1
|
Shionoya K, Nilsson A, Engström Ruud L, Engblom D, Blomqvist A. Melanocortin-4 receptors on neurons in the parabrachial nucleus mediate inflammation-induced suppression of food-seeking behavior. Brain Behav Immun 2023; 110:80-84. [PMID: 36813210 DOI: 10.1016/j.bbi.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Anorexia is a common symptom during infectious and inflammatory disease. Here we examined the role of melanocortin-4 receptors (MC4Rs) in inflammation-induced anorexia. Mice with transcriptional blockage of the MC4Rs displayed the same reduction of food intake following peripheral injection of lipopolysaccharide as wild type mice but were protected against the anorexic effect of the immune challenge in a test in which fasted animals were to use olfactory cues to find a hidden cookie. By using selective virus-mediated receptor re-expression we demonstrate that the suppression of the food-seeking behavior is subserved by MC4Rs in the brain stem parabrachial nucleus, a central hub for interoceptive information involved in the regulation of food intake. Furthermore, the selective expression of MC4R in the parabrachial nucleus also attenuated the body weight increase that characterizes MC4R KO mice. These data extend on the functions of the MC4Rs and show that MC4Rs in the parabrachial nucleus are critically involved in the anorexic response to peripheral inflammation but also contribute to body weight homeostasis during normal conditions.
Collapse
Affiliation(s)
- Kiseko Shionoya
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Nilsson
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Linda Engström Ruud
- Institute of Neuroscience and Physiology, Department of Physiology, University of Gothenburg, Sweden
| | - David Engblom
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Whylings J, Rigney N, Peters NV, de Vries GJ, Petrulis A. Sexually dimorphic role of BNST vasopressin cells in sickness and social behavior in male and female mice. Brain Behav Immun 2020; 83:68-77. [PMID: 31550501 PMCID: PMC6906230 DOI: 10.1016/j.bbi.2019.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Circumstantial evidence supports the hypothesis that the sexually dimorphic vasopressin (AVP) innervation of the brain tempers sickness behavior in males. Here we test this hypothesis directly, by comparing sickness behavior in animals with or without ablations of BNST AVP cells, a major source of sexually dimorphic AVP in the brain. We treated male and female AVP-iCre+ and AVP-iCre- mice that had been injected with viral Cre-dependent caspase-3 executioner construct into the BNST with lipopolysaccharide (LPS) or sterile saline, followed by behavioral analysis. In all groups, LPS treatment reliably reduced motor behavior, increased anxiety-related behavior, and reduced sucrose preference and consumption. Male mice, whose BNST AVP cells had been ablated (AVP-iCre+), displayed only minor reductions in LPS-induced sickness behavior, whereas their female counterparts displayed, if anything, an increase in sickness behaviors. All saline-treated mice with BNST AVP cell ablations consumed more sucrose than did control mice, and males, but not females, with BNST AVP cell ablations showed reduced preference for novel conspecifics compared to control mice. These data confirm that BNST AVP cells control social behavior in a sexually dimorphic way, but do not play a critical role in altering sickness behavior.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole V Peters
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
4
|
Herrera S, de Vega WC, Ashbrook D, Vernon SD, McGowan PO. Genome-epigenome interactions associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Epigenetics 2018; 13:1174-1190. [PMID: 30516085 DOI: 10.1080/15592294.2018.1549769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease of unknown etiology. Multiple studies point to disruptions in immune functioning in ME/CFS patients as well as specific genetic polymorphisms and alterations of the DNA methylome in lymphocytes. However, potential interactions between DNA methylation and genetic background in relation to ME/CFS have not been examined. In this study we explored this association by characterizing the epigenetic (~480 thousand CpG loci) and genetic (~4.3 million SNPs) variation between cohorts of ME/CFS patients and healthy controls. We found significant associations of DNA methylation states in T-lymphocytes at several CpG loci and regions with ME/CFS phenotype. These methylation anomalies are in close proximity to genes involved with immune function and cellular metabolism. Finally, we found significant correlations of genotypes with methylation modifications associated with ME/CFS. The findings from this study highlight the role of epigenetic and genetic interactions in complex diseases, and suggest several genetic and epigenetic elements potentially involved in the mechanisms of disease in ME/CFS.
