1
|
Sourisseau F, Chahine C, Pouliot V, Cens T, Charnet P, Chahine M. Cloning, functional expression, and pharmacological characterization of inwardly rectifying potassium channels (Kir) from Apis mellifera. Sci Rep 2024; 14:7834. [PMID: 38570597 PMCID: PMC10991380 DOI: 10.1038/s41598-024-58234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.
Collapse
Affiliation(s)
- Fabien Sourisseau
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Chaimaa Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Thierry Cens
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, 1919 Route de Mende, Montpellier, France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, 1919 Route de Mende, Montpellier, France
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
2
|
Piermarini PM, Denton JS, Swale DR. The Molecular Physiology and Toxicology of Inward Rectifier Potassium Channels in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:125-142. [PMID: 34606365 DOI: 10.1146/annurev-ento-062121-063338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inward rectifier K+ (Kir) channels have been studied extensively in mammals, where they play critical roles in health and disease. In insects, Kir channels have recently been found to be key regulators of diverse physiological processes in several tissues. The importance of Kir channels in insects has positioned them to serve as emerging targets for the development of insecticides with novel modes of action. In this article, we provide the first comprehensive review of insect Kir channels, highlighting the rapid progress made in understanding their molecular biology, physiological roles, pharmacology, and toxicology. In addition, we highlight key gaps in our knowledge and suggest directions for future research to advance our understanding of Kir channels and their roles in insect physiology. Further knowledge of their functional roles will also facilitate their exploitation as targets for controlling arthropod pests and vectors of economic, medical, and/or veterinary relevance.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Wooster, Ohio 44691, USA;
| | - Jerod S Denton
- Departments of Anesthesiology & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, USA;
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
3
|
Novel inhibitors of the renal inward rectifier potassium channel of the mosquito vector Aedes aegypti. Future Med Chem 2021; 13:2015-2025. [PMID: 34590494 DOI: 10.4155/fmc-2021-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mosquito continues to be the most lethal animal to humans due to the devastating diseases that it carries and transmits. Controlling mosquito-borne diseases relies heavily on vector management using neurotoxic insecticides with limited modes of action. This has led to the emergence of resistance to pyrethroids and other neurotoxic insecticides in mosquitoes, which has reduced the efficacy of chemical control agents. Moreover, many neurotoxic insecticides are not selective for mosquitoes and negatively impact beneficial insects such as honeybees. Developing new mosquitocides with novel mechanisms of action is a clear unmet medical need; this review covers the efforts made toward this end by targeting the renal inward rectifier potassium channel (Kir) of the mosquito.
Collapse
|
4
|
Li Z, Guerrero F, Pérez de León AA, Foil LD, Swale DR. Small-Molecule Inhibitors of Inward Rectifier Potassium (Kir) Channels Reduce Bloodmeal Feeding and Have Insecticidal Activity Against the Horn Fly (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1131-1140. [PMID: 32006426 DOI: 10.1093/jme/tjaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Bloodmeal feeding by the horn fly, Haematobia irritans (L.), is associated with reduced milk production and blood loss that ultimately prevents weight gain of calves and yearlings. Thus, blood feeding by H. irritans causes significant economic losses in several continents. As with other arthropods, resistance to the majority of commercialized insecticides reduces the efficacy of current control programs. Thus, innovative technologies and novel biochemical targets for horn fly control are needed. Salivary gland and Malpighian tubule function are critical for H. irritans survivorship as they drive bloodmeal acquisition and maintain ion- and fluid homeostasis during bloodmeal processing, respectively. Experiments were conducted to test the hypothesis that pharmacological modulation of