1
|
Mohammadpour Z, Heshmati E, Heilbronn LK, Hendrie GA, Brooker PG, Page AJ. The effect of post-oral bitter compound interventions on the postprandial glycemia response: A systematic review and meta-analysis of randomised controlled trials. Clin Nutr 2024; 43:31-45. [PMID: 39317085 DOI: 10.1016/j.clnu.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND & AIMS The post-oral sensing of bitter compounds by a family of bitter taste receptors (TAS2Rs) is suggested to regulate postprandial glycemia in humans. However, reports are inconsistent. This systematic review used meta-analysis to synthesise the impact of bitter compound interventions on the postprandial glycaemic response in humans. METHODS Electronic databases (Medline, PubMed, and Web of Science) were systematically searched from inception to April 2024 to identify randomised controlled trials reporting the effect of interventions utilising post-oral bitter compounds vs. placebo on postprandial plasma glucose levels at t = 2 h (2 h-PPG), and area under the curve (AUC) of glucose, insulin, and c-peptide. The random-effect and subgroup analysis were performed to calculate pooled weighted mean differences (WMD), overall and by predefined criteria. RESULTS Forty-six studies (within 34 articles) were identified; 29 and 17 studies described chronic and acute interventions, respectively. The chronic interventions reduced 2 h-PPG (n = 21, WMD = -0.35 mmol/L, 95%CIs = -0.58, -0.11) but not AUC for glucose or insulin. Subgroup analysis showed the former was particularly evident in individuals with impaired glycemia, interventions longer than three months, or quinine family administration. The acute interventions did not improve the postprandial glycemia response, but subgroup analysis revealed a decrease in AUC-glucose after quinine family administration (n = 4 WMD = -90.40 (nmol × time/L), 95%CIs = -132.70, -48.10). CONCLUSION Chronic bitter compound interventions, particularly those from the quinine family, may have therapeutic potential in those with glycemia dysregulation. Acute intervention of the quinine family may also improve postprandial glucose. Given the very low quality of the evidence, further investigations with more rigorous methods are still required.
Collapse
Affiliation(s)
- Zinat Mohammadpour
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; College of Medicine and Dentistry, James Cook University, Cairns, QLD 4878, Australia
| | - Elaheh Heshmati
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Leonie K Heilbronn
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Gilly A Hendrie
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Paige G Brooker
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Amanda J Page
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia.
| |
Collapse
|
2
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01005-z. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Wang Q, Farhadipour M, Thijs T, Ruilova Sosoranga E, Van der Schueren B, Ceulemans LJ, Deleus E, Lannoo M, Tack J, Depoortere I. Bitter-tasting drugs tune GDF15 and GLP-1 expression via bitter taste or motilin receptors in the intestine of patients with obesity. Mol Metab 2024; 88:102002. [PMID: 39111389 PMCID: PMC11380393 DOI: 10.1016/j.molmet.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE Growth differentiation factor 15 (GDF15), a stress related cytokine, was recently identified as a novel satiety signal acting via the GFRAL receptor located in the hindbrain. Bitter compounds are known to induce satiety via the release of glucagon-like peptide 1 (GLP-1) through activation of bitter taste receptors (TAS2Rs, 25 subtypes) on enteroendocrine cells in the gut. This study aimed to investigate whether and how bitter compounds induce a stress response in intestinal epithelial cells to affect GDF15 expression in patients with obesity, thereby facilitating satiety signaling from the gut. METHODS The acute effect of oral intake of the bitter-containing medication Plaquenil (hydroxychloroquine sulfate) on plasma GDF15 levels was evaluated in a placebo-controlled, double-blind, randomized, two-visit crossover study in healthy volunteers. Primary crypts isolated from the jejunal mucosa from patients with obesity were stimulated with vehicle or bitter compounds, and the effect on GDF15 expression was evaluated using RT-qPCR or ELISA. Immunofluorescence colocalization studies were performed between GDF15, epithelial cell type markers and TAS2Rs. The role of TAS2Rs was tested by 1) pretreatment with a TAS2R antagonist, GIV3727; 2) determining TAS2R4/43 polymorphisms that affect taste sensitivity to TAS2R4/43 agonists. RESULTS Acute intake of hydroxychloroquine sulfate increased GDF15 plasma levels, which correlated with reduced hunger scores and plasma ghrelin levels in healthy volunteers. This effect was mimicked in primary jejunal cultures from patients with obesity. GDF15 was expressed in enteroendocrine and goblet cells with higher expression levels in patients with obesity. Various bitter-tasting compounds (medicinal, plant extracts, bacterial) either increased or decreased GDF15 expression, with some also affecting GLP-1. The effect was mediated by specific intestinal TAS2R subtypes and the unfolded protein response pathway. The bitter-induced effect on GDF15/GLP-1 expression was influenced by the existence of TAS2R4 amino acid polymorphisms and TAS2R43 deletion polymorphisms that may predict patient's therapeutic responsiveness. However, the effect of the bitter-tasting antibiotic azithromycin on GDF15 release was mediated via the motilin receptor, possibly explaining some of its aversive side effects. CONCLUSIONS Bitter chemosensory and pharmacological receptors regulate the release of GDF15 from human gut epithelial cells and represent potential targets for modulating metabolic disorders or cachexia.
