1
|
Arefin TM, Börchers S, Olekanma D, Cramer SR, Sotzen MR, Zhang N, Skibicka KP. Sex-specific signatures of GLP-1 and amylin on resting state brain activity and functional connectivity in awake rats. Neuropharmacology 2025; 269:110348. [PMID: 39914619 PMCID: PMC11926989 DOI: 10.1016/j.neuropharm.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Gut-produced glucagon-like peptide-1 (GLP-1) and pancreas-made amylin robustly reduce food intake by directly or indirectly affecting brain activity. While for both peptides a direct action in the hindbrain and the hypothalamus is likely, few studies examined their impact on whole brain activity in rodents and did so evaluating male rodents under anesthesia. However, both sex and anesthesia may significantly alter the influence of feeding controlling molecules on brain activity. Therefore, we investigated the effect of GLP-1 and amylin on brain activity and functional connectivity (FC) in awake adult male and female rats using resting-state functional magnetic resonance imaging (rsfMRI). We further examined the relationship between the altered brain activity or connectivity and subsequent food intake in response to amylin or GLP-1. We observed sex divergent effects of amylin and GLP-1 on the brain activity and FC patterns. Most importantly correlation analysis between FC and feeding behavior revealed that different brain areas potentially drive reduced food intake in male and female rats. Our findings underscore the distributed and distinctly sex divergent neural network engaged by each of these anorexic peptides and suggest that different brain areas may be the primary drivers of the feeding outcome in male and female rats. Moreover, prominent activity and connectivity alterations observed in brain areas not typically associated with feeding behavior in both sexes may either indicate novel feeding centers or alternatively suggest the involvement of these substances in behaviors beyond feeding and metabolism. The latter question is of potential translational significance as analogues of both amylin and GLP-1 are clinically utilized.
Collapse
Affiliation(s)
- Tanzil M Arefin
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stina Börchers
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Doris Olekanma
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; The Neuroscience Graduate Program, Pennsylvania State University, University Park, USA
| | - Samuel R Cramer
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; The Neuroscience Graduate Program, Pennsylvania State University, University Park, USA
| | - Morgan R Sotzen
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Nanyin Zhang
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, USA
| | - Karolina P Skibicka
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Institute of Neuroscience and Physiology, University of Gothenburg, Sweden.
| |
Collapse
|
2
|
Park JS, Kim KS, Choi HJ. Glucagon-Like Peptide-1 and Hypothalamic Regulation of Satiation: Cognitive and Neural Insights from Human and Animal Studies. Diabetes Metab J 2025; 49:333-347. [PMID: 40367985 DOI: 10.4093/dmj.2025.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as blockbuster drugs for treating metabolic diseases. Glucagon-like peptide-1 (GLP-1) plays a pivotal role in glucose homeostasis by enhancing insulin secretion, suppressing glucagon release, delaying gastric emptying, and acting on the central nervous system to regulate satiation and satiety. This review summarizes the discovery of GLP-1 and the development of GLP-1RAs, with a particular focus on their central mechanisms of action. Human neuroimaging studies demonstrate that GLP-1RAs influence brain activity during food cognition, supporting a role in pre-ingestive satiation. Animal studies on hypothalamic feed-forward regulation of hunger suggest that cognitive hypothalamic mechanisms may also contribute to satiation control. We highlight the brain mechanisms of GLP-1RA-induced satiation and satiety, including cognitive impacts, with an emphasis on animal studies of hypothalamic glucagon-like peptide-1 receptor (GLP-1R) and GLP-1R-expressing neurons. Actions in non-hypothalamic regions are also discussed. Additionally, we review emerging combination drugs and oral GLP-1RA formulations aimed at improving efficacy and patient adherence. In conclusion, the dorsomedial hypothalamus (DMH)-a key GLP-1RA target-mediates pre-ingestive cognitive satiation, while other hypothalamic GLP-1R neurons regulate diverse aspects of feeding behavior, offering potential therapeutic targets for obesity treatment.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Jin Choi
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Edvardsson CE, Cadeddu D, Ericson M, Adermark L, Jerlhag E. An inhibitory GLP-1 circuit in the lateral septum modulates reward processing and alcohol intake in rodents. EBioMedicine 2025; 115:105684. [PMID: 40245495 PMCID: PMC12044336 DOI: 10.1016/j.ebiom.2025.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/24/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is a complex psychiatric condition with limited effective treatment options. Glucagon-like peptide-1 receptor (GLP-1R) agonists have emerged as potential AUD treatment, as they have been shown to modulate reward-related behaviours, including those linked to alcohol consumption. However, the underlying mechanisms and neurocircuitry remain unclear. This study investigated the role of GLP-1R in the lateral septum (LS), a brain region highly expressing GLP-1R and implicated in reward-related behaviours, including alcohol-induced reward and consumption. METHODS Behavioural, neurochemical, molecular, and electrophysiological methods were used to investigate the effect of LS GLP-1R signalling in alcohol-mediated responses in rodents. FINDINGS LS GLP-1R activation attenuated alcohol's rewarding effects, reducing locomotor stimulation, place preference, and accumbal dopamine release. Intra-LS infusion of the GLP-1R agonist exendin-4 (Ex4) reduced alcohol intake dose-dependently without affecting food or water consumption, while GLP-1R inhibition increased alcohol intake. Furthermore, LS GLP-1R expression correlated with alcohol intake in male but not female rats, suggesting sex-specific effects of long-term alcohol exposure. Ex vivo electrophysiology indicated that GLP-1R activation depressed LS neurotransmission via a gamma-aminobutyric acid (GABA)A receptor-dependent mechanism. INTERPRETATION This study provides new insights into how GLP-1R agonists may reduce alcohol intake. Overall, the findings underscore the potentially inhibitory neuromodulatory role of LS GLP-1R in regulating alcohol consumption through the modulation of dopaminergic reward processes tentatively involving GABA transmission. FUNDING Swedish Research Council (2023-2600), Sahlgrenska University HospitalLUA/ALF (grant no. 723941), Adlerbertska Research Foundation and Professor Bror Gadelius Foundation.
Collapse
Affiliation(s)
- Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Davide Cadeddu
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Keel PK, Bodell LP, Ali SI, Starkey A, Trotta J, Luxama JW, Halfhide C, Hill NG, Appelbaum J, Williams DL. Examining Weight Suppression, Leptin Levels, Glucagon-Like Peptide 1 Response, and Reward-Related Constructs in Severity and Maintenance of Bulimic Syndromes: Protocol and Sample Characteristics for a Cross-Sectional and Longitudinal Study. JMIR Res Protoc 2025; 14:e66554. [PMID: 40198107 PMCID: PMC12015349 DOI: 10.2196/66554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Bulimia nervosa and related syndromes (BN-S) characterized by binge eating vary considerably in illness severity and course. Using the Research Domain Criteria framework of the National Institute of Mental Health, we developed a model positing that the same set of physiological consequences of weight suppression (WS; defined as the difference between the highest and current adult body weight) contribute to binge-eating severity and maintenance by (1) increasing the drive or motivation to consume food (reward valuation effort [RVE]) and (2) decreasing the ability for food consumption to lead to a state of satiation or satisfaction (reward satiation). OBJECTIVE Our funded project aimed to test concurrent associations among WS, physiological factors (leptin concentrations and postprandial glucagon-like peptide 1 [GLP-1] response), behavioral indicators of RVE (breakpoint on progressive ratio tasks) and reward satiation (ad-lib test meal intake), self-report of these core constructs, and binge-eating severity in BN-S (aim 1); test prospective associations to determine whether WS predicts BN-S maintenance in longitudinal models and whether posited mediators also predict BN-S maintenance (aim 2); and determine whether associations between WS and BN-S severity and maintenance are mediated by alterations in leptin levels, GLP-1 response, RVE, and reward satiation (aim 3). METHODS We aimed to recruit a sample of 320 women with BN-S or noneating disorder controls, with BMI from 16 kg/m2 to 35 kg/m2, for our study. The study included diagnostic interviews; questionnaires; height, weight, and percentage of body fat measurements; weight history; fasting leptin level; postprandial GLP-1 and insulin responses to a fixed meal; and ad-lib meal and progressive ratio tasks to behaviorally measure reward satiation and RVE, respectively, at baseline, with at least 78.1% (250/320) of the participants providing data at 6- and 12-month follow-up visits. Data will be analyzed using structural equation models to test posited pathways. RESULTS Data collection began in November 2016 and ended in April 2023, pausing in-person data collection from March 2020 to February 2021 due to the COVID-19 pandemic. Of 399 eligible women enrolled, 290 (72.7%) provided clinical, behavioral, and biological data at baseline, and 249 (62.4%) provided follow-up data. Measures demonstrated strong psychometric properties. CONCLUSIONS We seek to identify biobehavioral predictors to inform treatments that target key factors influencing the severity and course of binge eating. These data, supported solely through federal funding, can inform questions emerging from recent interest and controversy surrounding the use of GLP-1 agonists for binge eating. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR1-10.2196/66554.