H. irritans inward rectifier potassium (Kir) channels would preclude blood feeding and induce mortality by reducing the secretory activity of the salivary gland while simultaneously inducing Malpighian tubule failure. Experimental results clearly indicate structurally diverse Kir channel modulators reduce the secretory activity of the salivary gland by up to fivefold when compared to control and the reduced saliva secretion was highly correlated to a reduction in bloodmeal acquisition in adult flies. Furthermore, adult feeding on blood treated with Kir channel modulators resulted in significant mortality. In addition to validating the Kir channels of H. irritans as putative insecticide targets, the knowledge gained from this study could be applied to develop novel therapeutic technologies targeting salivary gland or Malpighian tubule function to reduce the economic burden of horn fly ectoparasitism on cattle health and production.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | | | - Adalberto A Pérez de León
- Knipling-Bushland Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service, Kerrville, TX
| | - Lane D Foil
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| |
Collapse
|
5
|
Li Z, Davis JA, Swale DR. Chemical inhibition of Kir channels reduces salivary secretions and phloem feeding of the cotton aphid, Aphis gossypii (Glover). PEST MANAGEMENT SCIENCE 2019; 75:2725-2734. [PMID: 30785236 DOI: 10.1002/ps.5382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The unique feeding biology of aphids suggests novel insecticide targets are likely to exist outside of the nervous system. We therefore aimed to directly test the hypothesis that pharmacological inhibition of inward rectifier potassium (Kir) channels would result in salivary gland failure and reduced sap ingestion by the cotton aphid, Aphis gossypii. RESULTS The Kir inhibitors VU041 and VU590 reduced the length of the salivary sheath in a concentration dependent manner, indicating that the secretory activity of the salivary gland is reduced by Kir inhibition. Next, we employed the electrical penetration graph (EPG) technique to measure the impact Kir inhibition has to aphid sap feeding and feeding biology. Data show that foliar application of VU041 eliminated the E1 and E2 phases (phloem feeding) in all aphids studied. Contact exposure to VU041 after foliar applications was found to be toxic to A. gossypii at 72 and 96 h post-infestation, indicating mortality is likely a result of starvation and not acute toxicity. Furthermore, VU041 exposure significantly altered the feeding behavior of aphids, which is toxicologically relevant for plant-virus interactions. CONCLUSION These data suggest Kir channels are critical for proper function of aphid salivary glands and the reduced plant feeding justifies future work in developing salivary gland Kir channels as novel mechanism aphicides. Furthermore, products like VU041 would add to a very minor arsenal of compounds that simultaneously reduce vector abundance and alter feeding behavior. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Jeffrey A Davis
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Aretz CD, Morwitzer MJ, Sanford AG, Hogan AM, Portillo MV, Kharade SV, Kramer M, McCarthey JB, Trigueros RR, Piermarini PM, Denton JS, Hopkins CR. Discovery and Characterization of 2-Nitro-5-(4-(phenylsulfonyl)piperazin-1-yl)- N-(pyridin-4-ylmethyl)anilines as Novel Inhibitors of the Aedes aegypti Kir1 ( AeKir1) Channel. ACS Infect Dis 2019; 5:917-931. [PMID: 30832472 DOI: 10.1021/acsinfecdis.8b00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mosquito-borne arboviral diseases such as Zika, dengue fever, and chikungunya are transmitted to humans by infected adult female Aedes aegypti mosquitoes and affect a large portion of the world's population. The Kir1 channel in Ae. aegypti ( AeKir1) is an important ion channel in the functioning of mosquito Malpighian (renal) tubules and one that can be manipulated in order to disrupt excretory functions in mosquitoes. We have previously reported the discovery of various scaffolds that are active against the AeKir1 channel. Herein we report the synthesis and biological characterization of a new 2-nitro-5-(4-(phenylsulfonyl) piperazin-1-yl)- N-(pyridin-4-ylmethyl)anilines scaffold as inhibitors of AeKir1. This new scaffold is more potent in vitro compared to the previously reported scaffolds, and the molecules kill mosquito larvae.
