17 female) young adult guinea pigs from litters of two-to-four pups. A subset (10 male, 8 female) were infused with d-[3-3H]glucose before and during the HEC to determine rates of basal and insulin-stimulated glucose utilization, storage, glycolysis, and endogenous glucose production. n males, the insulin sensitivity of whole body glucose uptake ( r = 0.657, P = 0.002) and glucose utilization ( r = 0.884, P = 0.004) correlated positively and independently with birth weight, but not with neonatal fractional growth rate (FGR10-28). In females, the insulin sensitivity of whole body and partitioned glucose metabolism was not related to birth weight, but that of endogenous glucose production correlated negatively and independently with FGR10-28 ( r = -0.815, P = 0.025). Thus, perinatal growth programs insulin sensitivity of glucose metabolism in the young adult guinea pig and in a sex-specific manner; impaired insulin sensitivity, including glucose utilization, occurs after IUGR in males and impaired hepatic insulin sensitivity after rapid neonatal growth in females.
Collapse
Affiliation(s)
- Dane M Horton
- Robinson Research Institute, The University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, The University of Adelaide , Adelaide, South Australia , Australia
| | - David A Saint
- Adelaide Medical School, The University of Adelaide , Adelaide, South Australia , Australia
| | - Kathryn L Gatford
- Robinson Research Institute, The University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, The University of Adelaide , Adelaide, South Australia , Australia
| | - Karen L Kind
- Robinson Research Institute, The University of Adelaide , Adelaide, South Australia , Australia.,School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, South Australia , Australia
| | - Julie A Owens
- Robinson Research Institute, The University of Adelaide , Adelaide, South Australia , Australia.,Adelaide Medical School, The University of Adelaide , Adelaide, South Australia , Australia.,Office of the Deputy Vice-Chancellor Research, Deakin University, Waurn Ponds, Geelong, Victoria , Australia
| |
Collapse
|
22
|
Yamane T, Konno R, Iwatsuki K, Oishi Y. Protein-restricted maternal diet during lactation decreases type I and type III tropocollagen synthesis in the skin of mice offspring. Biosci Biotechnol Biochem 2018; 82:1829-1831. [PMID: 29961398 DOI: 10.1080/09168451.2018.1491288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the effects of a low protein (LP) maternal diet during lactation on type I and III tropocollagen synthesis in infant mouse skin. The LP diet decreased the levels of type I and III tropocollagen proteins and COL1A1 and COL3A1 mRNA. Thus, the protein composition of the maternal perinatal diet may influence the skin health of offspring.
Collapse
Affiliation(s)
- Takumi Yamane
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| | - Ryosuke Konno
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| | - Ken Iwatsuki
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| | - Yuichi Oishi
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| |
Collapse
|
23
|
Martin Agnoux A, El Ghaziri A, Moyon T, Pagniez A, David A, Simard G, Parnet P, Qannari EM, Darmaun D, Antignac JP, Alexandre-Gouabau MC. Maternal protein restriction during lactation induces early and lasting plasma metabolomic and hepatic lipidomic signatures of the offspring in a rodent programming model. J Nutr Biochem 2018; 55:124-141. [DOI: 10.1016/j.jnutbio.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/12/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
|
24
|
Sevrin T, Alexandre-Gouabau MC, Darmaun D, Palvadeau A, André A, Nguyen P, Ouguerram K, Boquien CY. Use of water turnover method to measure mother's milk flow in a rat model: Application to dams receiving a low protein diet during gestation and lactation. PLoS One 2017; 12:e0180550. [PMID: 28715436 PMCID: PMC5513591 DOI: 10.1371/journal.pone.0180550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/16/2017] [Indexed: 11/24/2022] Open
Abstract
Assessment of milk production is of utmost relevance for pediatricians and scientists interested in early life nutrition. The weight-suckle-weight (WSW) method, which consists of weighing babies before and after they suckle their mother, uses the difference in body weight as an estimate of milk intake. However, this is prone to many sources of error. In the current study, we used for the first time the water turnover method and compartmental analysis with deuterated water (D2O) as a non-toxic tracer to quantify in vivo milk production in a rat model. We assessed the effect of a nutritional intervention presumed to affect milk production, a maternal dietary protein restriction during gestation and lactation, which results in the birth of pups with intrauterine growth restriction. The specific aim of this study was to determine milk production with the body water turnover method in rat dams receiving during gestation and lactation, either a control diet (NP) or an iso-caloric low-protein diet (LP). In NP dams, mass of dam’s total body water, output flow constant from dam to litter (K21) and median milk flow, calculated between days 11 to 14 after pup birth, were 282.1 g, 0.0122 h-1 and 3.30 g/h for NP dams, respectively. Maternal dietary protein restriction (-59%) during perinatal period led to a 34% reduction in milk flow (NP versus LP). With the WSW method, milk flow varied from 1.96 g/h to 2.37 g/h between days 11 to 14 for NP dams. The main advantage of the D20 method compared to the WSW method stems from its higher precision, as attested by the narrowest range of measured values of milk flow ([2.90; 3.75] and [0.98; 6.85] g/h, respectively) for NP group. This method could be suitable for testing the effectiveness of candidate galactologue molecules presumed to enhance milk production in the lactating rat model.
