1
|
Danielak A, Magierowski M. Obesity and mitochondrial uncoupling - an opportunity for the carbon monoxide-based pharmacology of metabolic diseases. Pharmacol Res 2025; 215:107741. [PMID: 40252782 DOI: 10.1016/j.phrs.2025.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Obesity, a chronic and progressive disease with a complex etiology, remains a significant global health challenge. Despite advancements in lifestyle interventions, pharmacological therapies, and bariatric surgery, substantial barriers to effective and sustained obesity management persist. Resistance to weight loss and gradual weight regain are commonly reported, limiting the long-term success of both non-pharmacological and pharmacological strategies. A possible contributor is metabolic adaptation, a phenomenon characterized by reduced metabolic rate and energy expenditure following weight loss, which hinders therapeutic efficacy. To address these challenges, increasing attention has been directed toward strategies that counteract maladaptive mechanisms by modulating metabolic rate and enhancing energy expenditure. One promising approach involves mitochondrial uncoupling, where electron transport and oxygen consumption are disconnected from ATP synthesis, promoting energy dissipation. Preclinical studies have demonstrated the potential of various chemical compounds with uncoupling activity as anti-obesity agents. Additionally, carbon monoxide (CO) has emerged as a significant gaseous signaling molecule in human physiology, with anti-inflammatory, antioxidative, and cytoprotective properties. Advances in CO-based pharmacology have led to the development of controlled-release CO donors, enabling precise therapeutic application. Experimental studies suggest that CO modulates mitochondrial bioenergetics, induces mild mitochondrial uncoupling, and regulates mitochondrial biogenesis. By integrating these findings, this review uniquely connects scientific threads, offering a comprehensive synthesis of current knowledge while proposing innovative directions in mitochondrial, metabolic and CO-based pharmacological research. It highlights the potential of CO-based pharmacology to regulate metabolic rate, support weight loss, and address obesity-related dysfunctions, thus suggesting novel pathways for advancing obesity treatment.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University - Medical College, Krakow, Poland
| | - Marcin Magierowski
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Chong L, Dushaj N, Rakoubian A, Yarbro J, Kobayashi S, Liang Q. Unraveling the Roles of HIF-1, HO-1, GLUT-1 and GLUT-4 in Myocardial Protection. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100016. [PMID: 40376262 PMCID: PMC12080592 DOI: 10.53941/ijddp.2024.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Cardiomyocytes are highly dependent on oxygen for optimal function. Disruption of oxygen availability, as in the case of ischemic heart disease, can significantly impair heart function. Moreover, comorbidities like diabetes, hyperlipidemia, and hypertension can exacerbate ischemic cardiac injury. However, cardiomyocytes possess inherent protective mechanisms that can be activated to enhance myocardial survival under such conditions. Understanding the functions and regulatory mechanisms of these cardioprotective genes is crucial for advancing our knowledge of cardiovascular health and for developing therapeutic strategies. This review examines the intricate mechanisms of cardioprotection, with a focus on key genes and proteins, including hypoxia-inducible factor-1 (HIF-1), heme oxygenase-1 (HO-1), glucose transporter 1 (GLUT-1), and GLUT-4. In addition, the review explores the roles and regulation of these factors in the heart under ischemic stress, shedding light on their relevance in conditions like diabetes, hypertension, and hyperlipidemia/atherosclerosis. Moreover, it highlights the complex interplay among their mechanisms and suggests opportunities for developing targeted therapiesfor the treatment of ischemic heart disease, hypertension, and hyperlipidemia.
Collapse
Affiliation(s)
- Lionel Chong
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Nicholas Dushaj
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Ani Rakoubian
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Johnathan Yarbro
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| |
Collapse
|
3
|
Padda I, Sethi Y, Das M, Fabian D, Ralhan T, Aziz D, Sexton J, Johal G. Heme Oxygenase-1, Cardiac Senescence, and Myocardial Infarction: A Critical Review of the Triptych. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07590-0. [PMID: 38940935 DOI: 10.1007/s10557-024-07590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Heme oxygenase-1 (HO-1) is a crucial enzyme in heme metabolism, facilitating the breakdown of heme into biliverdin, carbon monoxide, and free iron. Renowned for its potent cytoprotective properties, HO-1 showcases notable antioxidant, anti-inflammatory, and anti-apoptotic effects. In this review, the authors aim to explore the profound impact of HO-1 on cardiac senescence and its potential implications in myocardial infarction (MI). RESULTS Recent research has unveiled the intricate role of HO-1 in cellular senescence, characterized by irreversible growth arrest and functional decline. Notably, cardiac senescence has emerged as a pivotal factor in the development of various cardiovascular conditions, including MI. Notably, cardiac senescence has emerged as an important factor in the development of various cardiovascular conditions, including myocardial infarction (MI). The accumulation of senescent cells, spanning vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, and progenitor cells, poses a significant risk for cardiovascular diseases such as vascular aging, atherosclerosis, myocardial infarction, and ventricular remodeling. Inhibition of cardiomyocyte senescence not only reduces senescence-associated inflammation but also impacts other myocardial lineages, hinting at a broader mechanism of propagation in pathological remodeling. HO-1 has been shown to improve heart function and mitigate cardiomyocyte senescence induced by ischemic injury and aging. Furthermore, HO-1 induction has been found to alleviate H2O2-induced cardiomyocyte senescence. As we grow in our understanding of antiproliferative, antiangiogenic, anti-aging, and vascular effects of HO-1, we see the potential to exploit potential links between individual susceptibility to cardiac senescence and myocardial infarction. CONCLUSIONS This review investigates strategies for upregulating HO-1, including gene targeting and pharmacological agents, as potential therapeutic approaches. By synthesizing compelling evidence from diverse experimental models and clinical investigations, this study elucidates the therapeutic potential of targeting HO-1 as an innovative strategy to mitigate cardiac senescence and improve outcomes in myocardial infarction, emphasizing the need for further research in this field.
Collapse
Affiliation(s)
- Inderbir Padda
- Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
- PearResearch, Dehradun, India
| | - Yashendra Sethi
- PearResearch, Dehradun, India.
