1
|
Pereira TM, Minari M, Carvajalino-Fernández JM, Moreira DC, Hermes-Lima M. Redox Metabolism During Aerial Exposure of the Sea Urchin Echinometra lucunter: An Ecophysiological Perspective. Animals (Basel) 2025; 15:1251. [PMID: 40362066 PMCID: PMC12070949 DOI: 10.3390/ani15091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Intertidal organisms experience daily environmental fluctuations, including changes in temperature, UV radiation, and aerial exposure during low tide, requiring physiological strategies for survival. One adaptation is the "preparation for oxidative stress" (POS), where antioxidants are upregulated preemptively to mitigate oxidative damage. While POS has been documented in over 120 species, in the case of intertidal species, most studies focus on single stressors under controlled-laboratory conditions. This study investigated POS in the sea urchin Echinometra lucunter under natural multi-stress conditions. Sampling occurred over a single day (from 5 a.m. to noon), analyzing three conditions: submerged (S), aerially exposed for 2 h (AE), and reimmersed for 2 h (R). There was a ~4 °C temperature increase in the AE group compared to the S group, with a peak of solar radiation during reoxygenation. Antioxidant enzyme activity-catalase, glutathione transferase (GST), and superoxide dismutase (SOD)-and lipid peroxidation (TBARS) were assessed in gonad and intestine tissues. GST activity increased by fourfold in the intestines of AE individuals, while TBARS was elevated in gonads, where no antioxidant upregulation happened. These results suggest that the POS-response (increase in GST) was triggered by the interaction of temperature and aerial exposure. This research emphasizes the critical importance of field studies in understanding complex, natural multi-stressor environments.
Collapse
Affiliation(s)
- Tatiana M. Pereira
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia 70910-900, Brazil (M.M.)
| | - Marina Minari
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia 70910-900, Brazil (M.M.)
| | | | - Daniel C. Moreira
- Faculdade de Medicina, Universidade de Brasília, Brasilia 70910-900, Brazil
| | - Marcelo Hermes-Lima
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia 70910-900, Brazil (M.M.)
| |
Collapse
|
2
|
Dias M, Özkan B, Ramos J, Marques A, Rosa R, Costa PR, Maulvault AL. Hot and toxic: Accumulation dynamics and ecotoxicological responses of mussel Mytilus galloprovincialis exposed to marine biotoxins during a marine heatwave. MARINE POLLUTION BULLETIN 2025; 213:117629. [PMID: 39908951 DOI: 10.1016/j.marpolbul.2025.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Climate change is increasing marine heatwaves (MHWs) frequency and severity worldwide. These extreme events often cause bivalves' mass mortality and facilitate the growth, proliferation and dispersion of toxin-producing microalgae blooms associated with threats to seafood safety. Yet, the interactive effects between MHW and uptake of marine biotoxins by biota are a novel topic still lacking thorough research, from both the ecotoxicological and seafood safety standpoints. This study assessed the effects of a MHW event on the accumulation/elimination dynamics of diarrhetic shellfish toxins in Mytilus galloprovincialis exposed to Prorocentrum lima and the ecotoxicological responses of mussels co-exposed to these two stressors. Results showed that acute exposure to +4 °C reduced toxins accumulation (-49 %) and elimination (-77 %) compared to control temperature. Moreover, exposure to MHW and toxins affected mussels' antioxidant activity, lipid and protein damage, and metabolism in a tissue-specific manner. These findings highlight that M. galloprovincialis can face higher vulnerability to toxins when MHW events strike.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO REQUIMTE, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal
| | - Busenur Özkan
- IPMA, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
| | - João Ramos
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - António Marques
- IPMA, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Rui Rosa
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal; Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Pedro Reis Costa
- IPMA, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal; Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Faro, Portugal
| | - Ana Luísa Maulvault
- UCIBIO REQUIMTE, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; IPMA, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
| |
Collapse
|
3
|
Chang J, Zhang J, Chu L, Liu A, Hou X, Zhu X, Huang X, Xing Q, Hu J, Bao Z. AMPK-mediated regulation of cardiac energy metabolism: Implications for thermotolerance in Argopecten irradians irradians. Gene 2025; 933:148922. [PMID: 39244169 DOI: 10.1016/j.gene.2024.148922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
AMPK is a key regulator of metabolism in eukaryotes across various pathways related to energy regulation. Although extensive investigations of AMPK have been conducted in mammals and some model organisms, research on AMPK in scallops is comparatively limited. In this study, three AMPK family genes (AiAMPKα, AiAMPKβ and AiAMPKγ) in scallop Argopecten irradians irradians were identified through genome scanning. Structure prediction and phylogenetic analyses of AiAMPKs were performed to determine their structural features and evolutionary relationships. Spatiotemporal expression patterns of AiAMPKs at different developmental stages and in healthy adult tissues were analyzed to elucidate the function of AiAMPKs in bay scallops' growth and development. The spatiotemporally specific expression of AiAMPKs implied their important roles in growth and development of bay scallops. Heat stress experiment was performed to determine the regulations of AiAMPKs in four kinds of thermosensitive tissues. Expression profiles revealed distinct molecular mechanisms of AiAMPKs in different tissues in response to heat stress: significant down-regulations in mobile hemocytes, but dominant up-regulations occurring in stationary gills, mantles and hearts. Functional verification including knock-down of AiAMPKα and inhibition of AiAMPK was separately conducted in the thermotolerant tissue heart at the post-transcription and translation levels. The thermotolerant index Arrhenius break temperature (ABT) showed a significant decrease and the rate-amplitude product (RAP) peaked earlier in the individuals after RNAi targeting AiAMPKα, displaying an earlier transition to anaerobic metabolism under heat stress, indicating an impairing ability of aerobic metabolism. After AiAMPK inhibition, widespread down-regulations of genes in key energy metabolism pathways, RNA polymerase II-mediated transcription, and aminoacyl-tRNA synthesis pathways were obviously observed, revealing the post-translational inhibition of AiAMPK hindered cardiac energy metabolism, basal transcription and translation. Overall, our findings provide evidences for exploring the molecular mechanisms of energy regulation in thermotolerant traits in bay scallops under ongoing global warming.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Stillman JH, Amri AB, Holdreith JM, Hooper A, Leon RV, Pruett LR, Bukaty BM. Ecophysiological responses to heat waves in the marine intertidal zone. J Exp Biol 2025; 228:JEB246503. [PMID: 39817480 PMCID: PMC11832128 DOI: 10.1242/jeb.246503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs. In this Review, we outline the range of responses that intertidal zone organisms exhibit in response to heat waves. We begin by examining the drivers of thermal maxima in intertidal zone ecosystems. We develop a simple model of intertidal zone daily maximum temperatures based on publicly available tide and solar radiation models, and compare it with logged, under-rock temperature data at an intertidal site. We then summarize experimental and ecological studies of how intertidal zone ecosystems and organisms respond to heat waves across dimensions of biotic response. Additional attention is paid to the impacts of extreme heat on cellular physiology, including oxidative stress responses to thermally induced mitochondrial overdrive and dysfunction. We examine the energetic consequences of these mechanisms and how they shift organismal traits, including growth, reproduction and immune function. We conclude by considering important future directions for improving studies of the impacts of heat waves on intertidal zone organisms.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94709, USA