Collapse
Affiliation(s)
| | | | | | | | | | - Sujay V. Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James B. McCarthey
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | - Peter M. Piermarini
- Department of Entomology, Ohio State University, Wooster, Ohio 44691, United States
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
7
|
Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum. PLoS Negl Trop Dis 2019; 13:e0007153. [PMID: 30730880 PMCID: PMC6382211 DOI: 10.1371/journal.pntd.0007153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tick feeding causes extreme morbidity and mortality to humans through transmission of pathogens and causes severe economic losses to the agricultural industry by reducing livestock yield. Salivary gland secretions are essential for tick feeding and thus, reducing or preventing saliva secretions into the vertebrate host is likely to reduce feeding and hinder pathogen life cycles. Unfortunately, the membrane physiology of tick salivary glands is underexplored and this gap in knowledge limits the development of novel therapeutics for inducing cessation of tick feeding. Methodology We studied the influence of inward rectifier potassium (Kir) channel subtypes to the functional capacity of the isolated tick salivary gland through the use of a modified Ramsay assay. The secreted saliva was subsequently used for quantification of the elemental composition of the secreted saliva after the glands were exposed to K+ channel modulators as a measure of osmoregulatory capacity. Lastly, changes to blood feeding behavior and mortality were measured with the use of a membrane feeding system. Principal findings In this study, we characterized the fundamental role of Kir channel subtypes in tick salivary gland function and provide evidence that pharmacological inhibition of these ion channels reduces the secretory activity of the Amblyomma americanum salivary gland. The reduced secretory capacity of the salivary gland was directly correlated with a dramatic reduction of blood ingestion during feeding. Further, exposure to small-molecule modulators of Kir channel subtypes induced mortality to ticks that is likely resultant from an altered osmoregulatory capacity. Conclusions Our data contribute to understanding of tick salivary gland function and could guide future campaigns aiming to develop chemical or reverse vaccinology technologies to reduce the worldwide burden of tick feeding and tick-vectored pathogens. Tick feeding results in negative health and economic consequences worldwide and there has been continued interest in the development of products with novel mechanisms of action for control of tick populations. Kir channels have been shown to be a significant ion conductance pathway in arthropods and are critical for proper functioning of multiple biological processes. Previous work on insect Kir channels has focused on their physiological roles in renal system of mosquitoes and the data suggest that these channels represent a viable pathway to induce renal failure that leads to mortality. Based on the functional and cellular similarities of arthropod salivary glands and Malpighian tubules, we hypothesized that Kir channels constitute a critical conductance pathway within arthropod salivary glands and inhibition of this pathway will preclude feeding. Data presented in this study show that pharmacological modulators of Kir channels elicited a significant reduction in the fluid and ion secretory activity of tick salivary glands that resulted in reduced feeding, altered osmoregulation, and lead to mortality. These data could guide the future development of novel acaricides, RNAi, or genetically modified ticks to mitigate health and economic damages resulting from their feeding. Further, these data indicate a conserved function of Kir channels within multiple tissues of taxonomically diverse organisms, such as ticks and humans.
Collapse
|
8
|
Rusconi Trigueros R, Hopkins CR, Denton JS, Piermarini PM. Pharmacological Inhibition of Inward Rectifier Potassium Channels Induces Lethality in Larval Aedes aegypti. INSECTS 2018; 9:E163. [PMID: 30445675 PMCID: PMC6315791 DOI: 10.3390/insects9040163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
The inward rectifier potassium (Kir) channels play key roles in the physiology of mosquitoes and other insects. Our group, among others, previously demonstrated that small molecule inhibitors of Kir channels are promising lead molecules for developing new insecticides to control adult female mosquitoes. However, the potential use of Kir channel inhibitors as larvicidal agents is unknown. Here we tested the hypothesis that pharmacological inhibition of Kir channels in the larvae of Aedes aegypti, the vector of several medically important arboviruses, induces lethality. We demonstrated that adding barium, a non-specific blocker of Kir channels, or VU041, a specific small-molecule inhibitor of mosquito Kir1 channels, to the rearing water (deionized H₂O) of first instar larvae killed them within 48 h. We further showed that the toxic efficacy of VU041 within 24 h was significantly enhanced by increasing the osmolality of the rearing water to 100 mOsm/kg H₂O with NaCl, KCl or mannitol; KCl provided the strongest enhancement compared to NaCl and mannitol. These data suggest: (1) the important role of Kir channels in the acclimation of larvae to elevated ambient osmolality and KCl concentrations; and (2) the disruption of osmoregulation as a potential mechanism of the toxic action of VU041. The present study provides the first evidence that inhibition of Kir channels is lethal to larval mosquitoes and broadens the potential applications of our existing arsenal of small molecule inhibitors of Kir channels, which have previously only been considered for developing adulticides.