Collapse
Affiliation(s)
- Qian Wang
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Mona Farhadipour
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Theo Thijs
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | | | - Bart Van der Schueren
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical and Experimental Endocrinology, University of Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Deleus
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Rezaie P, Bitarafan V, Rose BD, Lange K, Mohammadpour Z, Rehfeld JF, Horowitz M, Feinle-Bisset C. Effects of Quinine on the Glycaemic Response to, and Gastric Emptying of, a Mixed-Nutrient Drink in Females and Males. Nutrients 2023; 15:3584. [PMID: 37630774 PMCID: PMC10459881 DOI: 10.3390/nu15163584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Intraduodenal quinine, in the dose of 600 mg, stimulates glucagon-like peptide-1 (GLP-1), cholecystokinin and insulin; slows gastric emptying (GE); and lowers post-meal glucose in men. Oral sensitivity to bitter substances may be greater in women than men. We, accordingly, evaluated the dose-related effects of quinine on GE, and the glycaemic responses to, a mixed-nutrient drink in females, and compared the effects of the higher dose with those in males. A total of 13 female and 13 male healthy volunteers received quinine-hydrochloride (600 mg ('QHCl-600') or 300 mg ('QHCl-300', females only) or control ('C'), intraduodenally (10 mL bolus) 30 min before a drink (500 kcal, 74 g carbohydrates). Plasma glucose, insulin, C-peptide, GLP-1, glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin were measured at baseline, for 30 min after quinine alone, and then for 2 h post-drink. GE was measured by 13C-acetate breath-test. QHCl-600 alone stimulated insulin, C-peptide and GLP-1 secretion compared to C. Post-drink, QHCl-600 reduced plasma glucose, stimulated C-peptide and GLP-1, and increased the C-peptide/glucose ratio and oral disposition index, while cholecystokinin and GIP were less, in females and males. QHCl-600 also slowed GE compared to C in males and compared to QHCl-300 in females (p < 0.05). QHCl-300 reduced post-meal glucose concentrations and increased the C-peptide/glucose ratio, compared to C (p < 0.05). Magnitudes of glucose lowering and increase in C-peptide/glucose ratio by QHCl-600 were greater in females than males (p < 0.05). We conclude that quinine modulates glucoregulatory functions, associated with glucose lowering in healthy males and females. However, glucose lowering appears to be greater in females than males, without apparent differential effects on GI functions.
Collapse
Affiliation(s)
- Peyman Rezaie
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Vida Bitarafan
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Braden David Rose
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Kylie Lange
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Zinat Mohammadpour
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Bitarafan V, Fitzgerald PCE, Poppitt SD, Ingram JR, Feinle-Bisset C. Effects of intraduodenal or intragastric administration of a bitter hop extract (Humulus lupulus L.), on upper gut motility, gut hormone secretion and energy intake in healthy-weight men. Appetite 2023; 184:106490. [PMID: 36781111 DOI: 10.1016/j.appet.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Gastrointestinal functions, particularly pyloric motility and the gut hormones, cholecystokinin and peptide YY, contribute to the regulation of acute energy intake. Bitter tastants modulate these functions, but may, in higher doses, induce GI symptoms. The aim of this study was to evaluate the effects of both dose and delivery location of a bitter hop extract (BHE) on antropyloroduodenal pressures, plasma cholecystokinin and peptide YY, appetite perceptions, gastrointestinal symptoms and energy intake in healthy-weight men. The study consisted of two consecutive parts, with part A including n = 15, and part B n = 11, healthy, lean men (BMI 22.6 ± 1.1 kg/m2, aged 25 ± 3 years). In randomised, double-blind fashion, participants received in part A, BHE in doses of either 100 mg ("ID-BHE-100") or 250 mg ("ID-BHE-250"), or vehicle (canola oil; "ID-control") intraduodenally, or in part B, 250 mg BHE ("IG-BHE-250") or vehicle ("IG-control") intragastrically. Antropyloroduodenal pressures, hormones, appetite and symptoms were measured for 180 min, energy intake from a standardised buffet-meal was quantified subsequently. ID-BHE-250, but not ID-BHE-100, had modest, and transient, effects to stimulate pyloric pressures during the first 90 min (P < 0.05), and peptide YY from t = 60 min (P < 0.05), but did not affect antral or duodenal pressures, cholecystokinin, appetite, gastrointestinal symptoms or energy intake. IG-BHE-250 had no detectable effects. In conclusion, BHE, when administered intraduodenally, in the selected higher dose, modestly affected some appetite-related gastrointestinal functions, but had no detectable effects when given in the lower dose or intragastrically. Thus, BHE, at none of the doses or routes of administration tested, has appetite- or energy intake-suppressant effects.
