1
|
Fan R, Kong J, Zhang J, Zhu L. Exercise as a therapeutic approach to alleviate diabetic kidney disease: mechanisms, clinical evidence and potential exercise prescriptions. Front Med (Lausanne) 2024; 11:1471642. [PMID: 39526249 PMCID: PMC11543430 DOI: 10.3389/fmed.2024.1471642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is a global and severe complication that imposes a significant burden on individual health, families, and society. Currently, the main treatment approaches for DKD include medication, blood glucose control, protein-restricted diet, and blood pressure management, all of which have certain limitations. Exercise, as a non-pharmacological intervention, has attracted increasing attention. This review introduces the mechanisms and clinical evidence of exercise on DKD, and proposes potential exercise prescriptions. Exercise can improve blood glucose stability related to DKD and the renin-angiotensin-aldosterone system (RAAS), reduce renal oxidative stress and inflammation, enhance the crosstalk between muscle and kidneys, and improve endothelial cell function. These mechanisms contribute to the comprehensive improvement of DKD. Compared to traditional treatment methods, exercise has several advantages, including safety, effectiveness, and no significant side effects. It can be used as an adjunct therapy to medication, blood glucose control, protein-restricted diet, and blood pressure management. Despite the evident benefits of exercise in DKD management, there is still a lack of large-scale, long-term randomized controlled trials to provide more evidence and develop exercise guidelines for DKD. Healthcare professionals should actively encourage exercise in DKD patients and develop personalized exercise plans based on individual circumstances.
Collapse
Affiliation(s)
| | | | | | - Lei Zhu
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
2
|
Sunilkumar S, Dennis MD. REDD1 Is a Promising Therapeutic Target to Combat the Development of Diabetes Complications: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:1553-1562. [PMID: 38976480 PMCID: PMC11417436 DOI: 10.2337/dbi24-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The stress response protein regulated in development and DNA damage response 1 (REDD1) has emerged as a key player in the pathogenesis of diabetes. Diabetes upregulates REDD1 in a variety of insulin-sensitive tissues, where the protein acts to inhibit signal transduction downstream of the insulin receptor. REDD1 functions as a cytosolic redox sensor that suppresses Akt/mTORC1 signaling to reduce energy expenditure in response to cellular stress. Whereas a transient increase in REDD1 contributes to an adaptive cellular response, chronically elevated REDD1 levels are implicated in disease progression. Recent studies highlight the remarkable benefits of both whole-body and tissue-specific REDD1 deletion in preclinical models of type 1 and type 2 diabetes. In particular, REDD1 is necessary for the development of glucose intolerance and the consequent rise in oxidative stress and inflammation. Here, we review studies that support a role for chronically elevated REDD1 levels in the development of diabetes complications, reflect on limitations of prior therapeutic approaches targeting REDD1 in patients, and discuss potential opportunities for future interventions to improve the lives of people living with diabetes. This article is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
3
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
4
|
Fuller KN, Bohne EM, Mey JT, Blackburn BK, Miranda VR, Varady KA, Danielson KK, Haus JM. Plasma undercarboxylated osteocalcin dynamics with glycemic stress reflects insulin sensitivity and beta-cell function in humans with and without T2DM. Metabol Open 2023; 20:100264. [PMID: 38115864 PMCID: PMC10728569 DOI: 10.1016/j.metop.2023.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
This study aimed to better understand the relationship between bone-related biomarkers and nutrient stress in the context of metabolic health. We investigated plasma osteocalcin (OC) during an oral glucose challenge and experimental hyperinsulinemia in Type 2 diabetes (T2DM) and lean healthy controls (LHC). Older individuals with obesity and T2DM (n = 9) and young LHCs (n = 9) underwent a 75g oral glucose tolerance test (OGTT) and a 40 mU/m2/min hyperinsulinemic-euglycemic clamp. Plasma undercarboxylated OC (ucOC) and total OC were measured at baseline, 60mins, and 120mins of the OGTT and clamp via ELISA. In addition, plasma alkaline phosphatase (ALP), leptin, adiponectin, Vitamin D and insulin were measured and indices of insulin sensitivity and β-cell function were derived. The T2DM group had lower (p<0.05) ucOC and ucOC:total OC ratio than LHC during both the OGTT and clamp. Further, baseline ucOC was positively correlated to indices of β-cell function and negatively correlated to indices of insulin resistance when both groups were combined (all p<0.05). Suppression of OC observed in T2DM may be related to glucose intolerance and insulin resistance. Similarly, our data suggest that the observed phenotypic differences between groups are likely a product of long-term glucose dysregulation rather than acute flux in glucose or insulin.
Collapse
Affiliation(s)
- Kelly N.Z. Fuller
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erin M. Bohne
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, IL, USA
| | - Jacob T. Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Brian K. Blackburn
- Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, CA, USA
| | | | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, IL, USA
| | - Kirstie K. Danielson
- Division of Endocrinology and Metabolism, University of Illinois at Chicago, IL, USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med 2023; 55:1933-1944. [PMID: 37653030 PMCID: PMC10545776 DOI: 10.1038/s12276-023-01056-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023] Open
Abstract
Regulated in development and DNA damage-response 1 (REDD1) is a stress-induced protein that controls various cellular functions, including metabolism, oxidative stress, autophagy, and cell fate, and contributes to the pathogenesis of metabolic and inflammatory disorders, neurodegeneration, and cancer. REDD1 usually exerts deleterious effects, including tumorigenesis, metabolic inflammation, neurodegeneration, and muscle dystrophy; however, it also exhibits protective functions by regulating multiple intrinsic cell activities through either an mTORC1-dependent or -independent mechanism. REDD1 typically regulates mTORC1 signaling, NF-κB activation, and cellular pro-oxidant or antioxidant activity by interacting with 14-3-3 proteins, IκBα, and thioredoxin-interacting protein or 75 kDa glucose-regulated protein, respectively. The diverse functions of REDD1 depend on cell type, cellular context, interaction partners, and cellular localization (e.g., mitochondria, endomembrane, or cytosol). Therefore, comprehensively understanding the molecular mechanisms and biological roles of REDD1 under pathophysiological conditions is of utmost importance. In this review, based on the published literature, we highlight and discuss the molecular mechanisms underlying the REDD1 expression and its actions, biological functions, and pathophysiological roles.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Barney DE, Gordon BS, Hennigar SR. REDD1 deletion and treadmill running increase liver hepcidin and gluconeogenic enzymes in male mice. J Nutr Sci 2023; 12:e49. [PMID: 37123395 PMCID: PMC10131055 DOI: 10.1017/jns.2023.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
The iron-regulatory hormone hepcidin is transcriptionally up-regulated by gluconeogenic signals. Recent evidence suggeststhat increases in circulating hepcidin may decrease dietary iron absorption following prolonged exercise, however evidence is limited on whether gluconeogenic signals contribute to post-exercise increases in hepcidin. Mice with genetic knockout of regulated in development and DNA response-1 (REDD1) display greater glycogen depletion following exercise, possibly indicating greater gluconeogenesis. The objective of the present study was to determine liver hepcidin, markers of gluconeogenesis and iron metabolism in REDD1 knockout and wild-type mice following prolonged exercise. Twelve-week-old male REDD1 knockout and wild-type mice were randomised to rest or 60 min treadmill running with 1, 3 or 6 h recovery (n = 5-8/genotype/group). Liver gene expression of hepcidin (Hamp) and gluconeogenic enzymes (Ppargc1a, Creb3l3, Pck1, Pygl) were determined by qRT-PCR. Effects of genotype, exercise and their interaction were assessed by two-way ANOVAs with Tukey's post-hoc tests, and Pearson correlations were used to assess the relationships between Hamp and study outcomes. Liver Hamp increased 1- and 4-fold at 3 and 6 h post-exercise, compared to rest (P-adjusted < 0⋅009 for all), and was 50% greater in REDD1 knockout compared to wild-type mice (P = 0⋅0015). Liver Ppargc1a, Creb3l3 and Pck1 increased with treadmill running (P < 0⋅0001 for all), and liver Ppargc1a, Pck1 and Pygl were greater with REDD1 deletion (P < 0⋅02 for all). Liver Hamp was positively correlated with liver Creb3l3 (R = 0⋅62, P < 0⋅0001) and Pck1 (R = 0⋅44, P = 0⋅0014). In conclusion, REDD1 deletion and prolonged treadmill running increased liver Hamp and gluconeogenic regulators of Hamp, suggesting gluconeogenic signalling of hepcidin with prolonged exercise.