- Government Doon Medical College, Dehradun, Uttarakhand, India.
| | - Maumita Das
- School of Medicine, St. George's University, True Blue, Grenada
| | - Daniel Fabian
- Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Tushar Ralhan
- Department of Internal Medicine, Robert Wood Johnson Medical School, RutgersNew Brunswick, NJ, USA
| | - Daniel Aziz
- Department of Internal Medicine, Robert Wood Johnson Medical School, RutgersNew Brunswick, NJ, USA
| | - Jaime Sexton
- Department of Internal Medicine, Robert Wood Johnson Medical School, RutgersNew Brunswick, NJ, USA
| | - Gurpreet Johal
- Valley Medical Center, University of Washington, Seattle, USA
| |
Collapse
|
4
|
Nemeckova I, Eissazadeh S, Rathouska JU, Silhavy J, Malinska H, Pravenec M, Nachtigal P. Transgenic human C-reactive protein affects oxidative stress but not inflammation biomarkers in the aorta of spontaneously hypertensive rats. BMC Cardiovasc Disord 2024; 24:211. [PMID: 38627621 PMCID: PMC11020172 DOI: 10.1186/s12872-024-03870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.
Collapse
Affiliation(s)
- Ivana Nemeckova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Jana Urbankova Rathouska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Jan Silhavy
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Malinska
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
5
|
Dayarathne LA, Ko SC, Yim MJ, Lee JM, Kim JY, Oh GW, Kim CH, Kim KW, Lee DS, Je JY. Brown Algae Dictyopteris divaricata Attenuates Adipogenesis by Modulating Adipocyte Differentiation and Promoting Lipolysis through Heme Oxygenase-1 Activation in 3T3-L1 Cells. Mar Drugs 2024; 22:91. [PMID: 38393062 PMCID: PMC10890497 DOI: 10.3390/md22020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The present study aims to explore the probable anti-adipogenesis effect of Dictyopteris divaricata (D. divaricata) in 3T3-L1 preadipocytes by regulating heme oxygenase-1 (HO-1). The extract of D. divaricata retarded lipid accretion and decreased triglyceride (TG) content in 3T3-L1 adipocytes but increased free glycerol levels. Treatment with the extract inhibited lipogenesis by inhibiting protein expressions of fatty acid synthase (FAS) and lipoprotein lipase (LPL), whereas lipolysis increased by activating phosphorylation of hormone-sensitive lipase (p-HSL) and AMP-activated protein kinase (p-AMPK). The extract inhibited adipocyte differentiation of 3T3-L1 preadipocytes through down-regulating adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1). This is attributed to the triggering of Wnt/β-catenin signaling. In addition, this study found that treatment with the extract activated HO-1 expression. Pharmacological approaches revealed that treatment with Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, resulted in an increase in lipid accumulation and a decrease in free glycerol levels. Finally, three adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP1, restored their expression in the presence of ZnPP. Analysis of chemical constituents revealed that the extract of D. divaricata is rich in 1,4-benzenediol, 7-tetradecenal, fucosterol, and n-hexadecanoic acid, which are known to have multiple pharmacological properties.
Collapse
Affiliation(s)
- Lakshi A. Dayarathne
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Mi-Jin Yim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Jeong Min Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Chul Hwan Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Kyung Woo Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Mihić D, Loinjak D, Maričić L, Smolić R, Šahinović I, Steiner K, Viland S, Šerić V, Duvnjak M. The Relationship between Nrf2 and HO-1 with the Severity of COVID-19 Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1658. [PMID: 36422196 PMCID: PMC9693233 DOI: 10.3390/medicina58111658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) have significant roles in the development of a hyperinflammatory state in infectious diseases. We aimed to investigate the association of the serum concentrations of Nrf2 and HO-1 with the severity of COVID-19 disease. The study included 40 subjects with mild and moderately severe forms of the disease (MEWS scoring system ≤2). Twenty of the subjects had MEWS scores of 3 or 4, which indicate a severe form of the disease, and twenty subjects had a MEWS score of ≥5, which indicates a critical form of the disease. HO-1 and Nrf2 were measured using the commercially available Enzyme-Linked Immunosorbent Assay (ELISA). Subjects with the most severe form of COVID-19 (critically ill) had a lower concentration of Nrf2 that negatively correlated with the markers of hyperinflammatory response (CRP, IL-6, ferritin). This observation was not made for HO-1, and the correlation between Nrf2 and HO-1 values was not established. In the mild/moderate form of COVID-19 disease, Nrf2 was associated with an increased 1,25 dihydroxy vitamin D concentration. The results of this study show that Nrf2 has a role in the body's anti-inflammatory response to COVID-19 disease, which makes it a potential therapeutic target.
Collapse
Affiliation(s)
- Damir Mihić
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Domagoj Loinjak
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Lana Maričić
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Robert Smolić
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
| | - Ines Šahinović
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Clinical Laboratory Diagnostics, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Kristina Steiner
- Department of Endocrinology, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Sven Viland
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
| | - Vatroslav Šerić
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Clinical Laboratory Diagnostics, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Mario Duvnjak
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Infective Diseases, University Center Hospital Osijek, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Lenski M, Sidibé J, Gholam M, Hennart B, Dubath C, Augsburger M, von Gunten A, Conus P, Allorge D, Thomas A, Eap CB. Metabolomic alteration induced by psychotropic drugs: Short-term metabolite profile as a predictor of weight gain evolution. Clin Transl Sci 2021; 14:2544-2555. [PMID: 34387942 PMCID: PMC8604229 DOI: 10.1111/cts.13122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022] Open
Abstract
Psychotropic drugs can induce strong metabolic adverse effects, potentially increasing morbidity and/or mortality of patients. Metabolomic profiling, by studying the levels of numerous metabolic intermediates and products in the blood, allows a more detailed examination of metabolism dysfunctions. We aimed to identify blood metabolomic markers associated with weight gain in psychiatric patients. Sixty-two patients starting a treatment known to induce weight gain were recruited. Two hundred and six selected metabolites implicated in various pathways were analyzed in plasma, at baseline and after 1 month of treatment. Additionally, 15 metabolites of the kynurenine pathway were quantified. This latter analysis was repeated in a confirmatory cohort of 24 patients. Among the 206 metabolites, a plasma metabolomic fingerprint after 1 month of treatment embedded 19 compounds from different chemical classes (amino acids, acylcarnitines, carboxylic acids, catecholamines, nucleosides, pyridine, and tetrapyrrole) potentially involved in metabolic disruption and inflammation processes. The predictive potential of such early metabolite changes on 3 months of weight evolution was then explored using a linear mixed-effects model. Of these 19 metabolites, short-term modifications of kynurenine, hexanoylcarnitine, and biliverdin, as well as kynurenine/tryptophan ratio at 1 month, were associated with 3 months weight evolution. Alterations of the kynurenine pathway were confirmed by quantification, in both exploratory and confirmatory cohorts. Our metabolomic study suggests a specific metabolic dysregulation after 1 month of treatment with psychotropic drugs known to induce weight gain. The identified metabolomic signature could contribute in the future to the prediction of weight gain in patients treated with psychotropic drugs.
