1
|
Imam MZ, Kuo A, Ghassabian S, Cai Y, Qin Y, Li T, Smith MT. CYX-5, a G-protein biassed MOP receptor agonist, DOP receptor antagonist and KOP receptor agonist, evokes constipation but not respiratory depression relative to morphine in rats. Pharmacol Rep 2023; 75:634-646. [PMID: 36637684 PMCID: PMC10227131 DOI: 10.1007/s43440-023-00446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Strong opioid analgesics such as morphine alleviate moderate to severe acute nociceptive pain (e.g. post-surgical or post-trauma pain) as well as chronic cancer pain. However, they evoke many adverse effects and so there is an unmet need for opioid analgesics with improved tolerability. Recently, a prominent hypothesis has been that opioid-related adverse effects are mediated by β-arrestin2 recruitment at the µ-opioid (MOP) receptor and this stimulated research on discovery of G-protein biassed opioid analgesics. In other efforts, opioids with MOP agonist and δ-opioid (DOP) receptor antagonist profiles are promising for reducing side effects c.f. morphine. Herein, we report on the in vivo pharmacology of a novel opioid peptide (CYX-5) that is a G-protein biassed MOP receptor agonist, DOP receptor antagonist and kappa opioid (KOP) receptor agonist. METHODS Male Sprague-Dawley received intracerebroventricular bolus doses of CYX-5 (3, 10, 20 nmol), morphine (100 nmol) or vehicle, and antinociception (tail flick) was assessed relative to constipation (charcoal meal and castor oil-induced diarrhoea tests) and respiratory depression (whole body plethysmography). RESULTS CYX-5 evoked naloxone-sensitive, moderate antinociception, at the highest dose tested. Although CYX-5 did not inhibit gastrointestinal motility, it reduced stool output markedly in the castor oil-induced diarrhoea test. In contrast to morphine that evoked respiratory depression, CYX-5 increased tidal volume, thereby stimulating respiration. CONCLUSION Despite its lack of recruitment of β-arrestin2 at MOP, DOP and KOP receptors, CYX-5 evoked constipation, implicating a mechanism other than β-arrestin2 recruitment at MOP, DOP and KOP receptors, mediating constipation evoked by CYX-5 and potentially other opioid ligands.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Sussan Ghassabian
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Yunxin Cai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Ting AKY, Tay VSY, Chng HT, Xie S. A Critical Review on the Pharmacodynamics and Pharmacokinetics of Non-steroidal Anti-inflammatory Drugs and Opioid Drugs Used in Reptiles. Vet Anim Sci 2022; 17:100267. [PMID: 36043206 PMCID: PMC9420515 DOI: 10.1016/j.vas.2022.100267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and opioids are analgesics used for moderate to severe pain in many animals, including reptiles. However, reptilian dosing regimens are often extrapolated from other animal species. This is not ideal as inter- and intra-species variability in physiology may result in varied drug disposition. Therefore, this critical review aims to collate data from pharmacological studies of selected NSAIDs and opioids performed in reptile and provide an analysis and discussion on the existing pharmacodynamic knowledge and pharmacokinetic data of NSAIDs and opioids use in reptiles. Additionally, key pharmacokinetic trends that may aid dosing of NSAIDs and opioids in reptiles will also be highlighted. Most of the existing reports of NSAID used in reptiles did not observe any adverse effects directly associated to the respective NSAID used, with meloxicam being the most well-studied. Despite the current absence of analgesic efficacy studies for NSAIDs in reptiles, most reports observed behavioural improvements in reptiles after NSAID treatment. Fentanyl and morphine were studied in the greatest number of reptile species with analgesic effects observed with the doses used, while adverse effects such as sedation were observed most with butorphanol use. While pharmacokinetic trends were drug- and species-specific, it was observed that clearance (CL) of drugs tended to be higher in squamates compared to chelonians. The half-life (t1/2) of meloxicam also appeared to be longer when dosed orally compared to other routes of drug administration. This could have been due to absorption-rate limited disposition. Although current data provided beneficial information, there is an urgent need for future research on NSAID and opioid pharmacology to ensure the safe and effective use of opioids in reptiles.
