1
|
Hsieh CM, Hsu CH, Chen JK, Liao LD. AI-powered home cage system for real-time tracking and analysis of rodent behavior. iScience 2024; 27:111223. [PMID: 39605925 PMCID: PMC11600061 DOI: 10.1016/j.isci.2024.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Researchers in animal behavior and neuroscience devote considerable time to observing rodents behavior and physiological responses, with AI monitoring systems reducing personnel workload. This study presents the RodentWatch (RW) system, which leverages deep learning to automatically identify experimental animal behaviors in home cage environments. A single multifunctional camera and edge device are installed inside the animal's home cage, allowing continuous real-time monitoring of the animal's behavior, position, and body temperature for extended periods. We investigated identifying the drinking and resting behaviors of rats, with recognition accuracy enhanced through contextual object labeling and modified non-maximum suppression (NMS) schemes. Two tests-a light cycle change test and a sucrose preference test-were conducted to evaluate the usability of this system in rat behavioral experiments. This system enables notable advancements in image-based behavior recognition for living rodents.
Collapse
Affiliation(s)
- Chia-Ming Hsieh
- Laboratory Animal Center, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 300044, Taiwan
| | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 300044, Taiwan
| | - Jen-Kun Chen
- Laboratory Animal Center, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
| |
Collapse
|
2
|
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 2024; 6:1000-1007. [PMID: 38831000 DOI: 10.1038/s42255-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.
Collapse
Affiliation(s)
- Feng Rao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Gaitonde KD, Andrabi M, Burger CA, D’Souza SP, Vemaraju S, Koritala BSC, Smith DF, Lang RA. Diurnal regulation of metabolism by Gs-alpha in hypothalamic QPLOT neurons. PLoS One 2023; 18:e0284824. [PMID: 37141220 PMCID: PMC10159165 DOI: 10.1371/journal.pone.0284824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/09/2023] [Indexed: 05/05/2023] Open
Abstract
Neurons in the hypothalamic preoptic area (POA) regulate multiple homeostatic processes, including thermoregulation and sleep, by sensing afferent input and modulating sympathetic nervous system output. The POA has an autonomous circadian clock and may also receive circadian signals indirectly from the suprachiasmatic nucleus. We have previously defined a subset of neurons in the POA termed QPLOT neurons that are identified by the expression of molecular markers (Qrfp, Ptger3, LepR, Opn5, Tacr3) that suggest receptivity to multiple stimuli. Because Ptger3, Opn5, and Tacr3 encode G-protein coupled receptors (GPCRs), we hypothesized that elucidating the G-protein signaling in these neurons is essential to understanding the interplay of inputs in the regulation of metabolism. Here, we describe how the stimulatory Gs-alpha subunit (Gnas) in QPLOT neurons regulates metabolism in mice. We analyzed Opn5cre; Gnasfl/fl mice using indirect calorimetry at ambient temperatures of 22°C (a historical standard), 10°C (a cold challenge), and 28°C (thermoneutrality) to assess the ability of QPLOT neurons to regulate metabolism. We observed a marked decrease in nocturnal locomotion of Opn5cre; Gnasfl/fl mice at both 28°C and 22°C, but no overall differences in energy expenditure, respiratory exchange, or food and water consumption. To analyze daily rhythmic patterns of metabolism, we assessed circadian parameters including amplitude, phase, and MESOR. Loss-of-function GNAS in QPLOT neurons resulted in several subtle rhythmic changes in multiple metabolic parameters. We observed that Opn5cre; Gnasfl/fl mice show a higher rhythm-adjusted mean energy expenditure at 22°C and 10°C, and an exaggerated respiratory exchange shift with temperature. At 28°C, Opn5cre; Gnasfl/fl mice have a significant delay in the phase of energy expenditure and respiratory exchange. Rhythmic analysis also showed limited increases in rhythm-adjusted means of food and water intake at 22°C and 28°C. Together, these data advance our understanding of Gαs-signaling in preoptic QPLOT neurons in regulating daily patterns of metabolism.