Collapse
Affiliation(s)
- Marie Lenski
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Jonathan Sidibé
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
| | - Mehdi Gholam
- Department of PsychiatryCenter for Psychiatric Epidemiology and PsychopathologyLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Benjamin Hennart
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Céline Dubath
- Unit of Pharmacogenetics and Clinical PsychopharmacologyDepartment of PsychiatryCenter for Psychiatric NeuroscienceLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Marc Augsburger
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
| | - Armin von Gunten
- Service of Old Age PsychiatryDepartment of PsychiatryLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Philippe Conus
- Service of General PsychiatryDepartment of PsychiatryLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Delphine Allorge
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Aurelien Thomas
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
- Faculty Unit of ToxicologyFaculty of Biology and MedicineCURML, Lausanne University HospitalUniversity of LausanneLausanneSwitzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical PsychopharmacologyDepartment of PsychiatryCenter for Psychiatric NeuroscienceLausanne University HospitalUniversity of LausannePrillySwitzerland
- Center for Research and Innovation in Clinical Pharmaceutical SciencesUniversity of LausanneSwitzerland
- School of Pharmaceutical SciencesUniversity of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
8
|
Žiberna L, Jenko-Pražnikar Z, Petelin A. Serum Bilirubin Levels in Overweight and Obese Individuals: The Importance of Anti-Inflammatory and Antioxidant Responses. Antioxidants (Basel) 2021; 10:antiox10091352. [PMID: 34572984 PMCID: PMC8472302 DOI: 10.3390/antiox10091352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a chronic condition involving low-grade inflammation and increased oxidative stress; thus, obese and overweight people have lower values of serum bilirubin. Essentially, bilirubin is a potent endogenous antioxidant molecule with anti-inflammatory, immunomodulatory, antithrombotic, and endocrine properties. This review paper presents the interplay between obesity-related pathological processes and bilirubin, with a focus on adipose tissue and adipokines. We discuss potential strategies to mildly increase serum bilirubin levels in obese patients as an adjunctive therapeutic approach.
Collapse
Affiliation(s)
- Lovro Žiberna
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | | | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, SI-6310 Izola, Slovenia;
- Correspondence: ; Tel.: +386-5-66-2469
| |
Collapse
|
9
|
Che J, Yang J, Zhao B, Shang P. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol 2021; 906:174219. [PMID: 34081904 DOI: 10.1016/j.ejphar.2021.174219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance. Therefore, regulating the production of inflammatory factors and reactive oxygen species may become a strategy for the treatment of osteoporosis. Solid evidence showed that the overexpression of HO-1 compensates high oxidation levels by increasing intracellular antioxidant levels and reduces inflammation by suppressing pro-inflammatory factors. Some extracts can target HO-1 and ameliorate osteoporosis. However, no systematic report is available on therapies targeting HO-1 to combat osteoporosis. Therefore, this review summarizes the biological characteristics of HO-1, and the relationship between inflammatory response and reactive oxygen species production regulated by HO-1 and osteoporosis. The understanding of the role of HO-1 in osteoporosis may provide ideas for a potential clinical treatment and new drugs targeting HO-1.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| | - Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
10
|
Stec DE, Abraham NG. Pharmacological and Clinical Significance of Heme Oxygenase-1. Antioxidants (Basel) 2021; 10:antiox10060854. [PMID: 34071751 PMCID: PMC8227735 DOI: 10.3390/antiox10060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- David E. Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +1-914-594-3121 (N.G.A.)
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +1-914-594-3121 (N.G.A.)
| |
Collapse
|
11
|
Stec DE, Hinds TD. Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E9493. [PMID: 33327438 PMCID: PMC7764878 DOI: 10.3390/ijms21249493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is a critical component of the defense mechanism to a wide variety of cellular stressors. HO induction affords cellular protection through the breakdown of toxic heme into metabolites, helping preserve cellular integrity. Nonalcoholic fatty liver disease (NAFLD) is a pathological condition by which the liver accumulates fat. The incidence of NAFLD has reached all-time high levels driven primarily by the obesity epidemic. NALFD can progress to nonalcoholic steatohepatitis (NASH), advancing further to liver cirrhosis or cancer. NAFLD is also a contributing factor to cardiovascular and metabolic diseases. There are currently no drugs to specifically treat NAFLD, with most treatments focused on lifestyle modifications. One emerging area for NAFLD treatment is the use of dietary supplements such as curcumin, pomegranate seed oil, milk thistle oil, cold-pressed Nigella Satvia oil, and resveratrol, among others. Recent studies have demonstrated that several of these natural dietary supplements attenuate hepatic lipid accumulation and fibrosis in NAFLD animal models. The beneficial actions of several of these compounds are associated with the induction of heme oxygenase-1 (HO-1). Thus, targeting HO-1 through dietary-supplements may be a useful therapeutic for NAFLD either alone or with lifestyle modifications.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology & Biophysics, Center for Cardiovascular and Metabolic Diseases Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| |
Collapse
|
12
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
13
|
Bellner L, Lebovics NB, Rubinstein R, Buchen YD, Sinatra E, Sinatra G, Abraham NG, McClung JA, Thompson EA. Heme Oxygenase-1 Upregulation: A Novel Approach in the Treatment of Cardiovascular Disease. Antioxid Redox Signal 2020; 32:1045-1060. [PMID: 31891663 PMCID: PMC7153645 DOI: 10.1089/ars.2019.7970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Heme oxygenase (HO) plays a pivotal role in both vascular and metabolic functions and is involved in many physiological and pathophysiological processes in vascular endothelial cells (ECs) and adipocytes. Recent Advances: From the regulation of adipogenesis in adipose tissue to the adaptive response of vascular tissue in the ECs, HO plays a critical role in the capability of the vascular system to respond and adjust to insults in homeostasis. Recent studies show that HO-1 through regulation of adipocyte and adipose tissue functions ultimately aid not only in local but also in systemic maintenance of homeostasis. Critical Issues: Recent advances have revealed the existence of a cross talk between vascular ECs and adipocytes in adipose tissue. In the pathological state of obesity, this cross talk contributes to the condition's adverse chronic effects, and we propose that specific targeting of the HO-1 gene can restore signaling pathways and improve both vascular and adipose functions. Future Directions: A complete understanding of the role of HO-1 in regulation of cardiovascular homeostasis is important to comprehend the homeostatic regulation as well as in cardiovascular disease. Efforts are required to highlight the effects and the ability to target the HO-1 gene in models of obesity with an emphasis on the role of pericardial fat on cardiovascular health.