Collapse
|
3
|
Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art. Animals (Basel) 2022; 12:ani12060697. [PMID: 35327093 PMCID: PMC8944618 DOI: 10.3390/ani12060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Rescue and rehabilitative medicine of sea turtles must deal with several circumstances that would be certainly considered painful in other species (trauma, situations that require surgery); thus, it would be natural to consider the use of analgesic drugs to manage the pain and avoid its deleterious systemic effects to guarantee a rapid recovery and release. However, in these animals (as well as in reptiles in general), many obstacles stand in the way of the application of safe and effective therapeutic protocols. It has been demonstrated that, anatomically and physiologically, turtles and reptiles in general must be considered able to experience pain in its definition of an “unpleasant sensory and emotional experience”. Unfortunately, specific studies concerning sea turtles and reptiles on pain assessment, safety, and clinical efficacy of analgesic drugs currently in use (mostly opioids and non-steroidal anti-inflammatory drugs—NSAIDs) are scarce and fragmentary and suffer from some basic gaps or methodological bias that prevent a correct interpretation of the results. At present, the general understanding of the physiology of reptiles’ pain and the possibility of its reasonable treatment is still in its infancy, considering the enormous amount of information still needed, and the use of analgesic drugs is still anecdotal or dangerously inferred from other species. Abstract In sea turtle rescue and rehabilitative medicine, many of the casualties suffer from occurrences that would be considered painful in other species; therefore, the use of analgesic drugs should be ethically mandatory to manage the pain and avoid its deleterious systemic effects to guarantee a rapid recovery and release. Nonetheless, pain assessment and management are particularly challenging in reptilians and chelonians. The available scientific literature demonstrates that, anatomically, biochemically, and physiologically, the central nervous system of reptiles and chelonians is to be considered functionally comparable to that of mammals albeit less sophisticated; therefore, reptiles can experience not only nociception but also “pain” in its definition of an unpleasant sensory and emotional experience. Hence, despite the necessity of appropriate pain management plans, the available literature on pain assessment and clinical efficacy of analgesic drugs currently in use (prevalently opioids and NSAIDs) is fragmented and suffers from some basic gaps or methodological bias that prevent a correct interpretation of the results. At present, the general understanding of the physiology of reptiles’ pain and the possibility of its reasonable treatment is still in its infancy, considering the enormous amount of information still needed, and the use of analgesic drugs is still anecdotal or dangerously inferred from other species.
Collapse
|
4
|
Circulating miRNome of Trachemys scripta after elective gonadectomy under general anesthesia. Sci Rep 2021; 11:14712. [PMID: 34282201 PMCID: PMC8289937 DOI: 10.1038/s41598-021-94113-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Post-surgical management is an important issue in veterinary medicine, requiring biomarkers with high sensitivity and specificity for timely and effective treatment. Emerging evidence suggests that miRNAs are promising stress- and pain-related markers. The aims were to profile the circulating miRNA signature in plasma of turtles (Trachemysscripta) and point out potential candidate biomarkers to assess the status of the animal. The plasma of female turtles underwent surgical gonadectomy were collected 24 h pre-surgery, and 2.5 h and 36 h post-surgery. The expression of miRNAs was profiled by Next Generation Sequencing and the dysregulated miRNAs were validated using RT-qPCR. The diagnostic value of miRNAs was calculated by ROC curves. The results showed that 14 miRNAs were differentially expressed over time. RT-qPCR validation highlighted that 2-miR-499-3p and miR-203-5p-out of 8 miRNAs tested were effectively modulated. The Area Under the Curve (AUC) of miR-203-5p was fair (AUC 0.7934) in discriminating pre- and 36 h post-surgery samples and poor for other time points; the AUC of miR-499-3p was excellent (AUC 0.944) in discriminating pre-surgery and 2.5 h post-surgery samples, and fair in discriminating pre-surgery and 36 h post-surgery (AUC 0.7292) and 2.5 h and 36 h post-surgery (AUC 0.7569) samples. In conclusion, we demonstrated for the first time that miRNAs profile changes in plasma of turtles underwent surgical oophorectomy and identified miR-203-5p and miR-499-3p as potential candidate biomarkers to assess animals' status. Further studies are necessary to confirm their diagnostic value and to investigate functional and mechanistic networks to improve our understanding of the biological processes.
Collapse
|
5
|
Brice‐Tutt AC, Wilson LL, Eans SO, Stacy HM, Simons CA, Simpson GG, Coleman JS, Ferracane MJ, Aldrich JV, McLaughlin JP. Multifunctional opioid receptor agonism and antagonism by a novel macrocyclic tetrapeptide prevents reinstatement of morphine-seeking behaviour. Br J Pharmacol 2020; 177:4209-4222. [PMID: 32562259 PMCID: PMC7443475 DOI: 10.1111/bph.15165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 05/16/2020] [Accepted: 06/03/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) is a multifunctional μ-opioid receptor and κ-opioid receptor agonist and κ-opioid receptor antagonist that produces antinociception and prevents stress-induced reinstatement of extinguished cocaine-conditioned place preference (CPP). We hypothesized that an analogue of CJ-15,208, cyclo[Pro-Sar-Phe-d-Phe], would demonstrate multifunctional μ-opioid receptor and κ-opioid receptor ligand activity, producing potent antinociception with fewer liabilities than selective μ-opioid receptor agonists, while preventing both drug- and stress-induced reinstatement of morphine-induced CPP. EXPERIMENTAL APPROACH The opioid receptor agonist and antagonist activity of cyclo[Pro-Sar-Phe-d-Phe] was characterized after i.c.v. and i.p. administration to C57BL/6J or transgenic opioid receptor "knockout" mice using the 55°C warm-water tail-withdrawal assay. Liabilities of locomotor coordination, respiration and spontaneous ambulation, and direct rewarding or aversive properties were assessed. Finally, the ability of cyclo[Pro-Sar-Phe-d-Phe] to block morphine- and stress-induced reinstatement of extinguished CPP was determined. KEY RESULTS cyclo[Pro-Sar-Phe-d-Phe] demonstrated dose-dependent, short-lasting antinociception, with an ED50 (and 95% confidence interval) of 0.15 (0.05-0.21) nmol i.c.v. and 1.91 (0.40-3.54) mg·kg-1 i.p., mediated by μ- and κ-opioid receptors. The macrocyclic tetrapeptide also demonstrated potent dose-dependent κ-opioid receptor antagonist-like activity at 2.5, but not at 4.5, h after administration. cyclo[Pro-Sar-Phe-d-Phe] displayed reduced liabiities compared with morphine, attributed to its additional activity at κ-receptors. Pretreatment with cyclo[Pro-Sar-Phe-d-Phe] prevented stress- and drug-induced reinstatement of extinguished morphine-place preference responses in a time-dependent manner. CONCLUSIONS AND IMPLICATIONS These data suggest that cyclo[Pro-Sar-Phe-d-Phe] is a promising lead compound for both the treatment of pain with reduced sideeffects and preventing both drug- and stress-induced relapse in morphine-abstinent subjects.