Collapse
Affiliation(s)
- Renata Rusconi Trigueros
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| |
Collapse
|
9
|
Piermarini PM, Inocente EA, Acosta N, Hopkins CR, Denton JS, Michel AP. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines: Functional characterization, pharmacology, and toxicology. JOURNAL OF INSECT PHYSIOLOGY 2018; 110:57-65. [PMID: 30196125 PMCID: PMC6173977 DOI: 10.1016/j.jinsphys.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 05/21/2023]
Abstract
Inward rectifier K+ (Kir) channels contribute to a variety of physiological processes in insects and are emerging targets for insecticide development. Previous studies on insect Kir channels have primarily focused on dipteran species (e.g., mosquitoes, fruit flies). Here we identify and functionally characterize Kir channel subunits in a hemipteran insect, the soybean aphid Aphis glycines, which is an economically important insect pest and vector of soybeans. From the transcriptome and genome of Ap. glycines we identified two cDNAs, ApKir1 and ApKir2, encoding Kir subunits that were orthologs of insect Kir1 and Kir2, respectively. Notably, a gene encoding a Kir3 subunit was absent from the transcriptome and genome of Ap. glycines, similar to the pea aphid Acyrthosiphon pisum. Heterologous expression of ApKir1 and ApKir2 in Xenopus laevis oocytes enhanced K+-currents in the plasma membrane; these currents were inhibited by barium and the small molecule VU041. Compared to ApKir2, ApKir1 mediated currents that were larger in magnitude, more sensitive to barium, and less inhibited by small molecule VU041. Moreover, ApKir1 exhibited stronger inward rectification compared to ApKir2. Topical application of VU041 in adult aphids resulted in dose-dependent mortality within 24 h that was more efficacious than flonicamid, an established insecticide also known to inhibit Kir channels. We conclude that despite the apparent loss of Kir3 genes in aphid evolution, Kir channels are important to aphid survival and represent a promising target for the development of new insecticides.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| | - Edna Alfaro Inocente
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Nuris Acosta
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| |
Collapse
|
10
|
Malpighian Tubules as Novel Targets for Mosquito Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020111. [PMID: 28125032 PMCID: PMC5334665 DOI: 10.3390/ijerph14020111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/06/2017] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
The Malpighian tubules and hindgut are the renal excretory tissues of mosquitoes; they are essential to maintaining hemolymph water and solute homeostasis. Moreover, they make important contributions to detoxifying metabolic wastes and xenobiotics in the hemolymph. We have focused on elucidating the molecular mechanisms of Malpighian tubule function in adult female mosquitoes and developing chemical tools as prototypes for next-generation mosquitocides that would act via a novel mechanism of action (i.e., renal failure). To date, we have targeted inward rectifier potassium (Kir) channels expressed in the Malpighian tubules of the yellow fever mosquito Aedes aegypti and malaria mosquito Anopheles gambiae. Inhibition of these channels with small molecules inhibits transepithelial K⁺ and fluid secretion in Malpighian tubules, leading to a disruption of hemolymph K⁺ and fluid homeostasis in adult female mosquitoes. In addition, we have used next-generation sequencing to characterize the transcriptome of Malpighian tubules in the Asian tiger mosquito Aedes albopictus, before and after blood meals, to reveal new molecular targets for potentially disrupting Malpighian tubule function. Within 24 h after a blood meal, the Malpighian tubules enhance the mRNA expression of genes encoding mechanisms involved with the detoxification of metabolic wastes produced during blood digestion (e.g., heme, NH₃, reactive oxygen species). The development of chemical tools targeting these molecular mechanisms in Malpighian tubules may offer a promising avenue for the development of mosquitocides that are highly-selective against hematophagous females, which are the only life stage that transmits pathogens.