Collapse
Affiliation(s)
- Vida Bitarafan
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - John R Ingram
- New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Christine Feinle-Bisset
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
6
|
The effect of gastrointestinal bitter sensing on appetite regulation and energy intake: A systematic review. Appetite 2023; 180:106336. [PMID: 36216215 DOI: 10.1016/j.appet.2022.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Taste receptors are located on the epithelial surface throughout the alimentary canal to identify nutrients and potential toxins. In the oral cavity, the role of taste is to encourage or discourage ingestion, while in the gastrointestinal (GI) tract, the taste receptors help the body prepare for an appropriate response to the ingested foods. The GI sensing of bitter compounds may alter the secretion of appetite-related hormones thereby reducing food intake, which may have potential use for managing health outcomes. This systematic literature review investigated the acute effects of administering different bitter tasting compounds on circulating levels of selected GI hormones, subjective appetite, and energy intake in humans. A literature search was conducted using Medline, CINAHL and Web of Science databases. Of 290 articles identified, 16 met the inclusion criteria. Twelve studies assessed food intake; four of these found bitter administration decreased food intake and eight did not. Fourteen studies assessed subjective appetite; seven found bitter administration affected at least one measure of appetite and seven detected no significant changes. Nine studies included measures of GI hormones; no significant effects were found for changes in GLP-1, CCK or PYY. Four studies measured motilin and ghrelin and found mostly consistent changes in either food intake or subjective appetite. Overall, the data on food intake and subjective appetite were inconsistent, with only motilin and ghrelin responsive to post-oral bitter administration. There is limited consistent conclusive evidence that bitter compounds influence food intake, appetite or hormones with the reasons for this discussed within. SYSTEMATIC REVIEW REGISTRATION: CRD42021226102.
Collapse
|
7
|
Sun S, Yang Y, Xiong R, Ni Y, Ma X, Hou M, Chen L, Xu Z, Chen L, Ji M. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci 2022; 311:121141. [DOI: 10.1016/j.lfs.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
8
|
Rezaie P, Bitarafan V, Rose BD, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Quinine Effects on Gut and Pancreatic Hormones and Antropyloroduodenal Pressures in Humans-Role of Delivery Site and Sex. J Clin Endocrinol Metab 2022; 107:e2870-e2881. [PMID: 35325161 PMCID: PMC9250303 DOI: 10.1210/clinem/dgac182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT The bitter substance quinine modulates the release of a number of gut and gluco-regulatory hormones and upper gut motility. As the density of bitter receptors may be higher in the duodenum than the stomach, direct delivery to the duodenum may be more potent in stimulating these functions. The gastrointestinal responses to bitter compounds may also be modified by sex. BACKGROUND We have characterized the effects of intragastric (IG) versus intraduodenal (ID) administration of quinine hydrochloride (QHCl) on gut and pancreatic hormones and antropyloroduodenal pressures in healthy men and women. METHODS 14 men (26 ± 2 years, BMI: 22.2 ± 0.5 kg/m2) and 14 women (28 ± 2 years, BMI: 22.5 ± 0.5 kg/m2) received 600 mg QHCl on 2 separate occasions, IG or ID as a 10-mL bolus, in randomized, double-blind fashion. Plasma ghrelin, cholecystokinin, peptide YY, glucagon-like peptide-1 (GLP-1), insulin, glucagon, and glucose concentrations and antropyloroduodenal pressures were measured at baseline and for 120 minutes following QHCl. RESULTS Suppression of ghrelin (P = 0.006), stimulation of cholecystokinin (P = 0.030), peptide YY (P = 0.017), GLP-1 (P = 0.034), insulin (P = 0.024), glucagon (P = 0.030), and pyloric pressures (P = 0.050), and lowering of glucose (P = 0.001) were greater after ID-QHCl than IG-QHCl. Insulin stimulation (P = 0.021) and glucose reduction (P = 0.001) were greater in females than males, while no sex-associated effects were found for cholecystokinin, peptide YY, GLP-1, glucagon, or pyloric pressures. CONCLUSION ID quinine has greater effects on plasma gut and pancreatic hormones and pyloric pressures than IG quinine in healthy subjects, consistent with the concept that stimulation of small intestinal bitter receptors is critical to these responses. Both insulin stimulation and glucose lowering were sex-dependent.