Collapse
Affiliation(s)
- Ariana C. Brice‐Tutt
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Lisa L. Wilson
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Heather M. Stacy
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Chloe A. Simons
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Grant G. Simpson
- Department of Medicinal Chemistry, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Jeremy S. Coleman
- Department of Medicinal Chemistry, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Michael J. Ferracane
- Department of Medicinal Chemistry, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
6
|
Tolami HF, Sharafshah A, Tolami LF, Keshavarz P. Haplotype-Based Association and In Silico Studies of OPRM1 Gene Variants with Susceptibility to Opioid Dependence Among Addicted Iranians Undergoing Methadone Treatment. J Mol Neurosci 2019; 70:504-513. [PMID: 31853823 DOI: 10.1007/s12031-019-01443-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
The associations of OPRM1 gene variants with opioid dependence have been demonstrated. This study investigated the association of rs495491, rs1799971 (A118G), rs589046, and rs10457090 variants of OPRM1 gene with opium dependence and their haplotypes among addicted individuals undergoing methadone treatment. Moreover, we investigated whether any of these variants were associated with libido dysfunction or insomnia among addicted people. A total of 404 individuals were genotyped by amplification refractory mutation system (ARMS) PCR. In silico studies were designed through homology modeling of A118G structures (N40 and D40) and docked with 41 FDA-approved drugs of OPRM1 protein by SWISS-MODEL, COACH, MolProbity, ProSA, Errat, Glide XP, and Autodock 4. Results revealed that rs495491, A118G, rs589046, and rs10457090 were significantly associated with opium dependence under recessive (P = 6.66E-10), dominant (P = 0.017), co-dominant (P = 0.001), and recessive (P = 9.28E-6) models of inheritance, respectively. Further analyses indicated three significant haplotypes including A-A-A-C (P-permutation < 1E-9), G-G-A-C (P-permutation = 0.04), and G-A-G-C (P-permutation = 8.69E-4). Genotype-phenotype associations of OPRM1 variants with insomnia and libido dysfunction showed no significant association. Docking showed the higher binding affinity of N40 rather than D40 model; however, methadone and morphine were bonded with D40 structure more powerful. Consequently, rs495491, A118G, rs589046, and rs10457090 were associated with opioid dependence among Iranians; also, A118G might be the most remarkable marker of OPRM1 owing to its vital structural roles.
Collapse
Affiliation(s)
- Hedyeh Fazel Tolami
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Laleh Fazel Tolami
- Medical and Emergency Management Center of Guilan, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Keshavarz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Williams CJA, Greunz EM, Ringgaard S, Hansen K, Bertelsen MF, Wang T. Magnetic resonance imaging (MRI) reveals high cardiac ejection fractions in red-footed tortoises ( Chelonoidis carbonarius). ACTA ACUST UNITED AC 2019; 222:jeb.206714. [PMID: 31439654 DOI: 10.1242/jeb.206714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022]
Abstract
The ejection fraction of the trabeculated cardiac ventricle of reptiles has not previously been measured. Here, we used the gold standard clinical methodology - electrocardiogram-gated flow magnetic resonance imaging (MRI) - to validate stroke volume measurements and end diastolic ventricular blood volume. This produced an estimate of ejection fraction in our study species, the red footed tortoise Chelonoidis carbonarius (n=5), under isoflurane anaesthesia of 88±11%. After reduction of the prevailing right-to-left intraventricular shunt through the action of atropine, the ejection fraction was 96±6%. This methodology opens new avenues for studying the complex hearts of ectotherms, and validating hypotheses on the function of a more highly trabeculated heart than that of endotherms, which have lower ejection fractions.