Collapse
Affiliation(s)
- Pamela K Keel
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Lindsay P Bodell
- Department of Psychology, Western University, London, ON, Canada
| | - Sarrah I Ali
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Austin Starkey
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Jenna Trotta
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - J Woody Luxama
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | | | - Naomi G Hill
- Department of Psychology, Ohio University, Athens, OH, United States
| | - Jonathan Appelbaum
- College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Diana L Williams
- Kravis Department of Integrated Sciences, Claremont McKenna College, Claremont, CA, United States
| |
Collapse
|
5
|
Duran M, Willis JR, Dalvi N, Fokakis Z, Virkus SA, Hardaway JA. Integration of Glucagon-Like Peptide 1 Receptor Actions Through the Central Amygdala. Endocrinology 2025; 166:bqaf019. [PMID: 39888375 PMCID: PMC11850305 DOI: 10.1210/endocr/bqaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Understanding the detailed mechanism of action of glucagon-like peptide 1 receptor (GLP-1R) agonists on distinct topographic and genetically defined brain circuits is critical for improving the efficacy and mitigating adverse side effects of these compounds. In this mini-review, we propose that the central nucleus of the amygdala (CeA) is a critical mediator of GLP-1R agonist-driven hypophagia. Here, we review the extant literature demonstrating CeA activation via GLP-1R agonists across multiple species and through multiple routes of administration. The precise role of GLP-1Rs within the CeA is unclear but the site-specific GLP-1Rs may mediate distinct behavioral and physiological hallmarks of GLP-1R agonists on food intake. Thus, we propose important novel directions and methods to test the role of the CeA in mediating GLP-1R actions.
Collapse
Affiliation(s)
- Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer R Willis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nilay Dalvi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zoe Fokakis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Douros JD, Flak JN, Knerr PJ. The agony and the efficacy: central mechanisms of GLP-1 induced adverse events and their mitigation by GIP. Front Endocrinol (Lausanne) 2025; 16:1530985. [PMID: 39963285 PMCID: PMC11830610 DOI: 10.3389/fendo.2025.1530985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
| | - Jonathan N. Flak
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick J. Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
| |
Collapse
|
7
|
Hankir MK, Lutz TA. Novel neural pathways targeted by GLP-1R agonists and bariatric surgery. Pflugers Arch 2025; 477:171-185. [PMID: 39644359 PMCID: PMC11761532 DOI: 10.1007/s00424-024-03047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide has revolutionized the treatment of obesity, with other gut hormone-based drugs lined up that show even greater weight-lowering ability in obese patients. Nevertheless, bariatric surgery remains the mainstay treatment for severe obesity and achieves unparalleled weight loss that generally stands the test of time. While their underlying mechanisms of action remain incompletely understood, it is clear that the common denominator between GLP-1R agonists and bariatric surgery is that they suppress food intake by targeting the brain. In this Review, we highlight recent preclinical studies using contemporary neuroscientific techniques that provide novel concepts in the neural control of food intake and body weight with reference to endogenous GLP-1, GLP-1R agonists, and bariatric surgery. We start in the periphery with vagal, intestinofugal, and spinal sensory nerves and then progress through the brainstem up to the hypothalamus and finish at non-canonical brain feeding centers such as the zona incerta and lateral septum. Further defining the commonalities and differences between GLP-1R agonists and bariatric surgery in terms of how they target the brain may not only help bridge the gap between pharmacological and surgical interventions for weight loss but also provide a neural basis for their combined use when each individually fails.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Chen Z, Deng X, Shi C, Jing H, Tian Y, Zhong J, Chen G, Xu Y, Luo Y, Zhu Y. GLP-1R-positive neurons in the lateral septum mediate the anorectic and weight-lowering effects of liraglutide in mice. J Clin Invest 2024; 134:e178239. [PMID: 39225090 PMCID: PMC11364389 DOI: 10.1172/jci178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is approved for obesity treatment, but the specific neuronal sites that contribute to its therapeutic effects remain elusive. Here, we show that GLP-1 receptor-positive (GLP-1R-positive) neurons in the lateral septum (LSGLP-1R) play a critical role in mediating the anorectic and weight-loss effects of liraglutide. LSGLP-1R neurons were robustly activated by liraglutide, and chemogenetic activation of these neurons dramatically suppressed feeding. Targeted knockdown of GLP-1 receptors within the LS, but not in the hypothalamus, substantially attenuated liraglutide's ability to inhibit feeding and lower body weight. The activity of LSGLP-1R neurons rapidly decreased during naturalistic feeding episodes, while synaptic inactivation of LSGLP-1R neurons diminished the anorexic effects triggered by liraglutide. Together, these findings offer critical insights into the functional role of LSGLP-1R neurons in the physiological regulation of energy homeostasis and delineate their instrumental role in mediating the pharmacological efficacy of liraglutide.
Collapse
Affiliation(s)
- Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuijie Shi
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyang Jing
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jiafeng Zhong
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yixiao Luo
- Hunan Province People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Lu Y, Wang L, Luo F, Savani R, Rossi MA, Pang ZP. Dorsolateral septum GLP-1R neurons regulate feeding via lateral hypothalamic projections. Mol Metab 2024; 85:101960. [PMID: 38763494 PMCID: PMC11153235 DOI: 10.1016/j.molmet.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLSGLP-1R) that project to the lateral hypothalamic area (LHA) on food intake and determine the relationship with feeding regulation. METHODS Using chemogenetic manipulations, we assessed how activation or inhibition of dLSGLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLSGLP-1R →LHA projections in regulating food intake. RESULTS Chemogenetic inhibition of dLSGLP-1R neurons increases food intake. LHA is a major downstream target of dLSGLP-1R neurons. The dLSGLP-1R→LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLSGLP-1R→LHA projections modestly decreases food intake, optogenetic stimulation of the dLSGLP-1R→LHA projection terminals in the LHA rapidly suppresses feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLSGLP-1R →LHA GABA release. CONCLUSIONS Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity.
Collapse
Affiliation(s)
- Yi Lu
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Fang Luo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Rohan Savani
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Mark A Rossi
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Huang L, Sun Y, Luo C, Wang W, Shi S, Sun G, Ju P, Chen J. Characterizing defective lipid metabolism in the lateral septum of mice treated with olanzapine: implications for its side effects. Front Pharmacol 2024; 15:1419098. [PMID: 38948475 PMCID: PMC11211371 DOI: 10.3389/fphar.2024.1419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia significantly impacts cognitive and behavioral functions and is primarily treated with second-generation antipsychotics (SGAs) such as olanzapine. Despite their efficacy, these drugs are linked to serious metabolic side effects which can diminish patient compliance, worsen psychiatric symptoms and increase cardiovascular disease risk. This study explores the hypothesis that SGAs affect the molecular determinants of synaptic plasticity and brain activity, particularly focusing on the lateral septum (LS) and its interactions within hypothalamic circuits that regulate feeding and energy expenditure. Utilizing functional ultrasound imaging, RNA sequencing, and weighted gene co-expression network analysis, we identified significant alterations in the functional connection between the hypothalamus and LS, along with changes in gene expression in the LS of mice following prolonged olanzapine exposure. Our analysis revealed a module closely linked to increases in body weight and adiposity, featuring genes primarily involved in lipid metabolism pathways, notably Apoa1, Apoc3, and Apoh. These findings suggest that olanzapine may influence body weight and adiposity through its impact on lipid metabolism-related genes in the LS. Therefore, the neural circuits connecting the LS and LH, along with the accompanying alterations in lipid metabolism, are likely crucial factors contributing to the weight gain and metabolic side effects associated with olanzapine treatment.
Collapse
Affiliation(s)
- Lixuan Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Chao Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Si Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genmin Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
Lu Y, Wang L, Luo F, Savani R, Rossi MA, Pang ZP. Dorsolateral septum GLP-1R neurons regulate feeding via lateral hypothalamic projections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586855. [PMID: 38585874 PMCID: PMC10996601 DOI: 10.1101/2024.03.26.586855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLS GLP-1R ) and their downstream projections on food intake and determine the relationship with feeding regulation. Methods Using chemogenetic manipulations, we assessed how activation or inhibition of dLS GLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLS GLP-1R neurons to the lateral hypothalamic area (LHA) in regulating food intake. Results Chemogenetic inhibition of dLS GLP-1R neurons increases food intake. LHA is a major downstream target of dLS GLP-1R neurons. The dLS GLP-1R →LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLS GLP-1R →LHA projections modestly decreases food intake, optogenetic stimulation of the dLS GLP-1R →LHA projection terminals in the LHA rapidly suppressed feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLS GLP-1R →LHA GABA release. Conclusions Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity. Highlights Chemogenetic inhibition of dLS GLP-1R neurons boosts food intake in mice dLS GLP-1R neuron activation does not alter feeding, likely by collateral inhibition dLS GLP-1R neurons project to LHA and release GABA Activation of dLS GLP-1R →LHA axonal terminals suppresses food intake GLP-1R agonism enhances dLS GLP-1R →LHA GABA release via a presynaptic mechanism.