Collapse
Affiliation(s)
- Kevin D. Gaitonde
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular & Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Mutahar Andrabi
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Courtney A. Burger
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular & Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Shruti Vemaraju
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bala S. C. Koritala
- Division of Pediatric Otolaryngology–Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - David F. Smith
- Division of Pediatric Otolaryngology–Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- The Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
4
|
Desnouveaux L, Poly B, Edmond M, Aphezberro C, Coulon D, Boutet F, Le Coz C, Fargeau F, Linard C, Caillol P, Duffaud AM, Servonnet A, Ferhani O, Trousselard M, Taudon N, Canini F, Claverie D. Steady electrocorticogram characteristics predict specific stress-induced behavioral phenotypes. Front Neurosci 2023; 17:1047848. [PMID: 37113159 PMCID: PMC10126346 DOI: 10.3389/fnins.2023.1047848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Depending on the individual, exposure to an intense stressor may, or may not, lead to a stress-induced pathology. Predicting the physiopathological evolution in an individual is therefore an important challenge, at least for prevention. In this context, we developed an ethological model of simulated predator exposure in rats: we call this the multisensorial stress model (MSS). We hypothesized that: (i) MSS exposure can induce stress-induced phenotypes, and (ii) an electrocorticogram (ECoG) recorded before stress exposure can predict phenotypes observed after stress. Methods Forty-five Sprague Dawley rats were equipped with ECoG telemetry and divided into two groups. The Stress group (n = 23) was exposed to an MSS that combined synthetic fox feces odor deposited on filter paper, synthetic blood odor, and 22 kHz rodent distress calls; the Sham group (n = 22) was not exposed to any sensorial stimulus. Fifteen days after initial exposure, the two groups were re-exposed to a context that included a filter paper soaked with water as a traumatic object (TO) reminder. During this re-exposure, freezing behavior and avoidance of the filter paper were measured. Results Three behaviors were observed in the Stress group: 39% developed a fear memory phenotype (freezing, avoidance, and hyperreactivity); 26% developed avoidance and anhedonia; and 35% made a full recovery. We also identified pre-stress ECoG biomarkers that accurately predicted cluster membership. Decreased chronic 24 h frontal Low θ relative power was associated with resilience; increased frontal Low θ relative power was associated with fear memory; and decreased parietal β2 frequency was associated with the avoidant-anhedonic phenotype. Discussion These predictive biomarkers open the way to preventive medicine for stress-induced diseases.
Collapse
Affiliation(s)
- Laura Desnouveaux
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Betty Poly
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Mathilde Edmond
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Cathy Aphezberro
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - David Coulon
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Francis Boutet
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Christine Le Coz
- Unité Analyses Biologiques, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Francisca Fargeau
- Unité Analyses Biologiques, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Cyril Linard
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Pierre Caillol
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Anaïs M. Duffaud
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Aurélie Servonnet
- Unité Analyses Biologiques, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Ouamar Ferhani
- Département Innovation Numérique et Intelligence Artificielle, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Marion Trousselard
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- APEMAC, EA 4360, Université de Lorraine, Nancy, France
- Ecole du Val de Grâce, Paris, France
- Réseau ABC des Psychotraumas, Montpellier, France
| | - Nicolas Taudon
- Unité de Développements Analytiques et Bioanalyse, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Frédéric Canini
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Ecole du Val de Grâce, Paris, France
- Réseau ABC des Psychotraumas, Montpellier, France
| | - Damien Claverie
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Réseau ABC des Psychotraumas, Montpellier, France
- *Correspondence: Damien Claverie
| |
Collapse
|
5
|
Shuboni-Mulligan DD, Young D, De La Cruz Minyety J, Briceno N, Celiku O, King AL, Munasinghe J, Wang H, Adegbesan KA, Gilbert MR, Smart DK, Armstrong TS. Histological analysis of sleep and circadian brain circuitry in cranial radiation-induced hypersomnolence (C-RIH) mouse model. Sci Rep 2022; 12:11131. [PMID: 35778467 PMCID: PMC9249744 DOI: 10.1038/s41598-022-15074-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Disrupted sleep, including daytime hypersomnolence, is a core symptom reported by primary brain tumor patients and often manifests after radiotherapy. The biological mechanisms driving the onset of sleep disturbances after cranial radiation remains unclear but may result from treatment-induced injury to neural circuits controlling sleep behavior, both circadian and homeostatic. Here, we develop a mouse model of cranial radiation-induced hypersomnolence which recapitulates the human experience. Additionally, we used the model to explore the impact of radiation on the brain. We demonstrated that the DNA damage response following radiation varies across the brain, with homeostatic sleep and cognitive regions expressing higher levels of γH2AX, a marker of DNA damage, than the circadian suprachiasmatic nucleus (SCN). These findings were supported by in vitro studies comparing radiation effects in SCN and cortical astrocytes. Moreover, in our mouse model, MRI identified structural effects in cognitive and homeostatic sleep regions two-months post-treatment. While the findings are preliminary, they suggest that homeostatic sleep and cognitive circuits are vulnerable to radiation and these findings may be relevant to optimizing treatment plans for patients.