Collapse
Affiliation(s)
- David E. Barney
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Bradley S. Gordon
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Stephen R. Hennigar
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Corresponding author: Stephen R. Hennigar, email
| |
Collapse
|
7
|
Sunilkumar S, Yerlikaya EI, Toro AL, Miller WP, Chen H, Hu K, Kimball SR, Dennis MD. REDD1 Ablation Attenuates the Development of Renal Complications in Diabetic Mice. Diabetes 2022; 71:2412-2425. [PMID: 35984399 PMCID: PMC9630083 DOI: 10.2337/db22-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 02/03/2023]
Abstract
Chronic hyperglycemia contributes to development of diabetic kidney disease by promoting glomerular injury. In this study, we evaluated the hypothesis that hyperglycemic conditions promote expression of the stress response protein regulated in development and DNA damage response 1 (REDD1) in the kidney in a manner that contributes to the development of oxidative stress and renal injury. After 16 weeks of streptozotocin-induced diabetes, albuminuria and renal hypertrophy were observed in wild-type (WT) mice coincident with increased renal REDD1 expression. In contrast, diabetic REDD1 knockout (KO) mice did not exhibit impaired renal physiology. Histopathologic examination revealed that glomerular damage including mesangial expansion, matrix deposition, and podocytopenia in the kidneys of diabetic WT mice was reduced or absent in diabetic REDD1 KO mice. In cultured human podocytes, exposure to hyperglycemic conditions enhanced REDD1 expression, increased reactive oxygen species (ROS) levels, and promoted cell death. In both the kidney of diabetic mice and in podocyte cultures exposed to hyperglycemic conditions, REDD1 deletion reduced ROS and prevented podocyte loss. Benefits of REDD1 deletion were recapitulated by pharmacological GSK3β suppression, supporting a role for REDD1-dependent GSK3β activation in diabetes-induced oxidative stress and renal defects. The results support a role for REDD1 in diabetes-induced renal complications.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Esma I. Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - William P. Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Han Chen
- Transmission Electron Microscopy Core, Penn State College of Medicine, Hershey, PA
| | - Kebin Hu
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
- Division of Nephrology, Department of Medicine, Penn State College of Medicine, Hershey, PA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
- Corresponding author: Michael D. Dennis,
| |
Collapse
|
8
|
Lee DK, Kim T, Byeon J, Park M, Kim S, Kim J, Choi S, Lee G, Park C, Lee KW, Kwon YJ, Lee JH, Kwon YG, Kim YM. REDD1 promotes obesity-induced metabolic dysfunction via atypical NF-κB activation. Nat Commun 2022; 13:6303. [PMID: 36272977 PMCID: PMC9588012 DOI: 10.1038/s41467-022-34110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Regulated in development and DNA damage response 1 (REDD1) expression is upregulated in response to metabolic imbalance and obesity. However, its role in obesity-associated complications is unclear. Here, we demonstrate that the REDD1-NF-κB axis is crucial for metabolic inflammation and dysregulation. Mice lacking Redd1 in the whole body or adipocytes exhibited restrained diet-induced obesity, inflammation, insulin resistance, and hepatic steatosis. Myeloid Redd1-deficient mice showed similar results, without restrained obesity and hepatic steatosis. Redd1-deficient adipose-derived stem cells lost their potential to differentiate into adipocytes; however, REDD1 overexpression stimulated preadipocyte differentiation and proinflammatory cytokine expression through atypical IKK-independent NF-κB activation by sequestering IκBα from the NF-κB/IκBα complex. REDD1 with mutated Lys219/220Ala, key amino acid residues for IκBα binding, could not stimulate NF-κB activation, adipogenesis, and inflammation in vitro and prevented obesity-related phenotypes in knock-in mice. The REDD1-atypical NF-κB activation axis is a therapeutic target for obesity, meta-inflammation, and metabolic complications.
Collapse
Affiliation(s)
- Dong-Keon Lee
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Taesam Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Junyoung Byeon
- grid.412010.60000 0001 0707 9039Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Minsik Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Suji Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Joohwan Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Seunghwan Choi
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Gihwan Lee
- grid.256681.e0000 0001 0661 1492Division of Life Sciences, Division of Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Chanin Park
- grid.256681.e0000 0001 0661 1492Division of Life Sciences, Division of Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Keun Woo Lee
- grid.256681.e0000 0001 0661 1492Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Gyeongsang National University, Jinju, 52828 Republic of Korea
| | | | - Jeong-Hyung Lee
- grid.412010.60000 0001 0707 9039Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Young-Guen Kwon
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Young-Myeong Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
9
|
Kim JH, Kim KM, Yang JH, Cho SS, Lee JH, Ki SH. Regulated in Development and DNA Damage Response 1 Protects Hepatocytes Against Palmitate-induced Lipotoxicity. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Curr Drug Targets 2022; 23:692-710. [PMID: 35021971 DOI: 10.2174/1389450123666220111115528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
11
|
Paulussen KJM, McKenna CF, Beals JW, Wilund KR, Salvador AF, Burd NA. Anabolic Resistance of Muscle Protein Turnover Comes in Various Shapes and Sizes. Front Nutr 2021; 8:615849. [PMID: 34026802 PMCID: PMC8131552 DOI: 10.3389/fnut.2021.615849] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Anabolic resistance is defined by a blunted stimulation of muscle protein synthesis rates (MPS) to common anabolic stimuli in skeletal muscle tissue such as dietary protein and exercise. Generally, MPS is the target of most exercise and feeding interventions as muscle protein breakdown rates seem to be less responsive to these stimuli. Ultimately, the blunted responsiveness of MPS to dietary protein and exercise underpins the loss of the amount and quality of skeletal muscle mass leading to decrements in physical performance in these populations. The increase of both habitual physical activity (including structured exercise that targets general fitness characteristics) and protein dense food ingestion are frontline strategies utilized to support muscle mass, performance, and health. In this paper, we discuss anabolic resistance as a common denominator underpinning muscle mass loss with aging, obesity, and other disease states. Namely, we discuss the fact that anabolic resistance exists as a dimmer switch, capable of varying from higher to lower levels of resistance, to the main anabolic stimuli of feeding and exercise depending on the population. Moreover, we review the evidence on whether increased physical activity and targeted exercise can be leveraged to restore the sensitivity of skeletal muscle tissue to dietary amino acids regardless of the population.