| | - Adrienne B. Amri
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Joe M. Holdreith
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Alexis Hooper
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Rafael V. Leon
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Liliana R. Pruett
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Buck M. Bukaty
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
5
|
Žurga P, Dubrović I, Kapetanović D, Orlić K, Bolotin J, Kožul V, Nerlović V, Bobanović-Ćolić S, Burić P, Pohl K, Marinac-Pupavac S, Linšak Ž, Antunović S, Barišić J, Perić L. Performance of mussel Mytilus galloprovincialis under variable environmental conditions and anthropogenic pressure: A survey of two distinct farming sites in the Adriatic Sea. CHEMOSPHERE 2024; 364:143156. [PMID: 39178968 DOI: 10.1016/j.chemosphere.2024.143156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Changes in natural conditions and anthropogenic pollutants, alone or in combination, pose a significant challenge to coastal bivalve populations. The susceptibility of economically important bivalves to potential stressors in their farming environment has not been sufficiently investigated, despite the increase in anthropogenic pressure along the coast and the remarkable warming of seawater in recent years. Thus, the aim of this study was to evaluate the performance of mussel (Mytilus galloprovincialis) from two important farming sites in the eastern Adriatic, namely Mali Ston Bay (MSB) and Lim Bay (LB), in relation to variations of seawater parameters, reproductive cycle dynamics and tissue content of potentially harmful pollutants. The complex seasonal and site-specific patterns of chemical pollutants were determined, with tissue levels of metals, As, PAHs and PCBs largely comparable to those previously reported for the Mediterranean region. Concentrations of organochlorinated pesticides were below the level of detection. Significantly higher Cd, As and Hg concentrations were detected in the tissues of the MSB mussels. The reproductive cycle was clearly associated with the bioaccumulation of pollutants. All biochemical response parameters varied to some extent across seasons and/or between farming sites. A very pronounced seasonality was recorded for acetylcholinesterase and glutathione S-transferase activity at both sites. Metallothionein concentration and superoxide dismutase activity were generally steady throughout the study period. The most striking difference between the two sites was recorded for lipid peroxides concentrations which were predominantly significantly higher in the MSB mussels, indicating expressed pro-oxidant conditions at this site. In particular, significant correlations were found between lipid peroxides and the potentially toxic metals (Cd, As, Hg) accumulated in the mussel tissue. Data reported here are valuable as baseline information for further studies related to stress in farmed bivalves caused by oscillations of environmental factors and increasing anthropogenic pressure along the coastline.
Collapse
Affiliation(s)
- Paula Žurga
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Igor Dubrović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | | | - Karla Orlić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Jakša Bolotin
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Valter Kožul
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Vedrana Nerlović
- University Department of Marine Studies, University of Split, 21000, Split, Croatia
| | | | - Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | - Kalista Pohl
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | | | - Željko Linšak
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Sanda Antunović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia
| | - Josip Barišić
- University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Lorena Perić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
6
|
Tilikj N, de la Fuente M, González ABM, Martínez-Guitarte JL, Novo M. Surviving in a multistressor world: Gene expression changes in earthworms exposed to heat, desiccation, and chemicals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104428. [PMID: 38570150 DOI: 10.1016/j.etap.2024.104428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
An investigation of the effects of anthropogenic stress on terrestrial ecosystems is urgently needed. In this work, we explored how exposure to heat, desiccation, and chemical stress alters the expression of genes that encode heat shock proteins (HSPs), an enzyme that responds to oxidative stress (CAT), hypoxia-related proteins (HIF1 and HYOU), and a DNA repair-related protein (PARP1) in the earthworm Eisenia fetida. Exposure to heat (31°C) for 24 h upregulated HSPs and hypoxia-related genes, suggesting possible acquired thermotolerance. Desiccation showed a similar expression profile; however, the HSP response was activated to a lesser extent. Heat and desiccation activated the small HSP at 24 h, suggesting that they may play a role in adaptation. Simultaneous exposure to endosulfan and temperature for 7 h upregulated all of the evaluated genes, implicating a coordinated response involving multiple biological processes to ensure survival and acclimation. These results highlight the relevance of multistress analysis in terrestrial invertebrates.
Collapse
Affiliation(s)
- Natasha Tilikj
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, Madrid 28040, Spain.
| | - Mercedes de la Fuente
- Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - Ana Belén Muñiz González
- Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - Marta Novo
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, Madrid 28040, Spain
| |
Collapse
|
7
|
Wei S, Xu P, Mao Y, Shi Y, Liu W, Li S, Tu Z, Chen L, Hu M, Wang Y. Differential intestinal effects of water and foodborne exposures of nano-TiO 2 in the mussel Mytilus coruscus under elevated temperature. CHEMOSPHERE 2024; 355:141777. [PMID: 38527634 DOI: 10.1016/j.chemosphere.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 μg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 μg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Saishuai Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Bao L, Liu Z, Sui M, Yang Z, Wang H, Chen X, Xu Y, Niu Z, Liu N, Xing Q, Bao Z, Huang X. The Glucose-Succinate Pathway: A Crucial Anaerobic Metabolic Pathway in the Scallop Chlamys farreri Experiencing Heat Stress. Int J Mol Sci 2024; 25:4741. [PMID: 38731961 PMCID: PMC11084901 DOI: 10.3390/ijms25094741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.