Collapse
Affiliation(s)
| | - Demarrius Young
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Nicole Briceno
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda L King
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kendra A Adegbesan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - DeeDee K Smart
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Fernandes P, Pereira LDM, Horta NAC, Cardoso TSR, Coimbra CC, Szawka RE, Pereira GS, Poletini MO. Social interaction masking contributes to changes in the activity of the suprachiasmatic nucleus and impacts on circadian rhythms. Physiol Behav 2021; 237:113420. [PMID: 33878315 DOI: 10.1016/j.physbeh.2021.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
Light is the most powerful temporal cue that entrains physiology and behavior through modulation of the suprachiasmatic nucleus (SCN) of the hypothalamus. However, on a daily basis, individuals face a combination of light and several non-photic cues, such as social interaction. In order to investigate whether SCN activity and SCN-driven rhythms are altered by social interaction, adult male C57BLJ/6 mice were maintained in groups of 3-4 animals per cage or 1 animal per cage (socially isolated) under 12:12 h / light:dark (LD) cycles or constant darkness (DD). Analysis of the two anatomical subdivisions (ventral, v and dorsal, d) of the medial SCN revealed an effect of housing conditions on the d-SCN but not on the v-SCN on the number of c-Fos immunoreactive (ir) neurons. As such, 2 h after the light-phase onset d-SCN c-Fos-ir number was lower in single-housed mice under LD. Importantly, under DD there were no effect of housing conditions in the number of c-Fos-ir SCN neurons. Social isolation increased the amplitude and strength of SCN-driven rhythm of body temperature (Tc) entrained to LD and it advanced its onset, uncoupling with spontaneous locomotor activity (SLA) rhythm, without altering endogenous Tc and SLA rhythms expressed under DD. Associated with reduced Tc in the light phase, single-housed mice showed reduced body weight. However, these phenotypes were not accompanied by changes in the number of c-Fos-ir neurons in the preoptic area (POA), which are known to regulate energy metabolism and Tc. Altogether, these results imply that the social interaction masking effect on the d-SCN is added to that of light stimulus, in order to achieve full c-Fos expression in the SCN, which, in turn seems to be required to maintain daily-phase coherence between the photo-entrained rhythms of Tc and SLA. There might be an inter-relationship between masking (social interaction) and entrainment stimulus (light) that impacts the circadian parameters of the photo-entrained Tc rhythm. As such, in the absence of social interactions a more robust Tc rhythm is shown. This inter-relationship seems to occur in the dorsal subdivision of the SCN but not in the POA.
Collapse
Affiliation(s)
- Paola Fernandes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana de Melo Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara Abreu Coelho Horta
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Santana Rocha Cardoso
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cândido Celso Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maristela Oliveira Poletini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020; 20:55. [PMID: 33006677 PMCID: PMC11891936 DOI: 10.1007/s11910-020-01075-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Melanin-concentrating hormone (MCH)-expressing neurons located in the lateral hypothalamus are considered as an integral component of sleep-wake circuitry. However, the precise role of MCH neurons in sleep-wake regulation has remained unclear, despite several years of research employing a wide range of techniques. We review recent data on this aspect, which are mostly inconsistent, and propose a novel role for MCH neurons in sleep regulation. RECENT FINDINGS While almost all studies using "gain-of-function" approaches show an increase in rapid eye movement sleep (or paradoxical sleep; PS), loss-of-function approaches have not shown reductions in PS. Similarly, the reported changes in wakefulness or non-rapid eye movement sleep (slow-wave sleep; SWS) with manipulation of the MCH system using conditional genetic methods are inconsistent. Currently available data do not support a role for MCH neurons in spontaneous sleep-wake but imply a crucial role for them in orchestrating sleep-wake responses to changes in external and internal environments.
Collapse
Affiliation(s)
- Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
| | - Mudasir A Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Nazifa Ibrahim
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Department of Public Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin) 2020; 7:321-362. [PMID: 33251281 PMCID: PMC7678948 DOI: 10.1080/23328940.2020.1743605] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
This article reviews the literature on the circadian rhythms of body temperature and whole-organism metabolism. The two rhythms are first described separately, each description preceded by a review of research methods. Both rhythms are generated endogenously but can be affected by exogenous factors. The relationship between the two rhythms is discussed next. In endothermic animals, modulation of metabolic activity can affect body temperature, but the rhythm of body temperature is not a mere side effect of the rhythm of metabolic thermogenesis associated with general activity. The circadian system modulates metabolic heat production to generate the body temperature rhythm, which challenges homeothermy but does not abolish it. Individual cells do not regulate their own temperature, but the relationship between circadian rhythms and metabolism at the cellular level is also discussed. Metabolism is both an output of and an input to the circadian clock, meaning that circadian rhythmicity and metabolism are intertwined in the cell.