Collapse
|
12
|
Savani R, Park E, Busannagari N, Lu Y, Kwon H, Wang L, Pang Z. Metabolic and behavioral alterations associated with viral vector-mediated toxicity in the paraventricular hypothalamic nucleus. Biosci Rep 2024; 44:BSR20231846. [PMID: 38227343 PMCID: PMC10830444 DOI: 10.1042/bsr20231846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024] Open
Abstract
OBJECTIVE Combining adeno-associated virus (AAV)-mediated expression of Cre recombinase with genetically modified floxed animals is a powerful approach for assaying the functional role of genes in regulating behavior and metabolism. Extensive research in diverse cell types and tissues using AAV-Cre has shown it can save time and avoid developmental compensation as compared to using Cre driver mouse line crossings. We initially sought to study the impact of ablation of corticotropin-releasing hormone (CRH) in the paraventricular hypothalamic nucleus (PVN) using intracranial AAV-Cre injection in adult animals. METHODS In this study, we stereotactically injected AAV8-hSyn-Cre or a control AAV8-hSyn-GFP both Crh-floxed and wild-type mouse PVN to assess behavioral and metabolic impacts. We then used immunohistochemical markers to systematically evaluate the density of hypothalamic peptidergic neurons and glial cells. RESULTS We found that delivery of one specific preparation of AAV8-hSyn-Cre in the PVN led to the development of obesity, hyperphagia, and anxiety-like behaviors. This effect occurred independent of sex and in both floxed and wild-type mice. We subsequently found that AAV8-hSyn-Cre led to neuronal cell death and gliosis at the site of viral vector injections. These behavioral and metabolic deficits were dependent on injection into the PVN. An alternatively sourced AAV-Cre did not reproduce the same results. CONCLUSIONS Our findings reveal that delivery of a specific batch of AAV-Cre could lead to cellular toxicity and lesions in the PVN that cause robust metabolic and behavioral impacts. These alterations can complicate the interpretation of Cre-mediated gene knockout and highlight the need for rigorous controls.
Collapse
Affiliation(s)
- Rohan Savani
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Erin Park
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Nidhi Busannagari
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Yi Lu
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, U.S.A
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Neuroscience and Cell Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, U.S.A
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, U.S.A
| |
Collapse
|
13
|
Savani R, Park E, Busannagari N, Lu Y, Kwon H, Wang L, Pang ZP. Metabolic and behavioral alterations associated with viral vector-mediated toxicity in the paraventricular hypothalamic nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564009. [PMID: 37961695 PMCID: PMC10634907 DOI: 10.1101/2023.10.26.564009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Combining adeno-associated virus (AAV)-mediated expression of Cre recombinase with genetically modified floxed animals is a powerful approach for assaying the functional role of genes in regulating behavior and metabolism. Extensive research in diverse cell types and tissues using AAV-Cre has shown it can save time and avoid developmental compensation as compared to using Cre driver mouse line crossings. We initially sought to study the impact of ablation of corticotropin-releasing hormone (CRH) in the paraventricular hypothalamic nucleus (PVN) using intracranial AAV-Cre injection in adult animals. Methods In this study, we stereotactically injected AAV8-hSyn-Cre or a control AAV8-hSyn-GFP both Crh-floxed and wild-type mouse PVN to assess behavioral and metabolic impacts. We then used immunohistochemical markers to systematically evaluate the density of hypothalamic peptidergic neurons and glial cells. Results We found that delivery of one specific preparation of AAV8-hSyn-Cre in the PVN led to the development of obesity, hyperphagia, and anxiety-like behaviors. This effect occurred independent of sex and in both floxed and wild-type mice. We subsequently found that AAV8-hSyn-Cre led to neuronal cell death and gliosis at the site of viral vector injections. These behavioral and metabolic deficits were dependent on injection into the PVN. An alternatively sourced AAV-Cre did not reproduce the same results. Conclusions Our findings reveal that delivery of a specific batch of AAV-Cre could lead to cellular toxicity and lesions in the PVN that cause robust metabolic and behavioral impacts. These alterations can complicate the interpretation of Cre-mediated gene knockout and highlight the need for rigorous controls.
Collapse
Affiliation(s)
- Rohan Savani
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Erin Park
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nidhi Busannagari
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yi Lu
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Fortin SM, Chen JC, Petticord MC, Ragozzino FJ, Peters JH, Hayes MR. The locus coeruleus contributes to the anorectic, nausea, and autonomic physiological effects of glucagon-like peptide-1. SCIENCE ADVANCES 2023; 9:eadh0980. [PMID: 37729419 PMCID: PMC10511187 DOI: 10.1126/sciadv.adh0980] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Increasing the therapeutic potential and reducing the side effects of U.S. Food and Drug Administration-approved glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat obesity require complete characterization of the central mechanisms that mediate both the food intake-suppressive and illness-like effects of GLP-1R signaling. Our studies, in the rat, demonstrate that GLP-1Rs in the locus coeruleus (LC) are pharmacologically and physiologically relevant for food intake control. Furthermore, agonism of LC GLP-1Rs induces illness-like behaviors, and antagonism of LC GLP-1Rs can attenuate GLP-1R-mediated nausea. Electrophysiological and behavioral pharmacology data support a role for LC GLP-1Rs expressed on presynaptic glutamatergic terminals in the control of feeding and malaise. Collectively, our work establishes the LC as a site of action for GLP-1 signaling and extends our understanding of the GLP-1 signaling mechanism necessary for the development of improved obesity pharmacotherapies.
Collapse
Affiliation(s)
- Samantha M. Fortin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack C. Chen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa C. Petticord
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Neuro-Vulnerability in Energy Metabolism Regulation: A Comprehensive Narrative Review. Nutrients 2023; 15:3106. [PMID: 37513524 PMCID: PMC10383861 DOI: 10.3390/nu15143106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This comprehensive narrative review explores the concept of neuro-vulnerability in energy metabolism regulation and its implications for metabolic disorders. The review highlights the complex interactions among the neural, hormonal, and metabolic pathways involved in the regulation of energy metabolism. The key topics discussed include the role of organs, hormones, and neural circuits in maintaining metabolic balance. The review investigates the association between neuro-vulnerability and metabolic disorders, such as obesity, insulin resistance, and eating disorders, considering genetic, epigenetic, and environmental factors that influence neuro-vulnerability and subsequent metabolic dysregulation. Neuroendocrine interactions and the neural regulation of food intake and energy expenditure are examined, with a focus on the impact of neuro-vulnerability on appetite dysregulation and altered energy expenditure. The role of neuroinflammation in metabolic health and neuro-vulnerability is discussed, emphasizing the bidirectional relationship between metabolic dysregulation and neuroinflammatory processes. This review also evaluates the use of neuroimaging techniques in studying neuro-vulnerability and their potential applications in clinical settings. Furthermore, the association between neuro-vulnerability and eating disorders, as well as its contribution to obesity, is examined. Potential therapeutic interventions targeting neuro-vulnerability, including pharmacological treatments and lifestyle modifications, are reviewed. In conclusion, understanding the concept of neuro-vulnerability in energy metabolism regulation is crucial for addressing metabolic disorders. This review provides valuable insights into the underlying neurobiological mechanisms and their implications for metabolic health. Targeting neuro-vulnerability holds promise for developing innovative strategies in the prevention and treatment of metabolic disorders, ultimately improving metabolic health outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Madrid, Spain
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
16
|
Allingbjerg ML, Hansen SN, Secher A, Thomsen M. Glucagon-like peptide-1 receptors in nucleus accumbens, ventral hippocampus, and lateral septum reduce alcohol reinforcement in mice. Exp Clin Psychopharmacol 2023; 31:612-620. [PMID: 36480394 PMCID: PMC10198891 DOI: 10.1037/pha0000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists can decrease alcohol intake by central mechanisms that are still poorly understood. The lateral septum (LS) and the ventral/caudal part of the hippocampus are enriched in GLP-1 receptors, and activity in these regions was shown to modulate reward-related behaviors. Using microinfusions of the GLP-1 receptor agonist exendin-4 in mice trained to self-administer oral alcohol in an operant assay, we tested whether pharmacological stimulation of GLP-1 receptors in hippocampus and LS decrease alcohol self-administration. We report that infusion of exendin-4 in the ventral hippocampus or LS was sufficient to reduce alcohol self-administration with as large effect sizes as we previously reported with systemic exendin-4 administration. Infusion of exendin-4 into the nucleus accumbens also reduced alcohol self-administration, as anticipated based on earlier reports, while infusion of exendin-4 into the caudate-putamen (dorsal striatum) had little effect, consistent with lack of GLP-1 receptor expression in this region. The distribution of exendin-4 after infusion into the LS or caudate putamen was visualized using a fluorescently labeled ligand. These findings add to our understanding of the circuit-level mechanisms underlying the ability of GLP-1 receptor agonists to reduce alcohol self-administration. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Marie-Louise Allingbjerg
- Laboratory of Neuropsychiatry, University Hospital of Copenhagen, Mental Health Services, Capital Region of Denmark
| | | | | | - Morgane Thomsen
- Laboratory of Neuropsychiatry, University Hospital of Copenhagen, Mental Health Services, Capital Region of Denmark
| |
Collapse
|
17
|
Xu Y, Jiang Z, Li H, Cai J, Jiang Y, Otiz-Guzman J, Xu Y, Arenkiel BR, Tong Q. Lateral septum as a melanocortin downstream site in obesity development. Cell Rep 2023; 42:112502. [PMID: 37171957 DOI: 10.1016/j.celrep.2023.112502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023] Open
Abstract
The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.