Collapse
|
11
|
Swale DR, Engers DW, Bollinger SR, Gross A, Inocente EA, Days E, Kanga F, Johnson RM, Yang L, Bloomquist JR, Hopkins CR, Piermarini PM, Denton JS. An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Sci Rep 2016; 6:36954. [PMID: 27849039 PMCID: PMC5111108 DOI: 10.1038/srep36954] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023] Open
Abstract
Insecticide resistance is a growing threat to mosquito control programs around the world, thus creating the need to discover novel target sites and target-specific compounds for insecticide development. Emerging evidence suggests that mosquito inward rectifier potassium (Kir) channels represent viable molecular targets for developing insecticides with new mechanisms of action. Here we describe the discovery and characterization of VU041, a submicromolar-affinity inhibitor of Anopheles (An.) gambiae and Aedes (Ae.) aegypti Kir1 channels that incapacitates adult female mosquitoes from representative insecticide-susceptible and -resistant strains of An. gambiae (G3 and Akron, respectively) and Ae. aegypti (Liverpool and Puerto Rico, respectively) following topical application. VU041 is selective for mosquito Kir channels over several mammalian orthologs, with the exception of Kir2.1, and is not lethal to honey bees. Medicinal chemistry was used to develop an analog, termed VU730, which retains activity toward mosquito Kir1 but is not active against Kir2.1 or other mammalian Kir channels. Thus, VU041 and VU730 are promising chemical scaffolds for developing new classes of insecticides to combat insecticide-resistant mosquitoes and the transmission of mosquito-borne diseases, such as Zika virus, without harmful effects on humans and beneficial insects.
Collapse
Affiliation(s)
- Daniel R Swale
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Darren W Engers
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean R Bollinger
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aaron Gross
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Edna Alfaro Inocente
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Emily Days
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fariba Kanga
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Reed M Johnson
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Liu Yang
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Corey R Hopkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Institute for Global Health, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
12
|
Piermarini PM, Dunemann SM, Rouhier MF, Calkins TL, Raphemot R, Denton JS, Hine RM, Beyenbach KW. Localization and role of inward rectifier K(+) channels in Malpighian tubules of the yellow fever mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:59-73. [PMID: 26079629 DOI: 10.1016/j.ibmb.2015.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 05/04/2023]
Abstract
Malpighian tubules of adult female yellow fever mosquitoes Aedes aegypti express three inward rectifier K(+) (Kir) channel subunits: AeKir1, AeKir2B and AeKir3. Here we 1) elucidate the cellular and membrane localization of these three channels in the Malpighian tubules, and 2) characterize the effects of small molecule inhibitors of AeKir1 and AeKir2B channels (VU compounds) on the transepithelial secretion of fluid and electrolytes and the electrophysiology of isolated Malpighian tubules. Using subunit-specific antibodies, we found that AeKir1 and AeKir2B localize exclusively to the basolateral membranes of stellate cells and principal cells, respectively; AeKir3 localizes within intracellular compartments of both principal and stellate cells. In isolated tubules bathed in a Ringer solution containing 34 mM K(+), the peritubular application of VU590 (10 μM), a selective inhibitor of AeKir1, inhibited transepithelial fluid secretion 120 min later. The inhibition brings rates of transepithelial KCl and fluid secretion to 54% of the control without a change in transepithelial NaCl secretion. VU590 had no effect on the basolateral membrane voltage (Vbl) of principal cells, but it significantly reduced the cell input conductance (gin) to values 63% of the control within ∼90 min. In contrast, the peritubular application of VU625 (10 μM), an inhibitor of both AeKir1 and AeKir2B, started to inhibit transepithelial fluid secretion as early as 60 min later. At 120 min after treatment, VU625 was more efficacious than VU590, inhibiting transepithelial KCl and fluid secretion to ∼35% of the control without a change in transepithelial NaCl secretion. Moreover, VU625 caused the Vbl and gin of principal cells to respectively drop to values 62% and 56% of the control values within only ∼30 min. Comparing the effects of VU590 with those of VU625 allowed us to estimate that AeKir1 and AeKir2B respectively contribute to 46% and 20% of the transepithelial K(+) secretion when the tubules are bathed in a Ringer solution containing 34 mM K(+). Thus, we uncover an important role of AeKir1 and stellate cells in transepithelial K(+) transport under conditions of peritubular K(+) challenge. The physiological role of AeKir3 in intracellular membranes of both stellate and principal cells remains to be determined.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.