Collapse
Affiliation(s)
- Catherine J A Williams
- Section of Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark .,Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, 2000 Frederiksberg, Denmark
| | - Eva M Greunz
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, 2000 Frederiksberg, Denmark
| | - Steffen Ringgaard
- MR Research Center, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blv. 99, 8200 Aarhus N, Denmark
| | - Kasper Hansen
- Section of Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.,Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blv. 99, 8200 Aarhus N, Denmark.,Department of Forensic Medicine, Aarhus University Hospital, Palle Juul-Jensens Blv. 99, 8200 Aarhus N, Denmark
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, 2000 Frederiksberg, Denmark
| | - Tobias Wang
- Section of Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Sciences, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Bartman ME, Johnson SM. Isolated adult turtle brainstems exhibit central hypoxic chemosensitivity. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:65-73. [PMID: 30003967 DOI: 10.1016/j.cbpa.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
During hypoxia, red-eared slider turtles increase ventilation and decrease episodic breathing, but whether these responses are due to central mechanisms is not known. To test this question, isolated adult turtle brainstems were exposed to 240 min of hypoxic solution (bath PO2 = 32.6 ± 1.2 mmHg) and spontaneous respiratory-related motor bursts (respiratory event) were recorded on hypoglossal nerve roots. During hypoxia, burst frequency increased during the first 15 min, and then decreased during the remaining 35-240 min of hypoxia. Burst amplitude was maintained for 120 min, but then decreased during the last 120 min. The number of bursts/respiratory event decreased within 30 min and remained decreased. Pretreatment with either prazosin (α1-adrenergic antagonist) or MDL7222 (5-HT3 antagonist) blocked the hypoxia-induced short-term increase and the longer duration decrease in burst frequency. MDL7222, but not prazosin, blocked the hypoxia-induced decrease in bursts/respiratory event. Thus, during bath hypoxia, isolated turtle brainstems continued to produce respiratory motor output, but the frequency and pattern were altered in a manner that required endogenous α1-adrenergic and serotonin 5-HT3 receptor activation. This is the first example of isolated reptile brainstems exhibiting central hypoxic chemosensitivity similar to other vertebrate species.
Collapse
Affiliation(s)
- Michelle E Bartman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Kharbush RJ, Gutwillig A, Hartzler KE, Kimyon RS, Gardner AN, Abbott AD, Cox SK, Watters JJ, Sladky KK, Johnson SM. Antinociceptive and respiratory effects following application of transdermal fentanyl patches and assessment of brain μ-opioid receptor mRNA expression in ball pythons. Am J Vet Res 2017. [PMID: 28650234 DOI: 10.2460/ajvr.78.7.785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To quantify plasma fentanyl concentrations (PFCs) and evaluate antinociceptive and respiratory effects following application of transdermal fentanyl patches (TFPs) and assess cerebrospinal μ-opioid receptor mRNA expression in ball pythons (compared with findings in turtles). ANIMALS 44 ball pythons (Python regius) and 10 turtles (Trachemys scripta elegans). PROCEDURES To administer 3 or 12 μg of fentanyl/h, a quarter or whole TFP (TFP-3 and TFP-12, respectively) was used. At intervals after TFP-12 application in snakes, PFCs were measured by reverse-phase high-pressure liquid chromatography. Infrared heat stimuli were applied to the rostroventral surface of snakes to determine thermal withdrawal latencies after treatments with no TFP (control [n = 16]) and TFP-3 (8) or TFP-12 (9). Breathing frequency was measured in unrestrained controls and TFP-12-treated snakes. μ-Opioid receptor mRNA expression in brain and spinal cord tissue samples from snakes and turtles (which are responsive to μ-opioid receptor agonist drugs) were quantified with a reverse transcription PCR assay. RESULTS Mean PFCs were 79, 238, and 111 ng/mL at 6, 24, and 48 hours after TFP-12 application, respectively. At 3 to 48 hours after TFP-3 or TFP-12 application, thermal withdrawal latencies did not differ from pretreatment values or control treatment findings. For TFP-12-treated snakes, mean breathing frequency significantly decreased from the pretreatment value by 23% and 41% at the 24- and 48-hour time points, respectively. Brain and spinal cord tissue μ-opioid receptor mRNA expressions in snakes and turtles did not differ. CONCLUSIONS AND CLINICAL RELEVANCE In ball pythons, TFP-12 application resulted in high PFCs, but there was no change in thermal antinociception, indicating resistance to μ-opioid-dependent antinociception in this species.