Collapse
Affiliation(s)
- Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Décarie-Spain L, Liu CM, Lauer LT, Subramanian K, Bashaw AG, Klug ME, Gianatiempo IH, Suarez AN, Noble EE, Donohue KN, Cortella AM, Hahn JD, Davis EA, Kanoski SE. Ventral hippocampus-lateral septum circuitry promotes foraging-related memory. Cell Rep 2022; 40:111402. [PMID: 36170832 PMCID: PMC9605732 DOI: 10.1016/j.celrep.2022.111402] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Remembering the location of a food or water source is essential for survival. Here, we reveal that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-to-LS signaling impairs spatial memory retention for food or water location. This neural pathway selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial memory for escape location in a negative reinforcement procedure, food intake, or social and olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the neural substrates controlling spatial memory are outcome specific based on reinforcer modality.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Clarissa M Liu
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Keshav Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Alexander G Bashaw
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Isabella H Gianatiempo
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Kristen N Donohue
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Alyssa M Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Joel D Hahn
- Neurobiology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Elizabeth A Davis
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
19
|
Olivares-Barraza R, Marcos JL, Martínez-Pinto J, Fuenzalida M, Bravo JA, Gysling K, Sotomayor-Zárate R. Corticotropin-releasing factor system in the lateral septum: Implications in the pathophysiology of obesity. Front Mol Neurosci 2022; 15:1020903. [PMID: 36204135 PMCID: PMC9530601 DOI: 10.3389/fnmol.2022.1020903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a pandemic associated with lifestyles changes. These include excess intake of obesogenic foods and decreased physical activity. Brain areas, like the lateral hypothalamus (LH), ventral tegmental area (VTA), and nucleus accumbens (NAcc) have been linked in both homeostatic and hedonic control of feeding in experimental models of diet-induced obesity. Interestingly, these control systems are regulated by the lateral septum (LS), a relay of γ-aminobutyric (GABA) acid neurons (GABAergic neurons) that inhibit the LH and GABAergic interneurons of the VTA. Furthermore, the LS has a diverse receptor population for neurotransmitters and neuropeptides such as dopamine, glutamate, GABA and corticotropin-releasing factor (CRF), among others. Particularly, CRF a key player in the stress response, has been related to the development of overweight and obesity. Moreover, evidence shows that LS neurons neurophysiologically regulate reward and stress, although there is little evidence of LS taking part in homeostatic and hedonic feeding. In this review, we discuss the evidence that supports the role of LS and CRF on feeding, and how alterations in this system contribute to weight gain obesity.
Collapse
Affiliation(s)
- Rossy Olivares-Barraza
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - José Luis Marcos
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar, Chile
| | - Jonathan Martínez-Pinto
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Marco Fuenzalida
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Javier A. Bravo
- Facultad de Ciencias, Grupo de NeuroGastroBioquímica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Katia Gysling
- Facultad de Ciencias Biológicas, Departmento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ramón Sotomayor-Zárate
- Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Ramón Sotomayor-Zárate,
| |
Collapse
|
20
|
Stimulation of GABA Receptors in the Lateral Septum Rapidly Elicits Food Intake and Mediates Natural Feeding. Brain Sci 2022; 12:brainsci12070848. [PMID: 35884655 PMCID: PMC9312437 DOI: 10.3390/brainsci12070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity and eating disorders makes identifying neural substrates controlling eating and regulating body weight a priority. Recent studies have highlighted the role of the lateral septum (LS) in eating control mechanisms. The current study explored the roles of gamma-aminobutyric acid (GABA) receptors within the LS in the control of food intake. Experiments with a rat model (n ≥ 11/group) showed that LS microinjection of the GABAA receptor agonist, muscimol, and the GABAB receptor agonist, baclofen hydrochloride (baclofen), elicited intense, dose-dependent feeding. In contrast, LS pretreatment with the GABAA receptor antagonist, picrotoxin, markedly reduced the muscimol-elicited feeding, and pretreatment injections with the GABAB receptor antagonist, 2-hydroxysaclofen (2-OH saclofen), reduced the baclofen evoked response. Next, we showed that picrotoxin injection at the beginning of the dark phase of the light-dark cycle—when rats show a burst of spontaneous eating—reduced naturally occurring feeding, whereas 2-OH saclofen was ineffective. These results indicate that the activation of LS GABAA and GABAB receptors strongly stimulates feeding and suggests potential roles in feeding control neurocircuitry. In particular, our evidence indicates that endogenous LS GABA and GABAA receptors may be involved in mediating naturally occurring nocturnal feeding.
Collapse
|
21
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
22
|
Azevedo EP, Ivan VJ, Friedman JM, Stern SA. Higher-Order Inputs Involved in Appetite Control. Biol Psychiatry 2022; 91:869-878. [PMID: 34593204 PMCID: PMC9704062 DOI: 10.1016/j.biopsych.2021.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/01/2023]
Abstract
The understanding of the neural control of appetite sheds light on the pathogenesis of eating disorders such as anorexia nervosa and obesity. Both diseases are a result of maladaptive eating behaviors (overeating or undereating) and are associated with life-threatening health problems. The fine regulation of appetite involves genetic, physiological, and environmental factors, which are detected and integrated in the brain by specific neuronal populations. For centuries, the hypothalamus has been the center of attention in the scientific community as a key regulator of appetite. The hypothalamus receives and sends axonal projections to several other brain regions that are important for the integration of sensory and emotional information. These connections ensure that appropriate behavioral decisions are made depending on the individual's emotional state and environment. Thus, the mechanisms by which higher-order brain regions integrate exteroceptive information to coordinate feeding is of great importance. In this review, we will focus on the functional and anatomical projections connecting the hypothalamus to the limbic system and higher-order brain centers in the cortex. We will also address the mechanisms by which specific neuronal populations located in higher-order centers regulate appetite and how maladaptive eating behaviors might arise from altered connections among cortical and subcortical areas with the hypothalamus.
Collapse
Affiliation(s)
- Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York.
| | - Violet J Ivan
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York; Howard Hughes Medical Institute, New York, New York
| | - Sarah A Stern
- Integrative Neural Circuits and Behavior Research Group, Max Planck Florida Institute for Neuroscience, Jupiter, Florida.
| |
Collapse
|
23
|
Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022; 100:1422-1437. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
The lateral septum (LS) is a structure in the midline of the brain that is interconnected with areas associated with stress and feeding. This review highlights the role of the LS in anxiety, depression, and eating disorders and their comorbidity. There is a prevailing view that the LS is anxiolytic. This review finds that the LS is both anxiolytic and anxiogenic. Furthermore, the LS can promote and inhibit feeding. Given these shared roles, the LS represents a common site for the comorbidity of neuropsychiatric disorders, and therefore a potential pharmacological target. This is crucial since currently available treatments are not always effective. Corticotrophin-releasing factor 2 antagonists are potential drugs for the treatment of anxiety and anorexia and require further research. Furthermore, other drugs currently in trials for binge eating, such as alpha-adrenergic agonists, may in fact promote food intake. It is hoped that the advancements in chemo- and optogenetic techniques will allow future studies to profile the specific neural connections of the LS and their function. This information could facilitate our understanding of the underlying mechanisms, and therefore pharmacological targets, of these psychiatric conditions.
Collapse
|
24
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
25
|
Rodrigues VST, Moura EG, Peixoto TC, Soares P, Lopes BP, Bertasso IM, Silva BS, Cabral S, Kluck GEG, Atella GC, Trindade PL, Daleprane JB, Oliveira E, Lisboa PC. The model of litter size reduction induces long-term disruption of the gut-brain axis: An explanation for the hyperphagia of Wistar rats of both sexes. Physiol Rep 2022; 10:e15191. [PMID: 35146951 PMCID: PMC8831958 DOI: 10.14814/phy2.15191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 04/26/2023] Open
Abstract
The gut microbiota affects the host's metabolic phenotype, impacting health and disease. The gut-brain axis unites the intestine with the centers of hunger and satiety, affecting the eating behavior. Deregulation of this axis can lead to obesity onset. Litter size reduction is a well-studied model for infant obesity because it causes overnutrition and programs for obesity. We hypothesize that animals raised in small litters (SL) have altered circuitry between the intestine and brain, causing hyperphagia. We investigated vagus nerve activity, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), gastrointestinal (GI) hormone receptors, and content of bacterial phyla and short-chain fatty acids (SCFAs) in the feces of adult male and female Wistar rats overfed during lactation. On the 3rd day after birth, litter size was reduced to 3 pups/litter (SL males or SL females) until weaning. Controls had normal litter size (10 pups/litter: 5 males and 5 females). The rats were killed at 5 months of age. The male and female offspring were analyzed separately. The SL group of both sexes showed higher food consumption and body adiposity than the respective controls. SL animals presented dysbiosis (increased Firmicutes, decreased Bacteroidetes) and had increased vagus nerve activity. Only the SL males had decreased hypothalamic GLP-1 receptor expression, while only the SL females had lower acetate and propionate in the feces and higher CCK receptor expression in the hypothalamus. Thus, overfeeding during lactation differentially changes the gut-brain axis, contributing to hyperphagia of the offspring of both sexes.