Collapse
Affiliation(s)
- Roberto Refinetti
- Department of Psychology, University of New Orleans, New Orleans, LA, USA
| |
Collapse
|
9
|
Skinner NJ, Rizwan MZ, Grattan DR, Tups A. Chronic Light Cycle Disruption Alters Central Insulin and Leptin Signaling as well as Metabolic Markers in Male Mice. Endocrinology 2019; 160:2257-2270. [PMID: 31276158 DOI: 10.1210/en.2018-00935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/20/2019] [Indexed: 01/25/2023]
Abstract
Recent evidence suggests that the circadian timing system plays a role in energy and glucose homeostasis, and disruptions to this system are a risk factor for the development of metabolic disorders. We exposed animals to a constantly shifting lighting environment comprised of a 6-hour advance, occurring every 6 days, to chronically disrupt their circadian timing system. This treatment caused a gradual increase in body weight of 12 ± 2% after 12 phase shifts, compared with a 6 ± 1% increase in mice under control lighting conditions. Additionally, after the fifth phase shift, light cycle-disrupted (CD) animals showed a reversal in their diurnal pattern of energy homeostasis and locomotor activity, followed by a subsequent loss of this rhythm. To investigate potential molecular mechanisms mediating these metabolic alterations, we assessed central leptin and insulin sensitivity. We discovered that CD mice had a decrease in central leptin signaling, as indicated by a reduction in the number of phosphorylated signal transducer and activator of transcription 3 immunoreactive cells in the arcuate nucleus of the hypothalamus. Furthermore, CD animals exhibited a marked increase in fasting blood glucose (269.4 ± 21.1 mg/dL) compared with controls (108.8 ± 21.3 mg/dL). This dramatic increase in fasting glucose levels was not associated with an increase in insulin levels, suggesting impairments in pancreatic insulin release. Peripheral hyperglycemia was accompanied by central alterations in insulin signaling at the level of phospho Akt and insulin receptor substrate 1, suggesting that light cycle disruption alters central insulin signaling. These results provide mechanistic insights into the association between light cycle disruption and metabolic disease.
Collapse
Affiliation(s)
- Nathan J Skinner
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mohammed Z Rizwan
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
11
|
Plano SA, Casiraghi LP, García Moro P, Paladino N, Golombek DA, Chiesa JJ. Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health. Front Neurol 2017; 8:558. [PMID: 29097992 PMCID: PMC5653694 DOI: 10.3389/fneur.2017.00558] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.
Collapse
Affiliation(s)
- Santiago A Plano
- Chronophysiology Laboratory, Institute for Biomedical Research (BIOMED - CONICET), School of Medical Sciences, Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Leandro P Casiraghi
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Paula García Moro
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Juan J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Claverie D, Becker C, Ghestem A, Coutan M, Camus F, Bernard C, Benoliel JJ, Canini F. Low β2 Main Peak Frequency in the Electroencephalogram Signs Vulnerability to Depression. Front Neurosci 2016; 10:495. [PMID: 27853418 PMCID: PMC5090000 DOI: 10.3389/fnins.2016.00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022] Open
Abstract
Objective: After an intense and repeated stress some rats become vulnerable to depression. This state is characterized by persistent low serum BDNF concentration. Our objective was to determine whether electrophysiological markers can sign vulnerability to depression. Methods: Forty-three Sprague Dawley rats were recorded with supradural electrodes above hippocampus and connected to wireless EEG transmitters. Twenty-nine animals experienced four daily social defeats (SD) followed by 1 month recovery. After SD, 14 rats had persistent low serum BDNF level and were considered as vulnerable (V) while the 15 others were considered as non-vulnerable (NV). EEG signals were analyzed during active waking before SD (Baseline), just after SD (Post-Stress) and 1 month after SD (Recovery). Results: We found that V animals are characterized by higher high θ and α spectral relative powers and lower β2 main peak frequency before SD. These differences are maintained at Post-Stress and Recovery for α spectral relative powers and β2 main peak frequency. Using ROC analysis, we show that low β2 main peak frequency assessed during Baseline is a good predictor of the future state of vulnerability to depression. Conclusion: Given the straightforwardness of EEG recordings, these results open the way to prospective studies in humans aiming to identify population at-risk for depression.