Collapse
Affiliation(s)
- Lijingjing Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Xiaofei Chen
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Yue Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Zehua Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Na Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Academy of Future Ocean, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Georgoulis I, Papadopoulos DK, Lattos A, Michaelidis B, Feidantsis K, Giantsis IA. Increased seawater temperature triggers thermal, oxidative and metabolic response of Ostrea edulis, leading to anaerobiosis. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110943. [PMID: 38224830 DOI: 10.1016/j.cbpb.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Bivalves are among the marine organisms most influenced by climate change. Despite the flat oyster's Ostrea edulis high economic value, its culture is developed on a very small scale, since this species possesses a strong susceptibility to abiotic stressors. Due to climate change, temperature is one of the most critical environmental parameters for the welfare of the Mediterranean basin's marine inhabitants. The present study's purpose was to investigate the physiological performance of the Mediterranean's native O. edulis as it faces exposure to different temperatures. Since juveniles are more susceptible to abiotic stressors, this experimental procedure was focused on young individuals. The seawater temperatures studied included a standard control temperature of 21 °C (often observed in several marine areas throughout the Mediterranean), as well as increased seawater temperatures of 25 °C and 28 °C, occasionally occurring in shallow Mediterranean waters inhabited by bivalve spat. These were selected since the tissues of O. edulis becomes partly anaerobic in temperatures exceeding 26 °C, while cardiac dysfunction (arrhythmia) emerges at 28 °C. The results demonstrate that temperatures above 25 °C trigger both the transcriptional upregulation of hsp70 and hsp90, and the antioxidant genes Cu/Zn sod and catalase. Enhancement of thermal tolerance and increased defense against increased ROS production during thermal stress, were observed. As the intensity and duration of thermal stress increases, apoptotic damage may also occur. The increased oxidative and thermal stress incurred at the highest temperature of 28 °C, seemed to trigger the switch from aerobic to anaerobic metabolism, reflected by higher pepck mRNA expressions and lower ETS activity.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | | - Ioannis A Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR- 53100 Florina, Greece
| |
Collapse
|
10
|
Grimmelpont M, Payton L, Lefrançois C, Tran D. Molecular and behavioural responses of the mussel Mytilus edulis exposed to a marine heatwave. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106418. [PMID: 38402777 DOI: 10.1016/j.marenvres.2024.106418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Marine heatwaves (MHW) threaten marine organisms and tend to increase in frequency and intensity. We exposed the blue mussel Mytilus edulis to a MHW lasting 23 days, including two 10-d periods of thermal intensity increase of +5 °C (20 °C-25 °C) interspersed by 1 day back to 20 °C, followed by a 4-d recovery period. We investigated behaviour responses of mussels and gene expression changes relative to the circadian rhythm (Per), oxidative stress (SOD), cellular apoptosis (CASP3), energy production (ATPs), and general stress response (hsp70). Results showed that the MHW disturbed the valve activity of mussels. Particularly, mussels increased the number of valve micro-closures, showing a stressful state of organisms. Mussels also decreased Per, CASP3, ATPs, and Hsp70 gene expression. Some behavioural and molecular effects persisted after the MHW, suggesting a limited recovery capacity of individuals. This work highlighted the vulnerability of M. edulis to a realistic MHW.
Collapse
Affiliation(s)
- Margot Grimmelpont
- La Rochelle University/CNRS France - UMR7266 LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Laura Payton
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120, Arcachon, France
| | - Christel Lefrançois
- La Rochelle University/CNRS France - UMR7266 LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120, Arcachon, France.
| |
Collapse
|
11
|
Jones EF, Haldar A, Oza VH, Lasseigne BN. Quantifying transcriptome diversity: a review. Brief Funct Genomics 2024; 23:83-94. [PMID: 37225889 PMCID: PMC11484519 DOI: 10.1093/bfgp/elad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Following the central dogma of molecular biology, gene expression heterogeneity can aid in predicting and explaining the wide variety of protein products, functions and, ultimately, heterogeneity in phenotypes. There is currently overlapping terminology used to describe the types of diversity in gene expression profiles, and overlooking these nuances can misrepresent important biological information. Here, we describe transcriptome diversity as a measure of the heterogeneity in (1) the expression of all genes within a sample or a single gene across samples in a population (gene-level diversity) or (2) the isoform-specific expression of a given gene (isoform-level diversity). We first overview modulators and quantification of transcriptome diversity at the gene level. Then, we discuss the role alternative splicing plays in driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview computational resources for calculating gene-level and isoform-level diversity for high-throughput sequencing data. Finally, we discuss future applications of transcriptome diversity. This review provides a comprehensive overview of how gene expression diversity arises, and how measuring it determines a more complete picture of heterogeneity across proteins, cells, tissues, organisms and species.
Collapse
Affiliation(s)
- Emma F Jones
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anisha Haldar
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishal H Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brittany N Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
May MA, Tomanek L. Uncovering the roles of sirtuin activity and food availability during the onset of the heat shock response in the California mussel (Mytilus californianus): Implications for antioxidative stress responses. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110902. [PMID: 37690509 DOI: 10.1016/j.cbpb.2023.110902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Sirtuins are a class of NAD+-dependent deacylases, with known regulatory roles in energy metabolism and cellular stress responses in vertebrates. Previous work using marine mussels have suggested a similar role in invertebrates, providing a potential mechanism linking food availability and thermal sensitivity in Mytilids. Sirtuin inhibitors affect mussels' recovery from environmental stressors, including acute heat shock and well-fed mussels exposed to sirtuin inhibitors and/or acute heat shock respond differently than poorly fed mussels, at the protein and whole-organism levels. While this implies a relationship between sirtuins, food availability, and temperature, the direct effects of sirtuin inhibitors (nicotinamide and suramin) on sirtuin activity or their putative effectors have not been explicitly tested. In this study, adult Mytilus californianus were acclimated to a low or high food availability and exposed to one of the following treatments: control, acute heat shock, sirtuin inhibitors, or acute heat shock and sirtuin inhibitors. Mussels increased sirtuin activity during early recovery (5 h) from sirtuin inhibition and acute heat shock, but only if acclimated to a high food availability. Redox balance was also impacted in mussels acclimated to high food availability and exposed to sirtuin inhibitors, signifying interactions between ration, acute heat shock, and sirtuin inhibitors. Additionally, we found a correlation between sirtuin and superoxide dismutase activities, suggesting a potential regulatory role of oxidative stress by sirtuins. Following prolonged recovery (17 h), we found increased sirtuin activity in mussels acclimated to low food availability, indicating that endogenous sirtuin activity may be related to food availability in mussels.
Collapse
Affiliation(s)
- Melissa A May
- Florida Gulf Coast University, Fort Myers, FL 33965, USA; California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Lars Tomanek
- California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
13
|
Venter L, Alfaro AC, Ragg NLC, Delorme NJ, Ericson JA. The effect of simulated marine heatwaves on green-lipped mussels, Perna canaliculus: A near-natural experimental approach. J Therm Biol 2023; 117:103702. [PMID: 37729747 DOI: 10.1016/j.jtherbio.2023.103702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Marine heatwaves (MHW) are projected for the foreseeable future, affecting aquaculture species, such as the New Zealand green-lipped mussel (Perna canaliculus). Thermal stress alters mussel physiology highlighting the adaptive capacity that allows survival in the face of heatwaves. Within this study, adult mussels were subjected to three different seawater temperature regimes: 1) low (sustained 18 °C), 2) medium MHW (18-24 °C, using a +1 °C per week ramp) and 3) high MHW (18-24 °C, using a +2 °C per week ramp). Sampling was performed over 11 weeks to establish the effects of temperature on P. canaliculus survival, condition, specific immune response parameters, and the haemolymph metabolome. A transient 25.5-26.5 °C exposure resulted in 61 % mortality, with surviving animals showing a metabolic adjustment within aerobic energy production, enabling the activation of molecular defence mechanisms. Utilisation of immune functions were seen within the cytology results where temperature stress affected the percentage of superoxide-positive haemocytes and haemocyte counts. From the metabolomics results an increase in antioxidant metabolites were seen in the high MHW survivors, possibly to counteract molecular damage. In the high MHW exposure group, mussels utilised anaerobic metabolism in conjunction with aerobic metabolism to produce energy, to uphold biological functions and survival. The effect of exposure time was mainly seen on very long-, and long chain fatty acids, with increases observed at weeks seven and eight. These changes were likely due to the membrane storage functions of fatty acids, with decreases at week eleven attributed to energy metabolism functions. This study supports the use of integrated analytical tools to investigate the response of marine organisms to heatwaves. Indeed, specific metabolic pathways and cellular markers are now highlighted for future investigations aimed at targeted measures. This research contributes to a larger program aimed to identify resilient mussel traits and support aquaculture management.