Collapse
Affiliation(s)
- Thomas Sevrin
- UMR PhAN, INRA, CRNH Ouest, Université de Nantes, Nantes, France
| | | | - Dominique Darmaun
- UMR PhAN, INRA, CRNH Ouest, Université de Nantes, Nantes, France
- Nantes Hospital, CHU Hôtel-Dieu, CRNH Ouest, IMAD, DHU2020, Nantes, France
| | | | - Agnès André
- ONIRIS, Nantes-Atlantic National College of Veterinary Medicine, UNE, Nantes, France
| | - Patrick Nguyen
- ONIRIS, Nantes-Atlantic National College of Veterinary Medicine, UNE, Nantes, France
| | | | - Clair-Yves Boquien
- UMR PhAN, INRA, CRNH Ouest, Université de Nantes, Nantes, France
- * E-mail:
| |
Collapse
|
25
|
Tran NT, Alexandre-Gouabau MC, Pagniez A, Ouguerram K, Boquien CY, Winer N, Darmaun D. Neonatal Citrulline Supplementation and Later Exposure to a High Fructose Diet in Rats Born with a Low Birth Weight: A Preliminary Report. Nutrients 2017; 9:nu9040375. [PMID: 28398243 PMCID: PMC5409714 DOI: 10.3390/nu9040375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/19/2017] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
A low birth weight (LBW) leads to a higher risk of metabolic syndrome in adulthood. Literature suggests that citrulline supplementation in adulthood prevents the effect of a high fructose diet on energy metabolism. Whether neonatal citrulline supplementation would alter early growth or energy metabolism in the long-term in rats with LBW is unknown. LBW pups born from dams fed a low (4%) protein diet, were nursed by normally-fed dams and received isonitrogenous supplements of either l-citrulline or l-alanine by gavage from the sixth day of life until weaning, and were subsequently exposed to 10%-fructose in drinking water from weaning to 90 days of age. The oral glucose tolerance was tested (OGTT) at 70 days of age, and rats were sacrificed at 90 days of age. Pre-weaning citrulline supplementation failed to alter the growth trajectory, OGTT, plasma triglycerides, or fat mass accretion in adulthood; yet, it was associated with increased liver triglycerides, decreased liver total cholesterol, and a distinct liver lipidomic profile that may result in a predisposition to liver disease. We conclude that pre-weaning supplementation with citrulline does not impact early growth, but might impact liver fat metabolism in adulthood upon exposure to a high fructose diet.
Collapse
Affiliation(s)
- Nhat-Thang Tran
- INRA, UMR 1280, Physiology of Nutritional Adaptations, University of Nantes, IMAD and CRNH-Ouest, Nantes 44000, France.
- Department of Gynecology and Obstetrics, Centre Hospitalier Universitaire Hotel-Dieu, Nantes 44000, France.
- Department of Gynecology and Obstetrics, University of Medicine and Pharmacy, Ho Chi Minh City 70000, Vietnam.
| | | | - Anthony Pagniez
- INRA, UMR 1280, Physiology of Nutritional Adaptations, University of Nantes, IMAD and CRNH-Ouest, Nantes 44000, France.
| | - Khadija Ouguerram
- INRA, UMR 1280, Physiology of Nutritional Adaptations, University of Nantes, IMAD and CRNH-Ouest, Nantes 44000, France.
| | - Clair-Yves Boquien
- INRA, UMR 1280, Physiology of Nutritional Adaptations, University of Nantes, IMAD and CRNH-Ouest, Nantes 44000, France.
| | - Norbert Winer
- INRA, UMR 1280, Physiology of Nutritional Adaptations, University of Nantes, IMAD and CRNH-Ouest, Nantes 44000, France.
- Department of Gynecology and Obstetrics, Centre Hospitalier Universitaire Hotel-Dieu, Nantes 44000, France.
| | - Dominique Darmaun
- INRA, UMR 1280, Physiology of Nutritional Adaptations, University of Nantes, IMAD and CRNH-Ouest, Nantes 44000, France.