Collapse
Affiliation(s)
- Vanessa S. T. Rodrigues
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Egberto G. Moura
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Thamara C. Peixoto
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Patricia N. Soares
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Bruna P. Lopes
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Iala M. Bertasso
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Beatriz S. Silva
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - S. S. Cabral
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - G. E. G. Kluck
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - G. C. Atella
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - P. L. Trindade
- Laboratory for studies of Interactions between Nutrition and GeneticsNutrition InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | - J. B. Daleprane
- Laboratory for studies of Interactions between Nutrition and GeneticsNutrition InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Elaine Oliveira
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Patricia Cristina Lisboa
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
26
|
Zeng N, Cutts EJ, Lopez CB, Kaur S, Duran M, Virkus SA, Hardaway JA. Anatomical and Functional Characterization of Central Amygdala Glucagon-Like Peptide 1 Receptor Expressing Neurons. Front Behav Neurosci 2022; 15:724030. [PMID: 35002645 PMCID: PMC8739476 DOI: 10.3389/fnbeh.2021.724030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Glucagon-like peptide 1 receptors (GLP-1Rs) are highly expressed in the brain and are responsible for mediating the acute anorexigenic actions of widely prescribed GLP-1R agonists. Neurobiological efforts to localize the hypophagic effects of GLP-1R agonists in the brain have mainly focused on the hypothalamus and hindbrain. In this study, we performed a deep anatomical and neurophysiological characterization of GLP-1Rs in the central nucleus of the amygdala (CeA). At an mRNA level, we found that Glp1r is diffusely coexpressed in known CeA subpopulations like protein kinase c δ (Prkcd), somatostatin (Sst), or tachykinin2 (Tac2). At a cellular level, we used Glp1r-Cre mice and viral Cre-dependent tracing to map the anatomical positions of GLP-1R cells across the rostral-caudal axis of the CeA and in CeA subdivisions. We found that Glp1rCeA cells are highly enriched in the medial subdivision of the CeA (CeM). Using whole cell patch clamp electrophysiology, we found that Glp1rCeA neurons are characterized by the presence of Ih-like currents and resemble a low threshold bursting neuronal subtype in response to hyperpolarizing and depolarizing current injections. We observed sex differences in the magnitude of Ih-like currents and membrane capacitance. At rest, we observed that nearly half of Glp1rCeA neurons are spontaneously active. We observed that active and inactive neurons display significant differences in excitability even when normalized to an identical holding potential. Our data are the first to deeply characterize the pattern of Glp1r in the CeA and study the neurophysiological characteristics of CeA neurons expressing Glp1r. Future studies leveraging these data will be important to understanding the impact of GLP-1R agonists on feeding and motivation.
Collapse
Affiliation(s)
- Ningxiang Zeng
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elam J Cutts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian B Lopez
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Simran Kaur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Putting Together Pieces of the Lateral Septum: Multifaceted Functions and Its Neural Pathways. eNeuro 2021; 8:ENEURO.0315-21.2021. [PMID: 34764187 PMCID: PMC8647703 DOI: 10.1523/eneuro.0315-21.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023] Open
Abstract
The lateral septum (LS) is implicated as a hub that regulates a variety of affects, such as reward, feeding, anxiety, fear, sociability, and memory. However, it remains unclear how the LS, previously treated as a structure of homogeneity, exhibits such multifaceted functions. Emerging evidence suggests that different functions of the LS are mediated largely by its diverse input and output connections. It has also become clear that the LS is a heterogeneous region, where its dorsal and ventral poles play dissociable and often opposing roles. This functional heterogeneity can often be explained by distinct dorsal and ventral hippocampal inputs along the LS dorsoventral axis, as well as antagonizing connections between LS subregions. Similarly, outputs from LS subregions to respective downstream targets, such as hypothalamic, preoptic, and tegmental areas, also account for this functional heterogeneity. In this review, we provide an updated perspective on LS subregion classification, connectivity, and functions. We also identify key questions that have yet to be addressed in the field.
Collapse
|
28
|
Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab 2021; 57:101351. [PMID: 34626851 PMCID: PMC8859548 DOI: 10.1016/j.molmet.2021.101351] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP1RA) augment glucose-dependent insulin release and reduce glucagon secretion and gastric emptying, enabling their successful development for the treatment of type 2 diabetes (T2D). These agents also inhibit food intake and reduce body weight, fostering investigation of GLP1RA for the treatment of obesity. SCOPE OF REVIEW Here I discuss the physiology of Glucagon-like peptide-1 (GLP-1) action in the control of food intake in animals and humans, highlighting the importance of gut vs. brain-derived GLP-1 for the control of feeding and body weight. The widespread distribution and function of multiple GLP-1 receptor (GLP1R) populations in the central and autonomic nervous system are outlined, and the importance of pathways controlling energy expenditure in preclinical studies vs. reduction of food intake in both animals and humans is highlighted. The relative contributions of vagal afferent pathways vs. GLP1R+ populations in the central nervous system for the physiological reduction of food intake and the anorectic response to GLP1RA are compared and reviewed. Key data enabling the development of two GLP1RA for obesity therapy (liraglutide 3 mg daily and semaglutide 2.4 mg once weekly) are discussed. Finally, emerging data potentially supporting the combination of GLP-1 with additional peptide epitopes in unimolecular multi-agonists, as well as in fixed-dose combination therapies, are highlighted. MAJOR CONCLUSIONS The actions of GLP-1 to reduce food intake and body weight are highly conserved in obese animals and humans, in both adolescents and adults. The well-defined mechanisms of GLP-1 action through a single G protein-coupled receptor, together with the extensive safety database of GLP1RA in people with T2D, provide reassurance surrounding the long-term use of these agents in people with obesity and multiple co-morbidities. GLP1RA may also be effective in conditions associated with obesity, such as cardiovascular disease and non-alcoholic steatohepatitis (NASH). Progressive improvements in the efficacy of GLP1RA suggest that GLP-1-based therapies may soon rival bariatric surgery as viable options for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
29
|
Guerrero-Hreins E, Goldstone AP, Brown RM, Sumithran P. The therapeutic potential of GLP-1 analogues for stress-related eating and role of GLP-1 in stress, emotion and mood: a review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110303. [PMID: 33741445 DOI: 10.1016/j.pnpbp.2021.110303] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Stress and low mood are powerful triggers for compulsive overeating, a maladaptive form of eating leading to negative physical and mental health consequences. Stress-vulnerable individuals, such as people with obesity, are particularly prone to overconsumption of high energy foods and may use it as a coping mechanism for general life stressors. Recent advances in the treatment of obesity and related co-morbidities have focused on the therapeutic potential of anorexigenic gut hormones, such as glucagon-like peptide 1 (GLP-1), which acts both peripherally and centrally to reduce energy intake. Besides its appetite suppressing effect, GLP-1 acts on areas of the brain involved in stress response and emotion regulation. However, the role of GLP-1 in emotion and stress regulation, and whether it is a viable treatment for stress-induced compulsive overeating, has yet to be established. A thorough review of the pre-clinical literature measuring markers of stress, anxiety and mood after GLP-1 exposure points to potential divergent effects based on temporality. Specifically, acute GLP-1 injection consistently stimulates the physiological stress response in rodents whereas long-term exposure indicates anxiolytic and anti-depressive benefits. However, the limited clinical evidence is not as clear cut. While prolonged GLP-1 analogue treatment in people with type 2 diabetes improved measures of mood and general psychological wellbeing, the mechanisms underlying this may be confounded by associated weight loss and improved blood glucose control. There is a paucity of longitudinal clinical literature on mechanistic pathways by which stress influences eating behavior and how centrally-acting gut hormones such as GLP-1, can modify these. (250).
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia; PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Robyn M Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Victoria, Australia; Dept. of Endocrinology, Austin Health, Victoria, Australia.
| |
Collapse
|
30
|
Dipeptidyl Peptidase (DPP)-IV Inhibitors with Antioxidant Potential Isolated from Natural Sources: A Novel Approach for the Management of Diabetes. Pharmaceuticals (Basel) 2021; 14:ph14060586. [PMID: 34207217 PMCID: PMC8234173 DOI: 10.3390/ph14060586] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 02/02/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia that is predominantly caused by insulin resistance or impaired insulin secretion, along with disturbances in carbohydrate, fat and protein metabolism. Various therapeutic approaches have been used to treat diabetes, including improvement of insulin sensitivity, inhibition of gluconeogenesis, and decreasing glucose absorption from the intestines. Recently, a novel approach has emerged using dipeptidyl peptidase-IV (DPP-IV) inhibitors as a possible agent for the treatment of T2DM without producing any side effects, such as hypoglycemia and exhaustion of pancreatic β-cells. DPP-IV inhibitors improve hyperglycemic conditions by stabilizing the postprandial level of gut hormones such as glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides, which function as incretins to help upregulate insulin secretion and β-cell mass. In this review, we summarized DPP-IV inhibitors and their mechanism of inhibition, activities of those isolated from various natural sources, and their capacity to overcome oxidative stress in disease conditions.