Collapse
Affiliation(s)
- Damien Claverie
- Département Neurosciences and Contraintes Opérationnelles, Institut de Recherche Biomédicale des ArméesBrétigny-sur-Orge, France
- Sorbonne Universités, Pierre and Marie Curie University Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-SalpêtrièreParis, France
- Institut National de la Santé et de la Recherche Médicale, U1130Paris, France
- Centre National de la Recherche Scientifique, UMR8246Paris, France
| | - Chrystel Becker
- Sorbonne Universités, Pierre and Marie Curie University Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-SalpêtrièreParis, France
- Institut National de la Santé et de la Recherche Médicale, U1130Paris, France
- Centre National de la Recherche Scientifique, UMR8246Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de MédecineParis, France
| | - Antoine Ghestem
- Aix Marseille Univ., INSERM, INS, Inst. Neurosci. Syst.Marseille, France
| | - Mathieu Coutan
- Département Neurosciences and Contraintes Opérationnelles, Institut de Recherche Biomédicale des ArméesBrétigny-sur-Orge, France
| | - Françoise Camus
- Sorbonne Universités, Pierre and Marie Curie University Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-SalpêtrièreParis, France
- Institut National de la Santé et de la Recherche Médicale, U1130Paris, France
- Centre National de la Recherche Scientifique, UMR8246Paris, France
| | - Christophe Bernard
- Aix Marseille Univ., INSERM, INS, Inst. Neurosci. Syst.Marseille, France
| | - Jean-Jacques Benoliel
- Sorbonne Universités, Pierre and Marie Curie University Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-SalpêtrièreParis, France
- Institut National de la Santé et de la Recherche Médicale, U1130Paris, France
- Centre National de la Recherche Scientifique, UMR8246Paris, France
- AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Biochimie Endocrinienne et OncologiqueParis, France
| | - Frédéric Canini
- Département Neurosciences and Contraintes Opérationnelles, Institut de Recherche Biomédicale des ArméesBrétigny-sur-Orge, France
- Ecole du Val de GrâceParis, France
| |
Collapse
|
13
|
Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016; 336:102-113. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022]
Abstract
Currently available evidence indicates that neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamus are critical modulators of sleep-wakefulness, but their precise role in this function is not clear. Studies employing optogenetic stimulation of MCH neurons have yielded inconsistent results, presumably due to differences in the optogenetic stimulation protocols, which do not approximate normal patterns of cell firing. In order to resolve this discrepancy, we (1) selectively activated the MCH neurons using a chemogenetic approach (Cre-dependent hM3Dq expression) and (2) selectively destroyed MCH neurons using a genetically targeted diphtheria toxin deletion method, and studied the changes in sleep-wake in mice. Our results indicate that selective activation of MCH neurons causes specific increases in rapid eye movement (REM) sleep without altering wake or non-REM (NREM) sleep. On the other hand, selective deletions of MCH neurons altered the diurnal rhythm of wake and REM sleep without altering their total amounts. These results indicate that activation of MCH neurons primarily drives REM sleep and their presence may be necessary for normal expression of diurnal variation of REM sleep and wake.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States.
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Programs of Neuroscience and Cellular, Molecular and Development Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, United States
| | - Loris L Ferrari
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
14
|
Clark TM, Malpas SC, McCormick D, Guild SJ, Budgett DM. New multimodal data obtained in-vivo from a single ultra-miniature transducer. Biomed Microdevices 2015; 17:72. [PMID: 26137880 DOI: 10.1007/s10544-015-9984-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in multimodal sensing technology and sensor miniaturization technologies are paving the way for a new era in physiological measurement. Traditional approaches have integrated several transducers on a single silicon chip or packaged several sensing elements within a biocompatible catheter. Thermal and electrical cross-talk between sensors, time-lag between parallel measurements, lower yields associated with the increased complexity, and restrictions on the minimum size are challenges presented by these approaches. We present an alternative method which enables simultaneous measurement of temperature, pressure and heart rate to be obtained from a single ultra-miniature solid-state transducer. For the first time multimodal data were obtained from the sensor located within the abdominal aortas of five rats. The catheter-tip sensor interfaces with a fully implanted and inductively powered telemetry device capable of operating for the lifetime of the animal. Results of this study demonstrate good agreement between the core-temperature measurement from the catheter-tip sensor and the reference sensor with mean difference between the two sensors of 0.03 °C ± 0.02 °C (n = 5, 7 days). Real-time data obtained in the undisturbed rat, revealed fluctuations associated with the rest-activity cycle, in temperature, mean arterial pressure and heart rate. The stress response was shown to elicit an elevation in the core temperature of 1.5 °C. This was heralded by an elevation in mean arterial pressure of 35 mmHg and heart rate of 160 bpm. Obtaining multiple parameters from a single transducer goes a considerable way towards overcoming challenges of the prior art.