Collapse
Affiliation(s)
- Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide SA 5005, Australia
| | - Christine Feinle-Bisset
- Correspondence: Prof Christine Feinle-Bisset, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Corner of North Tce and George St, Adelaide SA 5005, Australia.
| |
Collapse
|
9
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
10
|
Walker EG, Lo KR, Pahl MC, Shin HS, Lang C, Wohlers MW, Poppitt SD, Sutton KH, Ingram JR. An extract of hops (Humulus lupulus L.) modulates gut peptide hormone secretion and reduces energy intake in healthy-weight men: a randomized, crossover clinical trial. Am J Clin Nutr 2022; 115:925-940. [PMID: 35102364 DOI: 10.1093/ajcn/nqab418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastrointestinal enteroendocrine cells express chemosensory bitter taste receptors that may play an important role in regulating energy intake (EI) and gut function. OBJECTIVES To determine the effect of a bitter hop extract (Humulus lupulus L.) on acute EI, appetite, and hormonal responses. METHODS Nineteen healthy-weight men completed a randomized 3-treatment, double-blind, crossover study with a 1-wk washout between treatments. Treatments comprised either placebo or 500 mg of hop extract administered in delayed-release capsules (duodenal) at 11:00 h or quick-release capsules (gastric) at 11:30 h. Ad libitum EI was recorded at the lunch (12:00 h) and afternoon snack (14:00 h), with blood samples taken and subjective ratings of appetite, gastrointestinal (GI) discomfort, vitality, meal palatability, and mood assessed throughout the day. RESULTS Total ad libitum EI was reduced following both the gastric (4473 kJ; 95% CI: 3811, 5134; P = 0.006) and duodenal (4439 kJ; 95% CI: 3777, 5102; P = 0.004) hop treatments compared with the placebo (5383 kJ; 95% CI: 4722, 6045). Gastric and duodenal treatments stimulated prelunch ghrelin secretion and postprandial cholecystokinin, glucagon-like peptide 1, and peptide YY responses compared with placebo. In contrast, postprandial insulin, glucose-dependent insulinotropic peptide, and pancreatic polypeptide responses were reduced in gastric and duodenal treatments without affecting glycemia. In addition, gastric and duodenal treatments produced small but significant increases in subjective measures of GI discomfort (e.g., nausea, bloating, abdominal discomfort) with mild to severe adverse GI symptoms reported in the gastric treatment only. However, no significant treatment effects were observed for any subjective measures of appetite or meal palatability. CONCLUSIONS Both gastric and duodenal delivery of a hop extract modulates the release of hormones involved in appetite and glycemic regulation, providing a potential "bitter brake" on EI in healthy-weight men.
