1
|
Hesson AM, Sangtani A, Bergin IL, Langen E, Hunker K, Kumar N, Ganesh SK. Peripartum dapagliflozin improves late-life maternal cardiovascular outcomes in a murine model of superimposed preeclampsia. Am J Obstet Gynecol 2025:S0002-9378(25)00181-4. [PMID: 40164294 DOI: 10.1016/j.ajog.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Hypertensive disorders of pregnancy are important risk factors for later-life cardiovascular diseases. SGLT2 (sodium-glucose cotransporter-2) inhibition improves outcomes in heart failure, a later-life risk that disproportionately affects those with preeclampsia superimposed on chronic hypertension. SGLT2 inhibition during pregnancy and the postpartum period has not been effectively modeled or tested in superimposed preeclampsia as a potential cardiovascular risk-reducing intervention. OBJECTIVE This study aimed to (1) confirm the phenotype of superimposed preeclampsia in the BPH/2J mouse model, (2) test the short- and long-term obstetrical and cardiovascular effects of administering an SGLT2 inhibitor (dapagliflozin) in pregnancy and the immediate postpartum period in this model, and (3) identify molecular effects of SGLT2 inhibition in cardiovascular tissues during and after a treated pregnancy. STUDY DESIGN We established the BPH/2J model of superimposed preeclampsia and then randomly assigned pregnant BPH/2J mice with implanted telemetry devices to dapagliflozin-enriched chow or control chow starting early in gestation through 21 days after delivery. Maternal cardiovascular and obstetrical outcomes including circulating plasma protein markers, urine studies, obstetrical ultrasounds, and tissue histopathology were compared between the groups. Hearts and aortae were analyzed using serial echocardiography and spatial transcriptomics in late gestation or at 6 months postpartum. RESULTS BPH/2J mice had baseline chronic hypertension that worsened in pregnancy with the development of proteinuria and elevated plasma sFlt-1 levels, consistent with superimposed preeclampsia. Mid-gestation systolic blood pressures were higher in the untreated group than the dapagliflozin-treated group (+2.87 mm Hg; P<.001). There were no differences in the number of pups or estimated fetal pup weights between the groups, whereas amniotic fluid volume, placental size, and markers of placental perfusion were improved in the dapagliflozin-treated group. The untreated group had higher aortic peak velocities in late pregnancy compared with the dapagliflozin-treated group (748.1 vs 561.9 mm/s; P=.004×10-3). One maternal death occurred in the untreated group, with no events in the dapagliflozin-treated group. In late life, the untreated group had significant loss of left ventricular function relative to their prepregnancy baseline, whereas dapagliflozin-treated mice had relatively preserved left ventricular function (-20.0% vs -7.6% change; P=.004×10-3; 49.0%±6.34% untreated-baseline to 30.5%±6.78% untreated-aged; 44.9%±8.63% treated-baseline to 36.5%±6.39% treated-aged). Tissue transcriptomic analyses and Masson's trichrome staining demonstrated attenuation of cardiac fibrosis and extracellular remodeling processes with SGLT2 inhibition. CONCLUSION In a murine model of superimposed preeclampsia, dapagliflozin treatment during pregnancy and the puerperium improved physiological cardiovascular parameters during gestation and cardiac function later in life. This may be related to observed molecular effects of SGLT2 inhibition treatment, particularly its antifibrotic and metabolic actions associated with reduced markers of fibrotic pathologic remodeling in treated BPH/2Js during and after pregnancy.
Collapse
Affiliation(s)
- Ashley M Hesson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI.
| | - Ajleeta Sangtani
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, Pathology Core, University of Michigan, Ann Arbor, MI
| | - Elizabeth Langen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| | - Kristina Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Department of Human Genetics, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
2
|
Beckers KF, Schulz CJ, Flanagan JP, Blair RV, Liu CC, Childers GW, Sones JL. Pregnancy-specific shifts in the maternal microbiome and metabolome in the BPH/5 mouse model of superimposed preeclampsia. Physiol Genomics 2025; 57:115-124. [PMID: 39773069 DOI: 10.1152/physiolgenomics.00106.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a life-threatening hypertensive disorder of pregnancy with an incidence rate of up to 8% worldwide. However, the complete pathogenesis is still unknown. Obesity increases the risk of developing PE threefold. To better understand the relationship of maternal risk factors, the BPH/5 mouse was described as a model of superimposed PE. Previous research demonstrated that adult BPH/5 female mice have an adverse cardiometabolic phenotype characterized by hypertension, obesity with increased white adipose tissue, and dyslipidemia, exaggerated by pregnancy. We hypothesize that BPH/5 mice have gut dysbiosis characterized by changes in alpha and beta diversity of bacterial community structure as well as perturbed short-chain fatty acids (SCFAs) compared with controls in pregnancy. Fecal samples were used for Illumina sequencing of 16S v4 rRNA amplicons. Microbial community composition of the pregnant BPH/5 mice compared with C57 controls was different using permutational multivariate analysis of variance (PERMANOVA) with Bray-Curtis dissimilarity. Alpha diversity was increased in pregnant BPH/5 dams compared with controls. Alistipes and Helicobacter were increased, whereas Bacteroides, Lactobacillus, Parasutterella, and Parabacteroides were decreased compared with controls. Fecal SCFAs were not different between groups, but BPH/5 serum acetic and butyric acids were decreased, whereas isobutyric and isovaleric acids were increased specifically in pregnancy. BPH/5 pregnant colons had decreased expression of free fatty acid receptor, GPR41. In conclusion, the BPH/5 maternal fecal microbiome demonstrates microbial dysbiosis characterized by community structure and diversity changes before and after the onset of pregnancy. Gut dysbiosis may be a key mechanism linking SCFA signaling and obesity to the BPH/5 PE-like phenotype.NEW & NOTEWORTHY This is the first time the pregnant fecal microbiome has been identified in the BPH/5 spontaneous mouse model of superimposed PE. Community composition changed with the onset of pregnancy in this model. BPH/5 showed an altered colonic signaling with decreased GPR41 expression, suggesting that gut dysbiosis may link SCFA signaling to the PE phenotype. This data highlights the importance of the maternal obesogenic gut microbiome in pregnancy.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States
| | - Christopher J Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States
| | - Juliet P Flanagan
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Robert V Blair
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Gary W Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States
| | - Jenny L Sones
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
3
|
Wang Y, Wang H, Lu H, Ma J, Wu W, Wang Y, Ma B, Zhu H, Hu R. Renal glomerular and tubular injury in the offspring of the preeclampsia-like syndrome. Sci Rep 2025; 15:915. [PMID: 39762506 PMCID: PMC11704207 DOI: 10.1038/s41598-025-85258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a prevalent and severe pregnancy complication that significantly impacts maternal and perinatal health. Epidemiological studies and animal experiments have demonstrated that PE adversely affects the cardiovascular and nervous systems of offspring, increasing their risk of hypertension and renal pathology. However, the mechanisms underlying this increased risk remain unclear. This study utilized an L-NAME-induced preeclampsia mouse model (PELS model) to investigate the effects of PE on offspring blood pressure and renal pathology, focusing on the expression of Angiotensin II Type 1 Receptors (AT1R) and related molecules in renal tissues. Our findings show that L-NAME-induced pre-eclampsia led to reduced birth weights and significantly elevated systolic blood pressure in 6-week-old offspring. Histopathological analysis revealed pronounced glomerular and tubular damage in the kidneys of both 1-week and 6-week-old offspring from the pre-eclampsia group. At 1 week of age, the pre-eclampsia group exhibited elevated mRNA and protein expression levels of AT1R, GRK4, AQP2, ENaC, and NCC in renal tissues compared to controls. However, these differences were no longer significant at 6 weeks of age. No significant gender differences were observed in either blood pressure or renal pathological changes. Preeclampsia induced by L-NAME results in increased blood pressure and renal damage in offspring, potentially mediated by early alterations in the renal RAS system. The observed changes in AT1R and related molecules appear to be transient, suggesting that the early impact of pre-eclampsia on renal structure may trigger, but not sustain, hypertension in offspring. Further studies are needed to elucidate the long-term mechanisms driving hypertension in this population.