Collapse
Affiliation(s)
- Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | | |
Collapse
|
14
|
Georgoulis I, Bock C, Lannig G, Pörtner HO, Sokolova IM, Feidantsis K, Giantsis IA, Michaelidis B. Heat hardening enhances metabolite-driven thermoprotection in the Mediterranean mussel Mytilus galloprovincialis. Front Physiol 2023; 14:1244314. [PMID: 37841313 PMCID: PMC10570847 DOI: 10.3389/fphys.2023.1244314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Temperature affects organisms' metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes. Methods: We investigated the "stress memory" effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels' thermal tolerance. Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones. Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels' tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
| | - Christian Bock
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Gisela Lannig
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Hans O. Pörtner
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Inna M. Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
- Department of Fisheries and Aquaculture, University of Patras, Mesolonghi, Greece
| | - Ioannis A. Giantsis
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Kozani, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
| |
Collapse
|
15
|
Llorente L, Aquilino M, Herrero Ó, de la Peña E, Planelló R. Characterization and expression of heat shock and immune genes in natural populations of Prodiamesa olivacea (Diptera) exposed to thermal stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115359. [PMID: 37595349 DOI: 10.1016/j.ecoenv.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
This paper characterizes the heat stress response (HSR) and explores the impact of temperatures on the immune response of larvae from two chironomid species, Prodiamesa olivacea and Chironomus riparius. Genes involved in crucial metabolic pathways were de novo identified in P. olivacea: Hsp27, Hsp60, Hsp70, Hsc70, Cdc37, and HSF for the heat stress response (HSR) and TOLL, PGRP, C-type lectin, and JAK/hopscotch for the immune system response (ISR). Quantitative real-time PCR was used to evaluate the expression levels of the selected genes in short-term treatments (up to 120') at high temperatures (35 °C and 39 °C). Exposing P. olivacea to elevated temperatures resulted in HSR induction with increased expression of specific heat shock genes, suggesting the potential of HSPs as early indicators of acute thermal stress. Surprisingly, we found that heat shock represses multiple immune genes, revealing the antagonist relation between the heat shock response and the innate immune response in P. olivacea. Our results also showed species-dependent gene responses, with more significant effects in P. olivacea, for most of the biomarkers studied, demonstrating a higher sensitivity in this species to environmental stress conditions than that of C. riparius. This work shows a multi-species approach that enables a deeper understanding of the effects of heat stress at the molecular level in aquatic dipterans.
Collapse
Affiliation(s)
- Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Mónica Aquilino
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Eduardo de la Peña
- Institute for Subtropical and Mediterranean Horticulture (IHSM-UMA-CSIC), Spanish National Research Council (CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750 Malaga, Spain; Department of Plants and Crops, Faculty of Bio-science Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain.
| |
Collapse
|
16
|
Bertolini C, Glaser D, Canu M, Pastres R. Coupling habitat-specific temperature scenarios with tolerance landscape to predict the impacts of climate change on farmed bivalves. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106038. [PMID: 37267665 DOI: 10.1016/j.marenvres.2023.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Due to climate change, heatwaves are likely to become more frequent, prolonged and characterized by higher peak values, compared with climatological averages. However, the thermal tolerance of organisms depends on the actual exposure, which can be modulated by environmental context and microhabitat characteristics. This study investigated the frequency of occurrence of mass mortality events in the next decades for two species of farmed bivalves, the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum, in a shallow coastal lagoon, characterised by marked diurnal oscillations of water temperature. The effect of heatwaves was estimated by means of tolerance landscape models, which predict the occurrence of 50% mortality based on the exposure intensity and duration. Scenarios of water temperature up to the year 2100 were modelled by combining two mechanistic components, namely: 1) monthly mean water temperatures, simulated using a hydrodynamic model including the heat budget; 2) daily oscillations, estimated from the harmonic analysis of a twenty year-long site-specific time series of water temperature. Scenarios of mean daily sediment temperature were estimated by means of a cross-correlation model, using as input the water temperature one: the model parameters were estimated based on a comprehensive set of site-specific water and sediment temperature observations. The results indicate that for both species the risk of mass mortality rapidly increases starting from the 2060s. Furthermore, the daily patterns of water temperature seemed to be relevant, as overnight it falls below the predicted mortality thresholds for a few hours. These findings suggest that further studies should address: 1) the improvement of tolerance landscape models, in order to take into account the integrated effect of repeated non-lethal stress events on mortality rate; 2) the prediction of environmental temperature in specific habitat, by means of both process-based and data driven models.
Collapse
Affiliation(s)
- C Bertolini
- DAIS, Ca' Foscari University of Venice, 30170, Venezia, Italy.
| | - D Glaser
- DAIS, Ca' Foscari University of Venice, 30170, Venezia, Italy
| | - M Canu
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), 34010, Trieste, Italy
| | - R Pastres
- DAIS, Ca' Foscari University of Venice, 30170, Venezia, Italy
| |
Collapse
|
17
|
Papadopoulos DK, Lattos A, Giantsis IA, Theodorou JA, Michaelidis B, Feidantsis K. The impact of ascidian biofouling on the farmed Mediterranean mussel Mytilus galloprovincialis physiology and welfare, revealed by stress biomarkers. BIOFOULING 2023:1-18. [PMID: 37144608 DOI: 10.1080/08927014.2023.2209015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In biofouling communities, ascidians are among the most damaging species, presenting severe threats, such as depressed growth rates and decreased chances of lower survival, to shellfish aquaculture. However, little is known concerning the fouled shellfish physiology. In an effort to obtain information for the magnitude of stress caused by ascidians to farmed Mytilus galloprovincialis, five seasonal samplings took place in a mussel aquaculture farm suffering from ascidian biofoulants, in Vistonicos Bay, Greece. The dominant ascidian species were recorded and several stress biomarkers, including Hsp gene expression at both mRNA and protein levels, as well as MAPKs levels, and enzymatic activities of intermediate metabolism were examined. Almost all investigated biomarkers revealed elevated stress levels in fouled mussels compared to non-fouled. This enhanced physiological stress seems to be season-independent and can be attributed to the oxidative stress and/or feed deprivation caused by ascidian biofouling, thus illuminating the biological impact of this phenomenon.