Collapse
Affiliation(s)
- Edward G Walker
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Kim R Lo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Malcolm C Pahl
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Hyun S Shin
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claudia Lang
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mark W Wohlers
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin H Sutton
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - John R Ingram
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
11
|
Komarnytsky S, Retchin S, Vong CI, Lila MA. Gains and Losses of Agricultural Food Production: Implications for the Twenty-First Century. Annu Rev Food Sci Technol 2021; 13:239-261. [PMID: 34813357 DOI: 10.1146/annurev-food-082421-114831] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The world food supply depends on a diminishing list of plant crops and animal livestock to not only feed the ever-growing human population but also improve its nutritional state and lower the disease burden. Over the past century or so, technological advances in agricultural and food processing have helped reduce hunger and poverty but have not adequately addressed sustainability targets. This has led to an erosion of agricultural biodiversity and balanced diets and contributed to climate change and rising rates of chronic metabolic diseases. Modern food supply chains have progressively lost dietary fiber, complex carbohydrates, micronutrients, and several classes of phytochemicals with high bioactivity and nutritional relevance. This review introduces the concept of agricultural food systems losses and focuses on improved sources of agricultural diversity, proteins with enhanced resilience, and novel monitoring, processing, and distribution technologies that are poised to improve food security, reduce food loss and waste, and improve health profiles in the near future. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina; .,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Sophia Retchin
- Kenan-Flagler Business School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chi In Vong
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina; .,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina; .,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
12
|
Verbeure W, Deloose E, Tóth J, Rehfeld JF, Van Oudenhove L, Depoortere I, Tack J. The endocrine effects of bitter tastant administration in the gastrointestinal system: intragastric versus intraduodenal administration. Am J Physiol Endocrinol Metab 2021; 321:E1-E10. [PMID: 34029163 DOI: 10.1152/ajpendo.00636.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bitter tastants are recently introduced as potential hunger-suppressive compounds, the so-called "Bitter pill." However, the literature about bitter administration lacks consistency in methods and findings. We want to test whether hunger ratings and hormone plasma levels are affected by: 1) the site of administration: intragastrically (IG) or intraduodenally (ID), 2) the bitter tastant itself, quinine hydrochloride (QHCl) or denatonium benzoate (DB), and 3) the timing of infusion. Therefore, 14 healthy, female volunteers participated in a randomized, placebo-controlled six-visit crossover study. After an overnight fast, DB (1 µmol/kg), QHCl (10 µmol/kg), or placebo were given IG or ID via a nasogastric feeding tube. Blood samples were taken 10 min before administration and every 10 min after administration for a period of 2 h. Hunger was rated at the same time points on a visual analogue scale. ID bitter administration did not affect hunger sensations, motilin, or acyl-ghrelin release compared with its placebo infusion. IG QHCl infusion tended to suppress hunger increase, especially between 50 and 70 min after infusion, simultaneously with reduced motilin values. Here, acyl-ghrelin was not affected. IG DB did not affect hunger or motilin, however acyl-ghrelin levels were reduced 50-70 minutes after infusion. Plasma values of glucagon-like peptide 1 and cholecystokinin were too low to be properly detected or to have any physiological relevance. In conclusion, bitter tastants should be infused into the stomach to reduce hunger sensations and orexigenic gut peptides. QHCl has the best potential to reduce hunger sensations, and it should be infused 60 min before food intake.NEW & NOTEWORTHY Bitter tastants are a potential new weight-loss treatment. This is a noninvasive, easy approach, which should be received with considerable enthusiasm by the public. However, literature about bitter administration lacks consistency in methods and findings. We summarize how the compound should be given based on: the site of administration, the best bitter compound to use, and at what timing in respect to the meal. This paper is therefore a fundamental step to continue research toward the further development of the "bitter pill."
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Eveline Deloose
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Joran Tóth
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Rose BD, Bitarafan V, Rezaie P, Fitzgerald PCE, Horowitz M, Feinle-Bisset C. Comparative Effects of Intragastric and Intraduodenal Administration of Quinine on the Plasma Glucose Response to a Mixed-Nutrient Drink in Healthy Men: Relations with Glucoregulatory Hormones and Gastric Emptying. J Nutr 2021; 151:1453-1461. [PMID: 33704459 DOI: 10.1093/jn/nxab020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In preclinical studies, bitter compounds, including quinine, stimulate secretion of glucoregulatory hormones [e.g., glucagon-like peptide-1 (GLP-1)] and slow gastric emptying, both key determinants of postprandial glycemia. A greater density of bitter-taste receptors has been reported in the duodenum than the stomach. Thus, intraduodenal (ID) delivery may be more effective in stimulating GI functions to lower postprandial glucose. OBJECTIVE We compared effects of intragastric (IG) and ID quinine [as quinine hydrochloride (QHCl)] administration on the plasma glucose response to a mixed-nutrient drink and relations with gastric emptying, plasma C-peptide (reflecting