Collapse
Affiliation(s)
- Yong Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Huiqing Lu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ji Ma
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei Wu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yinan Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bo Ma
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Zhu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Rong Hu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Warrington JP, Collins HE, Davidge ST, do Carmo JM, Goulopoulou S, Intapad S, Loria AS, Sones JL, Wold LE, Zinkhan EK, Alexander BT. Guidelines for in vivo models of developmental programming of cardiovascular disease risk. Am J Physiol Heart Circ Physiol 2024; 327:H221-H241. [PMID: 38819382 PMCID: PMC11380980 DOI: 10.1152/ajpheart.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.
Collapse
Grants
- 20YVNR35490079 American Heart Association (AHA)
- R01HL139348 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135158 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54GM115428 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG057046 HHS | NIH | National Institute on Aging (NIA)
- P20 GM104357 NIGMS NIH HHS
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 GM149404 NIGMS NIH HHS
- P20GM104357 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM135002 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL163003 NHLBI NIH HHS
- R01HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK121411 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Excellence Faculty Support Grant Jewish Heritage Fund
- P30GM149404 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P30GM14940 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 23SFRNPCS1067044 American Heart Association (AHA)
- R01 HL146562 NHLBI NIH HHS
- R56HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- 1R01HL163076 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL51971 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- FS154313 CIHR
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, Kentucky, United States
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jussara M do Carmo
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, United States
- Department of Gynecology, and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Suttira Intapad
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jenny L Sones
- Equine Reproduction Laboratory, Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Erin K Zinkhan
- Department of Pediatrics, University of Utah and Intermountain Health, Salt Lake City, Utah, United States
- Intermountain Health, Salt Lake City, Utah, United States
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
5
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
6
|
Schroeder M, Fuenzalida B, Yi N, Shahnawaz S, Gertsch J, Pellegata D, Ontsouka E, Leiva A, Gutiérrez J, Müller M, Brocco MA, Albrecht C. LAT1-dependent placental methionine uptake is a key player in fetal programming of metabolic disease. Metabolism 2024; 153:155793. [PMID: 38295946 DOI: 10.1016/j.metabol.2024.155793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
The Developmental Origins of Health and Disease hypothesis sustains that exposure to different stressors during prenatal development prepares the offspring for the challenges to be encountered after birth. We studied the gestational period as a particularly vulnerable window where different stressors can have strong implications for fetal programming of the offspring's life-long metabolic status via alterations of specific placentally expressed nutrient transporters. To study this mechanism, we used a murine prenatal stress model, human preeclampsia, early miscarriage, and healthy placental tissue samples, in addition to in vitro models of placental cells. In stressed mice, placental overexpression of L-type amino acid transporter 1 (Lat1) and subsequent global placental DNA hypermethylation was accompanied by fetal and adult hypothalamic dysregulation in global DNA methylation and gene expression as well as long-term metabolic abnormalities exclusively in female offspring. In human preeclampsia, early miscarriage, and under hypoxic conditions, placental LAT1 was significantly upregulated, leading to increased methionine uptake and global DNA hypermethylation. Remarkably, subgroups of healthy term placentas with high expression of stress-related genes presented increased levels of placental LAT1 mRNA and protein, DNA and RNA hypermethylation, increased methionine uptake capacity, one-carbon metabolic pathway disruption, higher methionine concentration in the placenta and transport to the fetus specifically in females. Since LAT1 mediates the intracellular accumulation of methionine, global DNA methylation, and one-carbon metabolism in the placenta, our findings hint at a major sex-specific global response to a variety of prenatal stressors affecting placental function, epigenetic programming, and life-long metabolic disease and provide a much-needed insight into early-life factors predisposing females/women to metabolic disorders.
Collapse
Affiliation(s)
- Mariana Schroeder
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| | - Barbara Fuenzalida
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Nan Yi
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Saira Shahnawaz
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan; Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Jürg Gertsch
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Daniele Pellegata
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Edgar Ontsouka
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Andrea Leiva
- Faculty of Medicine and Science, Universidad of San Sebastian, Santiago, Chile
| | - Jaime Gutiérrez
- Faculty of Medicine and Science, Universidad of San Sebastian, Santiago, Chile
| | - Martin Müller
- Division of Gynecology and Obstetrics, Lindenhofgruppe, Bern, Switzerland
| | - Marcela A Brocco
- Institute of Biotechnological Research, University of San Martín, Buenos Aires, Argentina
| | - Christiane Albrecht
- Faculty of Medicine, Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Gomes VCL, Gilbert BM, Bernal C, Crissman KR, Sones JL. Estrogen and Progesterone Receptors Are Dysregulated at the BPH/5 Mouse Preeclamptic-Like Maternal-Fetal Interface. BIOLOGY 2024; 13:192. [PMID: 38534461 DOI: 10.3390/biology13030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The etiopathogenesis of preeclampsia, a leading hypertensive disorder of pregnancy, has been proposed to involve an abnormal circulating sex hormone profile and misexpression of placental estrogen and progesterone receptors (ER and PR, respectively). However, existing research is vastly confined to third trimester preeclamptic placentas. Consequently, the placental-uterine molecular crosstalk and the dynamic ER and PR expression pattern in the peri-conception period remain overlooked. Herein, our goal was to use the BPH/5 mouse to elucidate pre-pregnancy and early gestation Er and Pr dynamics in a preeclamptic-like uterus. BPH/5 females display low circulating estrogen concentration during proestrus, followed by early gestation hypoestrogenemia, hyperprogesteronemia, and a spontaneous preeclamptic-like phenotype. Preceding pregnancy, the gene encoding Er alpha (Erα, Esr1) is upregulated in the diestrual BPH/5 uterus. At the peak of decidualization, Esr1, Er beta (Erβ, Esr2), and Pr isoform B (Pr-B) were upregulated in the BPH/5 maternal-fetal interface. At the protein level, BPH/5 females display higher percentage of decidual cells with nuclear Erα expression, as well as Pr downregulation in the decidua, luminal and glandular epithelium. In conclusion, we provide evidence of disrupted sex hormone signaling in the peri-conception period of preeclamptic-like pregnancies, potentially shedding some light onto the intricate role of sex hormone signaling at unexplored timepoints of human preeclampsia.