Collapse
Affiliation(s)
- Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Lattos A, Feidantsis K, Giantsis IA, Theodorou JA, Michaelidis B. Seasonality in Synergism with Multi-Pathogen Presence Leads to Mass Mortalities of the Highly Endangered Pinna nobilis in Greek Coastlines: A Pathophysiological Approach. Microorganisms 2023; 11:1117. [PMID: 37317091 DOI: 10.3390/microorganisms11051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
Mortalities of Pinna nobilis populations set at risk the survival of the species from many Mediterranean coastline habitats. In many cases, both Haplosporidium pinnae and Mycobacterium spp. are implicated in mass mortalities of P. nobilis populations, leading the species into extinction. In the context of the importance of these pathogens' role in P. nobilis mortalities, the present study investigated two Greek populations of the species hosting different microbial loads (one only H. pinnae and the second both pathogens) by the means of pathophysiological markers. More specifically, the populations from Kalloni Gulf (Lesvos Island) and from Maliakos Gulf (Fthiotis), seasonally sampled, were chosen based on the host pathogens in order to investigate physiological and immunological biomarkers to assess those pathogens' roles. In order to determine if the haplosporidian parasite possesses a major role in the mortalities or if both pathogens are involved in these phenomena, a variety of biomarkers, including apoptosis, autophagy, inflammation and heat shock response were applied. The results indicated a decreased physiological performance of individuals hosting both pathogens in comparison with those hosting only H. pinnae. Our findings provide evidence for the synergistic role of those pathogens in the mortality events, which is also enhanced by the influence of seasonality.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100 Florina, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-23200 Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Zaib S, Javed H, Ogaly HA, Khan I. Evaluating the Anti‐Gastric Ulcer Activity of
Aegle marmelos
: A Brief Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hanan A. Ogaly
- Chemistry Department, College of Science King Khalid University Abha 61421 Saudi Arabia
- Biochemistry and Molecular Biology Department Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester, 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
20
|
Genome-wide sequencing identifies a thermal-tolerance related synonymous mutation in the mussel, Mytilisepta virgata. Commun Biol 2023; 6:5. [PMID: 36596992 PMCID: PMC9810668 DOI: 10.1038/s42003-022-04407-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
The roles of synonymous mutations for adapting to stressful thermal environments are of fundamental biological and ecological interests but poorly understood. To study whether synonymous mutations influence thermal adaptation at specific microhabitats, a genome-wide genotype-phenotype association analysis is carried out in the black mussels Mytilisepta virgata. A synonymous mutation of Ubiquitin-specific Peptidase 15 (MvUSP15) is significantly associated with the physiological upper thermal limit. The individuals carrying GG genotype (the G-type) at the mutant locus possess significantly lower heat tolerance compared to the individuals carrying GA and AA genotypes (the A-type). When heated to sublethal temperature, the G-type exhibit higher inter-individual variations in MvUSP15 expression, especially for the mussels on the sun-exposed microhabitats. Taken together, a synonymous mutation in MvUSP15 can affect the gene expression profile and interact with microhabitat heterogeneity to influence thermal resistance. This integrative study sheds light on the ecological importance of adaptive synonymous mutations as an underappreciated genetic buffer against heat stress and emphasizes the importance of integrative studies at a microhabitat scale for evaluating and predicting the impacts of climate change.
Collapse
|
21
|
Moreira DC, Aurélio da Costa Tavares Sabino M, Minari M, Torres Brasil Kuzniewski F, Angelini R, Hermes-Lima M. The role of solar radiation and tidal emersion on oxidative stress and glutathione synthesis in mussels exposed to air. PeerJ 2023; 11:e15345. [PMID: 37193036 PMCID: PMC10183164 DOI: 10.7717/peerj.15345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Preparation for oxidative stress (POS) is a widespread adaptive response to harsh environmental conditions, whose hallmark is the upregulation of antioxidants. In contrast to controlled laboratory settings, animals are exposed to multiple abiotic stressors under natural field conditions. Still, the interplay between different environmental factors in modulating redox metabolism in natural settings remains largely unexplored. Here, we aim to shed light on this topic by assessing changes in redox metabolism in the mussel Brachidontes solisianus naturally exposed to a tidal cycle. We compared the redox biochemical response of mussels under six different natural conditions in the field along two consecutive days. These conditions differ in terms of chronology, immersion/emersion, and solar radiation, but not in terms of temperature. Animals were collected after being exposed to air early morning (7:30), immersed during late morning and afternoon (8:45-15:30), and then exposed to air again late afternoon towards evening (17:45-21:25), in two days. Whole body homogenates were used to measure the activity of antioxidant (catalase, glutathione transferase and glutathione reductase) and metabolic (glucose 6-phosphate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and pyruvate kinase) enzymes, reduced (GSH) and disulfide (GSSG) glutathione levels, and oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances). Air and water temperature remained stable between 22.5 °C and 26 °C during both days. Global solar radiation (GSR) greatly differed between days, with a cumulative GSR of 15,381 kJ/m2 for day 1 and 5,489 kJ/m2 for day 2, whose peaks were 2,240 kJ/m2/h at 14:00 on day 1 and 952 kJ/m2/h at 12:00 on day 2. Compared with animals underwater, emersion during early morning did not elicit any alteration in redox biomarkers in both days. Air exposure for 4 h in the late afternoon towards evening caused oxidative damage to proteins and lipids and elicited GSH synthesis in animals that had been previously exposed to high GSR during the day. In the following day, when GSR was much lower, exposure to air under the same conditions (duration, time, and temperature) had no effect on any redox biomarker. These findings suggest that air exposure under low-intensity solar radiation is not sufficient to trigger POS in B. solisianus in its natural habitat. Thus, natural UV radiation is possibly a key environmental factor that combined to air exposure induces the POS-response to the stressful event of tidal variation in this coastal species.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Marina Minari
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Ronaldo Angelini
- Department of Civil and Environmental Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
22
|
Georgoulis I, Bock C, Lannig G, Pörtner HO, Feidantsis K, Giantsis IA, Sokolova IM, Michaelidis B. Metabolic remodeling caused by heat hardening in the Mediterranean mussel Mytilus galloprovincialis. J Exp Biol 2022; 225:285988. [PMID: 36426666 DOI: 10.1242/jeb.244795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Organisms can modify and increase their thermal tolerance faster and more efficiently after a brief exposure to sublethal thermal stress. This response is called 'heat hardening' as it leads to the generation of phenotypes with increased heat tolerance. The aim of this study was to investigate the impact of heat hardening on the metabolomic profile of Mytilus galloprovincialis in order to identify the associated adjustments of biochemical pathways that might benefit the mussels' thermal tolerance. Thus, mussels were exposed sequentially to two different phases (heat hardening and acclimation phases). To gain further insight into the possible mechanisms underlying the metabolic response of the heat-hardened M. galloprovincialis, metabolomics analysis was complemented by the estimation of mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK) and alternative oxidase (AOX) implicated in the metabolic pathways of gluconeogenesis, glycolysis and redox homeostasis, respectively. Heat-hardened mussels showed evidence of higher activity of the tricarboxylic acid (TCA) cycle and diversification of upregulated metabolic pathways, possibly as a mechanism to increase ATP production and extend survival under heat stress. Moreover, formate and taurine accumulation provide an antioxidant and cytoprotective role in mussels during hypoxia and thermal stress. Overall, the metabolic responses in non-heat-hardened and heat-hardened mussels underline the upper thermal limits of M. galloprovincialis, set at 26°C, and are in accordance with the OCLTT concept. The ability of heat-hardened mussels to undergo a rapid gain and slow loss of heat tolerance may be an advantageous strategy for coping with intermittent and often extreme temperatures.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christian Bock