insulin secretion), and GLP-1. METHODS Fourteen healthy men [mean ± SD age: 25 ± 3 y; BMI (in kg/m2): 22.5 ± 0.5] received, on 4 separate occasions, in double-blind, randomly assigned order, 600 mg QHCl or control, IG or ID, 60 min (IG conditions) or 30 min (IG conditions) before a mixed-nutrient drink. Plasma glucose (primary outcome) and hormones were measured before, and for 2 h following, the drink. Gastric emptying of the drink was measured using a 13C-acetate breath test. Data were analyzed using repeated-measures 2-way ANOVAs (factors: treatment and route of administration) to evaluate effects of QHCl alone and 3-way ANOVAs (factors: treatment, route-of-administration, and time) for responses to the drink. RESULTS After QHCl alone, there were effects of treatment, but not route of administration, on C-peptide, GLP-1, and glucose (P < 0.05); QHCl stimulated C-peptide and GLP-1 and lowered glucose concentrations (IG control: 4.5 ± 0.1; IG-QHCl: 3.9 ± 0.1; ID-control: 4.6 ± 0.1; ID-QHCl: 4.2 ± 0.1 mmol/L) compared with control. Postdrink, there were treatment × time interactions for glucose, C-peptide, and gastric emptying, and a treatment effect for GLP-1 (all P < 0.05), but no route-of-administration effects. QHCl stimulated C-peptide and GLP-1, slowed gastric emptying, and reduced glucose (IG control: 7.2 ± 0.3; IG-QHCl: 6.2 ± 0.3; ID-control: 7.2 ± 0.3; ID-QHCl: 6.4 ± 0.4 mmol/L) compared with control. CONCLUSIONS In healthy men, IG and ID quinine administration similarly lowered plasma glucose, increased plasma insulin and GLP-1, and slowed gastric emptying. These findings have potential implications for lowering blood glucose in type 2 diabetes. This study was registered as a clinical trial with the Australian New Zealand Clinical Trials at www.anzctr.org.au as ACTRN12619001269123.
Collapse
Affiliation(s)
- Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
14
|
Therapeutic potential of targeting intestinal bitter taste receptors in diabetes associated with dyslipidemia. Pharmacol Res 2021; 170:105693. [PMID: 34048925 DOI: 10.1016/j.phrs.2021.105693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Intestinal release of incretin hormones after food intake promotes glucose-dependent insulin secretion and regulates glucose homeostasis. The impaired incretin effects observed in the pathophysiologic abnormality of type 2 diabetes have triggered the pharmacological development of incretin-based therapy through the activation of glucagon-like peptide-1 (GLP-1) receptor, including GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4 (DPP4) inhibitors. In the light of the mechanisms involved in the stimulation of GLP-1 secretion, it is a fundamental question to explore whether glucose and lipid homeostasis can be manipulated by the digestive system in response to nutrient ingestion and taste perception along the gastrointestinal tract. While glucose is a potent stimulant of GLP-1 secretion, emerging evidence highlights the importance of bitter tastants in the enteroendocrine secretion of gut hormones through activation of bitter taste receptors. This review summarizes bitter chemosensation in the intestines for GLP-1 secretion and metabolic regulation based on recent advances in biological research of bitter taste receptors and preclinical and clinical investigation of bitter medicinal plants, including bitter melon, hops strobile, and berberine-containing herbs (e.g. coptis rhizome and barberry root). Multiple mechanisms of action of relevant bitter phytochemicals are discussed with the consideration of pharmacokinetic studies. Current evidence suggests that specific agonists targeting bitter taste receptors, such as human TAS2R1 and TAS2R38, may provide both metabolic benefits and anti-inflammatory effects with the modulation of the enteroendocrine hormone secretion and bile acid turnover in metabolic syndrome individuals or diabetic patients with dyslipidemia-related comorbidities.
Collapse
|
15
|
Wilbrink J, Masclee G, Klaassen T, van Avesaat M, Keszthelyi D, Masclee A. Review on the Regional Effects of Gastrointestinal Luminal Stimulation on Appetite and Energy Intake: (Pre)clinical Observations. Nutrients 2021; 13:nu13051601. [PMID: 34064724 PMCID: PMC8151500 DOI: 10.3390/nu13051601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Macronutrients in the gastrointestinal (GI) lumen are able to activate “intestinal brakes”, feedback mechanisms on proximal GI motility and secretion including appetite and energy intake. In this review, we provide a detailed overview of the current evidence with respect to four questions: (1) are regional differences (duodenum, jejunum, ileum) present in the intestinal luminal nutrient modulation of appetite and energy intake? (2) is this “intestinal brake” effect macronutrient specific? (3) is this “intestinal brake” effect maintained during repetitive activation? (4) can the “intestinal brake” effect be activated via non-caloric tastants? Recent evidence indicates that: (1) regional differences exist in the intestinal modulation of appetite and energy intake with a proximal to distal gradient for inhibition of energy intake: ileum and jejunum > duodenum at low but not at high caloric infusion rates. (2) the “intestinal brake” effect on appetite and energy appears not to be macronutrient specific. At equi-caloric amounts, the inhibition on energy intake and appetite is in the same range for fat, protein and carbohydrate. (3) data on repetitive ileal brake activation are scarce because of the need for prolonged intestinal intubation. During repetitive activation of the ileal brake for up to 4 days, no adaptation was observed but overall the inhibitory effect on energy intake was small. (4) the concept of influencing energy intake by intra-intestinal delivery of non-caloric tastants is intriguing. Among tastants, the bitter compounds appear to be more effective in influencing energy intake. Energy intake decreases modestly after post-oral delivery of bitter tastants or a combination of tastants (bitter, sweet and umami). Intestinal brake activation provides an interesting concept for preventive and therapeutic approaches in weight management strategies.