Collapse
Affiliation(s)
- Viviane C L Gomes
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Bryce M Gilbert
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Carolina Bernal
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Kassandra R Crissman
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Jenny L Sones
- Equine Reproduction Laboratory, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
8
|
Miyashita Y, Kanou T, Fukui E, Matsui T, Kimura T, Ose N, Funaki S, Shintani Y. A Novel Peroxisome Proliferator-Activated Receptor Gamma/Nuclear Factor-Kappa B Activation Pathway is Involved in the Protective Effect of Adipose-Derived Mesenchymal Stem Cells Against Ischemia-Reperfusion Lung Injury. Transplant Proc 2024; 56:369-379. [PMID: 38320873 DOI: 10.1016/j.transproceed.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are well-recognized for their remarkable ability to suppress ischemia-reperfusion lung injury (IRLI). The primary objective of this investigation was to elucidate the underlying mechanism through which ADSCs exert protective effects against IRLI. METHODS A warm hilar occlusion model in C57BL6J mice was used. Hilar occlusion was achieved for 1 hour (ischemic), and after 1 hour the occlusion was released (reperfusion) to recover for 3 hours. RNA sequencing, the physiological function, pathway activation, and expression of inflammatory cytokines were evaluated. RESULTS Lung gas exchange and pulmonary edema were significantly improved in the IRLI/ADSCs group compared with the IRLI group. RNA sequencing results suggested that the peroxisome proliferator-activated receptor gamma (PPARγ)/nuclear factor-kappa B (NF-κB) pathway was involved in the effect of the ADSCs. Administration of a PPARγ antagonist in the IRLI/ADSC group resulted in the deterioration of the physiological function. Furthermore, the PPARγ protein expression level decreased, the NF-κB protein expression level increased, and inflammatory cytokine parameters from lung tissue and blood sample worsened in the PPARγ antagonist-administered group. CONCLUSION Administration of ADSCs exerted a significant protective effect against IRLI in mice, and the effect is attributed to the activation of the PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Yudai Miyashita
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Baeza-Pérez LG, Cabrera-Becerra SE, Romero-Nava R, Ramos-Tovar E, Hernández-Campos ME, López-Sánchez P. Cardiovascular effect of preeclampsia upon offspring development: Are (Pro) renin-renin receptor ((P)RR) and gender related? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:621-629. [PMID: 38629095 PMCID: PMC11017840 DOI: 10.22038/ijbms.2024.72486.15790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/13/2023] [Indexed: 04/19/2024]
Abstract
Objectives Preeclampsia (PE) is a complication of pregnancy that might increase progeny risk of cardiovascular and metabolic problems, mainly in males. Renin angiotensin aldosterone system is known to be involved. (Pro) renin/renin receptor ((P)RR) has been shown to participate in cardiovascular pathology. The aim of this work was to evaluate (P)RR expression and function upon cardiovascular and renal tissues from PE dams' offspring. Materials and Methods We used offspring from normal pregnant and preeclamptic rats, evaluating body, heart, aorta and kidney weight, length, and blood pressure along 3 months after birth. Subsets of animals received handle region peptide (HRP) (0.2 mg/Kg, sc). Another group received vehicle. Animals were sacrificed at first, second, and third months of age, tissues were extracted and processed for immunoblot to detect (P)RR, PLZF, β-catenin, DVL-1, and PKCα. (P)RR and PLZF were also measured by RT-PCR. Results We found that offspring developed hypertension. Male descendants remained hypertensive throughout the whole experiment. Female animals tended to recover at second month and returned to normal blood pressure at third month. HRP treatment diminished hypertension in both male and female animals. Morphological evaluations showed changes in heart, aorta, and kidney weight, and HRP reverted this effect. Finally, we found that (P)RR, PLZF, and canonical WNT transduction pathway molecules were stimulated by PE, and HRP treatment abolished this increase. Conclusion These findings suggest that PE can induce hypertension in offspring, and (P)RR seems to play an important role through the canonical WNT pathway and that gender seems to influence this response.
Collapse
Affiliation(s)
- Lourdes Graciela Baeza-Pérez
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Ciudad de México, México
- These authors contributed eqully to this work
| | - Sandra Edith Cabrera-Becerra
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Ciudad de México, México
| | - Rodrigo Romero-Nava
- Laboratorio de Biología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Ciudad de México, México
| | - Erika Ramos-Tovar
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Ciudad de México, México
- These authors contributed eqully to this work
| | - Maria Elena Hernández-Campos
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Ciudad de México, México
- These authors contributed eqully to this work
| | - Pedro López-Sánchez
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Ciudad de México, México
- These authors contributed eqully to this work
| |
Collapse
|
10
|
ADAMS DM, BECKERS KF, FLANAGAN JP, GOMES VCL, LIU CC, SONES JL. Reversal of maternal obesity attenuates hypoxia and improves placental development in the preeclamptic-like BPH/5 mouse model. BIOCELL 2023; 47:2051-2058. [PMID: 37829603 PMCID: PMC10569287 DOI: 10.32604/biocell.2023.029644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/06/2023] [Indexed: 10/14/2023]
Abstract
Background Women with obesity have higher risk of adverse pregnancy outcomes, including preeclampsia (PE). Late-gestational hypertension, aberrant fetoplacental development, and fetal growth restriction (FGR), hallmarks of PE, are observed spontaneously in BPH/5 mice. Similar to obese preeclamptic women, BPH/5 mice have higher visceral white adipose tissue (WAT) and circulating leptin. We hypothesized that attenuation of maternal obesity and serum leptin in pregnant BPH/5 mice will improve fetoplacental development by decreasing hypoxia markers and leptin expression at the maternal-fetal interface. Methods To test this hypothesis, BPH/5 mice were fed ad libitum (lib) and pair-fed (PF) to C57 ad lib controls beginning at embryonic day (e) 0.5. Hypoxia-related genes, hypoxia inducible factor (Hif) 1α, stem cell factor (Scf), heme oxygenase-1 (Ho-1), leptin (Lep), and leptin receptor (LepR) were assessed in e7.5 implantation sites. Results BPH/5 ad lib had 1.5 to 2-fold increase in Hif1α, Scf, and Ho-1 mRNA and a greater than 3-fold increase in leptin mRNA vs. C57 that was attenuated with PF. Exogenous leptin promoted Hif1α and Ho-1 mRNA expression in e7.5 decidua in vitro. While hypoxic conditions in vitro did not change decidual leptin mRNA. Furthermore, BPH/5 PF mice demonstrated improved fetal and placental outcomes later in gestation, with greater placental vascular area by e18.5 and attenuation of FGR. Conclusion In conclusion, pair-feeding BPH/5 mice beginning at conception may improve placental vasculature formation via decreased leptin and hypoxia-associated markers in this model. Future investigations are needed to better determine the effect of hypoxia and leptin on pregnancy outcomes in obese pregnant women.