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, D-27515 Bremerhaven, Germany
| | - Gisela Lannig
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, D-27515 Bremerhaven, Germany
| | - Hans-O Pörtner
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, D-27515 Bremerhaven, Germany
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100 Florina, Greece
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, D-18055 Rostock, Germany
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
23
|
Ragkos A, Skordos D, Koutouzidou G, Giantsis IA, Delis G, Theodoridis A. Socioeconomic Appraisal of an Early Prevention System against Toxic Conditions in Mussel Aquaculture. Animals (Basel) 2022; 12:ani12202832. [PMID: 36290218 PMCID: PMC9597783 DOI: 10.3390/ani12202832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In order to mitigate the destructive effects of the occurrence of toxic conditions on mussel farming, an automated early prevention system against such conditions was installed. The analysis in this paper demonstrates that the investment is highly profitable and can contribute to achieving broader socioeconomic benefits at the local and regional level. Abstract This paper examines the financial viability and potential socioeconomic effects of introducing and operating an automated, remote-controlled management system for mussel farms which uses probes of temperature, dissolved oxygen, and conductivity associated with prediction software to demonstrate the potential need for mussel movement between marine areas. This system provides an early warning to farmers regarding the presence of toxins in aquatic ecosystems, thus contributing to saving mussel production and avoidikng significant economic losses. The analysis combines two established methodological tools in agricultural economics (linear programming and cost-benefit analysis) and provides estimates of the Net Present Value of the investment under two scenarios—one reflecting the existing situation and one a possible future situation where the mussel production system is expanded. The results of the analysis reveal the mid- and long-term effects of using the automated system, both of which demonstrate that the system is economically viable even if it contributes to saving mussel production from toxicity occurrence for only one year during its period of operation. The annual gross margin in the first scenario was €386,069 but almost tripled in the second scenario (€1,154,649). In addition, the future development and expansion of the mussel sector will likely be based on larger farms with an entrepreneurial and exporting orientation where risk mitigation systems, such as the one appraised in this paper, can play an important role.
Collapse
Affiliation(s)
- Athanasios Ragkos
- Agricultural Economics Research Institute, Hellenic Agricultural Organization—DIMITRA, Kourtidou 56-58, 111 45 Athens, Greece
- Correspondence:
| | - Dimitrios Skordos
- Agricultural Economics Research Institute, Hellenic Agricultural Organization—DIMITRA, Kourtidou 56-58, 111 45 Athens, Greece
| | - Georgia Koutouzidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Georgios Delis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Theodoridis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
24
|
Vasdravanidis C, Alvanou MV, Lattos A, Papadopoulos DK, Chatzigeorgiou I, Ravani M, Liantas G, Georgoulis I, Feidantsis K, Ntinas GK, Giantsis IA. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals (Basel) 2022; 12:ani12192523. [PMID: 36230264 PMCID: PMC9559468 DOI: 10.3390/ani12192523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Climate change and overexploitation of natural resources drive the need for innovative food production within a sustainability corridor. Aquaponics, combining the technology of recirculation aquaculture systems (RAS) and hydroponics in a closed-loop network, could contribute to addressing these problems. Aquaponic systems have lower freshwater demands than agriculture, greater land use efficiency, and decreased environmental impact combined with higher fish productivity. Rainbow trout is one of the major freshwater fish cultured worldwide, which, however, has not yet been commercially developed in aquaponics. Nevertheless, research conducted so far indicates that the trout species represents a good candidate for aquaponics. Abstract The impact of climate change on both terrestrial and aquatic ecosystems tends to become more progressively pronounced and devastating over the years. The sector of aquaculture is severely affected by natural abiotic factors, on account of climate change, that lead to various undesirable phenomena, including aquatic species mortalities and decreased productivity owing to oxidative and thermal stress of the reared organisms. Novel innovative technologies, such as aquaponics that are based on the co-cultivation of freshwater fish with plants in a sustainable manner under the context of controlled abiotic factors, represent a promising tool for mitigating the effect of climate change on reared fish. The rainbow trout (Oncorhynchus mykiss) constitutes one of the major freshwater-reared fish species, contributing to the national economies of numerous countries, and more specifically, to regional development, supporting mountainous areas of low productivity. However, it is highly vulnerable to climate change effects, mainly due to the concrete raceways, in which it is reared, that are constructed on the flow-through of rivers and are, therefore, dependent on water’s physical properties. The current review study evaluates the suitability, progress, and challenges of developing innovative and sustainable aquaponic systems to rear rainbow trout in combination with the cultivation of plants. Although not commercially developed to a great extent yet, research has shown that the rainbow trout is a valuable experimental model for aquaponics that may be also commercially exploited in the future. In particular, abiotic factors required in rainbow trout farming along, with the high protein proportion required in the ratios due to the strict carnivorous feeding behavior, result in high nitrate production that can be utilized by plants as a source of nitrogen in an aquaponic system. Intensive farming of rainbow trout in aquaponic systems can be controlled using digital monitoring of the system parameters, mitigating the obstacles originating from extreme temperature fluctuations.
Collapse
Affiliation(s)
- Christos Vasdravanidis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Athanasios Lattos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios K. Papadopoulos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Chatzigeorgiou
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Maria Ravani
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Georgios Liantas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| |
Collapse
|
25
|
Vasquez MC, Houston CT, Alcantar CY, Milshteyn L, Brazil CA, Zepeda OG. Interactive effects of multiple stressors on the physiological performance of the invasive mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105665. [PMID: 35644077 DOI: 10.1016/j.marenvres.2022.105665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The invasive mussel Mytilus galloprovincialis is a heat-tolerant species relative to its competative congener M. trossulus, that dominates warm seawater environments but it is unknown how multiple stressors (MS) may affect its physiology. Our study determined the effects of MS on the metabolic rate (MR), superoxide dismutase (SOD) antioxidant enzyme activity, and clearance rate (CR) of M. galloprovincialis. Mussels were exposed for 7 d to hyposalinity (20, 28, 34 ppt) then to heat shock (17, 20, 25 °C) after which MR and SOD activity were determined. CR was quantified following a 30 min MS exposure. We found a significant influence of MS on MR, SOD, and CR. We identified synergistic effects on MR under the most extreme treatment. SOD activity was the greatest under 20 °C exposure while CR declined under heat shock. Thus, our study suggests that mussels experiencing MS may become energy limited as MR increases and feeding rates decrease.