Collapse
Affiliation(s)
- Jennifer Wilbrink
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Gwen Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Tim Klaassen
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Mark van Avesaat
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
| | - Adrian Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3875021
| |
Collapse
|
16
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
17
|
Harmon CP, Deng D, Breslin PA. Bitter Taste Receptors (T2Rs) are Sentinels that Coordinate Metabolic and Immunological Defense Responses. CURRENT OPINION IN PHYSIOLOGY 2021; 20:70-76. [PMID: 33738371 PMCID: PMC7963268 DOI: 10.1016/j.cophys.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In addition to being responsible for bitter taste, type 2 taste receptors (T2Rs) regulate endocrine, behavioral, and immunological responses. T2R agonists include indicators of incoming threats to metabolic homeostasis, pathogens, and irritants. This review will provide an overview of T2R-regulated processes throughout the body that function defensively. We propose a broader definition of T2Rs as chemosensory sentinels that monitor toxic, metabolic, and infectious threats and initiate defensive responses.
Collapse
Affiliation(s)
- Caroline P. Harmon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Daiyong Deng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Paul A.S. Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Effects of gastrointestinal delivery of non-caloric tastants on energy intake: a systematic review and meta-analysis. Eur J Nutr 2021; 60:2923-2947. [PMID: 33559026 PMCID: PMC8354866 DOI: 10.1007/s00394-021-02485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Purpose Taste receptors are expressed throughout the gastrointestinal tract. The activation of post-oral taste receptors using tastants could provide a non-invasive treatment option in combating the obesity epidemic. The aim of this review was to examine the effect of post-oral delivery of non-caloric tastants on eating behavior reflected by primary outcome energy intake and secondary outcomes GI symptoms and perceptions and potential underlying mechanisms. This review was conducted according to the PRISMA guidelines for systematic reviews. Methods A systematic literature search of the Cochrane, PubMed, Embase, and Medline databases was performed. This systematic review and meta-analysis was registered in the PROSPERO database on 26 February 2020 (ID: CRD42020171182). Two researchers independently screened 11,912 articles and extracted information from 19 articles. If at least two studies investigated the effect of the same taste compound on primary outcome energy intake, a meta-analysis was performed to determine pooled effect sizes. Results Nineteen papers including healthy volunteers were included. In the 19 papers analyzed, effects of various tastants were investigated in healthy volunteers. Most extensively investigated were bitter tastants. The meta-analysis of effects of bitter tastants showed a significant reduction in energy intake of 54.62 kcal (95% CI − 78.54 to − 30.69, p = 0.0014). Conclusions Bitter stimuli are most potent to influence eating behavior. Energy intake decreased after post-oral delivery of bitter tastants. This highlights the potential of a preventive role of bitter tastants in battling the obesity epidemic. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02485-4.