- Nutrition Support Team, IMAD, University Medical Center of Nantes, Nantes 44000, France.
| |
Collapse
|
26
|
Abstract
Animal studies show that the lactation period contributes to metabolic programming of the offspring and that oral leptin and insulin show bioactivity. Stage of lactation, duration of gestation, maternal body composition, and maternal diet seem to influence the concentrations of small molecules in human milk. Variability of small molecule concentrations seems higher in preterm milk than in term milk. Insulin in human milk shows concentrations similar to plasma. Leptin concentration is lower in milk than in plasma and reflects maternal body mass index. Early in lactation, leptin could contribute to mediating the association between maternal and infant body composition.
Collapse
Affiliation(s)
- Hans Demmelmair
- Division of Metabolism and Nutritional Medicine, Dr. von Hauner Childrens Hospital, University of Munich Medical Center, Lindwurmstrasse 4, 80337 München, Germany.
| | - Berthold Koletzko
- Division of Metabolism and Nutritional Medicine, Dr. von Hauner Childrens Hospital, University of Munich Medical Center, Lindwurmstrasse 4, 80337 München, Germany
| |
Collapse
|
27
|
Qasem RJ, Li J, Tang HM, Pontiggia L, D'mello AP. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring. Clin Exp Pharmacol Physiol 2016; 43:494-502. [PMID: 26763577 DOI: 10.1111/1440-1681.12545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure.
Collapse
Affiliation(s)
- Rani J Qasem
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hee Man Tang
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anil P D'mello
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Effects of a maternal high-fat diet on offspring behavioral and metabolic parameters in a rodent model. J Dev Orig Health Dis 2016; 8:75-88. [DOI: 10.1017/s2040174416000490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maternal diet-induced obesity can cause detrimental developmental origins of health and disease in offspring. Perinatal exposure to a high-fat diet (HFD) can lead to later behavioral and metabolic disturbances, but it is not clear which behaviors and metabolic parameters are most vulnerable. To address this critical gap, biparental and monogamous oldfield mice (Peromyscus polionotus), which may better replicate most human societies, were used in the current study. About 2 weeks before breeding, adult females were placed on a control or HFD and maintained on the diets throughout gestation and lactation. F1 offspring were placed at weaning (30 days of age) on the control diet and spatial learning and memory, anxiety, exploratory, voluntary physical activity, and metabolic parameters were tested when they reached adulthood (90 days of age). Surprisingly, maternal HFD caused decreased latency in initial and reverse Barnes maze trials in male, but not female, offspring. Both male and female HFD-fed offspring showed increased anxiogenic behaviors, but decreased exploratory and voluntary physical activity. Moreover, HFD offspring demonstrated lower resting energy expenditure (EE) compared with controls. Accordingly, HFD offspring weighed more at adulthood than those from control fed dams, likely the result of reduced physical activity and EE. Current findings indicate a maternal HFD may increase obesity susceptibility in offspring due to prenatal programming resulting in reduced physical activity and EE later in life. Further work is needed to determine the underpinning neural and metabolic mechanisms by which a maternal HFD adversely affects neurobehavioral and metabolic pathways in offspring.
Collapse
|
29
|
Malta A, Souza AAD, Ribeiro TA, Francisco FA, Pavanello A, Prates KV, Tófolo LP, Miranda RA, Oliveira JCD, Martins IP, Previate C, Gomes RM, Franco CCDS, Natali MRM, Palma-Rigo K, Mathias PCDF. Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats. Sci Rep 2016; 6:30745. [PMID: 27561682 PMCID: PMC4999897 DOI: 10.1038/srep30745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/07/2016] [Indexed: 01/17/2023] Open
Abstract
We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets.
Collapse
Affiliation(s)
- Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Aline Amenencia de Souza
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Rosiane Aparecida Miranda
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | | | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | | | | | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| |
Collapse
|
30
|
de Almeida Faria J, de Araújo TMF, Mancuso RI, Meulman J, da Silva Ferreira D, Batista TM, Vettorazzi JF, da Silva PMR, Rodrigues SC, Kinote A, Carneiro EM, Bordin S, Anhê GF. Day-restricted feeding during pregnancy and lactation programs glucose intolerance and impaired insulin secretion in male rat offspring. Acta Physiol (Oxf) 2016; 217:240-53. [PMID: 27029505 DOI: 10.1111/apha.12684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
AIM The maternal environment during pregnancy and lactation plays a determining role in programming energy metabolism in offspring. Among a myriad of maternal factors, disruptions in the light/dark cycle during pregnancy can program glucose intolerance in offspring. Out-of-phase feeding has recently been reported to influence metabolism in adult humans and rodents; however, it is not known whether this environmental factor impacts offspring metabolism when applied during pregnancy and lactation. This study aims to determine whether maternal day-restricted feeding (DF) influences energy metabolism in offspring. METHODS Pregnant and lactating Wistar rats were subjected to ad libitum (AL) or DF during pregnancy and lactation. The offspring born to the AL and DF dams were intra- and interfostered, which resulted in 4 group types. RESULTS The male offspring born to and breastfed by the DF dams (DF/DF off) were glucose intolerant, but without parallel insulin resistance as adults. Experiments with isolated pancreatic islets demonstrated that the male DF/DF off rats had reduced insulin secretion with no parallel disruption in calcium handling. However, this reduction in insulin secretion was accompanied by increased miRNA-29a and miRNA34a expression and decreased syntaxin 1a protein levels. CONCLUSION We conclude that out-of-phase feeding during pregnancy and lactation can lead to glucose intolerance in male offspring, which is caused by a disruption in insulin secretion capacity. This metabolic programming is possibly caused by mechanisms dependent on miRNA modulation of syntaxin 1a.