Collapse
Affiliation(s)
- Lars Bellner
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nachum B Lebovics
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | | | - Yosef D Buchen
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Emilia Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Giuseppe Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nader G Abraham
- Department of Pharmacology and New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, New York
| | - Ellen A Thompson
- Department of Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, West Virginia
| |
Collapse
|
14
|
Petelin A, Jurdana M, Jenko Pražnikar Z, Žiberna L. SERUM BILIRUBIN CORRELATES WITH SERUM ADIPOKINES IN NORMAL WEIGHT AND OVERWEIGHT ASYMPTOMATIC ADULTS. Acta Clin Croat 2020; 59:19-29. [PMID: 32724271 PMCID: PMC7382891 DOI: 10.20471/acc.2020.59.01.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity are considered as chronic low-grade inflammation accompanied by imbalanced production of adipokines. The aim of this study was to elucidate the relationship between serum bilirubin, which is an endogenous antioxidant with anti-inflammatory activity, and pro- and anti-inflammatory serum adipokines in asymptomatic normal weight and overweight individuals. Healthy men and women aged 25-49 participated in this cross-sectional study. All participants underwent fasting serological measurements of adipokines, interleukin-6, tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), total and direct serum bilirubin, and other biochemical parameters. Participants were divided into normal weight and overweight groups. We found a significant negative association between total bilirubin and CRP, TNF-α, visfatin and resistin values, and a significant positive association between total bilirubin and adiponectin values in both normal-weight and overweight groups. Importantly, after adjusting for body mass index, we also found a significant negative association between total serum bilirubin levels and both visfatin and CRP serum levels. Moreover, visfatin, resistin and CRP were predictors of the total serum bilirubin levels.
Collapse
Affiliation(s)
| | - Mihaela Jurdana
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Jenko Pražnikar
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lovro Žiberna
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Effects of stress-induced increases of corticosterone on circulating triglyceride levels, biliverdin concentration, and heme oxygenase expression. Comp Biochem Physiol A Mol Integr Physiol 2020; 240:110608. [DOI: 10.1016/j.cbpa.2019.110608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
|
16
|
Singh SP, McClung JA, Thompson E, Glick Y, Greenberg M, Acosta‐Baez G, Edris B, Shapiro JI, Abraham NG. Cardioprotective Heme Oxygenase-1-PGC1α Signaling in Epicardial Fat Attenuates Cardiovascular Risk in Humans as in Obese Mice. Obesity (Silver Spring) 2019; 27:1634-1643. [PMID: 31441604 PMCID: PMC6756945 DOI: 10.1002/oby.22608] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study investigated whether levels of signaling pathways and inflammatory adipokines in epicardial fat regulate cardiovascular risks in humans and mice. METHODS Epicardial fat was obtained from the hearts of patients with heart failure requiring coronary artery bypass surgery, and signaling pathways were compared with visceral fat. The genetic profile of epicardial and visceral fat from humans was also compared with genetic profiles of epicardial and visceral fat in obese mice. Left ventricular (LV) fractional shortening was measured in obese mice before and after treatment with inducers of mitochondrial signaling heme oxygenase 1 (HO-1)-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). An RNA array/heat map on 88 genes that regulate adipose tissue function was used to identify a target gene network. RESULTS Human epicardial fat gene profiling showed decreased levels of mitochondrial signaling of HO-1-PGC1α and increased levels of the inflammatory adipokine CCN family member 3. Similar observations were seen in epicardial and visceral fat of obese mice. Improvement in LV function was linked to the increase in mitochondrial signaling in epicardial fat of obese mice. CONCLUSIONS There is a link between cardiac ectopic fat deposition and cardiac function in humans that is similar to that which is described in obese mice. An increase of mitochondrial signaling pathway gene expression in epicardial fat attenuates cardiometabolic dysfunction and LV fractional shortening in obese mice.
Collapse
Affiliation(s)
| | - John A. McClung
- Department of MedicineNew York Medical CollegeValhallaNew YorkUSA
| | - Ellen Thompson
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Yosef Glick
- Department of PharmacologyNew York Medical CollegeValhallaNew YorkUSA
| | | | - Giancarlo Acosta‐Baez
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Basel Edris
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Joseph I. Shapiro
- Department of Internal MedicineJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Nader G. Abraham
- Department of PharmacologyNew York Medical CollegeValhallaNew YorkUSA
- Department of MedicineNew York Medical CollegeValhallaNew YorkUSA
- Department of Internal MedicineJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| |
Collapse
|
17
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
18
|
Drummond HA, Mitchell ZL, Abraham NG, Stec DE. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8060181. [PMID: 31216709 PMCID: PMC6617021 DOI: 10.3390/antiox8060181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis. There have been great advances in our understanding of the role of HO in the regulation of blood pressure and target organ injury in the last decade. Results from these studies demonstrate that targeting of the HO system could provide novel therapeutic opportunities for the treatment of several cardiovascular and renal diseases. The goal of this review is to highlight the important role of HO in the regulation of cardiovascular and renal function and protection from disease and to highlight areas in which targeting of the HO system needs to be translated to help benefit patient populations.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Zachary L Mitchell
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Vahalla, NY 10595, USA.
- Joan C. Edwards School of Medicine, Marshall University, Huntington, VA 25701, USA.