Collapse
Affiliation(s)
- Therese M Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,
| | | | | | | | | |
Collapse
|
15
|
Muindi F, Colas D, Ikeme J, Ruby NF, Heller HC. Loss of Melanopsin Photoreception and Antagonism of the Histamine H3 Receptor by Ciproxifan Inhibit Light-Induced Sleep in Mice. PLoS One 2015; 10:e0128175. [PMID: 26083020 PMCID: PMC4471207 DOI: 10.1371/journal.pone.0128175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Light has direct effects on sleep and wakefulness causing arousal in diurnal animals and sleep in nocturnal animals. In the present study, we assessed the modulation of light-induced sleep by melanopsin and the histaminergic system by exposing mice to millisecond light flashes and continuous light respectively. First, we show that the induction of sleep by millisecond light flashes is dose dependent as a function of light flash number. We found that exposure to 60 flashes of light occurring once every 60 seconds for 1-h (120-ms of total light over an hour) induced a similar amount of sleep as a continuous bright light pulse. Secondly, the induction of sleep by millisecond light flashes was attenuated in the absence of melanopsin when animals were presented with flashes occurring every 60 seconds over a 3-h period beginning at ZT13. Lastly, the acute administration of a histamine H3 autoreceptor antagonist, ciproxifan, blocked the induction of sleep by a 1-h continuous light pulse during the dark period. Ciproxifan caused a decrease in NREMS delta power and an increase in theta activity during both sleep and wake periods respectively. The data suggest that some form of temporal integration occurs in response to millisecond light flashes, and that this process requires melanopsin photoreception. Furthermore, the pharmacological data suggest that the increase of histaminergic neurotransmission is sufficient to attenuate the light-induced sleep response during the dark period.
Collapse
Affiliation(s)
- Fanuel Muindi
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Damien Colas
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jesse Ikeme
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Norman F. Ruby
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - H. Craig Heller
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
16
|
Abstract
Sleep is expressed as a circadian rhythm and the two phenomena exist in a poorly understood relationship. Light affects each, simultaneously influencing rhythm phase and rapidly inducing sleep. Light has long been known to modulate sleep, but recent discoveries support its use as an effective nocturnal stimulus for eliciting sleep in certain rodents. “Photosomnolence” is mediated by classical and ganglion cell photoreceptors and occurs despite the ongoing high levels of locomotion at the time of stimulus onset. Brief photic stimuli trigger rapid locomotor suppression, sleep, and a large drop in core body temperature (Tc; Phase 1), followed by a relatively fixed duration interval of sleep (Phase 2) and recovery (Phase 3) to pre-sleep activity levels. Additional light can lengthen Phase 2. Potential retinal pathways through which the sleep system might be light-activated are described and the potential roles of orexin (hypocretin) and melanin-concentrating hormone are discussed. The visual input route is a practical avenue to follow in pursuit of the neural circuitry and mechanisms governing sleep and arousal in small nocturnal mammals and the organizational principles may be similar in diurnal humans. Photosomnolence studies are likely to be particularly advantageous because the timing of sleep is largely under experimenter control. Sleep can now be effectively studied using uncomplicated, nonintrusive methods with behavior evaluation software tools; surgery for EEG electrode placement is avoidable. The research protocol for light-induced sleep is easily implemented and useful for assessing the effects of experimental manipulations on the sleep induction pathway. Moreover, the experimental designs and associated results benefit from a substantial amount of existing neuroanatomical and pharmacological literature that provides a solid framework guiding the conduct and interpretation of future investigations.
Collapse
|
17
|
Morin LP, Studholme KM. Retinofugal projections in the mouse. J Comp Neurol 2014; 522:3733-53. [PMID: 24889098 PMCID: PMC4142087 DOI: 10.1002/cne.23635] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022]
Abstract
The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species' visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 μm free-floating sections with diaminobenzidine as the chromogen. The mouse retina projects to ~46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat, and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY, 11794-8101; Graduate Program in Neuroscience, Stony Brook University Medical Center, Stony Brook, NY, 11794-8101
| | | |
Collapse
|
18
|
Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol Behav 2014; 138:75-86. [PMID: 25447482 DOI: 10.1016/j.physbeh.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/06/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Photic cues influence daily patterns of activity via two complementary mechanisms: (1) entraining the internal circadian clock and (2) directly increasing or decreasing activity, a phenomenon referred to as "masking". The direction of this masking response is dependent on the temporal niche an organism occupies, as nocturnal animals often decrease activity when exposed to light, while the opposite response is more likely to be seen in diurnal animals. Little is known about the neural mechanisms underlying these differences. Here, we examined the masking effects of light on behavior and the activation of several brain regions by that light, in diurnal Arvicanthis niloticus (Nile grass rats) and nocturnal Mus musculus (mice). Each species displayed the expected behavioral response to a 1h pulse of light presented 2h after lights-off, with the diurnal grass rats and nocturnal mice increasing and decreasing their activity, respectively. In grass rats light induced an increase in cFOS in all retinorecipient areas examined, which included the suprachiasmatic nucleus (SCN), the ventral subparaventricular zone (vSPZ), intergeniculate leaflet (IGL), lateral habenula (LH), olivary pretectal nucleus (OPT) and the dorsal lateral geniculate (DLG). In mice, light led to an increase in cFOS in one of these regions (SCN), no change in others (vSPZ, IGL and LH) and a decrease in two (OPT and DLG). In addition, light increased cFOS expression in three arousal-related brain regions (the lateral hypothalamus, dorsal raphe, and locus coeruleus) and in one sleep-promoting region (the ventrolateral preoptic area) in grass rats. In mice, light had no effect on cFOS in these four regions. Taken together, these results highlight several brain regions whose responses to light suggest that they may play a role in masking, and that the possibility that they contribute to species-specific patterns of behavioral responses to light should be explored in future.