Collapse
Affiliation(s)
- Santiago Herrera
- a Centre for Environmental Epigenetics and Development , University of Toronto , Scarborough , Canada.,b Department of Biological Sciences , University of Toronto , Scarborough , Canada
| | - Wilfred C de Vega
- a Centre for Environmental Epigenetics and Development , University of Toronto , Scarborough , Canada.,b Department of Biological Sciences , University of Toronto , Scarborough , Canada.,c Department of Cell and Systems Biology , University of Toronto , Toronto , Canada
| | - David Ashbrook
- a Centre for Environmental Epigenetics and Development , University of Toronto , Scarborough , Canada.,b Department of Biological Sciences , University of Toronto , Scarborough , Canada
| | | | - Patrick O McGowan
- a Centre for Environmental Epigenetics and Development , University of Toronto , Scarborough , Canada.,b Department of Biological Sciences , University of Toronto , Scarborough , Canada.,c Department of Cell and Systems Biology , University of Toronto , Toronto , Canada.,e Department of Psychology , University of Toronto , Toronto , Canada.,f Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , Canada
| |
Collapse
|
5
|
Zhang ZT, Du XM, Ma XJ, Zong Y, Chen JK, Yu CL, Liu YG, Chen YC, Zhao LJ, Lu GC. Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome. J Neuroinflammation 2016; 13:71. [PMID: 27048470 PMCID: PMC4822300 DOI: 10.1186/s12974-016-0539-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3) is an intracellular protein complex that plays an important role in innate immune sensing. Its activation leads to the maturation of caspase-1 and regulates the cleavage of interleukin (IL)-1β and IL-18. Various studies have shown that activation of the immune system plays a pivotal role in the development of fatigue. However, the mechanisms underlying the association between immune activation and fatigue remained elusive, and few reports have described the involvement of NLRP3 inflammasome activation in fatigue. METHODS We established a mouse fatigue model with lipopolysaccharide (LPS, 3 mg/kg) challenge combined with swim stress. Both behavioural and biochemical parameters were measured to illustrate the characteristics of this model. We also assessed NLRP3 inflammasome activation in the mouse diencephalon, which is the brain region that has been suggested to be responsible for fatigue sensation. To further identify the role of NLRP3 inflammasome activation in the pathogenesis of chronic fatigue syndrome (CFS), NLRP3 KO mice were also subjected to LPS treatment and swim stress, and the same parameters were evaluated. RESULTS Mice challenged with LPS and subjected to the swim stress test showed decreased locomotor activity, decreased fall-off time in a rota-rod test and increased serum levels of IL-1β and IL-6 compared with untreated mice. Serum levels of lactic acid and malondialdehyde (MDA) were not significantly altered in the treated mice. We demonstrated increased NLRP3 expression, IL-1β production and caspase-1 activation in the diencephalons of the treated mice. In NLRP3 KO mice, we found remarkably increased locomotor activity with longer fall-off times and decreased serum IL-1β levels compared with those of wild-type (WT) mice after LPS challenge and the swim stress test. IL-1β levels in the diencephalon were also significantly decreased in the NLRP3 KO mice. By contrast, IL-6 levels were not significantly altered. CONCLUSIONS These findings suggest that LPS-induced fatigue is an IL-1β-dependent process and that the NLRP3/caspase-1 pathway is involved in the mechanisms of LPS-induced fatigue behaviours. NLRP3/caspase-1 inhibition may be a promising therapy for fatigue treatment.