Collapse
Affiliation(s)
- Daniella M. ADAMS
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Kalie F. BECKERS
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Juliet P. FLANAGAN
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Viviane C. L. GOMES
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Chin-Chi LIU
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jenny L. SONES
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
11
|
Tabacco S, Ambrosii S, Polsinelli V, Fantasia I, D’Alfonso A, Ludovisi M, Cecconi S, Guido M. Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools-A Review of the Literature. Curr Issues Mol Biol 2023; 45:6202-6215. [PMID: 37623210 PMCID: PMC10453909 DOI: 10.3390/cimb45080391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Pre-eclampsia is a severe pregnancy-related complication that manifests as a syndrome with multisystem involvement and damage. It has significantly grown in frequency during the past 30 years and could be considered as one of the major causes of maternal and fetal morbidity and mortality. However, the specific etiology and molecular mechanisms of pre-eclampsia are still poorly known and could have a variety of causes, such as altered angiogenesis, inflammations, maternal infections, obesity, metabolic disorders, gestational diabetes, and autoimmune diseases. Perhaps the most promising area under investigation is the imbalance of maternal angiogenic factors and its effects on vascular function, though studies in placental oxidative stress and maternal immune response have demonstrated intriguing findings. However, to determine the relative importance of each cause and the impact of actions aiming to significantly reduce the incidence of this illness, more research is needed. Moreover, it is necessary to better understand the etiologies of each subtype of pre-eclampsia as well as the pathophysiology of other major obstetrical syndromes to identify a clinical tool able to recognize patients at risk of pre-eclampsia early.
Collapse
Affiliation(s)
- Sara Tabacco
- Unit of Obstetrics and Gynecology, San Salvatore Hospital, 67100 L’Aquila, Italy
| | - Silvia Ambrosii
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Valentina Polsinelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Ilaria Fantasia
- Unit of Obstetrics and Gynecology, San Salvatore Hospital, 67100 L’Aquila, Italy
| | - Angela D’Alfonso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuela Ludovisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maurizio Guido
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
12
|
Beckers KF, Schulz CJ, Liu CC, Barras ED, Childers GW, Stout RW, Sones JL. Effects of fenbendazole on fecal microbiome in BPH/5 mice, a model of hypertension and obesity, a brief report. PLoS One 2023; 18:e0287145. [PMID: 37294797 PMCID: PMC10256194 DOI: 10.1371/journal.pone.0287145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023] Open
Abstract
Fenbendazole (FBZ) is a common antiparasitic treatment used in research rodent colonies for biosecurity purposes. The effect of this compound has been studied in C57 mice, but never before in a strain of mice that has co-morbidities, such as the blood pressure high (BPH)/5. The BPH/5 mouse is an inbred genetic model of hypertension. While both male and female BPH/5 have high blood pressure, there is a metabolic sexual dimorphism with females displaying key features of obesity. The obese gut microbiome has been linked to hypertension. Therefore, we hypothesized that fenbendazole treatment will alter the gut microbiome in hypertensive mice in a sex dependent manner. To test the influence of FBZ on the BPH/5 gut microbiota, fecal samples were collected pre- and post-treatment from adult BPH/5 mice (males and non-pregnant females). The mice were treated with fenbendazole impregnated feed for five weeks. Post-treatment feces were collected at the end of the treatment period and DNA was extracted, and the V4 region of 16S rRNA was amplified and sequenced using the Illumina MiSeq system. The purpose was to analyze the fecal microbiome before and after FBZ treatment, the results demonstrate changes with treatment in a sex dependent manner. More specifically, differences in community composition were detected in BPH/5 non-pregnant female and males using Bray-Curtis dissimilarity as a measure of beta-diversity (treatment p = 0.002). The ratio of Firmicutes to Bacteroidetes, which has been identified in cases of obesity, was not altered. Yet, Verrucomicrobia was increased in BPH/5 males and females post-treatment and was significantly different by sex (treatment p = 5.85e-05, sex p = 0.0151, and interaction p = 0.045), while Actinobacteria was decreased in the post-treatment mice (treatment p = 0.00017, sex p = 0.5, interaction p = 0.2). These results are indicative of gut dysbiosis compared to pre-treatment controls. Lactobacillus was decreased with FBZ treatment in BPH/5 females only. In conclusion, fenbendazole does alter the gut microbial communities, most notable in the male rather than female BPH/5 mouse. This provides evidence that caution should be taken when providing any gut altering treatments before or during mouse experiments.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christopher J. Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Elise D. Barras
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gary W. Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Rhett W. Stout
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jenny L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
13
|
Waker CA, Hwang AE, Bowman-Gibson S, Chandiramani CH, Linkous B, Stone ML, Keoni CI, Kaufman MR, Brown TL. Mouse models of preeclampsia with preexisting comorbidities. Front Physiol 2023; 14:1137058. [PMID: 37089425 PMCID: PMC10117893 DOI: 10.3389/fphys.2023.1137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.
Collapse
Affiliation(s)
- Christopher A. Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amy E. Hwang
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chandni H. Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryce Linkous
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Madison L. Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chanel I. Keoni
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R. Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- *Correspondence: Thomas L. Brown,
| |
Collapse
|
14
|
Gomes VCL, Beckers KF, Crissman KR, Landry CA, Flanagan JP, Awad RM, Piero FD, Liu CC, Sones JL. Sexually dimorphic pubertal development and adipose tissue kisspeptin dysregulation in the obese and preeclamptic-like BPH/5 mouse model offspring. Front Physiol 2023; 14:1070426. [PMID: 37035685 PMCID: PMC10076539 DOI: 10.3389/fphys.2023.1070426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Preeclampsia (PE) is a devastating hypertensive disorder of pregnancy closely linked to obesity. Long-term adverse outcomes may occur in offspring from preeclamptic pregnancies. Accordingly, sex-specific changes in pubertal development have been described in children from preeclamptic women, but the underlying mechanisms remain vastly unexplored. Features of PE are spontaneously recapitulated by the blood pressure high subline 5 (BPH/5) mouse model, including obesity and dyslipidemia in females before and throughout pregnancy, superimposed hypertension from late gestation to parturition and fetal growth restriction. A sexually dimorphic cardiometabolic phenotype has been described in BPH/5 offspring: while females are hyperphagic, hyperleptinemic, and overweight, with increased reproductive white adipose tissue (rWAT), males have similar food intake, serum leptin concentration, body weight and rWAT mass as controls. Herein, pubertal development and adiposity were further investigated in BPH/5 progeny. Precocious onset of puberty occurs in BPH/5 females, but not in male offspring. When reaching adulthood, the obese BPH/5 females display hypoestrogenism and hyperandrogenism. Kisspeptins, a family of peptides closely linked to reproduction and metabolism, have been previously shown to induce lipolysis and inhibit adipogenesis. Interestingly, expression of kisspeptins (Kiss1) and their cognate receptor (Kiss1r) in the adipose tissue seem to be modulated by the sex steroid hormone milieu. To further understand the metabolic-reproductive crosstalk in the BPH/5 offspring, Kiss1/Kiss1r expression in male and female rWAT were investigated. Downregulation of Kiss1/Kiss1r occurs in BPH/5 females when compared to males. Interestingly, dietary weight loss attenuated circulating testosterone concentration and rWAT Kiss1 downregulation in BPH/5 females. Altogether, the studies demonstrate reproductive abnormalities in offspring gestated in a PE-like uterus, which appear to be closely associated to the sexually dimorphic metabolic phenotype of the BPH/5 mouse model.