Collapse
Affiliation(s)
- J de Almeida Faria
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - T M F de Araújo
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - R I Mancuso
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - J Meulman
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - D da Silva Ferreira
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - T M Batista
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - J F Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - P M R da Silva
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - S C Rodrigues
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - A Kinote
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - E M Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - S Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - G F Anhê
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
31
|
McKnight RA, Yost CC, Yu X, Wiedmeier JE, Callaway CW, Brown AS, Lane RH, Fung CM. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene. Physiol Genomics 2015; 47:634-43. [DOI: 10.1152/physiolgenomics.00082.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.
Collapse
Affiliation(s)
- Robert A. McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C. Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Xing Yu
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Julia E. Wiedmeier
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christopher W. Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Ashley S. Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Robert H. Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
32
|
Jahan-Mihan A, Rodriguez J, Christie C, Sadeghi M, Zerbe T. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring. Nutrients 2015; 7:9185-217. [PMID: 26561832 PMCID: PMC4663588 DOI: 10.3390/nu7115460] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of metabolic syndrome and obesity has been increasing. Pre-natal environment has been suggested as a factor influencing the risk of metabolic syndrome in adulthood. Both observational and experimental studies showed that maternal diet is a major modifier of the development of regulatory systems in the offspring in utero and post-natally. Both protein content and source in maternal diet influence pre- and early post-natal development. High and low protein dams’ diets have detrimental effect on body weight, blood pressure191 and metabolic and intake regulatory systems in the offspring. Moreover, the role of the source of protein in a nutritionally adequate maternal diet in programming of food intake regulatory system, body weight, glucose metabolism and blood pressure in offspring is studied. However, underlying mechanisms are still elusive. The purpose of this review is to examine the current literature related to the role of proteins in maternal diets in development of characteristics of the metabolic syndrome in offspring.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Judith Rodriguez
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Catherine Christie
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Marjan Sadeghi
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Tara Zerbe
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| |
Collapse
|
33
|
Martin Agnoux A, Antignac JP, Boquien CY, David A, Desnots E, Ferchaud-Roucher V, Darmaun D, Parnet P, Alexandre-Gouabau MC. Perinatal protein restriction affects milk free amino acid and fatty acid profile in lactating rats: potential role on pup growth and metabolic status. J Nutr Biochem 2015; 26:784-95. [DOI: 10.1016/j.jnutbio.2015.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/30/2015] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
|
34
|
Ong TP, Ozanne SE. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Curr Opin Clin Nutr Metab Care 2015; 18:354-60. [PMID: 26049632 DOI: 10.1097/mco.0000000000000177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW The environment experienced during critical windows of development can 'programme' long-term health and risk of metabolic diseases such as type 2 diabetes in the offspring. The purpose of this review is to discuss potential epigenetic mechanisms involved in the developmental programming of type 2 diabetes by early nutrition. RECENT FINDINGS Maternal and more recently paternal nutrition have been shown to play key roles in metabolic programming of the offspring. Although the exact mechanisms are still not clear, epigenetic processes have emerged as playing a plausible role. Epigenetic dysregulation is associated with several components that contribute to type 2 diabetes risk, including altered feeding behaviour, insulin secretion and insulin action. It may also contribute to transgenerational risk transmission. SUMMARY Epigenetic processes may represent a central underlying mechanism of developmental programming of type 2 diabetes. During embryonic and foetal development, extensive epigenetic remodelling takes place not only in somatic but also in primordial germ cells. Therefore, concerns have been raised that epigenetic dysregulation induced by a suboptimal early environment could programme altered phenotypes not only in the first generation but also in the subsequent ones. Characterizing these altered epigenetic marks has great implications for identifying individuals at an increased disease risk as well as potentially leading to novel preventive and treatment strategies.
Collapse
Affiliation(s)
- Thomas P Ong
- aUniversity of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, UK bDepartment of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center (FoRC), São Paulo, Brazil
| | | |
Collapse
|