Collapse
Affiliation(s)
- Kevin J. M. Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Colleen F. McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph W. Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth R. Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
12
|
Davegårdh C, Säll J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brøns C, Hansson O, Pedersen M, Würthner JU, Pfeffer K, Nilsson E, Vaag A, Stener-Victorin E, Pircs K, Scheele C, Ling C. VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 2021; 12:2431. [PMID: 33893273 PMCID: PMC8065135 DOI: 10.1038/s41467-021-22068-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39+/- mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Christa Broholm
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tora Ida Henriksen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yanling Wu
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Line Hjort
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Brøns
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Ola Hansson
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
13
|
Mansor LS, Woo GH. Ketones for Post-exercise Recovery: Potential Applications and Mechanisms. Front Physiol 2021; 11:613648. [PMID: 33574765 PMCID: PMC7870714 DOI: 10.3389/fphys.2020.613648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Ketogenic diet has been introduced in therapeutic areas for more than a century, but the role of ketones in exercise performance has only been explored in the past decade. One of the main reasons that allows the investigation of the role of ketones in exercise performance is the emergence of exogenous ketones, allowing athletes to achieve the state of ketosis acutely, and independent of their metabolic states. While there are mixed results showing either exogenous ketones improve exercise performance or no effect, the mechanisms of action are still being heavily researched. Moreover, these early data from exercise physiology studies suggested that exogenous ketones may play a more prominent role in post-exercise recovery, leading to a more pronounced cumulative impact over subsequent exercise performance. This review will look at existing evidence on the role of ketones in recovery and attempt to identify the current best practices and potential mechanisms that drive improved recovery.
Collapse
Affiliation(s)
- Latt Shahril Mansor
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Geoffrey Hubert Woo
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| |
Collapse
|
14
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
15
|
Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol 2020; 137:110964. [PMID: 32407865 DOI: 10.1016/j.exger.2020.110964] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Muscle loss is an important feature that occurs in multiple pathologies including osteoarthritis (OA), chronic obstructive pulmonary disease (COPD) and type II diabetes (T2D). Despite differences in pathogenesis and disease-related complications, there are reasons to believe that some fundamental underlying mechanisms are inherent to the muscle wasting process, irrespective of the pathology. Recent evidence shows that inflammation, either local or systemic, contributes to the modulation of muscle mass and/or muscle strength, via an altered molecular profile in muscle tissue. However, it remains ambiguous to which extent and via which mechanisms inflammatory signaling affects muscle mass in disease. Therefore, the objective of the present review is to discuss the role of inflammation on skeletal muscle anabolism, catabolism and functionality in three pathologies that are characterized by an eventual loss in muscle mass (and muscle strength), i.e. OA, COPD and T2D. In OA and COPD, most rodent models confirmed that systemic (COPD) or muscle (OA) inflammation directly induces muscle loss or muscle dysfunctionality. However, in a patient population, the association between inflammation and muscular maladaptations are more ambiguous. For example, in T2D patients, systemic inflammation is associated with muscle loss whereas in OA patients this link has not consistently been established. T2D rodent models revealed that increased levels of advanced glycation end-products (AGEs) and a decreased mTORC1 activation play a key role in muscle atrophy, but it remains to be elucidated whether AGEs and mTORC1 are interconnected and contribute to muscle loss in T2D patients. Generally, if any, associations between inflammation and muscle are mainly based on observational and cross-sectional data. There is definitely a need for longitudinal evidence through well-powered randomized control trials that take into account confounders such as age, disease-phenotypes, comorbidities, physical (in) activity etc. This will allow to improve our understanding of the complex interaction between inflammatory signaling and muscle mass loss and hence contribute to the development of therapeutic strategies to combat muscle wasting in these diseases.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
16
|
Dumas K, Ayachi C, Gilleron J, Lacas‐Gervais S, Pastor F, Favier FB, Peraldi P, Vaillant N, Yvan‐Charvet L, Bonnafous S, Patouraux S, Anty R, Tran A, Gual P, Cormont M, Tanti J, Giorgetti‐Peraldi S. REDD1 deficiency protects against nonalcoholic hepatic steatosis induced by high‐fat diet. FASEB J 2020; 34:5046-5060. [DOI: 10.1096/fj.201901799rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Karine Dumas
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Chaima Ayachi
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Jerome Gilleron
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | | | - Faustine Pastor
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | | | - Pascal Peraldi
- Université Côte d’Azur, Inserm, CNRS, iBV, Team “Stem Cells and Differentiation” France
| | - Nathalie Vaillant
- Université Côte d’Azur, Inserm, C3M, Team “Haematometabolism in Diseases” France
| | - Laurent Yvan‐Charvet
- Université Côte d’Azur, Inserm, C3M, Team “Haematometabolism in Diseases” France
| | - Stéphanie Bonnafous
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Stéphanie Patouraux
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Rodolphe Anty
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Albert Tran
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Philippe Gual
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Mireille Cormont
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Jean‐François Tanti
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Sophie Giorgetti‐Peraldi
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| |
Collapse
|
17
|
Zhihua Y, Yulin T, Yibo W, Wei D, Yin C, Jiahao X, Runqiu J, Xuezhong X. Hypoxia decreases macrophage glycolysis and M1 percentage by targeting microRNA-30c and mTOR in human gastric cancer. Cancer Sci 2019; 110:2368-2377. [PMID: 31222863 PMCID: PMC6676118 DOI: 10.1111/cas.14110] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/01/2019] [Accepted: 06/09/2019] [Indexed: 01/14/2023] Open
Abstract
Macrophages are essential inflammatory cells which regulate the features of immune reactions within tumors. Many studies have reported their regulatory roles in immunity through cytokines and cell signaling. However, relatively few studies have focused on their metabolic features and mechanisms. We aimed to determine the signaling pathway regulating cell metabolism and the mechanism related to the regulation of human tumor-associated macrophages (TAMs) in gastric cancer (GC). Tumor-infiltrated macrophages were isolated from human GC tissues using magnetic beads, gene transcription was determined by real-time PCR, protein expression was monitored using western blots, metabolites were determined using HPLC, and transcriptional regulation was analyzed by the luciferase-based reporter gene system. A significant decrease in microRNA (miR)-30c and an increase in regulated in development and DNA damage responses 1 (REDD1) were detected in human GC TAMs, the transcription of miR-30c was negatively correlated with REDD1. MicroRNA-30c expression was suppressed by hypoxia-inducible factor-1α activation and related to decreased mTOR activity as well as glycolysis in human GC TAMs. Hypoxia-regulated miR-30c downregulated REDD-1 expression by targeting its 3'UTR. Overexpression of miR-30c or restored mTOR activity in macrophages with miR-30cLow expression promoted M1 macrophage differentiation and function in TAMs. Therefore, hypoxia in the human GC microenvironment suppressed the expression of miR-30c, and decreased mTOR activity as well as glycolysis in GC TAMs, thus inhibiting M1 differentiation and function. These results provide a novel metabolic strategy for tumor microenvironment-based therapy.