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| |
Collapse
|
19
|
Yang M, Ni C, Chang B, Jiang Z, Zhu Y, Tang Y, Li Z, Li C, Li B. Association between serum total bilirubin levels and the risk of type 2 diabetes mellitus. Diabetes Res Clin Pract 2019; 152:23-28. [PMID: 31078667 DOI: 10.1016/j.diabres.2019.04.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
AIM To confirm whether serum bilirubin is an independent risk factor of type 2 diabetes mellitus (T2DM) onset in patients with impaired fasting glycemia (IFG) and impaired glucose tolerance (IGT). METHODS This was a prospective cohort study carried out at the Diabetic Identification Center of Tianjin Metabolic Diseases Hospital. Serum total bilirubin (TBIL) was measured at baseline and the patients were grouped according to baseline bilirubin quartiles. The outcome was the confirmation of T2DM by oral glucose tolerance test (OGTT) during the 3-year follow-up. Logistic regression was used to determine the risk factors for T2DM development and whether bilirubin levels are independently associated with T2DM development. RESULTS Finally, 523 patients were analyzed. After 3 years, 310 participants were diagnosed with diabetes based on OGTT. Baseline quartiles of total bilirubin were inversely associated with diabetes risk, even after multivariable adjustment. The adjusted ORs for diabetes were 1.0 (reference), 0.83 (95% CI 0.74-0.96), 0.78 (95% CI 0.68-0.90), 0.74 (95% CI 0.64-0.87) for the 1st, 2nd, 3rd, and 4th quartiles of baseline serum total bilirubin, respectively (P < 0.001). CONCLUSION In patients with IFG or IGT, low levels of serum total bilirubin were associated with a significantly increased risk of T2DM.
Collapse
Affiliation(s)
- Min Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China.
| | - Changlin Ni
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Zhenhuan Jiang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Yanjuan Zhu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Yunzhao Tang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Zhu Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Chenguang Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Bin Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, China
| |
Collapse
|
20
|
Varga C, Veszelka M, Kupai K, Börzsei D, Deim Z, Szabó R, Török S, Priksz D, Gesztelyi R, Juhász B, Radák Z, Pósa A. The Effects of Exercise Training and High Triglyceride Diet in an Estrogen Depleted Rat Model: The Role of the Heme Oxygenase System and Inflammatory Processes in Cardiovascular Risk. J Sports Sci Med 2018; 17:580-588. [PMID: 30479526 PMCID: PMC6243614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/31/2018] [Indexed: 06/09/2023]
Abstract
Cardiovascular morbidity and mortality of premenopausal women are significantly lower compared to men of similar age. However, this protective effect evidently decreases after the onset of menopause. We hypothesized that physical exercise could be a potential therapeutic strategy to improve inflammatory processes and cardiovascular antioxidant homeostasis, which can be affected by the loss of estrogen and the adverse environmental factors, such as overnutrition. Ovariectomized (OVX, n= 40) and sham-operated (SO, n= 40) female Wistar rats were randomized to exercising (R) and non-exercising (NR) groups. Feeding parameters were chosen to make a standard chow (CTRL) or a high triglyceride diet (HT) for 12 weeks. Aortic and cardiac heme oxygenase (HO) activity and HO-1 concentrations significantly decreased in all of the NR OVX and SO HT groups. However, the 12-week physical exercise was found to improve HO-1 values. Plasma IL-6 concentrations were higher in the NR OVX animals and rats fed HT diet compared to SO CTRL rats. TNF-α concentrations were significantly higher in the NR OVX groups. 12 weeks of exercise significantly reduced the concentrations of both TNF-α and IL-6 compared to the NR counterparts. The activity of myeloperoxidase enzyme (MPO) was significantly increased as a result of OVX and HT diet, however voluntary wheel-running exercise restored the elevated values. Our results show that estrogen deficiency and HT diet caused a significant decrease in the activity and concentration of HO enzyme, as well as the concentrations of TNF-α, IL-6, and the activity of MPO. However, 12 weeks of voluntary wheel-running exercise is a potential non-pharmacological therapy to ameliorate these disturbances, which determine the life expectancy of postmenopausal women.
Collapse
Affiliation(s)
- Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Zoltán Deim
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Renáta Szabó
- University of Szeged, Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Zsolt Radák
- Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary
| | - Anikó Pósa
- University of Szeged, Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience
| |
Collapse
|
21
|
Li QQ, Li LJ, Wang XY, Sun YY, Wu J. Research Progress in Understanding the Relationship Between Heme Oxygenase-1 and Intracerebral Hemorrhage. Front Neurol 2018; 9:682. [PMID: 30177908 PMCID: PMC6109777 DOI: 10.3389/fneur.2018.00682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal acute cerebrovascular disease, with a high morbidity and mortality. Following ICH, erythrocytes release heme and several of its metabolites, thereby contributing to brain edema and secondary brain damage. Heme oxygenase is the initial and rate-limiting enzyme of heme catabolism, and the expression of heme oxygenase-1 (HO-1) is rapidly induced following acute brain injury. As HO-1 exerts it effects via various metabolites, its role during ICH remains complex. Therefore, in-depth studies regarding the role of HO-1 in secondary brain damage following ICH may provide a theoretical basis for neuroprotective function after ICH. The present review aims to summarize recent key studies regarding the effects of HO-1 following ICH, as well as its influence on ICH prognosis.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lan-Jun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xin-Yu Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Ying Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Development of NASH in Obese Mice is Confounded by Adipose Tissue Increase in Inflammatory NOV and Oxidative Stress. Int J Hepatol 2018; 2018:3484107. [PMID: 30057822 PMCID: PMC6051135 DOI: 10.1155/2018/3484107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
AIM Nonalcoholic steatohepatitis (NASH) is the consequence of insulin resistance, fatty acid accumulation, oxidative stress, and lipotoxicity. We hypothesize that an increase in the inflammatory adipokine NOV decreases antioxidant Heme Oxygenase 1 (HO-1) levels in adipose and hepatic tissue, resulting in the development of NASH in obese mice. METHODS Mice were fed a high fat diet (HFD) and obese animals were administered an HO-1 inducer with or without an inhibitor of HO activity to examine levels of adipose-derived NOV and possible links between increased synthesis of inflammatory adipokines and hepatic pathology. RESULTS NASH mice displayed decreased HO-1 levels and HO activity, increased levels of hepatic heme, NOV, MMP2, hepcidin, and increased NAS scores and hepatic fibrosis. Increased HO-1 levels are associated with a decrease in NOV, improved hepatic NAS score, ameliorated fibrosis, and increases in mitochondrial integrity and insulin receptor phosphorylation. Adipose tissue function is disrupted in obesity as evidenced by an increase in proinflammatory molecules such as NOV and a decrease in adiponectin. Importantly, increased HO-1 levels are associated with a decrease of NOV, increased adiponectin levels, and increased levels of thermogenic and mitochondrial signaling associated genes in adipose tissue. CONCLUSIONS These results suggest that the metabolic abnormalities in NASH are driven by decreased levels of hepatic HO-1 that is associated with an increase in the adipose-derived proinflammatory adipokine NOV in our obese mouse model of NASH. Concurrently, induction of HO-1 provides protection against insulin resistance as seen by increased insulin receptor phosphorylation. Pharmacological increases in HO-1 associated with decreases in NOV may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the development of NASH.