Collapse
|
31
|
Maejima Y, Yokota S, Shimizu M, Horita S, Kobayashi D, Hazama A, Shimomura K. The deletion of glucagon-like peptide-1 receptors expressing neurons in the dorsomedial hypothalamic nucleus disrupts the diurnal feeding pattern and induces hyperphagia and obesity. Nutr Metab (Lond) 2021; 18:58. [PMID: 34098999 PMCID: PMC8186199 DOI: 10.1186/s12986-021-00582-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Feeding rhythm disruption contributes to the development of obesity. The receptors of glucagon-like peptide-1 (GLP-1) are distributed in the wide regions of the brain. Among these regions, GLP-1 receptors (GLP-1R) are expressed in the dorsomedial hypothalamic nucleus (DMH) which are known to be associated with thermogenesis and circadian rhythm development. However, the physiological roles of GLP-1R expressing neurons in the DMH remain elusive. METHODS To examine the physiological role of GLP-1R expressing neurons in the DMH, saporin-conjugated exenatide4 was injected into rat brain DMH to delete GLP-1R-positive neurons. Subsequently, locomotor activity, diurnal feeding pattern, amount of food intake and body weight were measured. RESULTS This deletion of GLP-1R-positive neurons in the DMH induced hyperphagia, the disruption of diurnal feeding pattern, and obesity. The deletion of GLP-1R expressing neurons also reduced glutamic acid decarboxylase 67 and cholecystokinin A receptor mRNA levels in the DMH. Also, it reduced the c-fos expression after refeeding in the suprachiasmatic nucleus (SCN). Thirty percent of DMH neurons projecting to the SCN expressed GLP-1R. Functionally, refeeding after fasting induced c-fos expression in the SCN projecting neurons in the DMH. As for the projection to the DMH, neurons in the nucleus tractus solitarius (NTS) were found to be projecting to the DMH, with 33% of those neurons being GLP-1-positive. Refeeding induced c-fos expression in the DMH projecting neurons in the NTS. CONCLUSION These findings suggest that GLP-1R expressing neurons in the DMH may mediate feeding termination. In addition, this meal signal may be transmitted to SCN neurons and change the neural activities.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Masaru Shimizu
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Daisuke Kobayashi
- Department of Cellular and Integrative Physiology, Fukushima University School of Medicine, Fukushima, 960-1295, Japan
| | - Akihiro Hazama
- Department of Cellular and Integrative Physiology, Fukushima University School of Medicine, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| |
Collapse
|
32
|
Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021; 179:571-583. [PMID: 33990944 DOI: 10.1111/bph.15535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is well known as a gut hormone and also acts as a neuropeptide, produced in a discrete population of caudal brainstem neurons that project widely throughout the brain. GLP-1 receptors are expressed in many brain areas of relevance to energy balance, and stimulation of these receptors at many of these sites potently suppresses food intake. This review surveys the current evidence for effects mediated by GLP-1 receptors on feeding behaviour at a wide array of brain sites and discusses behavioural and neurophysiological mechanisms for the effects identified thus far. Taken together, it is clear that GLP-1 receptor activity in the brain can influence feeding by diverse means, including mediation of gastrointestinal satiation and/or satiety signalling, suppression of motivation for food reward, induction of nausea and mediation of restraint stress-induced hypophagia, but many questions about the organization of this system remain.
Collapse
Affiliation(s)
- Diana L Williams
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
33
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2021; 14:614884. [PMID: 33536884 PMCID: PMC7848227 DOI: 10.3389/fnbeh.2020.614884] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
The role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: “Web of Science” and “Pubmed” were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: Current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.
Collapse
Affiliation(s)
| | - Arya Yigit
- School of Medicine, Koç University, Istanbul, Turkey
| | - Ramazan Efe Dogruoz
- Department of Neuroscience, University of Chicago, Chicago, IL, United States
| | - Hale Yapici-Eser
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
35
|
López-Ferreras L, Eerola K, Shevchouk OT, Richard JE, Nilsson FH, Jansson LE, Hayes MR, Skibicka KP. The supramammillary nucleus controls anxiety-like behavior; key role of GLP-1R. Psychoneuroendocrinology 2020; 119:104720. [PMID: 32563174 DOI: 10.1016/j.psyneuen.2020.104720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are among the most prevalent categories of mental illnesses. The gut-brain axis, along with gastrointestinally-derived neuropeptides, like glucagon-like peptide-1 (GLP-1), are emerging as potential key regulators of emotionality, including anxiety behavior. However, the neuroanatomical substrates from which GLP-1 exerts its anxiogenic effect remain poorly characterized. Here we focus on a relatively new candidate nucleus, the supramammillary nucleus (SuM), located just caudal to the lateral hypothalamus and ventral to the ventral tegmental area. Our focus on the SuM is supported by previous data showing expression of GLP-1R mRNA throughout the SuM and activation of the SuM during anxiety-inducing behaviors in rodents. Data show that chemogenetic activation of neurons in the SuM results in an anxiolytic response in male and female rats. In contrast, selective activation of SuM GLP-1R, by microinjection of a GLP-1R agonist exendin-4 into the SuM resulted in potent anxiety-like behavior, measured in both open field and elevated plus maze tests in male and female rats. This anxiogenic effect of GLP-1R activation persisted after high-fat diet exposure. Importantly, reduction of GLP-1R expression in the SuM, by AAV-shRNA GLP-1R knockdown, resulted in a clear anxiolytic response; an effect only observed in female rats. Our data identify a new neural substrate for GLP-1 control of anxiety-like behavior and indicate that the SuM GLP-1R are sufficient for anxiogenesis in both sexes, but necessary only in females.
Collapse
Affiliation(s)
- L López-Ferreras
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - K Eerola
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Research Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - O T Shevchouk
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - J E Richard
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - F H Nilsson
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - L E Jansson
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - M R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - K P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
36
|
Song SY, Zhai XM, Dai JH, Lu LL, Shan CJ, Hong J, Cao JL, Zhang LC. Novel Projections to the Cerebrospinal Fluid-Contacting Nucleus From the Subcortex and Limbic System in Rat. Front Neuroanat 2020; 14:57. [PMID: 32973466 PMCID: PMC7468392 DOI: 10.3389/fnana.2020.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: To identify the novel projections received by the cerebrospinal fluid (CSF)-contacting nucleus from the subcortex and limbic system to understand the biological functions of the nucleus. Methods: The cholera toxin subunit B (CB), a retrograde tracer, was injected into the CSF-contacting nucleus in Sprague–Dawley rats. After 7–10 days, the surviving rats were perfused, and the whole brain and spinal cord were sliced for CB immunofluorescence detection. The CB-positive neurons in the subcortex and limbic system were observed under a fluorescence microscope, followed by 3D reconstructed with the imaris software. Results: CB-positive neurons were found in the basal forebrain, septum, periventricular organs, preoptic area, and amygdaloid structures. Five functional areas including 46 sub-regions sent projections to the CSF-contacting nucleus. However, the projections had different densities, ranging from sparse to moderate, to dense. Conclusions: According to the projections from the subcortex and limbic system, we hypothesize that the CSF-contacting nucleus participates in emotion, cognition, homeostasis regulation, visceral activity, pain, and addiction. In this study, we illustrate the novel projections from the subcortex and limbic system to the CSF-contacting nucleus, which underlies the diverse and complicated circuits of the nucleus in body regulations.
Collapse
|
37
|
Grill HJ. A Role for GLP-1 in Treating Hyperphagia and Obesity. Endocrinology 2020; 161:bqaa093. [PMID: 32516384 PMCID: PMC7899438 DOI: 10.1210/endocr/bqaa093] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic recurring disease whose prevalence has almost tripled over the past 40 years. In individuals with obesity, there is significant increased risk of morbidity and mortality, along with decreased quality of life. Increased obesity prevalence results, at least partly, from the increased global food supply that provides ubiquitous access to tasty, energy-dense foods. These hedonic foods and the nonfood cues that through association become reward predictive cues activate brain appetitive control circuits that drive hyperphagia and weight gain by enhancing food-seeking, motivation, and reward. Behavioral therapy (diet and lifestyle modifications) is the recommended initial treatment for obesity, yet it often fails to achieve meaningful weight loss. Furthermore, those who lose weight regain it over time through biological regulation. The need to effectively treat the pathophysiology of obesity thus centers on biologically based approaches such as bariatric surgery and more recently developed drug therapies. This review highlights neurobiological aspects relevant to obesity causation and treatment by emphasizing the common aspects of the feeding-inhibitory effects of multiple signals. We focus on glucagon like peptide-1 receptor (GLP-1R) signaling as a promising obesity treatment target by discussing the activation of intestinal- and brain-derived GLP-1 and GLP-1R expressing central nervous system circuits resulting from normal eating, bariatric surgery, and GLP-1R agonist drug therapy. Given the increased availability of energy-dense foods and frequent encounters with cues that drive hyperphagia, this review also describes how bariatric surgery and GLP-1R agonist therapies influence food reward and the motivational drive to overeat.