Collapse
Affiliation(s)
- Yun Zhihua
- Department of Laboratory MedicinePeople's Hospital of WujinChangzhouChina
| | - Tan Yulin
- Department of SurgeryPeople's Hospital of WujinChangzhouChina
| | - Wang Yibo
- Department of SurgeryPeople's Hospital of WujinChangzhouChina
| | - Ding Wei
- Department of SurgeryPeople's Hospital of WujinChangzhouChina
| | - Chu Yin
- Department of Laboratory MedicinePeople's Hospital of WujinChangzhouChina
| | - Xu Jiahao
- Department of Laboratory MedicinePeople's Hospital of WujinChangzhouChina
| | - Jiang Runqiu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Medical School of Nanjing UniversityNanjingChina
| | - Xu Xuezhong
- Department of SurgeryPeople's Hospital of WujinChangzhouChina
| |
Collapse
|
18
|
Beals JW, Burd NA, Moore DR, van Vliet S. Obesity Alters the Muscle Protein Synthetic Response to Nutrition and Exercise. Front Nutr 2019; 6:87. [PMID: 31263701 PMCID: PMC6584965 DOI: 10.3389/fnut.2019.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Improving the health of skeletal muscle is an important component of obesity treatment. Apart from allowing for physical activity, skeletal muscle tissue is fundamental for the regulation of postprandial macronutrient metabolism, a time period that represents when metabolic derangements are most often observed in adults with obesity. In order for skeletal muscle to retain its capacity for physical activity and macronutrient metabolism, its protein quantity and composition must be maintained through the efficient degradation and resynthesis for proper tissue homeostasis. Life-style behaviors such as increasing physical activity and higher protein diets are front-line treatment strategies to enhance muscle protein remodeling by primarily stimulating protein synthesis rates. However, the muscle of individuals with obesity appears to be resistant to the anabolic action of targeted exercise regimes and protein ingestion when compared to normal-weight adults. This indicates impaired muscle protein remodeling in response to the main anabolic stimuli to human skeletal muscle tissue is contributing to poor muscle health with obesity. Deranged anabolic signaling related to insulin resistance, lipid accumulation, and/or systemic/muscle inflammation are likely at the root of the anabolic resistance of muscle protein synthesis rates with obesity. The purpose of this review is to discuss the impact of protein ingestion and exercise on muscle protein remodeling in people with obesity, and the potential mechanisms underlining anabolic resistance of their muscle.
Collapse
Affiliation(s)
- Joseph W Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Stephan van Vliet
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
19
|
Mey JT, Solomon TPJ, Kirwan JP, Haus JM. Skeletal muscle Nur77 and NOR1 insulin responsiveness is blunted in obesity and type 2 diabetes but improved after exercise training. Physiol Rep 2019; 7:e14042. [PMID: 30912283 PMCID: PMC6434071 DOI: 10.14814/phy2.14042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2DM) are characterized by a blunted metabolic response to insulin, and strongly manifests in skeletal muscle insulin resistance. The orphan nuclear receptors, Nur77 and NOR1, regulate insulin-stimulated nutrient metabolism where Nur77 and NOR1 gene expression is increased with acute aerobic exercise and acute insulin stimulation. Whether Nur77 or NOR1 are associated with the insulin-sensitizing effects of chronic aerobic exercise training has yet to be elucidated. Fourteen lean healthy controls (LHC), 12 obese (OB), and 10 T2DM individuals (T2DM) underwent hyperinsulinemic-euglycemic clamps with skeletal muscle biopsies. Muscle was analyzed for Nur77 and NOR1 gene and protein expression at basal and insulin-stimulated conditions. Furthermore, a subcohort of 18 participants (OB, n = 12; T2DM, n = 6) underwent a 12-week aerobic exercise intervention (85% HRmax , 60 min/day, 5 days/week). In response to insulin infusion, LHC increased protein expression of Nur77 (8.7 ± 3.2-fold) and NOR1 (3.6 ± 1.1-fold), whereas OB and T2DM remained unaffected. Clamp-derived glucose disposal rates correlated with Nur77 (r2 = 0.14) and NOR1 (r2 = 0.12) protein expression responses to insulin, whereas age (Nur77: r2 = 0.22; NOR1: r2 = 0.25) and BMI (Nur77: r2 = 0.22; NOR1: r2 = 0.42) showed inverse correlations, corroborating preclinical data. In the intervention cohort, exercise improved Nur77 protein expression in response to insulin (PRE: -1.2 ± 0.3%, POST: 6.2 ± 1.5%). Also, insulin treatment of primary human skeletal muscle cells increased Nur77 and NOR1 protein. These findings highlight the multifactorial nature of insulin resistance in human obesity and T2DM. Understanding the regulation of Nur77 and NOR1 in skeletal muscle and other insulin-sensitive tissues will create opportunities to advance therapies for T2DM.
Collapse
MESH Headings
- Adult
- Aged
- Case-Control Studies
- Cells, Cultured
- Chicago
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Exercise Therapy
- Female
- Humans
- Insulin Resistance
- Longitudinal Studies
- Male
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Middle Aged
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Myoblasts, Skeletal/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Obesity/blood
- Obesity/diagnosis
- Obesity/physiopathology
- Obesity/therapy
- Ohio
- Signal Transduction
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Jacob T. Mey
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinois
| | - Thomas P. J. Solomon
- School of Sport, Exercise, and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - John P. Kirwan
- Metabolic Translational Research CenterEndocrinology & Metabolism InstituteCleveland ClinicClevelandOhio
- Integrative Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLouisiana
| | - Jacob M. Haus
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinois
- School of KinesiologyUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
20
|
Dungan CM, Gordon BS, Williamson DL. Acute treadmill exercise discriminately improves the skeletal muscle insulin-stimulated growth signaling responses in mice lacking REDD1. Physiol Rep 2019; 7:e14011. [PMID: 30806987 PMCID: PMC6383112 DOI: 10.14814/phy2.14011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
A loss of the regulated in development and DNA damage 1 (REDD1) hyperactivates mechanistic Target of Rapamycin Complex 1 (mTORC1) reducing insulin-stimulated insulin signaling, which could provide insight into mechanisms of insulin resistance. Although aerobic exercise acutely inhibits mTORC1 signaling, improvements in insulin-stimulated signaling are exhibited. The goal of this study was to determine if a single bout of treadmill exercise was sufficient to improve insulin signaling in mice lacking REDD1. REDD1 wildtype (WT) and REDD1 knockout (KO) mice were acutely exercised on a treadmill (30 min, 20 m/min, 5% grade). A within animal noninsulin-to-insulin-stimulated percent change in skeletal muscle insulin-stimulated kinases (IRS-1, ERK1/2, Akt), growth signaling activation (4E-BP1, S6K1), and markers of growth repression (REDD1, AMPK, FOXO1/3A) was examined, following no exercise control or an acute bout of exercise. Unlike REDD1 KO mice, REDD1 WT mice exhibited an increase (P < 0.05) in REDD1 following treadmill exercise. However, both REDD1 WT and KO mice exhibited an increase (P < 0.05) AMPK phosphorylation, and a subsequent reduction (P < 0.05) in mTORC1 signaling after the exercise bout versus nonexercising WT or KO mice. Exercise increased (P < 0.05) the noninsulin-to-insulin-stimulated percent change phosphorylation of mTORC1, ERK1/2, IRS-1, and Akt on S473 in REDD1 KO mice when compared to nonexercised KO mice. However, there was no change in the noninsulin-to-insulin-stimulated percent change activation of Akt on T308 and FOXO1/3A in the KO when compared to WT or KO mouse muscle after exercise. Our data show that a bout of treadmill exercise discriminately improves insulin-stimulated signaling in the absence of REDD1.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Rehabilitation SciencesCollege of Health SciencesUniversity of KentuckyLexingtonKentucky