Collapse
|
10
|
Wu J, Li P, Wu X. The effect of chronic intermittent hypoxia on respiratory sensitivity to morphine in rats. Sleep Breath 2017; 21:227-233. [DOI: 10.1007/s11325-016-1448-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/23/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
|
11
|
Johnson SM, Krisp AR, Bartman ME. Hypoxia switches episodic breathing to singlet breathing in red-eared slider turtles (Trachemys scripta) via a tropisetron-sensitive mechanism. Respir Physiol Neurobiol 2014; 207:48-57. [PMID: 25543027 DOI: 10.1016/j.resp.2014.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Hypoxia-induced changes in the chelonian breathing pattern are poorly understood. Thus, breathing was measured in freely swimming adult red-eared slider turtles breathing air prior to breathing nitrogen for 4h. Ventilation increased 10-fold within 10min due to increased breath frequency and tidal volume. Breaths/episode decreased by ∼50% within after 1h of hypoxia while the number of singlet breaths increased from 3.1±1.6singlets/h to a maximum of 66.1±23.5singlets/h. Expiratory and inspiratory duration increased during hypoxia. For doublet and triplet breaths, expiratory duration increased during the first breath only, while inspiratory duration increased for all breaths. Tropisetron (5-HT3 receptor antagonist, 5mg/kg) administration prior to hypoxia attenuated the hypoxia-induced increase in singlet breath frequency. Along with results from previous in vitro studies, this study suggests that 5-HT3 receptor activation may be required for the hypoxia-induced increase in singlet breathing pattern in red-eared slider turtles.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine University of Wisconsin, Madison, WI 53706, USA.
| | - Ashley R Krisp
- Department of Comparative Biosciences, School of Veterinary Medicine University of Wisconsin, Madison, WI 53706, USA
| | - Michelle E Bartman
- Department of Comparative Biosciences, School of Veterinary Medicine University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
12
|
Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 2013; 228:1-18. [PMID: 23649885 PMCID: PMC3679311 DOI: 10.1007/s00213-013-3129-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR-selective drugs are in clinical trials, but no DOR-selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid-based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. OBJECTIVE This review will discuss the existing literature focusing on four aspects: (1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands. (2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. (3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. (4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. CONCLUSION The reviewed features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands.
Collapse
|
13
|
Wang SC, Tsou HH, Chen CH, Chen YT, Ho IK, Hsiao CF, Chou SY, Lin YF, Fang KC, Huang CL, Su LW, Fang YC, Liu ML, Wu HY, Lin KM, Liu SC, Kuo HW, Chiang IC, Chen ACH, Tian JN, Liu YL. Genetic polymorphisms in the opioid receptor mu1 gene are associated with changes in libido and insomnia in methadone maintenance patients. Eur Neuropsychopharmacol 2012; 22:695-703. [PMID: 22406240 DOI: 10.1016/j.euroneuro.2012.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/04/2012] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
Abstract
Methadone, a synthetic racemic opioid that primarily works as a μ-opioid receptor (OPRM1) agonist, is commonly used for the treatment of heroin addiction. Genetic association studies have reported that the OPRM1 gene is involved in the physiology of heroin and alcohol addiction. Our current study is designed to test the hypothesis that genetic polymorphisms in the OPRM1 gene region are associated with methadone dosage, plasma concentrations, treatment responses, adverse reactions and withdrawal symptoms in a methadone maintenance treatment (MMT) cohort from Taiwan. Fifteen OPRM1 single nucleotide polymorphisms (SNPs) were selected and genotyped using DNA samples from 366 MMT patients. The plasma concentrations of methadone and its metabolite were measured by high performance liquid chromatography. The results obtained using dominant model analysis indicate that the OPRM1 SNPs rs1074287, rs6912029, rs12209447, rs510769, rs3798676, rs7748401, rs495491, rs10457090, rs589046, rs3778152, rs563649, and rs2075572 are significantly associated with change-in-libido side effects (adjusted p<0.042). Using recessive model analysis, these SNPs were also found to be significantly associated with insomnia side effects in this cohort (p<0.009). The significance of the insomnia findings was mainly contributed by a subgroup of patients who had a positive urine morphine test (p<0.022), and by individuals who did not use benzodiazepine hypnotics (p<0.034). Our current data thus suggest that genetic polymorphisms in OPRM1 may influence the change-in-libido and insomnia side effects sometimes found in MMT patients.
Collapse
Affiliation(s)
- Sheng-Chang Wang
- Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NLS, Zhang YP. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations. Mol Biol Evol 2012; 29:3359-70. [PMID: 22628534 DOI: 10.1093/molbev/mss144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research into the mechanisms of human adaptation to the hypoxic environment of high altitude is of great interest to the fields of human physiology and clinical medicine. Recently, the gene EGLN1, from the hypoxia-inducible factor (HIF) pathway, was identified as being involved in the hypoxic adaptation of highland Andeans and Tibetans. Both highland Andeans and Tibetans have adapted to an extremely hypoxic habitat and less attention has been paid to populations living in normoxic conditions at sea level and mild-hypoxic environments of moderate altitude, thus, whether a common adaptive mechanism exists in response to quantitative variations of environmental oxygen pressure over a wide range of residing altitudes is unknown. Here, we first performed a genome-wide association study of 35 populations from the Human Genome Diversity-CEPH Panel who dwell at sea level to moderate altitude in Eurasia (N = 691; 0-2,500 m) to identify the genetic adaptation profile of normoxic and mild-hypoxic inhabitants. In addition, we systematically compared the results from the present study to six previously published genome-wide scans of highland Andeans and Tibetans to identify shared adaptive signals in response to quantitative variations of oxygen pressure. For normoxic and mild-hypoxic populations, the strongest adaptive signal came from the mu opioid receptor-encoding gene (OPRM1, 2.54 × 10(-9)), which has been implicated in the stimulation of respiration, while in the systematic survey the EGLN1-DISC1 locus was identified in all studies. A replication study performed with highland Tibetans (N = 733) and sea level Han Chinese (N = 748) confirmed the association between altitude and SNP allele frequencies in OPRM1 (in Tibetans only, P < 0.01) and in EGLN1-DISC1 (in Tibetans and Han Chinese, P < 0.01). Taken together, identification of the OPRM1 gene suggests that cardiopulmonary adaptation mechanisms are important and should be a focus in future studies of hypoxia adaptation. Furthermore, the identification of the EGLN1 gene from the HIF pathway suggests a common adaptive mechanism for Eurasian human populations residing at different altitudes with different oxygen pressures.