Collapse
Affiliation(s)
- Zi-Teng Zhang
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Xiu-Ming Du
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Xiu-Juan Ma
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Ying Zong
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Ji-Kuai Chen
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Chen-Lin Yu
- />Laboratory Animal Center, Second Military Medical University, Shanghai, 200433 China
| | - Yan-Gang Liu
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Yong-Chun Chen
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| | - Li-Jun Zhao
- />Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Guo-Cai Lu
- />Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
| |
Collapse
|
6
|
Carlton ED, Demas GE, French SS. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav 2012; 62:272-9. [PMID: 22561456 DOI: 10.1016/j.yhbeh.2012.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/05/2012] [Accepted: 04/18/2012] [Indexed: 01/27/2023]
Abstract
Effective immune responses are coordinated by interactions among the nervous, endocrine, and immune systems. Mounting immune, inflammatory, and sickness responses requires substantial energetic investments, and as such, an organism may need to balance energy allocation to these processes with the energetic demands of other competing physiological systems. The metabolic hormone leptin appears to be mediating trade-offs between the immune system and other physiological systems through its actions on immune cells and the brain. Here we review the evidence in both mammalian and non-mammalian vertebrates that suggests leptin is involved in regulating immune responses, inflammation, and sickness behaviors. Leptin has also been implicated in the regulation of seasonal immune responses, including sickness; however, the precise physiological mechanisms remain unclear. Thus, we discuss recent data in support of leptin as a mediator of seasonal sickness responses and provide a theoretical model that outlines how seasonal cues, leptin, and proinflammatory cytokines may interact to coordinate seasonal immune and sickness responses.
Collapse
Affiliation(s)
- Elizabeth D Carlton
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
7
|
Rummel C, Inoue W, Poole S, Luheshi GN. Leptin regulates leukocyte recruitment into the brain following systemic LPS-induced inflammation. Mol Psychiatry 2010; 15:523-34. [PMID: 19773811 DOI: 10.1038/mp.2009.98] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The appetite suppressing hormone leptin has emerged as an important modulator of immune function and is now considered to be a critical link between energy balance and host defense responses to pathogens. These 'adaptive' responses can, in situations of severe and sustained systemic inflammation, lead to adverse effects including brain damage that is partly mediated by neutrophil recruitment into the brain. We examined the contribution of leptin to this process in leptin-deficient (ob/ob), -resistant (db/db) and wild-type (WT) mice injected intraperitoneally with a septic dose of lipopolysaccharide (LPS). This treatment induced a dramatic increase in the number of neutrophils entering the brain of WT mice, an effect that was almost totally abolished in the mutant mice and correlated with a significant reduction in the mRNA levels of interleukin-1beta, intracellular adhesion molecule-1 and neutrophil-specific chemokines. These effects were reversed with leptin replenishment in ob/ob mice leading to recovery of neutrophil recruitment into the brain. Moreover, 48 h food deprivation in WT mice, which decreased circulating leptin levels, attenuated the LPS-induced neutrophil recruitment as did a single injection of an anti-leptin antiserum 4 h before LPS treatment in WT mice. These results provide the first demonstration that leptin has a critical role in leukocyte recruitment to the brain following severe systemic inflammation with possible implications for individuals with altered leptin levels such as during obesity or starvation.