| | - Bradley S. Gordon
- Department of Nutrition, Food, and Exercise SciencesCollege of Human SciencesFlorida State UniversityTallahasseeFlorida
| | - David L. Williamson
- Kinesiology ProgramSchool of Behavioral Sciences and EducationPenn State HarrisburgMiddletownPennsylvania
| |
Collapse
|
21
|
Jiang X, Jiang L, Shan A, Su Y, Cheng Y, Song D, Ji H, Ning G, Wang W, Cao Y. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice. EBioMedicine 2018; 37:307-321. [PMID: 30316865 PMCID: PMC6284352 DOI: 10.1016/j.ebiom.2018.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Effective targeting therapies for common chronic liver disease nonalcoholic steatohepatitis (NASH) are in urgent need. MicroRNA-targeted therapeutics would be potentially an effective treatment strategy of hepatic diseases. Here we investigated the functional role of miR-221/222 and the therapeutic effects of antimiRs-221/222 in NASH mouse models. Methods We generated the miR-221/222flox/flox mice on a C57BL/6 J background and the hepatic miR-221/222 knockout (miR-221/222-LKO) mice. The mice were challenged with the methionine and choline deficient diet (MCDD) or chronic carbon tetrachloride (CCl4) treatment to generate experimental steatohepatitis models. Adenovirus-mediated re-expression of miR-221/222 was performed on the MCDD-fed miR-221/222-LKO mice. The MCDD and control diet-fed mice were treated with locked nucleic acid (LNA)-based antimiRs of miR-221/222 to evaluate the therapeutic effects. Histological analysis, RNA-seq, quantitative PCR and Western blot of liver tissues were carried out to study the hepatic lipid accumulation, inflammation and collagen deposition in mouse models. Findings Hepatic deletion of miR-221/222 resulted in significant reduction of liver fibrosis, lipid deposition and inflammatory infiltration in the MCDD-fed and CCl4-treated mouse models. The hepatic steatosis and fibrosis were dramatically aggravated by miR-221/222 re-expression in MCDD-fed miR-221/222-LKO mice. AntimiRs of miR-221/222 could effectively reduce the MCDD-mediated hepatic steatosis and fibrosis. Systematically mechanistic study revealed that hepatic miR-221/222 controlled the expression of target gene Timp3 and promoted the progression of NASH. Interpretation Our findings demonstrate that miR-221/222 are crucial for the regulation of lipid metabolism, inflammation and fibrosis in the liver. LNA-antimiRs targeted miR-221/222 could reduce steatohepatitis with prominent antifibrotic effect in NASH mice. Fund This work is supported by the Natural Science Foundation of China (81530020, 81390352 to Dr. Ning and 81522032 to Dr. Cao and 81670793 to Dr. Jiang); National Key Research and Development Program (No. 2016YFC0905001 and 2017YFC0909703 to Dr. Cao); the Shanghai Rising-Star Program (15QA1402900 to Dr. Cao); Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (20171905 to Dr. Jiang).
Collapse
Affiliation(s)
- Xiuli Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Lei Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Aijing Shan
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yutong Su
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yulong Cheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Dalong Song
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - He Ji
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China; Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China.
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| | - Yanan Cao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
22
|
Mey JT, Haus JM. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Front Cardiovasc Med 2018; 5:117. [PMID: 30250846 PMCID: PMC6139330 DOI: 10.3389/fcvm.2018.00117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Glyoxalase-1 (GLO1) is a ubiquitously expressed cytosolic protein which plays a role in the natural maintenance of cellular health and is abundantly expressed in human skeletal muscle. A consequence of reduced GLO1 protein expression is cellular dicarbonyl stress, which is elevated in obesity, insulin resistance and type 2 diabetes (T2DM). Both in vitro and pre-clinical models suggest dicarbonyl stress per se induces insulin resistance and is prevented by GLO1 overexpression, implicating a potential role for GLO1 therapy in insulin resistance and type 2 diabetes (T2DM). Recent work has identified the therapeutic potential of novel natural agents as a GLO1 inducer, which resulted in improved whole-body metabolism in obese adults. Given skeletal muscle is a major contributor to whole-body glucose, lipid, and protein metabolism, such GLO1 inducers may act, in part, through mechanisms in skeletal muscle. Currently, investigations examining the specificity of dicarbonyl stress and GLO1 biology in human skeletal muscle are lacking. Recent work from our lab indicates that dysregulation of GLO1 in skeletal muscle may underlie human insulin resistance and that exercise training may impart therapeutic benefits. This minireview will summarize the existing human literature examining skeletal muscle GLO1 and highlight the emerging therapeutic concepts for GLO1 gain-of-function in conditions such as insulin resistance and cardiometabolic disease.
Collapse
Affiliation(s)
- Jacob T Mey
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Role of mTOR in Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19072043. [PMID: 30011848 PMCID: PMC6073766 DOI: 10.3390/ijms19072043] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin, mTOR is the master regulator of a cell’s growth and metabolic state in response to nutrients, growth factors and many extracellular cues. Its dysregulation leads to a number of metabolic pathological conditions, including obesity and type 2 diabetes. Here, we review recent findings on the role of mTOR in major metabolic organs, such as adipose tissues, liver, muscle, pancreas and brain. And their potentials as the mTOR related pharmacological targets will be also discussed.
Collapse
|
24
|
Chen Z, D. S. Oliveira S, Zimnicka AM, Jiang Y, Sharma T, Chen S, Lazarov O, Bonini MG, Haus JM, Minshall RD. Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 2018; 29:1190-1202. [PMID: 29563255 PMCID: PMC5935069 DOI: 10.1091/mbc.e17-01-0049] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that the maintenance of vascular homeostasis is critically dependent on the expression and reciprocal regulation of caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs). Skeletal muscle biopsies from subjects with type 2 diabetes showed 50% less Cav-1 and eNOS than those from lean healthy controls. The Cav-1:eNOS expression ratio was 200:1 in primary culture human ECs. Cav-1 small interfering RNA (siRNA) reduced eNOS protein and gene expression in association with a twofold increase in eNOS phosphorylation and nitrate production per molecule of eNOS, which was reversed in cells overexpressing Adv-Cav-1-GFP. Upon addition of the Ca2+ ionophore A23187 to activate eNOS, we observed eNOS Ser1177 phosphorylation, its translocation to β-catenin-positive cell-cell junctions, and increased colocalization of eNOS and Cav-1 within 5 min. We also observed Cav-1 S-nitrosylation and destabilization of Cav-1 oligomers in cells treated with A23187 as well as insulin or albumin, and this could be blocked by L-NAME, PP2, or eNOS siRNA. Finally, caveola-mediated endocytosis of albumin or insulin was reduced by Cav-1 or eNOS siRNA, and the effect of Cav-1 siRNA was rescued by Adv-Cav-1-GFP. Thus, Cav-1 stabilizes eNOS expression and regulates its activity, whereas eNOS-derived NO promotes caveola-mediated endocytosis.