Collapse
Affiliation(s)
- Lin-Dan Ji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Bartman ME, Johnson SM. Regulation of respiratory-related hypoglossal motor output by α₁ adrenergic and serotonin 5-HT₃ receptor activation in isolated adult turtle brainstems. Respir Physiol Neurobiol 2012; 181:202-13. [PMID: 22446563 DOI: 10.1016/j.resp.2012.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 02/20/2012] [Accepted: 03/07/2012] [Indexed: 02/02/2023]
Abstract
The effects of brainstem α(1) adrenergic receptor activation on respiratory control in reptiles are poorly understood. Isolated adult turtle brainstems were exposed to phenylephrine (α(1) adrenergic agonist) and respiratory motor bursts were recorded on hypoglossal nerves. Phenylephrine acutely increased burst frequency, amplitude (low concentrations only), and regularity of the time interval between the start of respiratory events (single or clustered bursts), and decreased bursts/respiratory event. Burst frequency and timing changes persisted during a 2.0 h washout. Acute increases in burst frequency and amplitude were blocked by prazosin (α(1) adrenergic antagonist). Pretreatment with prazosin and tropisetron (5-HT(3) antagonist) blocked the increase in respiratory event regularity, but did not alter the decrease in bursts/respiratory event. Intermittent phenylephrine application (4 × 5.0 min separated by 20 min) did not produce long-lasting changes in burst frequency and amplitude, bursts/respiratory event, or respiratory event regularity. Thus, sustained α(1) adrenergic receptor activation in turtle brainstems produces acute and long-lasting changes in respiratory burst frequency and pattern.
Collapse
Affiliation(s)
- Michelle E Bartman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
16
|
Sauriyal DS, Jaggi AS, Singh N. Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides 2011; 45:175-88. [PMID: 21208657 DOI: 10.1016/j.npep.2010.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022]
Abstract
Opioids are well known to exert potent central analgesic actions. In recent years, the numerous studies have unfolded the critical role of opioids in the pathophysiology of various diseases as well as in biological phenomenon of therapeutic interest. The endogenous ligands of opioid receptors are derived from three independent genes and their appropriate processing yields the major representative opioid peptides beta-endorphin, met-enkephalin, leu-enkephalin and dynorphin, respectively. These peptides and their derivatives exhibit different affinity and selectivity for the mu-, delta- and kappa-receptors located on the central and the peripheral neurons, neuroendocrine, immune, and mucosal cells and on many other organ systems. The present review article highlights the role of these peptides in central nervous system disorders such as depression, anxiety, epilepsy, and stress; gastrointestinal disorders such as diarrhea, postoperative ileus, ulceration, and irritable bowel syndrome; immune system and related inflammatory disorders such as osteoarthritis and rheumatoid arthritis; and others including respiratory, alcoholism and obesity/binge eating. Furthermore, the key role of opioids in different forms of pre- and post-conditioning including ischemic and pharmacological along with in remote preconditioning has also been described.