Collapse
Affiliation(s)
- Viviane C. L. Gomes
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Kalie F. Beckers
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Kassandra R. Crissman
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Camille A. Landry
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Juliet P. Flanagan
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Reham M. Awad
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Fabio Del Piero
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Jenny L. Sones
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
15
|
Gomes VCL, Woods AK, Crissman KR, Landry CA, Beckers KF, Gilbert BM, Ferro LR, Liu CC, Oberhaus EL, Sones JL. Kisspeptin Is Upregulated at the Maternal-Fetal Interface of the Preeclamptic-like BPH/5 Mouse and Normalized after Synchronization of Sex Steroid Hormones. REPRODUCTIVE MEDICINE 2022; 3:263-279. [PMID: 37538930 PMCID: PMC10399610 DOI: 10.3390/reprodmed3040021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Insufficient invasion of conceptus-derived trophoblast cells in the maternal decidua is a key event in the development of early-onset preeclampsia (PE), a subtype of PE associated with high maternal and fetal morbidity and mortality. Kisspeptins, a family of peptides previously shown to inhibit trophoblast cell invasion, have been implicated in the pathogenesis of early-onset PE. However, a role of kisspeptin signaling during the genesis of this syndrome has not been elucidated. Herein, we used the preeclamptic-like BPH/5 mouse model to investigate kisspeptin expression and potential upstream regulatory mechanisms in a PE-like syndrome. Expression of the kisspeptin encoding gene, Kiss1, and the 10-amino-acid kisspeptide (Kp-10), are upregulated in the non-pregnant uterus of BPH/5 females during diestrus and in the maternal-fetal interface during embryonic implantation and decidualization. Correspondingly, the dysregulation of molecular pathways downstream to kisspeptins also occurs in this mouse model. BPH/5 females have abnormal sex steroid hormone profiles during early gestation. In this study, the normalization of circulating concentrations of 17β-estradiol (E2) and progesterone (P4) in pregnant BPH/5 females not only mitigated Kiss1 upregulation, but also rescued the expression of multiple molecules downstream to kisspeptin and ameliorated adverse fetoplacental outcomes. Those findings suggest that uterine Kiss1 upregulation occurs pre-pregnancy and persists during early gestation in a PE-like mouse model. Moreover, this study highlights the role of sex steroid hormones in uteroplacental Kiss1 dysregulation and the improvement of placentation by normalization of E2, P4 and Kiss1.
Collapse
Affiliation(s)
- Viviane C. L. Gomes
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Ashley K. Woods
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kassandra R. Crissman
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Camille A. Landry
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Kalie F. Beckers
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Bryce M. Gilbert
- School of Animal Sciences, Louisiana Agricultural Experiment Station, LSU AgCenter, Baton Rouge, LA 70803, USA
| | - Lucas R. Ferro
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Erin L. Oberhaus
- School of Animal Sciences, Louisiana Agricultural Experiment Station, LSU AgCenter, Baton Rouge, LA 70803, USA
| | - Jenny L. Sones
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
Beckers KF, Schulz CJ, Flanagan JP, Adams DM, Gomes VC, Liu C, Childers GW, Sones JL. Sex-specific effects of maternal weight loss on offspring cardiometabolic outcomes in the obese preeclamptic-like mouse model, BPH/5. Physiol Rep 2022; 10:e15444. [PMID: 36065848 PMCID: PMC9446412 DOI: 10.14814/phy2.15444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 05/28/2023] Open
Abstract
AbstractPreeclampsia (PE) is a hypertensive disorder that impacts 2-8% of pregnant women worldwide. It is characterized by new onset hypertension during the second half of gestation and is a leading cause of maternal and fetal morbidity/mortality. Maternal obesity increases the risk of PE and is a key predictor of childhood obesity and potentially offspring cardiometabolic complications in a sex-dependent manner. The influence of the maternal obesogenic environment, with superimposed PE, on offspring development into adulthood is unknown. Obese BPH/5 mice spontaneously exhibit late-gestational hypertension, fetal demise and growth restriction, and excessive gestational weight gain. BPH/5 females have improved pregnancy outcomes when maternal weight loss via pair-feeding is imposed beginning at conception. We hypothesized that phenotypic differences between female and male BPH/5 offspring can be influenced by pair feeding BPH/5 dams during pregnancy. BPH/5 pair-fed dams have improved litter sizes and increased fetal body weights. BPH/5 offspring born to ad libitum dams have similar sex ratios, body weights, and fecal microbiome as well as increased blood pressure that is reduced in the dam pair-fed offspring. Both BPH/5 male and female offspring born to pair-fed dams have a reduction in adiposity and an altered gut microbiome, while only female offspring born to pair-fed dams have decreased circulating leptin and white adipose tissue inflammatory cytokines. These sexually dimorphic results suggest that reduction in the maternal obesogenic environment in early pregnancy may play a greater role in female BPH/5 sex-dependent cardiometabolic outcomes than males. Reprograming females may mitigate the transgenerational progression of cardiometabolic disease.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Christopher J. Schulz
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Juliet P. Flanagan
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Daniella M. Adams
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Viviane C.L. Gomes
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Chin‐Chi Liu
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Gary W. Childers
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Jenny L. Sones
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
17
|
Taylor EB, George EM. Animal Models of Preeclampsia: Mechanistic Insights and Promising Therapeutics. Endocrinology 2022; 163:6623845. [PMID: 35772781 PMCID: PMC9262036 DOI: 10.1210/endocr/bqac096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/19/2022]
Abstract
Preeclampsia (PE) is a common pregnancy-specific disorder that is a major cause of both maternal and fetal morbidity and mortality. Central to the pathogenesis of PE is the production of antiangiogenic and inflammatory factors by the hypoxic placenta, leading to the downstream manifestations of the disease, including hypertension and end-organ damage. Currently, effective treatments are limited for PE; however, the development of preclinical animal models has helped in the development and evaluation of new therapeutics. In this review, we will summarize some of the more commonly used models of PE and highlight their similarities to the human syndrome, as well as the therapeutics tested in each model.
Collapse
Affiliation(s)
- Erin B Taylor
- Correspondence: Erin B. Taylor, PhD, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216-4505, USA.
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| |
Collapse
|
18
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
19
|
Alston MC, Redman LM, Sones JL. An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia. Nutrients 2022; 14:2087. [PMID: 35631228 PMCID: PMC9143481 DOI: 10.3390/nu14102087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE), an inflammatory state during pregnancy, is a significant cause of maternal and fetal morbidity and mortality. Adverse outcomes associated with PE include hypertension, proteinuria, uterine/placental abnormalities, fetal growth restriction, and pre-term birth. Women with obesity have an increased risk of developing PE likely due to impaired placental development from altered metabolic homeostasis. Inflammatory cytokines from maternal adipose tissue and circulating cholesterol have been linked to systemic inflammation, hypertension, and other adverse outcomes associated with PE. This review will summarize the current knowledge on the role of nutrients, obesity, and cholesterol signaling in PE with an emphasis on findings from preclinical models.