Collapse
Affiliation(s)
- Zhenlong Chen
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
| | | | | | - Ying Jiang
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
| | - Tiffany Sharma
- Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Stone Chen
- Whitney M. Young Magnet High School, Chicago, IL 60607
| | - Orly Lazarov
- Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Jacob M. Haus
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Richard D. Minshall
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
- Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
25
|
Calkins KL, Thamotharan S, Dai Y, Shin BC, Kalhan SC, Devaskar SU. Early dietary restriction in rats alters skeletal muscle tuberous sclerosis complex, ribosomal s6 and mitogen-activated protein kinase. Nutr Res 2018; 54:93-104. [PMID: 29685622 DOI: 10.1016/j.nutres.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 01/18/2023]
Abstract
Intrauterine growth restriction is linked to decreased lean body mass and insulin resistance. The mammalian target of rapamycin (mTOR) regulates muscle mass and glucose metabolism; however, little is known about maternal dietary restriction and skeletal muscle mTOR in offspring. We hypothesized that early dietary restriction would decrease skeletal muscle mass and mTOR in the suckling rat. To test this hypothesis, ab libitum access to food or dietary restriction during gestation followed by postnatal cross-fostering to a dietary-restricted or ad libitum-fed rat dam during lactation generated 4 groups: control (CON), intrauterine dietary restricted (IUDR), postnatal dietary restricted (PNDR), and IUDR+PNDR (IPDR). At day 21, when compared to CON, the IUDR group demonstrated "catchup" growth, but no changes were observed in the mTOR pathway. Despite having less muscle mass than CON and IUDR (P < .001), in IPDR and PNDR rats mTOR remained unchanged. IPDR and PNDR (p)-tuberous sclerosis complex 2 was less than the IUDR group (P < .05). Downstream, IPDR's and PNDR's phosphorylated (p)-ribosomal s6 (rs6)/rs6 was less than that of CON (P < .05). However, male IPDR's and PNDR's p-mitogen activated protein kinase MAPK/MAPK was greater than CON (P < .05) without a change in p90 ribosomal s6 kinase (p90RSK). In contrast, in females, MAPK was unchanged, but IPDR p-p90RSK/p90RSK was less than CON (P = .01). In conclusion, IPDR and PNDR reduced skeletal muscle mass but did not decrease mTOR. In IPDR and PNDR, a reduction in tuberous sclerosis complex 2 may explain why mTOR was unchanged, whereas, in males, an increase in MAPK with a decrease in rs6 may suggest a block in MAPK signaling.
Collapse
Affiliation(s)
- Kara L Calkins
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Yun Dai
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Satish C Kalhan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9620 Carnegie Ave, Cleveland, OH 44106.
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| |
Collapse
|
26
|
Dickinson JM, D'Lugos AC, Mahmood TN, Ormsby JC, Salvo L, Dedmon WL, Patel SH, Katsma MS, Mookadam F, Gonzales RJ, Hale TM, Carroll CC, Angadi SS. Exercise Protects Skeletal Muscle during Chronic Doxorubicin Administration. Med Sci Sports Exerc 2018; 49:2394-2403. [PMID: 28767526 DOI: 10.1249/mss.0000000000001395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE This study aimed to assess the ability for exercise training performed before and during biweekly doxorubicin (DOX) administration to attenuate adverse effects of DOX on skeletal muscle. We hypothesized that DOX treatment would increase REDD1, impair mammalian target of rapamycin (mTOR) signaling, and reduce muscle fiber size, and that exercise training would attenuate these responses. METHODS Eight-week-old ovariectomized female Sprague-Dawley rats were randomized to one of four treatments: exercise + DOX (Ex-Dox), Ex + vehicle (Ex-Veh), sedentary + DOX (Sed-Dox), and Sed + Veh (Sed-Veh). DOX (4 mg·kg) or vehicle (saline) intraperitoneal injections were performed biweekly for a total of three injections (cumulative dose, 12 mg·kg). Ex animals performed interval exercise (4 × 4 min, 85%-90% V˙O2peak) 5 d·wk starting 1 wk before the first injection and continued throughout study duration. Animals were euthanized ~5 d after the last injection, during which the soleus muscle was dissected and prepared for immunoblot and immunohistochemical analyses. RESULTS REDD1 mRNA and protein were increased only in Sed-Dox (P < 0.05). The phosphorylation of mTOR and 4E-BP1 and MHC I and MHC IIa fiber size were lower in Sed-Dox versus Sed-Veh (P < 0.05). By contrast, REDD1 mRNA and protein, mTOR, 4E-BP1, and MHC I fiber size were not different between Ex-Dox and Ex-Veh (P > 0.05). LC3BI was higher, and the LC3BII/I ratio was lower in Sed-Dox versus Sed-Veh (P < 0.05) but not between Ex-Dox and Ex-Veh (P > 0.05). CONCLUSION These data suggest that DOX may inhibit mTORC1 activity and reduce MHCI and MHCIIa fiber size, potentially through elevated REDD1, and that exercise may provide a therapeutic strategy to preserve skeletal muscle size during chronic DOX treatment.
Collapse
Affiliation(s)
- Jared M Dickinson
- 1School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University, Phoenix, AZ; 2Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ; 3Division of Cardiovascular Diseases, Mayo Clinic Hospital, Phoenix, AZ; 4Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ; and 5Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miranda ER, Somal VS, Mey JT, Blackburn BK, Wang E, Farabi S, Karstoft K, Fealy CE, Kashyap S, Kirwan JP, Quinn L, Solomon TPJ, Haus JM. Circulating soluble RAGE isoforms are attenuated in obese, impaired-glucose-tolerant individuals and are associated with the development of type 2 diabetes. Am J Physiol Endocrinol Metab 2017; 313:E631-E640. [PMID: 28811295 PMCID: PMC5814601 DOI: 10.1152/ajpendo.00146.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 01/30/2023]
Abstract
The soluble receptor for advanced glycation end products (sRAGE) may be protective against inflammation associated with obesity and type 2 diabetes (T2DM). The aim of this study was to determine the distribution of sRAGE isoforms and whether sRAGE isoforms are associated with risk of T2DM development in subjects spanning the glucose tolerance continuum. In this retrospective analysis, circulating total sRAGE and endogenous secretory RAGE (esRAGE) were quantified via ELISA, and cleaved RAGE (cRAGE) was calculated in 274 individuals stratified by glucose tolerance status (GTS) and obesity. Group differences were probed by ANOVA, and multivariate ordinal logistic regression was used to test the association between sRAGE isoform concentrations and the proportional odds of developing diabetes, vs. normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). When stratified by GTS, total sRAGE, cRAGE, and esRAGE were all lower with IGT and T2DM, while the ratio of cRAGE to esRAGE (cRAGE:esRAGE) was only lower (P < 0.01) with T2DM compared with NGT. When stratified by GTS and obesity, cRAGE:esRAGE was higher with obesity and lower with IGT (P < 0.0001) compared with lean, NGT. In ordinal logistic regression models, greater total sRAGE (odds ratio, 0.91; P < 0.01) and cRAGE (odds ratio, 0.84; P < 0.01) were associated with lower proportional odds of developing T2DM. Reduced values of sRAGE isoforms observed with both obesity and IGT are independently associated with greater proportional odds of developing T2DM. The mechanisms by which each respective isoform contributes to obesity and insulin resistance may reveal novel treatment strategies for diabetes.