Collapse
|
19
|
Morin LP, Studholme KM. Light pulse duration differentially regulates mouse locomotor suppression and phase shifts. J Biol Rhythms 2014; 29:346-54. [PMID: 25231948 DOI: 10.1177/0748730414547111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brief exposure of mice to nocturnal light causes circadian rhythm phase shifts, simultaneously inducing locomotor suppression, a drop in body temperature, and associated sleep. The exact nature of the relationship between these light-induced responses is uncertain, although locomotor suppression and phase shift magnitudes are related to stimulus irradiance. Whether stimulus duration has similar effects is less clear. Here, the relationship between stimulus duration and response magnitude was evaluated further using 100 µW/cm(2) white light-emitting diode pulses administered for 30, 300, 1200, or 3000 sec. The results show that, in general, shorter pulses yielded smaller responses and larger pulses yielded larger responses. However, the 300-sec pulse failed to augment locomotor suppression compared with the effect of a 30-sec pulse (44.7 ± 4.8 vs 40.6 ± 2.0 min) but simultaneously induced much larger phase shifts (1.28 ± 0.20 vs 0.52 ± 0.11 h). The larger phase shifts induced by the 300-sec stimulus did not differ from those induced by either the 1200- or 3000-sec pulses (1.43 ± 0.10 and 1.30 ± 0.17 h, respectively). The results demonstrate differential photic regulation of the two response types. Pulses ranging from 300 to 3000 sec produce equal phase shifts (present data); pulses ranging from 30 to 600 sec produce equal locomotor suppression levels. Greater suppression can occur additively in response to pulses of 1200 sec or more (present data), but this is not true for phase shifts. Nocturnal light appears to trigger a fixed duration event, locomotor suppression, or phase shift, with the latter followed by a light-refractory interval during which locomotor suppression can additively increase. The results also provide further support for the view that temporal integration of photic energy applies, at best, across a limited set of stimulus durations for both light-induced locomotor suppression/sleep and phase shift regulation.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University, Stony Brook, New York, USA Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Keith M Studholme
- Department of Psychiatry, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
20
|
Muindi F, Zeitzer JM, Heller HC. Retino-hypothalamic regulation of light-induced murine sleep. Front Syst Neurosci 2014; 8:135. [PMID: 25140132 PMCID: PMC4121530 DOI: 10.3389/fnsys.2014.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/10/2014] [Indexed: 11/15/2022] Open
Abstract
The temporal organization of sleep is regulated by an interaction between the circadian clock and homeostatic processes. Light indirectly modulates sleep through its ability to phase shift and entrain the circadian clock. Light can also exert a direct, circadian-independent effect on sleep. For example, acute exposure to light promotes sleep in nocturnal animals and wake in diurnal animals. The mechanisms whereby light directly influences sleep and arousal are not well understood. In this review, we discuss the direct effect of light on sleep at the level of the retina and hypothalamus in rodents. We review murine data from recent publications showing the roles of rod-, cone- and melanopsin-based photoreception on the initiation and maintenance of light-induced sleep. We also present hypotheses about hypothalamic mechanisms that have been advanced to explain the acute control of sleep by light. Specifically, we review recent studies assessing the roles of the ventrolateral preoptic area (VLPO) and the suprachiasmatic nucleus (SCN). We also discuss how light might differentially promote sleep and arousal in nocturnal and diurnal animals respectively. Lastly, we suggest new avenues for research on this topic which is still in its early stages.