Collapse
|
17
|
Baker BB, Sladky KK, Johnson SM. Evaluation of the analgesic effects of oral and subcutaneous tramadol administration in red-eared slider turtles. J Am Vet Med Assoc 2011; 238:220-7. [PMID: 21235376 DOI: 10.2460/javma.238.2.220] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To determine the dose- and time-dependent changes in analgesia and respiration caused by tramadol administration in red-eared slider turtles (Trachemys scripta). DESIGN Crossover study. ANIMALS 30 adult male and female red-eared slider turtles. PROCEDURES 11 turtles received tramadol at various doses (1, 5, 10, or 25 mg/kg [0.45, 2.27, 4.54, or 11.36 mg/lb], PO; 10 or 25 mg/kg, SC) or a control treatment administered similarly. Degree of analgesia was assessed through measurement of hind limb thermal withdrawal latencies (TWDLs) at 0, 3, 6, 12, 24, 48, 72, and 96 hours after tramadol administration. Nineteen other freely swimming turtles received tramadol PO (5, 10, or 25 mg/kg), and ventilation (V(E)), breath frequency, tidal volume (V(T)), and expiratory breath duration were measured. RESULTS The highest tramadol doses (10 and 25 mg/kg, PO) yielded greater mean TWDLs 6 to 96 hours after administration than the control treatment did, whereas tramadol administered at 5 mg/kg, PO, yielded greater mean TWDLs at 12 and 24 hours. The lowest tramadol dose (1 mg/kg, PO) failed to result in analgesia. Tramadol administered SC resulted in lower TWDLs, slower onset, and shorter duration of action, compared with PO administration. Tramadol at 10 and 25 mg/kg, PO, reduced the V(E) at 12 hours by 51% and 67%, respectively, and at 24 through 72 hours by 55% to 62% and 61 % to 70%, respectively. However, tramadol at 5 mg/kg, PO, had no effect on the V(E). CONCLUSIONS AND CLINICAL RELEVANCE Tramadol administered PO at 5 to 10 mg/kg provided thermal analgesia with less respiratory depression than that reported for morphine in red-eared slider turtles.
Collapse
Affiliation(s)
- Bridget B Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
18
|
Abstract
The ability of reptiles to "feel" pain and the significance of pain or nociception on physiologic homeostasis is an exceedingly complex question requiring integration of both physiologic and behavioral evidence. Until further information is available, it would seem most ethical for veterinarians to assume that reptiles are capable of feeling pain, and to treat or manage pain when there is reasonable evidence that pain is present. With increased information available regarding analgesic use in reptiles and with the heightened awareness of the importance of analgesia for zoologic companion animals, it is likely that more veterinarians will provide pain relief to their reptile patients.
Collapse
|
19
|
Abstract
Numerous analgesics are available for use in animals, but only a few have been used or studied in zoologic species. Tramadol is a relatively new analgesic that is available in an inexpensive, oral form, and is not controlled. Studies examining the effect of tramadol in zoologic species suggest that significant differences exist in pharmacokinetics parameters as well as analgesic dynamics. This article reviews the current literature on the use of tramadol in humans, domestic animals, and zoologic species.
Collapse
Affiliation(s)
- Marcy J Souza
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA.
| | | |
Collapse
|
20
|
Bartman ME, Wilkerson JER, Johnson SM. 5-HT3 receptor-dependent modulation of respiratory burst frequency, regularity, and episodicity in isolated adult turtle brainstems. Respir Physiol Neurobiol 2010; 172:42-52. [PMID: 20399913 DOI: 10.1016/j.resp.2010.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 04/10/2010] [Accepted: 04/11/2010] [Indexed: 11/19/2022]
Abstract
To determine the role of central serotonin 5-HT(3) receptors in respiratory motor control, respiratory motor bursts were recorded from hypoglossal (XII) nerve rootlets on isolated adult turtle brainstems during bath-application of 5-HT(3) receptor agonists and antagonists. mCPBG and PBG (5-HT(3) receptor agonists) acutely increased XII burst frequency and regularity, and decreased bursts/episode. Tropisetron and MDL72222 (5-HT(3) antagonists) increased bursts/episode, suggesting endogenous 5-HT(3) receptor activation modulates burst timing in vitro. Tropisetron blocked all mCPBG effects, and the PBG-induced reduction in bursts/episode. Tropisetron application following mCPBG application did not reverse the long-lasting (2h) mCPBG-induced decrease in bursts/episode. We conclude that endogenous 5-HT(3) receptor activation regulates respiratory frequency, regularity, and episodicity in turtles and may induce a form of respiratory plasticity with the long-lasting changes in respiratory regularity.
Collapse
Affiliation(s)
- Michelle E Bartman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
21
|
Sladky KK, Kinney ME, Johnson SM. Effects of opioid receptor activation on thermal antinociception in red-eared slider turtles (Trachemys scripta). Am J Vet Res 2010; 70:1072-8. [PMID: 19719421 DOI: 10.2460/ajvr.70.9.1072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effects of mu-, delta-, and kappa-opioid receptor (MOR, DOR, and KOR, respectively) activation on thermal antinociception in red-eared slider turtles Trachemys scripta. ANIMALS 51 adult turtles. PROCEDURES Infrared heat stimuli were applied to the plantar surface of turtle hind limbs. Thermal hind limb withdrawal latencies (HLWLs) were measured before (baseline) and at intervals after SC administration of various doses of saline (0.9% NaCl) solution (SS), MOR, DOR, or KOR agonists (3 to 13 turtles/treatment). Treatment with a DOR antagonist SC prior to DOR agonist administration was also evaluated. RESULTS Treatment with an MOR agonist ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin acetate salt [DAMGO; 1.3 or 6.6 mg/kg]) increased HLWLs (from baseline) at 2 to 8 hours after injection; at the higher dose, the maximum mean increase was 5.6 seconds at 4 hours. Treatment with a DOR agonist ([D-Ala(2), D-Leu(5)]-enkephalin acetate salt [DADLE; 25 mg/kg]) increased mean HLWL by 11.3 seconds at 4 hours; however, treatment with DADLE (5.8 mg/kg) or with another DOR agonist ([D-Pen(2),(5)]-enkephalin hydrate [DPDPE; 1.2 or 6.3 mg/kg]) did not alter HLWL, compared with SS effects. Administration of a DOR antagonist (naltrindole hydrochloride; 10 mg/kg) prior to DADLE administration (25 mg/kg) increased mean HLWL by 2.7 seconds at 4 hours. One KOR agonist, U50488 ([-]-trans-[1S,2S]-U50488 hydrochloride hydrate; 6.7 mg/kg) decreased HLWL steadily from 2 to 24 hours (less than baseline value); another KOR agonist, U69593 ([+]-[5alpha,7alpha,8beta]-N-Methyl-N-[7-{1-pyrrolidinyl}-1-oxaspiro{4.5}dec-8-yl]-benzene-acet-amide; 6.7 or 26 mg/kg) did not alter HLWLs, compared with SS effects. CONCLUSIONS AND CLINICAL RELEVANCE Opioid-dependent thermal antinociception in turtles appeared to be attributable mainly to MOR activation with a relatively minor contribution of DOR activation.