Collapse
Affiliation(s)
- Edwin R Miranda
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Vikram S Somal
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Edward Wang
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Sarah Farabi
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Kristian Karstoft
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ciaran E Fealy
- Metabolic Translational Research Center, Endocrinology & Metabolism Institute, Cleveland, Ohio
| | - Sangeeta Kashyap
- Metabolic Translational Research Center, Endocrinology & Metabolism Institute, Cleveland, Ohio
| | - John P Kirwan
- Metabolic Translational Research Center, Endocrinology & Metabolism Institute, Cleveland, Ohio
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio; and
| | - Laurie Quinn
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas P J Solomon
- School of Sport, Exercise and Rehabilitation Sciences and Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois;
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
28
|
Gordon BS, Steiner JL, Rossetti ML, Qiao S, Ellisen LW, Govindarajan SS, Eroshkin AM, Williamson DL, Coen PM. REDD1 induction regulates the skeletal muscle gene expression signature following acute aerobic exercise. Am J Physiol Endocrinol Metab 2017; 313:E737-E747. [PMID: 28899858 PMCID: PMC5814598 DOI: 10.1152/ajpendo.00120.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 09/04/2017] [Indexed: 11/22/2022]
Abstract
The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, Florida;
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael L Rossetti
- Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, Florida
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Shuxi Qiao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - David L Williamson
- Kinesiology Program, School of Behavioral Sciences and Education, Pennsylvania State University-Harrisburg, Middletown, Pennsylvania; and
| | - Paul M Coen
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| |
Collapse
|
29
|
Mey JT, Blackburn BK, Miranda ER, Chaves AB, Briller J, Bonini MG, Haus JM. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2017; 314:R181-R190. [PMID: 29046313 DOI: 10.1152/ajpregu.00159.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.; BMI: 32 ± 2 kg/m2) compared with lean healthy control subjects (LHC; age: 27 ± 1 yr.; BMI: 22 ± 1 kg/m2). Skeletal muscle biopsies obtained from the vastus lateralis at basal and insulin-stimulated states of the hyperinsulinemic (40 mU·m-2·min-1)-euglycemic (5 mM) clamp were analyzed for proteins related to dicarbonyl stress and glyoxalase biology. At baseline, T2DM had increased carbonyl stress and lower GLO1 protein expression (-78.8%), which inversely correlated with BMI, percent body fat, and HOMA-IR, while positively correlating with clamp-derived glucose disposal rates. T2DM also had lower NRF2 protein expression (-31.6%), which is a positive regulator of GLO1, while Keap1 protein expression, a negative regulator of GLO1, was elevated (207%). Additionally, insulin stimulation during the clamp had a differential effect on NRF2, Keap1, and MG-modified protein expression. These data suggest that dicarbonyl stress and the glyoxalase enzyme system are dysregulated in T2DM skeletal muscle and may underlie skeletal muscle insulin resistance. Whether these phenotypic differences contribute to the development of T2DM warrants further investigation.
Collapse
Affiliation(s)
- Jacob T Mey
- Integrative Physiology Laboratory, University of Illinois at Chicago , Chicago, Illinois.,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois
| | - Brian K Blackburn
- Integrative Physiology Laboratory, University of Illinois at Chicago , Chicago, Illinois.,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois
| | - Edwin R Miranda
- Integrative Physiology Laboratory, University of Illinois at Chicago , Chicago, Illinois.,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois
| | - Alec B Chaves
- Integrative Physiology Laboratory, University of Illinois at Chicago , Chicago, Illinois.,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois
| | - Joan Briller
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Illinois
| | - Marcelo G Bonini
- Department of Medicine, University of Illinois at Chicago, Illinois
| | - Jacob M Haus
- Integrative Physiology Laboratory, University of Illinois at Chicago , Chicago, Illinois.,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois
| |
Collapse
|
30
|
Mice endometrium receptivity in early pregnancy is impaired by maternal hyperinsulinemia. Mol Med Rep 2017; 15:2503-2510. [PMID: 28447735 PMCID: PMC5428841 DOI: 10.3892/mmr.2017.6322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies have investigated the lower embryo implantation rates in women with polycystic ovary syndrome, obesity and type 2 diabetes, and specifically the association between the abnormal oocyte and embryo and hyperinsulinemia. The importance of hyperinsulinemia on maternal endometrium receptivity remains to be elucidated. The present study used a hyperinsulinemic mouse model to determine whether hyperinsulinemia may affect endometrial receptivity. An insulin intervention mouse model was first established. The serum levels of insulin, progesterone and estradiol were subsequently detected by ELISA assay analysis. The number of implantation sites was recorded using Trypan blue dye and the morphology of mice uteri was investigated using hematoxylin and eosin staining. The expression levels of molecular markers associated with endometrial receptivity were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry analyses. Finally, the importance of mechanistic target of rapamycin (mTOR) expression following insulin treatment was determined. Mice treated with insulin developed insulin resistance and hyperinsulinemia. The number of implantation sites following insulin treatment did not differ between the control and insulin‑treated groups. Additionally, no significant morphological alterations in mice uteri between control and insulin‑treated groups were observed. However, the expression levels of estrogen receptor (Esr) 1, Esr2, progesterone receptor and homeobox A10 associated with endometrial receptivity, were imbalanced during endometrium receptivity when maternal hyperinsulinemia was induced. Western blot analysis revealed that expression levels of endometrial phosphorylated (p)‑mTOR and p‑ribosomal protein S6 kinase β‑1 were significantly greater in the insulin‑treated group. These results demonstrated that although an embryo may implant into endometrium, mice endometrium receptivity in early pregnancy may be impaired by maternal hyperinsulinemia. In addition, mTOR signaling may be involved in this process. The present study provides preliminary results demonstrating that female reproduction may be compromised during hyperinsulinemia, which requires further investigation in future studies.