Collapse
Affiliation(s)
- Morgan C. Alston
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Leanne M. Redman
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Jennifer L. Sones
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| |
Collapse
|
20
|
Girardi G, Bremer AA. The Intersection of Maternal Metabolic Syndrome, Adverse Pregnancy Outcomes, and Future Metabolic Health for the Mother and Offspring. Metab Syndr Relat Disord 2022; 20:251-254. [PMID: 35384734 DOI: 10.1089/met.2021.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The prevalence of obesity is ∼40% in the United States, and the prepregnancy prevalence of obesity in females is ∼30%. This has in part fueled an increase in metabolic syndrome (MetS) among females who are currently pregnant, have been pregnant, or are planning to become pregnant. Importantly, MetS in pregnancy is associated with increased pregnancy complications. Moreover, MetS in pregnancy may have long-lasting adverse cardiovascular and metabolic health implications for the mother and her offspring. To complicate matters, many adverse pregnancy outcomes seem to increase the risk of MetS in the mother after pregnancy. Herein, we describe the potential mechanisms behind the intersection of MetS, adverse pregnancy outcomes, and subsequent long-term disease in the mother and offspring. Because MetS is a cluster of coexisting conditions, it is challenging to identify mediators that can serve as biomarkers for early diagnosis and targets for MetS prevention and therapy.
Collapse
Affiliation(s)
- Guillermina Girardi
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Andrew A Bremer
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Johnston AN, Batts TL, Langohr IM, Moeller C, Liu CC, Sones JL. The BPH/5 Mouse Model of Superimposed Preeclampsia Is Not a Model of HELLP Syndrome. BIOLOGY 2021; 10:biology10111179. [PMID: 34827172 PMCID: PMC8615032 DOI: 10.3390/biology10111179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023]
Abstract
Preeclampsia (PE) is a multisystemic disease of pregnancy affecting 2-8% of women worldwide. PE-induced liver disease is a rare but important complication of pregnancy. The pathogenesis of liver dysfunction in PE is poorly understood, but is correlated with dysregulated angiogenic, inflammatory, and hypoxic events in the early phase of placental development. Because BPH/5 mice develop the maternal and fetal hallmarks of PE during pregnancy, we hypothesized that they may also share the clinicopathologic findings of the human PE-associated hemolysis elevated liver transaminases low platelets (HELLP) syndrome. Using this model, we determined that microangiopathic hemolysis, thrombocytopenia, and elevated liver enzymes do not occur in mid to late gestation. Pregnant BPH/5 mice do not develop histologic evidence of hepatic inflammation, but they do have increased microsteatosis scores at preconception and in mid to late gestation that progress to macrosteatosis in a subset of mice in late gestation. The transcriptional upregulation of TNF-α, CXCL-10, and TLR-2 occurs in mid gestation prior to the onset of macrosteatosis. The BPH/5 female mouse is not a model of HELLP syndrome, but may be a model of fatty liver disease associated with pregnancy.
Collapse
Affiliation(s)
- Andrea N. Johnston
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (T.L.B.); (C.M.); (C.-C.L.); (J.L.S.)
- Correspondence:
| | - Tifini L. Batts
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (T.L.B.); (C.M.); (C.-C.L.); (J.L.S.)
| | - Ingeborg M. Langohr
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Cambri Moeller
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (T.L.B.); (C.M.); (C.-C.L.); (J.L.S.)
| | - Chin-Chi Liu
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (T.L.B.); (C.M.); (C.-C.L.); (J.L.S.)
| | - Jennifer L. Sones
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (T.L.B.); (C.M.); (C.-C.L.); (J.L.S.)
| |
Collapse
|
22
|
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integr Blood Press Control 2021; 14:141-152. [PMID: 34675650 PMCID: PMC8517636 DOI: 10.2147/ibpc.s312868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent decades, both clinical and animal studies have shown that fetal growth restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for hypertension as well as for a variety of adult diseases. This observation has shaped and informed the now widely accepted theory of developmental origins of health and disease (DOHaD). There is a plethora of evidence supporting the association of FGR with increased risk of adult hypertension; however, the underlying mechanisms responsible for this correlation remain unclear. This review aims to explain the current advances in the field of fetal programming of hypertension and a brief narration of the underlying mechanisms that may link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then provide evidence from both clinical and basic science research which support the theory of fetal programming of adult hypertension. In addition, we have explored the underlying mechanisms that may link FGR to an increased risk of adult hypertension. These mechanisms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal impairment, and alterations in renal physiology and function. We further describe sex differences seen in the developmental origins of hypertension and provide insights into the opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel Riccio
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
23
|
Cai H, Li D, Wu J, Shi C. miR-519d downregulates LEP expression to inhibit preeclampsia development. Open Med (Wars) 2021; 16:1215-1227. [PMID: 34514168 PMCID: PMC8389502 DOI: 10.1515/med-2021-0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 11/15/2022] Open
Abstract
The purpose of the current study was to characterize role of microRNA (miR)-519d in trophoblast cells and preeclampsia (PE) development and its potential underlying mechanism. Regulation of leptin (LEP) by miR-519d was verified using a dual-luciferase reporter gene assay. Loss- and gain-of-function assays were conducted to detect the roles of miR-519d and LEP in proliferation, migratory ability, and invasive capacity of HTR-8/SVneo cells by means of CCK-8 assay, scratch test, and Transwell invasion assay, respectively. The cell apoptosis rate and cycle distribution were analyzed by flow cytometry. LEP expression was elevated, whereas miR-519d level was suppressed in the PE placenta samples compared with those from normal pregnancy. Depletion of LEP promoted proliferation, migratory ability, and invasive capacity and repressed apoptosis. miR-519d could bind 3' untranslated regions (3'UTRs) of LEP, the extent of which correlated negatively with LEP expression. miR-519d suppressed the expression of LEP in HTR-8/SVneo cells. Moreover, overexpression of miR-519d promoted survival and migratory ability of HTR-8/SVneo cells. Taken together, we find that miR-519d targeted LEP and downregulated its expression, which could likely inhibit the development of PE.