Collapse
Affiliation(s)
- Harvey J Grill
- Institute of Diabetes, Obesity and Metabolism, Graduate Groups for Psychology and Neuroscience, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
38
|
Vestlund J, Jerlhag E. The glucagon-like peptide-1 receptor agonist, exendin-4, reduces sexual interaction behaviors in a brain site-specific manner in sexually naïve male mice. Horm Behav 2020; 124:104778. [PMID: 32450068 DOI: 10.1016/j.yhbeh.2020.104778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 01/26/2023]
Abstract
Besides reducing food intake and controlling energy balance, glucagon-like peptide-1 (GLP-1) suppresses the reinforcing properties of palatable foods and addictive drugs. This reduction in reward involves activation of GLP-1 receptors (GLP-1R) within areas processing natural and artificial rewards, including the laterodorsal tegmental area (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc) shell. These areas are part of a neurocircuitry mediating reward from addictive drugs and natural rewards including sexual behaviors. The male sexual encounter with a female includes three different stages: a pre-sexual interaction phase with social behaviors, which is followed by a sexual interaction phase with mounting and intromission of the female, and ends with a post-sexual interaction phase characterized by self-grooming behaviors. Albeit GLP-1 modulates reward, the influence of GLP-1R activation on sexual interaction is unknown. Thus, we infused the GLP-1R agonist, exendin-4 (Ex4), into sub-regions of the reward neurocircuitry in sexually naïve male mice and recorded their novel interaction with an estrus female. We found that Ex4 into the LDTg, posterior VTA or NAc shell reduces pre-sexual interaction behaviors and activation of GLP-1R in the LDTg or posterior VTA decreases sexual interaction behaviors. Contrarily, Ex4 infusion into anterior VTA does not influence these behaviors. Furthermore, self-grooming behaviors are not influenced by activation of GLP-1R in the aforementioned areas. These data highlight that activation of GLP-1R in reward-related areas reduces different aspects of the sexual interaction chain and further supports a role of the GLP-1R in social behaviors.
Collapse
Affiliation(s)
- Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
39
|
Calderwood MT, Tseng A, Glenn Stanley B. Lateral septum mu opioid receptors in stimulation of feeding. Brain Res 2020; 1734:146648. [PMID: 31926909 DOI: 10.1016/j.brainres.2020.146648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Stimulation of mu opioid receptors using drugs like morphine can increase eating when injected into multiple brain regions including the lateral septum (LS). The LS has been classically associated with reward, anxiety and fearful behaviors but more recently has also received attention with regard to control of feeding. To investigate the role of LS opioid receptors in feeding, we injected mu, delta, and kappa opioid receptor agonists and a mu specific receptor antagonist directly into the LS of rats. We expected that if feeding is mu receptor specific then only mu receptor agonists would increase feeding. We also hypothesized that mu receptor antagonists would suppress the feeding elicited by mu receptor agonists like morphine. Further, because the LS is densely populated with GABA receptors, we used the GABAA receptor agonist muscimol to assess the effect of inhibition of LS neurons on feeding. Our results show that the mu receptor agonist morphine and the specific mu agonist DAMGO reliably and significantly increase feeding behavior across doses tested, while delta and kappa agonists were ineffective. CTAP, a specific mu receptor antagonist, at low doses unexpectedly increased morphine-elicited feeding but at high doses decreased morphine's effect, consistent with mediation by mu receptors. Finally, muscimol rapidly elicited feeding, suggesting a role for LS GABAA receptors in feeding stimulation. These findings suggest that mu opioid receptors in the LS play complex roles in feeding and that neural inhibition may be a mechanism by which they elicit feeding.
Collapse
Affiliation(s)
- Michelle T Calderwood
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States.
| | - Andy Tseng
- Neuroscience Graduate Program, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - B Glenn Stanley
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States; Neuroscience Graduate Program, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Molecular, Cell, System Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States
| |
Collapse
|
40
|
Graham DL, Durai HH, Trammell TS, Noble BL, Mortlock DP, Galli A, Stanwood GD. A novel mouse model of glucagon-like peptide-1 receptor expression: A look at the brain. J Comp Neurol 2020; 528:2445-2470. [PMID: 32170734 DOI: 10.1002/cne.24905] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone with a number of functions to maintain energy homeostasis and contribute to motivated behavior, both peripherally and within the central nervous system (CNS). These functions, which include insulin secretion, gastric emptying, satiety, and the hedonic aspects of food and drug intake, are primarily mediated through stimulation of the GLP-1 receptor. While this receptor plays an important role in a variety of physiological outcomes, data regarding its CNS expression has been primarily limited to regional receptor binding and single-label transcript expression studies. We thus developed a bacterial artificial chromosome transgenic mouse, in which expression of a red fluorescent protein (mApple) is driven by the GLP-1R promoter. Using this reporter mouse, we characterized the regional and cellular expression patterns of GLP-1R expressing cells in the CNS, using double-label immunohistochemistry and in situ hybridization. GLP-1R-expressing cells were enriched in several key brain regions and circuits, including the lateral septum, hypothalamus, amygdala, bed nucleus of the stria terminalis, hippocampus, ventral midbrain, periaqueductal gray, and cerebral cortex. In most regions, GLP-1R primarily colocalized with GABAergic neurons, except within some regions such as the hippocampus, where it was co-expressed in glutamatergic neurons. GLP-1R-mApple cells were highly co-expressed with 5-HT3 receptor-containing neurons within the cortex and striatum, as well as with dopamine receptor- and calbindin-expressing cells within the lateral septum, the brain region in which GLP-1R is most highly expressed. In this manuscript, we provide detailed images of GLP-1R-mApple expression and distribution within the brain and characterization of these neurons.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Heather H Durai
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor S Trammell
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Brenda L Noble
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Douglas P Mortlock
- Vanderbilt Genetics Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregg D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
41
|
Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, Buckley ST, Farkas E, Fekete C, Frederiksen KS, Helms HCC, Jeppesen JF, John LM, Pyke C, Nøhr J, Lu TT, Polex-Wolf J, Prevot V, Raun K, Simonsen L, Sun G, Szilvásy-Szabó A, Willenbrock H, Secher A, Knudsen LB, Hogendorf WFJ. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020; 5:133429. [PMID: 32213703 DOI: 10.1172/jci.insight.133429] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Semaglutide, a glucagon-like peptide 1 (GLP-1) analog, induces weight loss, lowers glucose levels, and reduces cardiovascular risk in patients with diabetes. Mechanistic preclinical studies suggest weight loss is mediated through GLP-1 receptors (GLP-1Rs) in the brain. The findings presented here show that semaglutide modulated food preference, reduced food intake, and caused weight loss without decreasing energy expenditure. Semaglutide directly accessed the brainstem, septal nucleus, and hypothalamus but did not cross the blood-brain barrier; it interacted with the brain through the circumventricular organs and several select sites adjacent to the ventricles. Semaglutide induced central c-Fos activation in 10 brain areas, including hindbrain areas directly targeted by semaglutide, and secondary areas without direct GLP-1R interaction, such as the lateral parabrachial nucleus. Automated analysis of semaglutide access, c-Fos activity, GLP-1R distribution, and brain connectivity revealed that activation may involve meal termination controlled by neurons in the lateral parabrachial nucleus. Transcriptomic analysis of microdissected brain areas from semaglutide-treated rats showed upregulation of prolactin-releasing hormone and tyrosine hydroxylase in the area postrema. We suggest semaglutide lowers body weight by direct interaction with diverse GLP-1R populations and by directly and indirectly affecting the activity of neural pathways involved in food intake, reward, and energy expenditure.
Collapse
Affiliation(s)
| | | | | | | | | | - Arian F Baquero
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | - Erzsébet Farkas
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Fekete
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Hans Christian C Helms
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | | | | | | | | | | | | | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | | | - Gao Sun
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | - Anett Szilvásy-Szabó
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Hanni Willenbrock
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | | | | | | |
Collapse
|
42
|
Tingley D, Buzsáki G. Routing of Hippocampal Ripples to Subcortical Structures via the Lateral Septum. Neuron 2020; 105:138-149.e5. [PMID: 31784288 PMCID: PMC6952543 DOI: 10.1016/j.neuron.2019.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023]
Abstract
The mnemonic functions of hippocampal sharp wave ripples (SPW-Rs) have been studied extensively. Because hippocampal outputs affect not only cortical but also subcortical targets, we examined the impact of SPW-Rs on the firing patterns of lateral septal (LS) neurons in behaving rats. A large fraction of SPW-Rs were temporally locked to high-frequency oscillations (HFOs) (120-180 Hz) in LS, with strongest coupling during non-rapid eye movement (NREM) sleep, followed by waking immobility. However, coherence and spike-local field potential (LFP) coupling between the two structures were low, suggesting that HFOs are generated locally within the LS GABAergic population. This hypothesis was supported by optogenetic induction of HFOs in LS. Spiking of LS neurons was largely independent of the sequential order of spiking in SPW-Rs but instead correlated with the magnitude of excitatory synchrony of the hippocampal output. Thus, LS is strongly activated by SPW-Rs and may convey hippocampal population events to its hypothalamic and brainstem targets.