Collapse
|
31
|
Lipina C, Hundal HS. Is REDD1 a Metabolic Éminence Grise? Trends Endocrinol Metab 2016; 27:868-880. [PMID: 27613400 PMCID: PMC5119498 DOI: 10.1016/j.tem.2016.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023]
Abstract
Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
32
|
Regulation of skeletal muscle insulin-stimulated signaling through the MEK-REDD1-mTOR axis. Biochem Biophys Res Commun 2016; 482:1067-1072. [PMID: 27913296 DOI: 10.1016/j.bbrc.2016.11.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023]
Abstract
Recent findings in adipocytes suggest that mitogen-activated protein kinase (MAPK)/extracellular-regulated signaling kinase (ERK) kinase 1/2 (MEK1/2) signaling regulates regulated in development and DNA damage 1 (REDD1) protein expression. Similarly, our previous work show that a lack of REDD1 protein expression, and associated hyperactive basal mechanistic target of rapamycin (mTOR) signaling, limits skeletal muscle's response to insulin. Therefore, we sought to determine: 1) if MEK1/2 inhibition is sufficient to reduce REDD1 protein expression and subsequently insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation via negative feedback of hyperactive mTOR in REDD1 wild-type (WT) mice and 2) if rapamycin-mediated mTOR inhibition is sufficient to improve IRS-1 tyrosine phosphorylation in REDD1 knockout (KO) mice. REDD1 WT mice were injected with 10 mg/kg BW of the MEK1/2 non-competitive inhibitor, PD184352, 3 h prior to acute insulin treatment. In separate studies, REDD1 KO mice were injected with 5 mg/kg BW of the mTOR inhibitor, rapamycin, 3 h prior to acute insulin treatment. Following the inhibitor treatment period, markers of insulin signaling activation (IRS-1 Y1222, MEK1/2 S217/221, ERK1/2 T202/Y204), REDD1, and mTOR signaling activation (S6K1 T389, rpS6 S240/244) were examined in skeletal muscle collected before and after a 10 min insulin treatment. PD184352 treatment reduced MEK/ERK phosphorylation and REDD1 protein expression, independent of insulin. This reduction in REDD1 protein expression was associated with elevated basal S6K1 and rpS6 phosphorylation and reduced insulin stimulated IRS-1 phosphorylation. Conversely, rapamycin inhibited S6K1 and rpS6 activation, and significantly improved insulin -stimulated activation of IRS-1 and MEK1/2 in KO mice. These data support that REDD1 is required for normal insulin-stimulated signaling, and that a subtle balance exists between MEK1/2, REDD1, and mTOR for the proper regulation of insulin signaling.
Collapse
|
33
|
Mahmoud AM, Szczurek MR, Blackburn BK, Mey JT, Chen Z, Robinson AT, Bian JT, Unterman TG, Minshall RD, Brown MD, Kirwan JP, Phillips SA, Haus JM. Hyperinsulinemia augments endothelin-1 protein expression and impairs vasodilation of human skeletal muscle arterioles. Physiol Rep 2016; 4:e12895. [PMID: 27796268 PMCID: PMC5002909 DOI: 10.14814/phy2.12895] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperinsulinemia is a hallmark of insulin resistance-associated metabolic disorders. Under physiological conditions, insulin maintains a balance between nitric oxide (NO) and, the potent vasoconstrictor, endothelin-1 (ET-1). We tested the hypothesis that acute hyperinsulinemia will preferentially augment ET-1 protein expression, disrupt the equilibrium between ET-1 expression and endothelial NO synthase (eNOS) activation, and subsequently impair flow-induced dilation (FID) in human skeletal muscle arterioles. Skeletal muscle biopsies were performed on 18 lean, healthy controls (LHCs) and 9 older, obese, type 2 diabetics (T2DM) before and during (120 min) a 40 mU/m2/min hyperinsulinemic-euglycemic (5 mmol/L) clamp. Skeletal muscle protein was analyzed for ET-1, eNOS, phosphorylated eNOS (p-eNOS), and ET-1 receptor type A (ETAR) and B (ETBR) expression. In a subset of T2DM (n = 6) and LHCs (n = 5), FID of isolated skeletal muscle arterioles was measured. Experimental hyperinsulinemia impaired FID (% of dilation at ∆60 pressure gradient) in LHCs (basal: 74.2 ± 2.0; insulin: 57.2 ± 3.3, P = 0.003) and T2DM (basal: 62.1 ± 3.6; insulin: 48.9 ± 3.6, P = 0.01). Hyperinsulinemia increased ET-1 protein expression in LHCs (0.63 ± 0.04) and T2DM (0.86 ± 0.06) compared to basal conditions (LHCs: 0.44 ± 0.05, P = 0.007; T2DM: 0.69 ± 0.06, P = 0.02). Insulin decreased p-eNOS (serine 1177) only in T2DM (basal: 0.28 ± 0.07; insulin: 0.17 ± 0.04, P = 0.03). In LHCs, hyperinsulinemia disturbed the balance between ETAR and ETBR receptors known to mediate vasoconstrictor and vasodilator actions of ET-1, respectively. Moreover, hyperinsulinemia markedly impaired plasma NO concentration in both LHCs and T2DM These data suggest that hyperinsulinemia disturbs the vasomotor balance in human skeletal muscle favoring vasoconstrictive pathways, eventually impairing arteriolar vasodilation.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Mary R Szczurek
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Zhenlong Chen
- Department of Pharmacology and Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | - Austin T Robinson
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Jing-Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Terry G Unterman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology and Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | - Michael D Brown
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Shane A Phillips
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
34
|
Gordon BS, Steiner JL, Williamson DL, Lang CH, Kimball SR. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab 2016; 311:E157-74. [PMID: 27189933 PMCID: PMC4967146 DOI: 10.1152/ajpendo.00059.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.
Collapse
Affiliation(s)
- Bradley S Gordon
- Institute of Exercise Physiology and Wellness, The University of Central Florida, Orlando, Florida;
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
35
|
Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling. Lipids 2016; 51:905-12. [PMID: 27289530 DOI: 10.1007/s11745-016-4168-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction.
Collapse
|
36
|
Francaux M, Demeulder B, Naslain D, Fortin R, Lutz O, Caty G, Deldicque L. Aging Reduces the Activation of the mTORC1 Pathway after Resistance Exercise and Protein Intake in Human Skeletal Muscle: Potential Role of REDD1 and Impaired Anabolic Sensitivity. Nutrients 2016; 8:nu8010047. [PMID: 26784225 PMCID: PMC4728660 DOI: 10.3390/nu8010047] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/07/2023] Open
Abstract
This study was designed to better understand the molecular mechanisms involved in the anabolic resistance observed in elderly people. Nine young (22 ± 0.1 years) and 10 older (69 ± 1.7 years) volunteers performed a one-leg extension exercise consisting of 10 × 10 repetitions at 70% of their 3-RM, immediately after which they ingested 30 g of whey protein. Muscle biopsies were taken from the vastus lateralis at rest in the fasted state and 30 min after protein ingestion in the non-exercised (Pro) and exercised (Pro+ex) legs. Plasma insulin levels were determined at the same time points. No age difference was measured in fasting insulin levels but the older subjects had a 50% higher concentration than the young subjects in the fed state (p < 0.05). While no difference was observed in the fasted state, in response to exercise and protein ingestion, the phosphorylation state of PKB (p < 0.05 in Pro and Pro+ex) and S6K1 (p = 0.059 in Pro; p = 0.066 in Pro+ex) was lower in the older subjects compared with the young subjects. After Pro+ex, REDD1 expression tended to be higher (p = 0.087) in the older group while AMPK phosphorylation was not modified by any condition. In conclusion, we show that the activation of the mTORC1 pathway is reduced in skeletal muscle of older subjects after resistance exercise and protein ingestion compared with young subjects, which could be partially due to an increased expression of REDD1 and an impaired anabolic sensitivity.
Collapse
Affiliation(s)
- Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Bénédicte Demeulder
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Damien Naslain
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Raphael Fortin
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Olivier Lutz
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Gilles Caty
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|