| | - Sonja M Dunemann
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Travis L Calkins
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca M Hine
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA
| | - Klaus W Beyenbach
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Beyenbach KW, Yu Y, Piermarini PM, Denton J. Targeting renal epithelial channels for the control of insect vectors. Tissue Barriers 2015; 3:e1081861. [PMID: 26716074 DOI: 10.1080/21688370.2015.1081861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 12/14/2022] Open
Abstract
Three small molecules were identified in high throughput screens that 1) block renal inward rectifier potassium (Kir) channels of Aedes aegypti expressed in HEK cells and Xenopus oocytes, 2) inhibit the secretion of KCl but not NaCl in isolated Malpighian tubules, and after injection into the hemolymph, 3) inhibit KCl excretion in vivo, and 4) render mosquitoes flightless or dead within 24h. Some mosquitoes had swollen abdomens at death consistent with renal failure. VU625, the most potent and promising small molecule for development as mosquitocide, inhibits AeKir1-mediated currents with an IC50 less than 100 nM. It is highly selective for AeKir1 over mammalian Kir channels, and it affects only 3 of 68 mammalian membrane proteins. These results document 1) renal failure as a new mode-of-action for mosquitocide development, 2) renal Kir channels as molecular target for inducing renal failure, and 3) the promise of the discovery and development of new species-specific insecticides.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences; Cornell University ; Ithaca, NY USA
| | - Yasong Yu
- College of Medicine; SUNY Downstate Medical Center ; Brooklyn, NY USA
| | - Peter M Piermarini
- Department of Entomology; Ohio Agricultural Research and Development Center; The Ohio State University ; Wooster, OH USA
| | - Jerod Denton
- Department of Anesthesiology; Vanderbilt University School of Medicine ; Nashville, TN USA
| |
Collapse
|
14
|
Wu Y, Baum M, Huang CL, Rodan AR. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26224687 DOI: 10.1152/ajpregu.00148.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K(+) conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila melanogaster. We found that barium decreases the lumen-positive transepithelial potential difference in isolated perfused Drosophila tubules and decreases fluid secretion and transepithelial K(+) flux. In those insect species in which it has been studied, transcripts from multiple genes encoding inwardly rectifying K(+) channels are expressed in the renal (Malpighian) tubule. In Drosophila melanogaster, this includes transcripts of the Irk1, Irk2, and Irk3 genes. The role of each of these gene products in renal tubule function is unknown. We found that simultaneous knockdown of Irk1 and Irk2 in the principal cell of the fly tubule decreases transepithelial K(+) flux, with no additive effect of Irk3 knockdown, and decreases barium sensitivity of transepithelial K(+) flux by ∼50%. Knockdown of any of the three inwardly rectifying K(+) channels individually has no effect, nor does knocking down Irk3 simultaneously with Irk1 or Irk2. Irk1/Irk2 principal cell double-knockdown tubules remain sensitive to the kaliuretic effect of cAMP. Inhibition of the Na(+)/K(+)-ATPase with ouabain and Irk1/Irk2 double knockdown have additive effects on K(+) flux, and 75% of transepithelial K(+) transport is due to Irk1/Irk2 or ouabain-sensitive pathways. In conclusion, Irk1 and Irk2 play redundant roles in transepithelial ion transport in the Drosophila melanogaster renal tubule and are additive to Na(+)/K(+)-ATPase-dependent pathways.