Collapse
Affiliation(s)
- Hairui Cai
- Obstetrics and Gynecology Department, Ningbo Women & Children's Hospital, No. 339, Liuting Road, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Dongmei Li
- Obstetrics and Gynecology Department, Ningbo Women & Children's Hospital, No. 339, Liuting Road, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Jun Wu
- Obstetrics and Gynecology Department, Ningbo Women & Children's Hospital, No. 339, Liuting Road, Ningbo 315000, Zhejiang Province, People's Republic of China
| | - Chunbo Shi
- Obstetrics and Gynecology Department, Ningbo Women & Children's Hospital, No. 339, Liuting Road, Ningbo 315000, Zhejiang Province, People's Republic of China
| |
Collapse
|
24
|
Genotypic analysis of the female BPH/5 mouse, a model of superimposed preeclampsia. PLoS One 2021; 16:e0253453. [PMID: 34270549 PMCID: PMC8284809 DOI: 10.1371/journal.pone.0253453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
Animal models that recapitulate human diseases and disorders are widely used to investigate etiology, diagnosis, and treatment of those conditions in people. Disorders during pregnancy are particularly difficult to explore as interventions in pregnant women are not easily performed. Therefore, models that allow for pre-conception investigations are advantageous for elucidating the mechanisms involved in adverse pregnancy outcomes that are responsible for both maternal and fetal morbidity, such as preeclampsia. The Blood Pressure High (BPH)/5 mouse model has been used extensively to study the pathogenesis of preeclampsia. The female BPH/5 mouse is obese with increased adiposity and borderline hypertension, both of which are exacerbated with pregnancy making it a model of superimposed preeclampsia. Thus, the BPH/5 model shares traits with a large majority of women with pre-existing conditions that predisposes them to preeclampsia. We sought to explore the genome of the BPH/5 female mouse and determine the genetic underpinnings that may contribute to preeclampsia-associated phenotypes in this model. Using a whole genome sequencing approach, we are the first to characterize the genetic mutations in BPH/5 female mice that make it unique from the closely related BPH/2 model and the normotensive background strain, C57Bl/6. We found the BPH/5 female mouse to be uniquely different from BPH/2 and C57Bl/6 mice with a genetically complex landscape. The majority of non-synonymous consequences within the coding region of BPH/5 females were missense mutations found most abundant on chromosome X when comparing BPH/5 and BPH/2, and on chromosome 8 when comparing BPH/5 to C57Bl/6. Genetic mutations in BPH/5 females largely belong to immune system-related processes, with overlap between BPH/5 and BPH/2 models. Further studies examining each gene mutation during pregnancy are warranted to determine key contributors to the BPH/5 preeclamptic-like phenotype and to identify genetic similarities to women that develop preeclampsia.
Collapse
|
25
|
Beckers KF, Gomes VCL, Crissman KJR, Adams DM, Liu CC, Del Piero F, Butler SD, Sones JL. Cardiometabolic Phenotypic Differences in Male Offspring Born to Obese Preeclamptic-Like BPH/5 Mice. Front Pediatr 2021; 9:636143. [PMID: 34631607 PMCID: PMC8493471 DOI: 10.3389/fped.2021.636143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/13/2021] [Indexed: 01/21/2023] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy occurring in approximately 10% of women worldwide. While it is life threatening to both the mother and baby, the only effective treatment is delivery of the placenta and fetus, which is often preterm. Maternal obesity is a risk factor for PE, and the effects of both on offspring are long standing with increased incidence of cardiometabolic disease in adulthood. Obese BPH/5 mice spontaneously exhibit excessive gestational weight gain and late-gestational hypertension, similar to women with PE, along with fetal growth restriction and accelerated compensatory growth in female offspring. We hypothesized that BPH/5 male offspring will demonstrate cardiovascular and metabolic phenotypes similar to BPH/5 females. As previously described, BPH/5 females born to ad libitum-fed dams are overweight with hyperphagia and increased subcutaneous, peri-renal, and peri-gonadal white adipose tissue (WAT) and cardiomegaly compared to age-matched adult female controls. In this study, BPH/5 adult male mice have similar body weights and food intake compared to age-matched control mice but have increased inflammatory subcutaneous and peri-renal WAT and signs of cardiovascular disease: left ventricular hypertrophy and hypertension. Therefore, adult male BPH/5 do not completely phenocopy the cardiometabolic profile of female BPH/5 mice. Future investigations are necessary to understand the differences observed in BPH/5 male and female mice as they age. In conclusion, the impact of fetal programming due to PE has a transgenerational effect on both male and female offspring in the BPH/5 mouse model. The maternal obesogenic environment may play a role in PE pregnancy outcomes, including offspring health as they age.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Viviane C L Gomes
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Kassandra J Raven Crissman
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Daniella M Adams
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Fabio Del Piero
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Scott D Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
26
|
Olson KN, Reijnders D, Gomes VCL, Hebert RC, Liu CC, Stephens JM, Redman LM, Douglas NC, Sones JL. Complement in Reproductive White Adipose Tissue Characterizes the Obese Preeclamptic-Like BPH/5 Mouse Prior to and During Pregnancy. BIOLOGY 2020; 9:E304. [PMID: 32971873 PMCID: PMC7564206 DOI: 10.3390/biology9090304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
Abstract
Preeclampsia (PE) is a serious hypertensive disorder of pregnancy characterized by abnormal placental development with an unknown etiology. To better understand which women will develop PE, a number of maternal risk factors have been identified, including obesity. Visceral white adipose tissue (WAT) contains inflammatory mediators that may contribute to PE. To explore this, we utilized the blood pressure high (BPH)/5 mouse model of superimposed PE that spontaneously recapitulates the maternal PE syndrome. We hypothesized that BPH/5 visceral WAT adjacent to the female reproductive tract (reproductive WAT) is a source of complement factors that contribute to the inflammatory milieu and angiogenic imbalance at the maternal-fetal interface in this model and in preeclamptic women. To test our hypothesis, we calorie-restricted BPH/5 females for two weeks prior to pregnancy and the first seven days of pregnancy, which attenuated complement component 3 (C3) but not complement factor B, nor complement factor D, (adipsin) in the reproductive WAT or the implantation site in BPH/5. Furthermore, calorie restriction during pregnancy restored vascular endothelial and placental growth factor mRNA levels in the BPH/5 implantation site. These data show maternal reproductive WAT may be a source of increased C3 during pregnancy, which is increased at the maternal-fetal interface in preeclamptic BPH/5 mice. It also suggests that calorie restriction could regulate inflammatory mediators thought to contribute to placental dysfunction in PE. Future studies are necessary to examine the effect of calorie restriction on C3 throughout pregnancy and the role of maternal obesity in PE.