Collapse
|
19
|
Effect of oral or intragastric delivery of the bitter tastant quinine on food intake and appetite sensations: a randomised crossover trial. Br J Nutr 2021; 125:92-100. [PMID: 32660667 DOI: 10.1017/s0007114520002536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stimulation of gastrointestinal taste receptors affects eating behaviour. Intraduodenal infusion of tastants leads to increased satiation and reduced food intake, whereas intraileal infusion of tastants does not affect eating behaviour. Currently, it is unknown whether oral- or intragastric administration of tastants induces a larger effect on eating behaviour. This study investigated the effects of oral- and/or intragastric administration of quinine on food intake, appetite sensations and heart rate variability (HRV). In a blinded randomised crossover trial, thirty-two healthy volunteers participated in four interventions with a 1-week washout: oral placebo and intragastric placebo (OPGP), oral quinine and intragastric placebo (OQGP), oral placebo and intragastric quinine (OPGQ) and oral quinine and intragastric quinine (OQGQ). On test days, 150 min after a standardised breakfast, subjects ingested a capsule containing quinine or placebo and were sham-fed a mixture of quinine or placebo orally. At 50 min after intervention, subjects received an ad libitum meal to measure food intake. Visual analogue scales for appetite sensations were collected, and HRV measurements were performed at regular intervals. Oral and/or intragastric delivery of the bitter tastant quinine did not affect food intake (OPGP: 3273·6 (sem 131·8) kJ, OQGP: 3072·7 (sem 132·2) kJ, OPGQ: 3289·0 (sem 132·6) kJ and OQGQ: 3204·1 (sem 133·1) kJ, P = 0·069). Desire to eat and hunger decreased after OQGP and OPGQ compared with OPGP (P < 0·001 and P < 0·05, respectively), whereas satiation, fullness and HRV did not differ between interventions. In conclusion, sole oral sham feeding with and sole intragastric delivery of quinine decreased desire to eat and hunger, without affecting food intake, satiation, fullness or HRV.
Collapse
|
20
|
Taylor AJ, Beauchamp JD, Briand L, Heer M, Hummel T, Margot C, McGrane S, Pieters S, Pittia P, Spence C. Factors affecting flavor perception in space: Does the spacecraft environment influence food intake by astronauts? Compr Rev Food Sci Food Saf 2020; 19:3439-3475. [PMID: 33337044 DOI: 10.1111/1541-4337.12633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
The intention to send a crewed mission to Mars involves a huge amount of planning to ensure a safe and successful mission. Providing adequate amounts of food for the crew is a major task, but 20 years of feeding astronauts on the International Space Station (ISS) have resulted in a good knowledge base. A crucial observation from the ISS is that astronauts typically consume only 80% of their daily calorie requirements when in space. This is despite daily exercise regimes that keep energy usage at very similar levels to those found on Earth. This calorie deficit seems to have little effect on astronauts who spend up to 12 months on the ISS, but given that a mission to Mars would take 30 to 36 months to complete, there is concern that a calorie deficit over this period may lead to adverse effects in crew members. The key question is why astronauts undereat when they have a supply of food designed to fully deliver their nutritional needs. This review focuses on evidence from astronauts that foods taste different in space, compared to on Earth. The underlying hypothesis is that conditions in space may change the perceived flavor of the food, and this flavor change may, in turn, lead to underconsumption by astronauts. The key areas investigated in this review for their potential impact on food intake are the effects of food shelf life, physiological changes, noise, air and water quality on the perception of food flavor, as well as the link between food flavor and food intake.
Collapse
Affiliation(s)
| | - Jonathan D Beauchamp
- Department of Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Martina Heer
- International University of Applied Sciences, Bad Honnef, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | | | - Scott McGrane
- Waltham Petcare Science Institute, Waltham on the Wolds, UK
| | - Serge Pieters
- Haute Ecole Léonard de Vinci, Institut Paul Lambin, Brussels, Belgium
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Teramo, Italy
| | - Charles Spence
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Yosten GLC. AJP-Regulatory, Integrative and Comparative Physiology: Looking Toward the Future. Am J Physiol Regul Integr Comp Physiol 2020; 319:R82-R86. [DOI: 10.1152/ajpregu.00104.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Wang Q, Liszt KI, Depoortere I. Extra-oral bitter taste receptors: New targets against obesity? Peptides 2020; 127:170284. [PMID: 32092303 DOI: 10.1016/j.peptides.2020.170284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Taste perception on the tongue is essential to help us to identify nutritious or potential toxic food substances. Emerging evidence has demonstrated the expression and function of bitter taste receptors (TAS2Rs) in a wide range of extra-oral tissues. In particular, TAS2Rs in gastrointestinal enteroendocrine cells control the secretion of appetite regulating gut hormones and influence hunger and food intake. Furthermore, these effects may be reinforced by the presence of TAS2Rs on intestinal smooth muscle cells, adipocytes and the brain. This review summarises how activation of extra-oral TAS2Rs can influence appetite and body weight control and how obesity impacts the expression and function of TAS2Rs. Region-selective targeting of bitter taste receptors may be promising targets for the treatment of obesity.
Collapse
Affiliation(s)
- Qiaoling Wang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Kathrin I Liszt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|