Collapse
Affiliation(s)
- C Rummel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
8
|
Introduction. Human thermoregulatory research. Eur J Appl Physiol 2010; 109:1-3. [PMID: 20217114 DOI: 10.1007/s00421-010-1425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
9
|
Shiva D, Matsumoto T, Kremenik MJ, Kato Y, Yano H. High dose of lipopolysaccharide pre-treatment prevents OVA-induced anaphylactic decreases in rectal temperature in the immunized mice. Immunol Lett 2008; 118:59-64. [PMID: 18433880 DOI: 10.1016/j.imlet.2008.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/26/2008] [Accepted: 03/02/2008] [Indexed: 11/18/2022]
Abstract
It remains unclear whether lipopolysaccharide (LPS) pre-treatment, which prevents Th2-type responses via Toll-like receptor 4 (TLR4), inhibits anaphylaxis. To determine the dose-dependent effects of LPS pre-treatment on anaphylactic decreases in rectal temperature caused by ovalbumin (OVA) re-exposure in immunized mice, C3H/HeN mice were divided into vehicle/OVA (0 mg/kg LPS), L-LPS/OVA (0.5 mg/kg LPS), M-LPS/OVA (1.0 mg/kg LPS) and H-LPS/OVA (3.0 mg/kg LPS) groups. After receiving these treatments, the mice were systemically immunized with OVA. Negative control mice were not immunized with OVA (N-OVA). After measuring the serum levels of OVA-specific IgE and IgG1 antibodies, the mice were examined for changes in their rectal temperature and plasma histamine concentration after OVA re-exposure. The allergen-specific IgE and IgG1 concentrations in sera from L-LPS/OVA, M-LPS/OVA and H-LPS/OVA mice were significantly lower than those in sera from vehicle/OVA mice despite OVA immunization. However, the antibody levels in all OVA-immunized mice, with the exception of the IgG1 levels in H-LPS/OVA mice, were significantly higher than those in N-OVA mice. Interestingly, H-LPS/OVA mice were the only group that did not exhibit a decrease in rectal temperature, since the rectal temperatures in vehicle/OVA, L-LPS/OVA and M-LPS/OVA mice were significantly decreased by OVA re-exposure. Furthermore, the decrease in rectal temperature after OVA re-exposure in L-LPS/OVA mice, which did not exhibit an increase in the plasma histamine concentration, was significantly prevented by treatment with a platelet-activating factor (PAF) receptor antagonist alone. Taken together, the present results indicate that high-dose LPS pre-treatment may prevent anaphylaxis in OVA-immunized mice, and that this mechanism may depend on inhibition of the IgG-PAF pathway rather than the IgE-histamine pathway.
Collapse
Affiliation(s)
- Daisuke Shiva
- Division in Health Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan.
| | | | | | | | | |
Collapse
|
10
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 2007; 292:R37-46. [PMID: 17008453 DOI: 10.1152/ajpregu.00668.2006] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While summarizing the current understanding of how body temperature (Tb) is regulated, this review discusses the recent progress in the following areas: central and peripheral thermosensitivity and temperature-activated transient receptor potential (TRP) channels; afferent neuronal pathways from peripheral thermosensors; and efferent thermoeffector pathways. It is proposed that activation of temperature-sensitive TRP channels is a mechanism of peripheral thermosensitivity. Special attention is paid to the functional architecture of the thermoregulatory system. The notion that deep Tb is regulated by a unified system with a single controller is rejected. It is proposed that Tb is regulated by independent thermoeffector loops, each having its own afferent and efferent branches. The activity of each thermoeffector is triggered by a unique combination of shell and core Tbs. Temperature-dependent phase transitions in thermosensory neurons cause sequential activation of all neurons of the corresponding thermoeffector loop and eventually a thermoeffector response. No computation of an integrated Tb or its comparison with an obvious or hidden set point of a unified system is necessary. Coordination between thermoeffectors is achieved through their common controlled variable, Tb. The described model incorporates Kobayashi’s views, but Kobayashi’s proposal to eliminate the term sensor is rejected. A case against the term set point is also made. Because this term is historically associated with a unified control system, it is more misleading than informative. The term balance point is proposed to designate the regulated level of Tb and to attract attention to the multiple feedback, feedforward, and open-loop components that contribute to thermal balance.
Collapse
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| |
Collapse
|
12
|
Szelényi Z. Neuronal CCK and thermoregulation: two receptors with different functions. Am J Physiol Regul Integr Comp Physiol 2006; 292:R109-11. [PMID: 16959866 DOI: 10.1152/ajpregu.00620.2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|