Collapse
Affiliation(s)
- M Christina Vasquez
- Biology Department, Loyola Marymount University, Los Angeles, CA, 90045, USA; Coastal Research Institute, Loyola Marymount University, Los Angeles, CA, 90045, USA.
| | - Clare T Houston
- Biology Department, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Claribel Y Alcantar
- Biology Department, Loyola Marymount University, Los Angeles, CA, 90045, USA; Coastal Research Institute, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Larry Milshteyn
- Biology Department, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Camya A Brazil
- Biology Department, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Osiris Guinea Zepeda
- Biology Department, Loyola Marymount University, Los Angeles, CA, 90045, USA; Coastal Research Institute, Loyola Marymount University, Los Angeles, CA, 90045, USA
| |
Collapse
|
26
|
Genetic Deletion of HLJ1 Does Not Affect Blood Coagulation in Mice. Int J Mol Sci 2022; 23:ijms23042064. [PMID: 35216179 PMCID: PMC8880458 DOI: 10.3390/ijms23042064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
HLJ1 (also called DNAJB4) is a member of the DNAJ/Hsp40 family and plays an important role in regulating protein folding and activity. However, there is little information about the role of HLJ1 in the regulation of physiological function. In this study, we investigated the role of HLJ1 in blood coagulation using wild-type C57BL/6 mice and HLJ1-null (HLJ1-/-) mice. Western blot analysis and immunohistochemistry were used to assess the expression and distribution of HLJ1 protein, respectively. The tail bleeding assay was applied to assess the bleeding time and blood loss. A coagulation test was used for measuring the activity of extrinsic, intrinsic and common coagulation pathways. Thromboelastography was used to measure the coagulation parameters in the progression of blood clot formation. The results showed that HLJ1 was detectable in plasma and bone marrow. The distribution of HLJ1 was co-localized with CD41, the marker of platelets and megakaryocytes. However, genetic deletion of HLJ1 did not alter blood loss and the activity of extrinsic and intrinsic coagulation pathways, as well as blood clot formation, compared to wild-type mice. Collectively, these findings suggest that, although HLJ1 appears in megakaryocytes and platelets, it may not play a role in the function of blood coagulation under normal physiological conditions.
Collapse
|
27
|
Boutet I, Lacroix C, Devin S, Tanguy A, Moraga D, Auffret M. Does the environmental history of mussels have an effect on the physiological response to additional stress under experimental conditions? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:149925. [PMID: 34555605 DOI: 10.1016/j.scitotenv.2021.149925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Expected effects on marine biota of the ongoing elevation of water temperature and high latitudes is of major concern when considering the reliability of coastal ecosystem production. To compare the capacity of coastal organisms to cope with a temperature increase depending on their environmental history, responses of adult blue mussels (Mytilus spp.) taken from two sites differentially exposed to chemical pollution were investigated during an experimental exposure to a thermal stress. Immune parameters were notably altered by extreme warming and transcriptional changes for a broad selection of genes were associated to the temperature increase following a two-step response pattern. Site-specific responses suggested an influence of environmental history and support the possibility of a genetic basis in the physiological response. However no meaningful difference was detected between the response of hybrids and M galloprovincialis. This study brings new information about the capacity of mussels to cope with the ongoing elevation of water temperature in these coastal ecosystems.
Collapse
Affiliation(s)
- Isabelle Boutet
- Station Biologique de Roscoff, Laboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS-Sorbonne Université), Place Georges Tessier, 29680 Roscoff, France
| | - Camille Lacroix
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France; CEDRE Conseil et Expertise en Pollutions Accidentelles des Eaux, 715 Rue Alain Colas, CS 41836, 29218 Brest Cedex 2, France
| | - Simon Devin
- Laboratoire Interdisciplinaire des Environnements Continentaux (UMR 7360 LIEC CNRS-Université de Lorraine), 8 rue du Général Delestraint, 57070 Metz. France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, Laboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS-Sorbonne Université), Place Georges Tessier, 29680 Roscoff, France
| | - Dario Moraga
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Michel Auffret
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
28
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
29
|
Zgouridou A, Tripidaki E, Giantsis IA, Theodorou JA, Kalaitzidou M, Raitsos DE, Lattos A, Mavropoulou AM, Sofianos S, Karagiannis D, Chaligiannis I, Anestis A, Papadakis N, Feidantsis K, Mintza D, Staikou A, Michaelidis B. The current situation and potential effects of climate change on the microbial load of marine bivalves of the Greek coastlines: an integrative review. Environ Microbiol 2021; 24:1012-1034. [PMID: 34499795 DOI: 10.1111/1462-2920.15765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Global warming affects the aquatic ecosystems, accelerating pathogenic microorganisms' and toxic microalgae's growth and spread in marine habitats, and in bivalve molluscs. New parasite invasions are directly linked to oceanic warming. Consumption of pathogen-infected molluscs impacts human health at different rates, depending, inter alia, on the bacteria taxa. It is therefore necessary to monitor microbiological and chemical contamination of food. Many global cases of poisoning from bivalve consumption can be traced back to Mediterranean regions. This article aims to examine the marine bivalve's infestation rate within the scope of climate change, as well as to evaluate the risk posed by climate change to bivalve welfare and public health. Biological and climatic data literature review was performed from international scientific sources, Greek authorities and State organizations. Focusing on Greek aquaculture and bivalve fisheries, high-risk index pathogenic parasites and microalgae were observed during summer months, particularly in Thermaikos Gulf. Considering the climate models that predict further temperature increases, it seems that marine organisms will be subjected in the long term to higher temperatures. Due to the positive linkage between temperature and microbial load, the marine areas most affected by this phenomenon are characterized as 'high risk' for consumer health.