Collapse
Affiliation(s)
- Fanuel Muindi
- Department of Biology, Stanford University Stanford, CA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University Stanford, CA, USA ; Mental Illness Research, Education and Clinical Center, VA Palo Alto Health Care System Palo Alto, CA, USA
| | | |
Collapse
|
21
|
Vyazovskiy VV, Delogu A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014; 20:203-19. [PMID: 24598308 DOI: 10.1177/1073858413518152] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The overall function of sleep is hypothesized to provide "recovery" after preceding waking activities, thereby ensuring optimal functioning during subsequent wakefulness. However, the functional significance of the temporal dynamics of sleep, manifested in the slow homeostatic process and the alternation between non-rapid eye movement (NREM) and REM sleep remains unclear. We propose that NREM and REM sleep have distinct and complementary contributions to the overall function of sleep. Specifically, we suggest that cortical slow oscillations, occurring within specific functionally interconnected neuronal networks during NREM sleep, enable information processing, synaptic plasticity, and prophylactic cellular maintenance ("recovery process"). In turn, periodic excursions into an activated brain state-REM sleep-appear to be ideally placed to perform "selection" of brain networks, which have benefited from the process of "recovery," based on their offline performance. Such two-stage modus operandi of the sleep process would ensure that its functions are fulfilled according to the current need and in the shortest time possible. Our hypothesis accounts for the overall architecture of normal sleep and opens up new perspectives for understanding pathological conditions associated with abnormal sleep patterns.
Collapse
Affiliation(s)
| | - Alessio Delogu
- Department of Neuroscience, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
22
|
Vivanco P, Studholme KM, Morin LP. Drugs that prevent mouse sleep also block light-induced locomotor suppression, circadian rhythm phase shifts and the drop in core temperature. Neuroscience 2013; 254:98-109. [PMID: 24056197 DOI: 10.1016/j.neuroscience.2013.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
Abstract
Exposure of mice to a brief light stimulus during their nocturnal active phase induces several simultaneous behavioral or physiological responses, including circadian rhythm phase shifts, a drop in core body temperature (Tc), suppression of locomotor activity and sleep. Each response is triggered by light, endures for a relatively fixed interval and does not require additional light for expression. The present studies address the ability of the psychostimulant drugs, methamphetamine (MA), modafinil (MOD) or caffeine (CAF), to modify the light-induced responses. Drug or vehicle (VEH) was injected at CT11 into constant dark-housed mice then exposed to 5-min 100μW/cm(2) light or no light at CT13. Controls (VEH/Light) showed approximately 60-min phase delays. In contrast, response was substantially attenuated by each drug (only 12-15min delays). Under a 12-h light:12-h dark (LD12:12) photoperiod, VEH/light-treated mice experienced a Tc drop of about 1.3°C coincident with locomotor suppression and both effects were abolished by drug pre-treatment. Each drug elevated activity during the post-injection interval, but there was also evidence for CAF-induced hypoactivity in the dark prior to the photic test stimulus. CAF acutely elevated Tc; MA acutely lowered it, but both drugs reduced Tc during the early dark (ZT12.5-ZT13). The ability of the psychostimulant drugs to block the several effects of light exposure is not the result of drug-induced hyperactivity. The results raise questions concerning the manner in which drugs, activity, sleep and Tc influence behavioral and physiological responses to light.
Collapse
Affiliation(s)
- P Vivanco
- Department of Psychiatry, Health Science Center, Stony Brook University, Stony Brook, NY, United States
| | | | | |
Collapse
|
23
|
Abstract
Investigators typically study one function of the circadian visual system at a time, be it photoreception, transmission of photic information to the suprachiasmatic nucleus (SCN), light control of rhythm phase, locomotor activity, or gene expression. There are good reasons for such a focused approach, but sometimes it is advantageous to look at the broader picture, asking how all the parts and functions complete the whole. Here, several seemingly disparate functions of the circadian visual system are examined. They share common characteristics with respect to regulation by light and, to the extent known, share a common input neuroanatomy. The argument presented is that the 3 hypothalamically mediated effects of light for which there are the most data, circadian clock phase shifts, suppression of nocturnal locomotion (“negative masking”), and suppression of nocturnal pineal function, are regulated by a common photic input pathway terminating in the SCN. For each, light triggers a relatively fixed interval response that is irradiance-dependent, the effective stimulus can be very brief light exposure, and the response continues to completion in the absence of additional light. The presence of a triggered, fixed-length response interval is of particular importance to the understanding of the circuitry and mechanisms regulating circadian rhythm phase shifts because it implies that the SCN clock response to light is not instantaneous. It also may explain why certain stimuli (neuropeptide Y or novel wheel running) administered many minutes after light exposure are able to block light-induced phase shifts. The understanding of negative masking is complicated by the fact that it can be represented as a positive change, that is, light-induced sleep, not just as a reduction in locomotion. Acute nocturnal light exposure also induces adrenal hormone secretion and a rapid drop in body temperature, physiological responses that appear to be regulated similarly to the other light effects. The likelihood of a common regulatory basis for the several responses suggests that additional light-induced responses will be forthcoming and raises questions about the relationships between light, SCN cellular anatomy, the molecular clockworks of SCN neurons, and SCN throughput mechanisms for regulating disparate downstream activities.
Collapse
Affiliation(s)
- Lawrence P. Morin
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|