Collapse
|
23
|
Navneet S, Cui X, Zhao J, Wang J, Kaidery NA, Thomas B, Bollinger KE, Yoon Y, Smith SB. Excess homocysteine upregulates the NRF2-antioxidant pathway in retinal Müller glial cells. Exp Eye Res 2018; 178:228-237. [PMID: 29608906 DOI: 10.1016/j.exer.2018.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
This study evaluated the effects of elevated homocysteine (Hcy) on the oxidative stress response in retinal Müller glial cells. Elevated Hcy has been implicated in retinal diseases including glaucoma and optic neuropathy, which are characterized by retinal ganglion cell (RGC) loss. To understand the mechanisms of Hcy-induced RGC loss, in vitro and in vivo models have been utilized. In vitro isolated RGCs are quite sensitive to elevated Hcy levels, while in vivo murine models of hyperhomocysteinemia (HHcy) demonstrate a more modest RGC loss (∼20%) over a period of many months. This differential response to Hcy between isolated cells and the intact retina suggests that the retinal milieu invokes mechanisms that buffer excess Hcy. Oxidative stress has been implicated as a mechanism of Hcy-induced neuron loss and NRF2 is a transcription factor that plays a major role in regulating cytoprotective responses to oxidative stress. In the present study we investigated whether HHcy upregulates NRF2-mediated stress responses in Müller cells, the chief retinal glial cell responsible for providing trophic support to retinal neurons. Primary Müller cells were exposed to L-Hcy-thiolactone [50μM-10mM] and assessed for viability, reactive oxygen species (ROS), and glutathione (GSH) levels. Gene/protein levels of Nrf2 and levels of NRF2-regulated antioxidants (NQO1, CAT, SOD2, HMOX1, GPX1) were assessed in Hcy-exposed Müller cells. Unlike isolated RGCs, isolated Müller cells are viable over a wide range of Hcy concentrations [50 μM - 1 mM]. Moreover, when exposed to elevated Hcy, Müller cells demonstrate decreased oxidative stress and decreased ROS levels. GSH levels increased by ∼20% within 24 h exposure to Hcy. Molecular analyses revealed 2-fold increase in Nrf2 expression. Expression of antioxidant genes Nqo1, Cat, Sod2, Hmox1, Gpx1 increased significantly. The consequences of Hcy exposure were evaluated also in Müller cells harvested from Nrf2-/- mice. In contrast to WT Müller cells, in which oxidative stress decreased upon exposure to Hcy, the Nrf2-/- Müller cells showed a significant increase in oxidative stress. Our data suggest that at least during early stages of Hhcy, a cytoprotective response may be in place, mediated in part by NRF2 in Müller cells.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Xuezhi Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Jing Zhao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Navneet Ammal Kaidery
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Bobby Thomas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kathryn E Bollinger
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
24
|
Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Physiol Regul Integr Comp Physiol 2017; 314:R387-R398. [PMID: 29167167 DOI: 10.1152/ajpregu.00235.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an emerging pandemic driven by consumption of a diet rich in fat and highly refined carbohydrates (a Western diet) and a sedentary lifestyle in both children and adults. There is mounting evidence that arterial stiffness in obesity is an independent and strong predictor of cardiovascular disease (CVD), cognitive functional decline, and chronic kidney disease. Cardiovascular stiffness is a precursor to atherosclerosis, systolic hypertension, cardiac diastolic dysfunction, and impairment of coronary and cerebral flow. Moreover, premenopausal women lose the CVD protection normally afforded to them in the setting of obesity, insulin resistance, and diabetes, and this loss of CVD protection is inextricably linked to an increased propensity for arterial stiffness. Stiffness of endothelial and vascular smooth muscle cells, extracellular matrix remodeling, perivascular adipose tissue inflammation, and immune cell dysfunction contribute to the development of arterial stiffness in obesity. Enhanced endothelial cortical stiffness decreases endothelial generation of nitric oxide, and increased oxidative stress promotes destruction of nitric oxide. Our research over the past 5 years has underscored an important role of increased aldosterone and vascular mineralocorticoid receptor activation in driving development of cardiovascular stiffness, especially in females consuming a Western diet. In this review the cellular mechanisms of obesity-associated arterial stiffness are highlighted.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Departments of Medical Pharmacology and Physiology, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri.,Dalton Cardiovascular Center Columbia , Columbia, Missouri
| |
Collapse
|
25
|
Heme Oxygenase-1, a Key Enzyme for the Cytoprotective Actions of Halophenols by Upregulating Nrf2 Expression via Activating Erk1/2 and PI3K/Akt in EA.hy926 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7028478. [PMID: 28694915 PMCID: PMC5488237 DOI: 10.1155/2017/7028478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence has demonstrated that heme oxygenase-1 (HO-1) is a key enzyme triggered by cellular stress, exhibiting cytoprotective, antioxidant, and anti-inflammatory abilities. Previously, we prepared a series of novel active halophenols possessing strong antioxidant activities in vitro and in vivo. In the present study, we demonstrated that these halophenols exhibited significant protective effects against H2O2-induced injury in EA.hy926 cells by inhibition of apoptosis and ROS and TNF-α production, as well as induction of the upregulation of HO-1, the magnitude of which correlated with their cytoprotective actions. Further experiments which aimed to determine the mechanistic basis of these actions indicated that the halophenols induced the activation of Nrf2, Erk1/2, and PI3K/Akt without obvious effects on the phosphorylation of p38, JNK, or the expression of PKC-δ. This was validated with the use of PD98059 and Wortmannin, specific inhibitors of Erk1/2 and PI3K, respectively. Overall, our study is the first to demonstrate that the cytoprotective actions of halophenols involve their antiapoptotic, antioxidant, and anti-inflammatory abilities, which are mediated by the upregulation of Nrf2-dependent HO-1 expression and reductions in ROS and TNF-α generation via the activation of Erk1/2 and PI3K/Akt in EA.hy926 cells. HO-1 may thus be an important potential target for further research into the cytoprotective actions of halophenols.