Collapse
Affiliation(s)
- Aikaterini Zgouridou
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Eirini Tripidaki
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, 53100, Greece
| | - John A Theodorou
- Department Animal Production Fisheries and Aquaculture, University of Patras, Messolonghi, Greece
| | - Maria Kalaitzidou
- National Reference Laboratory for Marine Biotoxins, Department of Food Microbiology, Biochemical Control, Residues, Marine Biotoxins and Other Water Toxins, Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, Thessaloniki, Greece
| | - Dionysios E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Athanasios Lattos
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Apostolia-Maria Mavropoulou
- Department of Physics, Section of Environmental Physics and Meteorology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sarantis Sofianos
- Department of Physics, Section of Environmental Physics and Meteorology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Karagiannis
- National Reference Laboratory for Mollusc Diseases, Ministry of Rural Development and Food, Thessaloniki, 54627, Greece
| | - Ilias Chaligiannis
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.,Hellenic Agricultural Organisation-DEMETER, Veterinary Research Institute of Thessaloniki, Campus of Thermi, 570 01, Thermi, Greece
| | - Andreas Anestis
- Laboratory of Hygiene, Social - Preventive Medicine and Medical Statistics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikos Papadakis
- Laboratory of Hygiene, Social - Preventive Medicine and Medical Statistics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Dionysia Mintza
- Department of Fishery Products, Milk and Other Food of Animal Origin, Ministry of Rural Development and Food of Greece, Athens, Greece
| | - Alexandra Staikou
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Basile Michaelidis
- Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
30
|
Georgoulis I, Feidantsis K, Giantsis IA, Kakale A, Bock C, Pörtner HO, Sokolova IM, Michaelidis B. Heat hardening enhances mitochondrial potential for respiration and oxidative defence capacity in the mantle of thermally stressed Mytilus galloprovincialis. Sci Rep 2021; 11:17098. [PMID: 34429490 PMCID: PMC8384858 DOI: 10.1038/s41598-021-96617-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Ectotherms are exposed to a range of environmental temperatures and may face extremes beyond their upper thermal limits. Such temperature extremes can stimulate aerobic metabolism toward its maximum, a decline in aerobic substrate oxidation, and a parallel increase of anaerobic metabolism, combined with ROS generation and oxidative stress. Under these stressful conditions, marine organisms recruit several defensive strategies for their maintenance and survival. However, thermal tolerance of ectothermic organisms may be increased after a brief exposure to sub-lethal temperatures, a process known as "hardening". In our study, we examined the ability of M. galloprovincialis to increase its thermal tolerance under the effect of elevated temperatures (24, 26 and 28 °C) through the "hardening" process. Our results demonstrate that this process can increase the heat tolerance and antioxidant defense of heat hardened mussels through more efficient ETS activity when exposed to temperatures beyond 24 °C, compared to non-hardened individuals. Enhanced cell protection is reflected in better adaptive strategies of heat hardened mussels, and thus decreased mortality. Although hardening seems a promising process for the maintenance of aquacultured populations under increased seasonal temperatures, further investigation of the molecular and cellular mechanisms regulating mussels' heat resistance is required.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- grid.184212.c0000 0000 9364 8877Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Asimina Kakale
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christian Bock
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Hans O. Pörtner
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Inna M. Sokolova
- grid.10493.3f0000000121858338Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, 18055 Rostock, Germany
| | - Basile Michaelidis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
31
|
Bultelle F, Boutet I, Devin S, Caza F, St-Pierre Y, Péden R, Brousseau P, Chan P, Vaudry D, Le Foll F, Fournier M, Auffret M, Rocher B. Molecular response of a sub-antarctic population of the blue mussel (Mytilus edulis platensis) to a moderate thermal stress. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105393. [PMID: 34217095 DOI: 10.1016/j.marenvres.2021.105393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The Kerguelen Islands (49°26'S, 69°50'E) represent a unique environment due to their geographical isolation, which protects them from anthropogenic pollution. The ability of the endemic mussel, part of the Mytilus complex, to cope with moderate heat stress was explored using omic tools. Transcripts involved in six major metabolic functions were selected and the qRT-PCR data indicated mainly changes in aerobic and anaerobic energy metabolism and stress response. Proteomic comparisons revealed a typical stress response pattern with cytoskeleton modifications and elements suggesting increased energy metabolism. Results also suggest conservation of protein homeostasis by the long-lasting presence of HSP while a general decrease in transcription is observed. The overall findings are consistent with an adaptive response to moderate stresses in mussels in good physiological condition, i.e. living in a low-impact site, and with the literature concerning this model species. Therefore, local blue mussels could be advantageously integrated into biomonitoring strategies, especially in the context of Global Change.
Collapse
Affiliation(s)
- F Bultelle
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - I Boutet
- Station Biologique de Roscoff CNRS, Laboratory Adaptation & Diversity in Marine Environment (UMR7144 CNRS-SU), Sorbonne Université, Roscoff, France.
| | - S Devin
- UMR 7360 LIEC, Université Metz-Lorraine, France.
| | - F Caza
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Y St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - R Péden
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France; UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, Université de REIMS Champagne-Ardenne, Campus Moulin de la Housse, 51687, Reims, France.
| | - P Brousseau
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - P Chan
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France.
| | - D Vaudry
- Normandie Univ, UNIROUEN, Plateforme PISSARO, IRIB, 76821, Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, INSERM U1239 DC2N, 76821, Mont-Saint-Aignan, France.
| | - F Le Foll
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - M Fournier
- Institut des Sciences de la mer, Le Parc de la rivière Mitis, Sainte-Flavie, Québec, G0J 2L0, Canada.
| | - M Auffret
- UMR CNRS 6539-LEMAR/ Laboratoire des Sciences de l'Environnement Marin, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - B Rocher
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Biomonitoring of Aquatic Ecosystems, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| |
Collapse
|
32
|
Treatment with ascorbic acid normalizes the aerobic capacity, antioxidant defence, and cell death pathways in thermally stressed Mytilus galloprovincialis. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110611. [PMID: 33965617 DOI: 10.1016/j.cbpb.2021.110611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Considering temperature's upcoming increase due to climate change, combined with the fact that Mediterranean mussels Mytilus galloprovincialis (Lamarck, 1819) live at their upper limits [critical temperatures (Tc) beyond 25 °C], we cannot be sure of this species' sustainable future in the Mediterranean Sea. Deviation from optimum temperatures leads to cellular damage due to oxidative stress. Although ascorbic acid (AA) is a major scavenger of reactive oxygen species (ROS), its capacity to minimize oxidative stress effects is scarcely studied in aquatic organisms. Thus, treatment with 5 mM and 10 mM AA of thermally stressed molluscs had been employed in order to examine its antioxidant capacity. While 5 mM had no effect, 10 mM normalized COX1 and ND2 relative mRNA levels, and superoxide dismutase (SOD), catalase, and glutathione reductase (GR) enzymatic activity levels in both examined tissues: posterior adductor muscle (PAM) and mantle. ATP levels, probably providing the adequate energy for antioxidant defence in thermally stressed mussels, is also normalized under 10 mM AA treatment. Moreover, autophagic indicators such as LC3 II/I and SQSTM1/p62 levels are normalized, indicating autophagy amelioration. Apoptosis also seems to be inhibited since both Bax/Bcl-2 and cleaved caspase substrate levels decrease with 10 mM AA treatment. Therefore, treatment of mussels with AA seems to produce threshold effects, although the precise underlying mechanisms must be elucidated in future studies. These findings show that treatment of mussels with effective antioxidants can be useful as a strategic approach for the reduction of the deleterious effects on mussels' summer mortality in aquaculture zones.
Collapse
|