Collapse
Affiliation(s)
- David Tingley
- Neuroscience Institute, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY 10016, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
43
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
44
|
Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 2019; 128:94-105. [PMID: 31002893 PMCID: PMC7081944 DOI: 10.1016/j.neuint.2019.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Meal ingestion provokes the release of hormones and transmitters, which in turn regulate energy homeostasis and feeding behavior. One such hormone, glucagon-like peptide-1 (GLP-1), has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. In addition to the peripheral actions of GLP-1, this hormone is able to alter behavior through the modulation of multiple neural circuits. Recent work that focused on elucidating the mechanisms and outcomes of GLP-1 neuromodulation led to the discovery of an impressive array of GLP-1 actions. Here, we summarize the many levels at which the GLP-1 signal adapts to different systems, with the goal being to provide a background against which to guide future research.
Collapse
Affiliation(s)
- Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
45
|
Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs. eNeuro 2019; 6:eN-NRS-0443-18. [PMID: 31058214 PMCID: PMC6498420 DOI: 10.1523/eneuro.0443-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
Dependence on opioids and the number of opioid overdose deaths are serious and escalating public health problems, but medication-assisted treatments for opioid addiction remain inadequate for many patients. Glucagon-like pepide-1 (GLP-1) is a gut hormone and neuropeptide with actions in peripheral tissues and in the brain, including regulation of blood glucose and food intake. GLP-1 analogs, which are approved diabetes medications, can reduce the reinforcing and rewarding effects of alcohol, cocaine, amphetamine, and nicotine in rodents. Investigations on effects of GLP-1 analogs on opioid reward and reinforcement have not been reported. We assessed the effects of the GLP-1 receptor agonist Exendin-4 (Ex4) on opioid-related behaviors in male mice, i.e., morphine-conditioned place preference (CPP), intravenous self-administration (IVSA) of the short-acting synthetic opioid remifentanil, naltrexone-precipitated morphine withdrawal, morphine analgesia (male and female mice), and locomotor activity. Ex4 treatment had no effect on morphine-induced CPP, withdrawal, or hyperlocomotion. Ex4 failed to decrease remifentanil self-administration, if anything reinforcing effects of remifentanil appeared increased in Ex4-treated mice relative to saline. Ex4 did not significantly affect analgesia. In contrast, Ex4 dose dependently decreased oral alcohol self-administration, and suppressed spontaneous locomotor activity. Taken together, Ex4 did not attenuate the addiction-related behavioral effects of opioids, indicating that GLP-1 analogs would not be useful medications in the treatment of opioid addiction. This difference between opioids and other drug classes investigated to date may shed light on the mechanism of action of GLP-1 receptor treatment in the addictive effects of alcohol, central stimulants, and nicotine.
Collapse
|
46
|
Endogenous GLP-1 in lateral septum promotes satiety and suppresses motivation for food in mice. Physiol Behav 2019; 206:191-199. [PMID: 30980855 DOI: 10.1016/j.physbeh.2019.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023]
Abstract
Glucagon-like peptide 1 receptors (GLP-1R) are expressed in the lateral septum (LS) of rats and mice, and we have published that endogenous LS GLP-1 affects feeding and motivation for food in rats. Here we asked if these effects are also observed in mice. In separate dose-response studies using male C57Bl6J mice, intra-LS GLP-1 or the GLP-1R antagonist Exendin 9 (Ex9) was delivered shortly before dark onset, at doses subthreshold for effect when injected intracerebroventricularly (icv). Intra-LS GLP-1 significantly suppressed chow intake early in the dark phase and tended to reduce overnight intake. However, blockade of LS GLP-1R with Ex9 had no effect on ad libitum dark onset chow intake. We then asked if LS GLP-1R blockade blunts nutrient preload-induced intake suppression. Mice were trained to consume Ensure immediately before dark onset, which suppressed subsequent chow intake, and intra-LS Ex9 attenuated that preload-induced intake suppression. We also found that restraint stress robustly activates hindbrain GLP-1-producing neurons, and that LS GLP-1R blockade attenuates 30-min restraint stress-induced hypophagia in mice. Furthermore, we have reported that in the rat, GLP-1R in the dorsal subregion of the LS (dLS) affect motivation for food. We examined this in food-restricted mice responding for sucrose pellets on a progressive ratio (PR) schedule. Intra-dLS GLP-1R stimulation significantly suppressed, and Ex9 significantly increased, operant responding, and the Ex9 effect remained after mice returned to ad libitum conditions. Similarly, we found that stimulation of dLS GLP-1 suppressed licking for sucrose and conversely, Ex9 increased licking under ad libitum feeding conditions. Together, our data suggest that endogenous activation of LS GLP-1R plays a role in feeding in mice under some but not all conditions, and that these receptors strongly influence motivation for food.
Collapse
|
47
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
48
|
Terrill SJ, Maske CB, Williams DL. Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia. Physiol Behav 2018; 192:17-22. [PMID: 29510158 PMCID: PMC6019151 DOI: 10.1016/j.physbeh.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 01/25/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress.
Collapse
Affiliation(s)
- Sarah J Terrill
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Calyn B Maske
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Diana L Williams
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
49
|
Terrill SJ, Wall KD, Medina ND, Maske CB, Williams DL. Lateral septum growth hormone secretagogue receptor affects food intake and motivation for sucrose reinforcement. Am J Physiol Regul Integr Comp Physiol 2018; 315:R76-R83. [PMID: 29590554 PMCID: PMC6087886 DOI: 10.1152/ajpregu.00339.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/06/2018] [Accepted: 03/24/2018] [Indexed: 12/27/2022]
Abstract
The hormone ghrelin promotes eating and is widely considered to be a hunger signal. Ghrelin receptors, growth hormone secretagogue receptors (GHSRs), are found in a number of specific regions throughout the brain, including the lateral septum (LS), an area not traditionally associated with the control of feeding. Here we investigated whether GHSRs in the LS play a role in the control of food intake. We examined the feeding effects of ghrelin and the GHSR antagonists ([d-Lys3]-growth hormone-releasing peptide-6 and JMV-2959) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS ghrelin significantly increased chow intake during the midlight phase, suggesting that pharmacological activation of LS GHSRs promotes feeding. Conversely, GHSR antagonist delivered to the LS shortly before dark onset significantly reduced chow intake. These data support the hypothesis that exogenous and endogenous stimulation of GHSRs in the LS influence feeding. Ghrelin is known to affect motivation for food, and the dorsal subdivision of LS (dLS) has been shown to play a role in motivation. Thus, we investigated the role of dLS GHSRs in motivation for food reward by examining operant responding for sucrose on a progressive ratio (PR) schedule. Intra-dLS ghrelin increased PR responding for sucrose, whereas blockade of LS GHSRs did not affect responding in either a fed or fasted state. Together these findings for the first time substantiate the LS as a site of action for ghrelin signaling in the control of food intake.
Collapse
Affiliation(s)
- Sarah J Terrill
- Department of Psychology & Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Kaylee D Wall
- Department of Psychology & Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Nelson D Medina
- Department of Psychology & Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Calyn B Maske
- Department of Psychology & Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Diana L Williams
- Department of Psychology & Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
50
|
A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Mol Psychiatry 2018; 23:1555-1565. [PMID: 28461695 PMCID: PMC5668211 DOI: 10.1038/mp.2017.91] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022]
Abstract
The hippocampus and the medial prefrontal cortex (mPFC) are traditionally associated with regulating memory and executive function, respectively. The contribution of these brain regions to food intake control, however, is poorly understood. The present study identifies a novel neural pathway through which monosynaptic glutamatergic ventral hippocampal field CA1 (vCA1) to mPFC connectivity inhibits food-motivated behaviors through vCA1 glucagon-like peptide-1 receptor (GLP-1R). Results demonstrate that vCA1-targeted RNA interference-mediated GLP-1R knockdown increases motivated operant responding for palatable food. Chemogenetic disconnection of monosynaptic glutamatergic vCA1 to mPFC projections using designer receptors exclusively activated by designer drugs (DREADDs)-mediated synaptic silencing ablates the food intake and body weight reduction following vCA1 GLP-1R activation. Neuropharmacological experiments further reveal that vCA1 GLP-1R activation reduces food intake and inhibits impulsive operant responding for palatable food via downstream communication to mPFC NMDA receptors. Overall these findings identify a novel neural pathway regulating higher-order cognitive aspects of feeding behavior.
Collapse
|