Collapse
Affiliation(s)
- Kelsey N. Olson
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Dorien Reijnders
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Viviane C. L. Gomes
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
| | - R. Caitlin Hebert
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Leanne M. Redman
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Nataki C. Douglas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Women’s Health, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA;
| | - Jennifer L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| |
Collapse
|
27
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
28
|
Jackson KL, Head GA, Gueguen C, Stevenson ER, Lim K, Marques FZ. Mechanisms Responsible for Genetic Hypertension in Schlager BPH/2 Mice. Front Physiol 2019; 10:1311. [PMID: 31681017 PMCID: PMC6813185 DOI: 10.3389/fphys.2019.01311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
It has been 45 years since Gunther Schlager used a cross breeding program in mice to develop inbred strains with high, normal, and low blood pressure (BPH/2, BPN/3, and BPL/1 respectively). Thus, it is timely to gather together the studies that have characterized and explored the mechanisms associated with the hypertension to take stock of exactly what is known and what remains to be determined. Growing evidence supports the notion that the mechanism of hypertension in BPH/2 mice is predominantly neurogenic with some of the early studies showing aberrant brain noradrenaline levels in BPH/2 compared with BPN/3. Analysis of the adrenal gland using microarray suggested an association with the activity of the sympathetic nervous system. Indeed, in support of this, there is a larger depressor response to ganglion blockade, which reduced blood pressure in BPH/2 mice to the same level as BPN/3 mice. Greater renal tyrosine hydroxylase staining and greater renal noradrenaline levels in BPH/2 mice suggest sympathetic hyperinnervation of the kidney. Renal denervation markedly reduced the blood pressure in BPH/2 but not BPN/3 mice, confirming the importance of renal sympathetic nervous activity contributing to the hypertension. Further, there is an important contribution to the hypertension from miR-181a and renal renin in this strain. BPH/2 mice also display greater neuronal activity of amygdalo-hypothalamic cardiovascular regulatory regions. Lesions of the medial nucleus of the amygdala reduced the hypertension in BPH/2 mice and abolished the strain difference in the effect of ganglion blockade, suggesting a sympathetic mechanism. Further studies suggest that aberrant GABAergic inhibition may play a role since BPH/2 mice have low GABAA receptor δ, α4 and β2 subunit mRNA expression in the hypothalamus, which are predominantly involved in promoting tonic neuronal inhibition. Allopregnanolone, an allosteric modulator of GABAA receptors, which increase the expression of these subunits in the amygdala and hypothalamus, is shown to reduce the hypertension and sympathetic nervous system contribution in BPH/2 mice. Thus far, evidence suggests that BPH/2 mice have aberrant GABAergic inhibition, which drives neuronal overactivity within amygdalo-hypothalamic brain regions. This overactivity is responsible for the greater sympathetic contribution to the hypertension in BPH/2 mice, thus making this an ideal model of neurogenic hypertension.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Emily R Stevenson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
29
|
Reijnders D, Olson KN, Liu CC, Beckers KF, Ghosh S, Redman LM, Sones JL. Dyslipidemia and the role of adipose tissue in early pregnancy in the BPH/5 mouse model for preeclampsia. Am J Physiol Regul Integr Comp Physiol 2019; 317:R49-R58. [PMID: 30995083 DOI: 10.1152/ajpregu.00334.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypertensive pregnancy disorder preeclampsia (PE) is a leading cause of fetal and maternal morbidity/mortality. Obesity increases the risk to develop PE, presumably via the release of inflammatory mediators from the adipose tissue, but the exact etiology remains largely unknown. Using obese PE-like blood pressure high subline 5 (BPH/5) and lean gestational age-matched C57Bl6 mice, we aimed to obtain insight into differential reproductive white adipose tissue (rWAT) gene expression, circulating lipids and inflammation at the maternal-fetal interface during early pregnancy. In addition, we investigated the effect of 7 days 25% calorie restriction (CR) in early pregnancy on gene expression in rWAT and implantation sites. Compared with C57Bl6, female BPH/5 are dyslipidemic before pregnancy and show an amplification of rWAT mass, circulating cholesterol, free fatty acids, and triacylglycerol levels throughout pregnancy. RNA sequencing showed that pregnant BPH/5 mice have elevated gene enrichment in pathways related to inflammation and cholesterol biosynthesis at embryonic day (e) 7.5. Expression of cholesterol-related HMGCS1, MVD, Cyp51a1, and DHCR was validated by quantitative reverse-transcription-polymerase chain reaction. CR during the first 7 days of pregnancy restored the relative mRNA expression of these genes to a level comparable to C57Bl6 pregnant females and reduced the expression of circulating leptin and proinflammatory prostaglandin synthase 2 in both rWAT and implantation sites in BPH/5 mice at e7.5. Our data suggest a possible role for rWAT in the dyslipidemic state and inflammatory uterine milieu that might underlie the pathogenesis of PE. Future studies should further address the physiological functioning of the adipose tissue in relation to PE-related pregnancy outcomes.
Collapse
Affiliation(s)
- Dorien Reijnders
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana.,Reproductive Endocrinology & Women's Health Lab, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Kelsey N Olson
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana.,Reproductive Endocrinology & Women's Health Lab, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana
| | - Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana
| | - Sujoy Ghosh
- Center for Computational Biology, Duke-National University of Singapore Medical School, Singapore.,Nutrient Sensing and Adipocyte Signaling Laboratory, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Leanne M Redman
- Reproductive Endocrinology & Women's Health Lab, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana
| |
Collapse
|
30
|
Sones JL, Merriam AA, Seffens A, Brown-Grant DA, Butler SD, Zhao AM, Xu X, Shawber CJ, Grenier JK, Douglas NC. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia. FASEB J 2018; 32:2574-2586. [PMID: 29279353 DOI: 10.1096/fj.201701008r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder of pregnancy, is a leading cause of maternal and fetal morbidity and mortality. Although the etiology is unknown, PE is thought to be caused by defective implantation and decidualization in pregnancy. Pregnant blood pressure high (BPH)/5 mice spontaneously develop placentopathies and maternal features of human PE. We hypothesized that BPH/5 implantation sites have transcriptomic alterations. Next-generation RNA sequencing of implantation sites at peak decidualization, embryonic day (E)7.5, revealed complement gene up-regulation in BPH/5 vs. controls. In BPH/5, expression of complement factor 3 was increased around the decidual vasculature of E7.5 implantation sites and in the trophoblast giant cell layer of E10.5 placentae. Altered expression of VEGF pathway genes in E5.5 BPH/5 implantation sites preceded complement dysregulation, which correlated with abnormal vasculature and increased placental growth factor mRNA and VEGF164 expression at E7.5. By E10.5, proangiogenic genes were down-regulated, whereas antiangiogenic sFlt-1 was up-regulated in BPH/5 placentae. We found that early local misexpression of VEGF genes and abnormal decidual vasculature preceded sFlt-1 overexpression and increased complement deposition in BPH/5 placentae. Our findings suggest that abnormal decidual angiogenesis precedes complement activation, which in turn contributes to the aberrant trophoblast invasion and poor placentation that underlie PE.-Sones, J. L., Merriam, A. A., Seffens, A., Brown-Grant, D.-A., Butler, S. D., Zhao, A. M., Xu, X., Shawber, C. J., Grenier, J. K., Douglas, N. C. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.
Collapse
Affiliation(s)
- Jennifer L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Audrey A Merriam
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Angelina Seffens
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Dex-Ann Brown-Grant
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Scott D Butler
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; and
| | - Anna M Zhao
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Xinjing Xu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Carrie J Shawber
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jennifer K Grenier
- RNA Sequencing Core, Center for Reproductive Genomics, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Nataki C Douglas
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Preeclampsia affects 3-4% of pregnancies with few treatment options to reduce maternal and fetal harm. Recent evidence that targeting the complement system may be an effective therapeutic strategy in prevention or treatment of preeclampsia will be reviewed. RECENT FINDINGS Studies in humans confirm the safety and efficacy of C5 blockade in complement-mediated disorders of pregnancy, including preeclampsia. Animal models mimic the placental abnormalities and/or the maternal symptoms which characterize preeclampsia. These models in mouse and rat have defined a role for complement and its regulators in placental dysfunction, hypertension, proteinuria, endothelial dysfunction, fetal growth restriction, and angiogenic imbalance, thus informing future human studies. Targeting excessive complement activation, particularly the terminal complement complex (C5b-9) and C5a may be an effective strategy to prolong pregnancy in women with preeclampsia. Continued research is needed to identify the initiator(s) of activation, the pathways involved, and the key component(s) in the pathophysiology to allow development of safe and effective therapeutics to target complement without compromising its role in homeostasis and host defense.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Dr., Duluth, MN, 55812, USA.
| | - Richard M Burwick
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|