Collapse
|
26
|
Hulst M, Jansman A, Wijers I, Hoekman A, Vastenhouw S, van Krimpen M, Smits M, Schokker D. Enrichment of in vivo transcription data from dietary intervention studies with in vitro data provides improved insight into gene regulation mechanisms in the intestinal mucosa. GENES AND NUTRITION 2017; 12:11. [PMID: 28413565 PMCID: PMC5390468 DOI: 10.1186/s12263-017-0559-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
Abstract
Background Gene expression profiles of intestinal mucosa of chickens and pigs fed over long-term periods (days/weeks) with a diet rich in rye and a diet supplemented with zinc, respectively, or of chickens after a one-day amoxicillin treatment of chickens, were recorded recently. Such dietary interventions are frequently used to modulate animal performance or therapeutically for monogastric livestock. In this study, changes in gene expression induced by these three interventions in cultured “Intestinal Porcine Epithelial Cells” (IPEC-J2) recorded after a short-term period of 2 and 6 hours, were compared to the in vivo gene expression profiles in order to evaluate the capability of this in vitro bioassay in predicting in vivo responses. Methods Lists of response genes were analysed with bioinformatics programs to identify common biological pathways induced in vivo as well as in vitro. Furthermore, overlapping genes and pathways were evaluated for possible involvement in the biological processes induced in vivo by datamining and consulting literature. Results For all three interventions, only a limited number of identical genes and a few common biological processes/pathways were found to be affected by the respective interventions. However, several enterocyte-specific regulatory and secreted effector proteins that responded in vitro could be related to processes regulated in vivo, i.e. processes related to mineral absorption, (epithelial) cell adherence and tight junction formation for zinc, microtubule and cytoskeleton integrity for amoxicillin, and cell-cycle progression and mucus production for rye. Conclusions Short-term gene expression responses to dietary interventions as measured in the in vitro bioassay have a low predictability for long-term responses as measured in the intestinal mucosa in vivo. The short-term responses of a set regulatory and effector genes, as measured in this bioassay, however, provided additional insight into how specific processes in piglets and broilers may be modulated by “early” signalling molecules produced by enterocytes. The relevance of this set of regulatory/effector genes and cognate biological processes for zinc deficiency and supplementation, gluten allergy (rye), and amoxicillin administration in humans is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0559-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcel Hulst
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Alfons Jansman
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Ilonka Wijers
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| | - Arjan Hoekman
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| | - Stéphanie Vastenhouw
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Marinus van Krimpen
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Mari Smits
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Dirkjan Schokker
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Gostner JM, Becker K, Kofler H, Strasser B, Fuchs D. Tryptophan Metabolism in Allergic Disorders. Int Arch Allergy Immunol 2016; 169:203-15. [PMID: 27161289 PMCID: PMC5433561 DOI: 10.1159/000445500] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Allergic diseases such as asthma and rhinitis, as well the early phase of atopic dermatitis, are characterized by a Th2-skewed immune environment. Th2-type cytokines are upregulated in allergic inflammation, whereas there is downregulation of the Th1-type immune response and related cytokines, such as interferon-x03B3; (IFN-x03B3;). The latter is a strong inducer of indoleamine 2,3-dioxygenase-1 (IDO-1), which degrades the essential amino acid tryptophan, as part of an antiproliferative strategy of immunocompetent cells to halt the growth of infected and malignant cells, and also of T cells - an immunoregulatory intervention to avoid overactivation of the immune system. Raised serum tryptophan concentrations have been reported in patients with pollen allergy compared to healthy blood donors. Moreover, higher baseline tryptophan concentrations have been associated with a poor response to specific immunotherapy. It has been shown that the increase in tryptophan concentrations in patients with pollen allergy only exists outside the pollen season, and not during the season. Interestingly, there is only a minor alteration of the kynurenine to tryptophan ratio (Kyn/Trp, an index of tryptophan breakdown). The reason for the higher tryptophan concentrations in patients with pollen allergy outside the season remains a matter of discussion. To this regard, the specific interaction of nitric oxide (NO∙) with the tryptophan-degrading enzyme IDO-1 could be important, because an enhanced formation of NO∙ has been reported in patients with asthma and allergic rhinitis. Importantly, NO∙ suppresses the activity of the heme enzyme IDO-1, which could explain the higher tryptophan levels. Thus, inhibitors of inducible NO∙ synthase should be reconsidered as candidates for antiallergic therapy out of season that may abrogate the arrest of IDO-1 by decreasing the production of NO∙. Considering its association with the pathophysiology of atopic disease, tryptophan metabolism may play a relevant role in the pathophysiology of allergic disorders.
Collapse
Affiliation(s)
- Johanna M. Gostner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| | - Katrin Becker
- Division of Biological Chemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| | | | - Barbara Strasser
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| |
Collapse
|
28
|
Barnett M, Hall S, Dixit M, Arany I. Simvastatin attenuates oleic acid-induced oxidative stress through CREB-dependent induction of heme oxygenase-1 in renal proximal tubule cells. Pediatr Res 2016; 79:243-50. [PMID: 26492285 DOI: 10.1038/pr.2015.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Statins elicit antioxidant effects independently of their lipid-lowering properties. Heme oxygenase-1 (HO-1) induction may be a part of these pleiotropic effects, which are insufficiently described in the kidney. We hypothesize that simvastatin (SIM) transcriptionally activates HO-1 that protects renal proximal tubule cells from lipotoxic injury. METHODS Impact of SIM on 100 μmol/l oleic acid (OA)-mediated reactive oxygen species (ROS) production and consequent oxidative stress (4-hydroxynonenal (HNE) content) as well as cell injury/apoptosis (lactate dehydrogenase (LDH) release, caspase-3 activation) were determined in cultured renal proximal tubule (NRK52E) cells. Effect of SIM on the HO-1 promoter and its enhancer elements (antioxidant response element (ARE), CCAAT, AP1, and cAMP response element (CRE)) was also determined in reporter luciferase assays. Dominant-negative (dnMEK, M1CREB) and pharmacologic (H89) approaches were used to inhibit activation of extracellular signal regulated kinase (ERK), CREB, and protein kinase A (PKA), respectively. RESULTS SIM dose-dependently activated the HO-1 promoter that was essential for protection against OA-dependent ROS production/oxidative stress and LDH release/caspase-3 activation. We found that the HO-1 promoter was induced through ERK and PKA-dependent activation of the CRE by SIM. CONCLUSION SIM may protect the kidney from adverse effects of circulating fatty acids by upregulating the antioxidant HO-1, aside from its well-described lipid-lowering effects.