Collapse
Affiliation(s)
- Yipin Wu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Michel Baum
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and Department of Pediatrics, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
15
|
Rouhier MF, Hine RM, Park ST, Raphemot R, Denton J, Piermarini PM, Beyenbach KW. Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342. Am J Physiol Regul Integr Comp Physiol 2014; 307:R850-61. [PMID: 25056106 DOI: 10.1152/ajpregu.00106.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of two small molecules VU342 and VU573 on renal functions in the yellow fever mosquito Aedes aegypti was investigated in vitro and in vivo. In isolated Malpighian tubules, VU342 (10 μM) had no effect on the transepithelial secretion of Na(+), K(+), Cl(-), and water. In contrast, 10 μM VU573 first stimulated and then inhibited the transepithelial secretion of fluid when the tubules were bathed in Na(+)-rich or K(+)-rich Ringer solution. The early stimulation was blocked by bumetanide, suggesting the transient stimulation of Na-K-2Cl cotransport, and the late inhibition of fluid secretion was consistent with the known block of AeKir1, an Aedes inward rectifier K(+) channel, by VU573. VU342 and VU573 at a hemolymph concentration of about 11 μM had no effect on the diuresis triggered by hemolymph Na(+) or K(+) loads. VU342 at a hemolymph concentration of 420 μM had no effect on the diuresis elicited by hemolymph Na(+) or K(+) loads. In contrast, the same concentration of VU573 significantly diminished the Na(+) diuresis by inhibiting the urinary excretion of Na(+), Cl(-), and water. In K(+)-loaded mosquitoes, 420 μM VU573 significantly diminished the K(+) diuresis by inhibiting the urinary excretion of K(+), Na(+), Cl(-), and water. We conclude that 1) the effects of VU573 observed in isolated Malpighian tubules are overwhelmed in vivo by the diuresis triggered with the coinjection of Na(+) and K(+) loads, and 2) at a hemolymph concentration of 420 μM VU573 affects Kir channels systemically, including those that might be involved in the release of diuretic hormones.
Collapse
Affiliation(s)
- Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Rebecca M Hine
- Department of Biomedical Sciences, Cornell University, Ithaca, New York; and
| | - Seokhwan Terry Park
- Department of Biomedical Sciences, Cornell University, Ithaca, New York; and
| | - Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jerod Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York; and
| |
Collapse
|
16
|
Hine RM, Rouhier MF, Park ST, Qi Z, Piermarini PM, Beyenbach KW. The excretion of NaCl and KCl loads in mosquitoes. 1. Control data. Am J Physiol Regul Integr Comp Physiol 2014; 307:R837-49. [PMID: 25056103 DOI: 10.1152/ajpregu.00105.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The handling of Na(+) and K(+) loads was investigated in isolated Malpighian tubules and in whole mosquitoes of Aedes aegypti. Isolated Malpighian tubules bathed in Na(+)-rich Ringer solution secreted Na(+)-rich fluid, and tubules bathed in K(+)-rich Ringer solution secreted K(+)-rich fluid. Upon Na(+) loading the hemolymph, the mosquito removed 77% the injected Na(+) within the next 30 min. The rapid onset and magnitude of this diuresis and the excretion of more Na(+) than can be accounted for by tubular secretion in vitro is consistent with the release of the calcitonin-like diuretic hormone in the mosquito to remove the Na(+) load from the hemolymph. Downstream, K(+) was reabsorbed with water in the hindgut, which concentrated Na(+) in excreted urine hyperosmotic to the hemolymph. Upon K(+) loading the hemolymph, the mosquito took 2 h to remove 100% of the injected K(+) from the hemolymph. The excretion of K(+)-rich isosmotic urine was limited to clearing the injected K(+) from the hemolymph with a minimum of Cl(-) and water. As a result, 43.3% of the injected Cl(-) and 48.1% of the injected water were conserved. The cation retained in the hemolymph with Cl(-) was probably N-methyl-d-glucamine, which replaced Na(+) in the hemolymph injection of the K(+) load. Since the tubular secretion of K(+) accounts for the removal of the K(+) load from the hemolymph, the reabsorption of K(+), Na(+), Cl(-), and water must be inhibited in the hindgut. The agents mediating this inhibition are unknown.
Collapse
Affiliation(s)
- Rebecca M Hine
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio; and
| | | | - Zhijun Qi
- Institute of Pesticide Science, Northwestern Agricultural and Forestry University, Yangling, Shaanxi, China
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio; and
| | - Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York;
| |
Collapse
|