Collapse
Affiliation(s)
- Kurt K Sladky
- Department of Surgical Sciences, Center for Global Health, School of Veterinary Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
22
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
23
|
Johnson SM, Moris CM, Bartman ME, Wiegel LM. Excitatory and inhibitory effects of opioid agonists on respiratory motor output produced by isolated brainstems from adult turtles (Trachemys). Respir Physiol Neurobiol 2009; 170:5-15. [PMID: 19833235 DOI: 10.1016/j.resp.2009.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 02/07/2023]
Abstract
To determine how central opioid receptor activation alters turtle breathing, respiratory-related hypoglossal (XII) motor bursts were recorded from isolated adult turtle brainstems during 60 min bath applications of agonists for delta- (DOR), kappa- (KOR), or nociceptin/orphanin (NOR) receptors. DADLE (DOR agonist) abolished XII burst frequency at 0.3-0.5 microM. DPDPE (DOR agonist) increased frequency by 40-44% at 0.01-0.1 microM and decreased frequency by 88+/-8% at 1.0 microM. U-50488 and U-59693 (KOR agonists) decreased frequency by 65-68% at 100 and 50 microM, respectively. Orphanin (NOR agonist) decreased frequency by 31-51% at 1.0-2.0 microM during the first 30 min period. Orphanin (0.5 and 2.0 microM) increased bursts/episode. Although morphine (10 microM) abolished frequency in nearly all brainstems, subsequent co-application of phenylephrine (alpha(1)-adrenergic agonist, 20-100 microM) with morphine restored activity to 16-78% of baseline frequency. Thus, DOR, KOR, and NOR activation regulates frequency and NOR activation regulates episodicity, while alpha(1)-adrenergic receptor activation reverses opioid-induced respiratory depression in turtles.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
24
|
Silverman DAN, Nettleton RT, Spencer KB, Wallisch M, Olsen GD. S-Methadone augments R-methadone induced respiratory depression in the neonatal guinea pig. Respir Physiol Neurobiol 2009; 169:252-61. [PMID: 19744579 DOI: 10.1016/j.resp.2009.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Methadone is administered as a racemic mixture, although its analgesic and respiratory effects are attributed to R-isomer activity at the mu opioid receptor (MOP). Recently, we observed a four-fold increase in inspiratory time in 3-day-old guinea pigs following an injection of racemic methadone. We hypothesized that this effect was due to augmentation of R-methadone induced respiratory depression by the S-methadone isomer. In the current longitudinal study, we injected 3-, 7-, and 14-day-old neonatal guinea pigs with saline, R-methadone, S-methadone, or R- plus S-methadone in order to characterize the roles of the individual isomers, as well as the synergistic effects of co-administration. Using plethysmography, we measured respiratory parameters while breathing room air and during a 5% CO(2) challenge. S-Methadone alone had no respiratory effects. However, the R- plus S-methadone group showed greater respiratory depression and increased inspiratory time than the R-methadone group in the youngest animals, suggesting that the respiratory effects of R-methadone are augmented by S-methadone in early development.
Collapse
Affiliation(s)
- Daniel A N Silverman
- Department of Physiology & Pharmacology, L334, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
25
|
Fong AY, Zimmer MB, Milsom WK. The conditional nature of the “Central Rhythm Generator” and the production of episodic breathing. Respir Physiol Neurobiol 2009; 168:179-87. [DOI: 10.1016/j.resp.2009.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 12/01/2022]
|
26
|
Kinkead R. Phylogenetic trends in respiratory rhythmogenesis: Insights from ectothermic vertebrates. Respir Physiol Neurobiol 2009; 168:39-48. [DOI: 10.1016/j.resp.2009.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/26/2022]
|