Collapse
Affiliation(s)
- Meaghan Barnett
- Department of Pediatrics, Division of Critical Care, University of Mississippi Medical Center, Jackson, Mississippi
| | - Samuel Hall
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mehul Dixit
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Istvan Arany
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
29
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
30
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
31
|
Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage. PLoS One 2015; 10:e0140493. [PMID: 26460608 PMCID: PMC4604159 DOI: 10.1371/journal.pone.0140493] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/25/2015] [Indexed: 01/29/2023] Open
Abstract
The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5-10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions involving an increase in gastric microcirculation mediated by sGC/cGMP, prostaglandins derived from COX-1, NO-NOS system and its anti-inflammatory properties.
Collapse
|
32
|
Yang M, Kimura M, Ng C, He J, Keshvari S, Rose FJ, Barclay JL, Whitehead JP. Induction of heme-oxygenase-1 (HO-1) does not enhance adiponectin production in human adipocytes: Evidence against a direct HO-1 - Adiponectin axis. Mol Cell Endocrinol 2015; 413:209-16. [PMID: 26143632 DOI: 10.1016/j.mce.2015.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Adiponectin is a salutary adipokine and hypoadiponectinemia is implicated in the aetiology of obesity-related inflammation and cardiometabolic disease making therapeutic strategies to increase adiponectin attractive. Emerging evidence, predominantly from preclinical studies, suggests induction of heme-oxygenase-1 (HO-1) increases adiponectin production and reduces inflammatory tone. Here, we aimed to test whether induction of HO-1 enhanced adiponectin production from mature adipocytes. Treatment of human adipocytes with cobalt protoporphyrin (CoPP) or hemin for 24-48 h increased HO-1 expression and activity without affecting adiponectin expression and secretion. Treatment of adipocytes with TNFα reduced adiponectin secretion and increased expression and secretion of additional pro-inflammatory cytokines, IL-6 and MCP-1, as well as expression of sXBP-1, a marker of ER stress. HO-1 induction failed to reverse these effects. These results demonstrate that induction of HO-1 does not directly enhance adiponectin production or ameliorate the pro-inflammatory effects of TNFα and argue against a direct HO-1 - adiponectin axis.
Collapse
Affiliation(s)
- Mengliu Yang
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Masaki Kimura
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia; Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Choaping Ng
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Jingjing He
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity J Rose
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Johanna L Barclay
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Jonathan P Whitehead
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
33
|
Zeng P, Pi RB, Li P, Chen RX, Lin LM, He H, Zhou SY. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice. Mol Vis 2015; 21:688-98. [PMID: 26120273 PMCID: PMC4463969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the effects and mechanisms of fasudil hydrochloride (fasudil) on and in alkali burn-induced corneal neovascularization (CNV) in mice. METHODS To observe the effect of fasudil, mice with alkali-burned corneas were treated with either fasudil eye drops or phosphate-buffered saline (PBS) four times per day for 14 consecutive days. After injury, CNV and corneal epithelial defects were measured. The production of reactive oxygen species (ROS) and heme oxygenase-1(HO-1) was measured. The infiltration of polymorphonuclear neutrophils (PMNs) and the mRNA expressions of CNV-related genes were analyzed on day 14. RESULTS The incidence of CNV was significantly lower after treatment with 100 μM and 300 μM fasudil than with PBS, especially with 100 μM fasudil. Meanwhile, the incidences of corneal epithelial defects was lower (n=15, all p<0.01). After treatment with 100 μM fasudil, the intensity of DHE fluorescence was reduced in the corneal epithelium and stroma than with PBS treatment (n=5, all p<0.01), and the number of filtrated PMNs decreased. There were significant differences between the expressions of VEGF, TNF-a, MMP-8, and MMP-9 in the 100 μM fasudil group and the PBS group (n=8, all p<0.05). The production of HO-1 protein in the 100 μM fasudil group was 1.52±0.34 times more than in the PBS group (n=5 sample, p<0.05). CONCLUSIONS 100 μM fasudil eye drops administered four times daily can significantly inhibit alkali burn-induced CNV and promote the healing of corneal epithelial defects in mice. These effects are attributed to a decrease in inflammatory cell infiltration, reduction of ROS, and upregulation of HO-1 protein after fasudil treatment.
Collapse
Affiliation(s)
- Peng Zeng
- Zhongshan Ophthalmic Center of Sun Yat-sen University, The State Key Laboratory of Ophthalmology,Guangzhou, China
| | - Rong-biao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peng Li
- Department of Ophthalmology, No.181 Hospital of PLA, Guangxi, Guilin, China
| | - Rong-xin Chen
- Zhongshan Ophthalmic Center of Sun Yat-sen University, The State Key Laboratory of Ophthalmology,Guangzhou, China
| | - Li-mian Lin
- Zhongshan Ophthalmic Center of Sun Yat-sen University, The State Key Laboratory of Ophthalmology,Guangzhou, China
| | - Hong He
- Hainan Eye Hospital of Zhongshan Ophthalmic Center, Haikou, Hainan Province, China
| | - Shi-you Zhou
- Zhongshan Ophthalmic Center of Sun Yat-sen University, The State Key Laboratory of Ophthalmology,Guangzhou, China
| |
Collapse
|
34
|
Barone E, Butterfield DA. Insulin resistance in Alzheimer disease: Is heme oxygenase-1 an Achille's heel? Neurobiol Dis 2015; 84:69-77. [PMID: 25731746 DOI: 10.1016/j.nbd.2015.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/18/2015] [Indexed: 01/10/2023] Open
Abstract
Insulin resistance, clinically defined as the inability of insulin to increase glucose uptake and utilization, has been found to be associated with the progression of Alzheimer disease (AD). Indeed, postmortem AD brain shows all the signs of insulin resistance including: (i) reduced brain insulin receptor (IR) sensitivity, (ii) hypophosphorylation of the insulin receptor and downstream second messengers such as IRS-1, and (iii) attenuated insulin and insulin growth factor (IGF)-1 receptor expression. However, the exact mechanisms driving insulin resistance have not been completely elucidated. Quite recently, the levels of the peripheral inducible isoform of heme oxygenase (HO-1), a well-known protein up-regulated during cell stress response, were proposed to be among the strongest positive predictors of metabolic disease, including insulin resistance. Because our group previously reported on levels, activation state and oxidative stress-induced post-translational modifications of HO-1 in AD brain and our ongoing studies to better elucidate the role of HO-1 in insulin resistance-associated AD pathology, the aim of this review is to provide reader with a critical analysis on new aspects of the interplay between HO-1 and insulin resistance and on how the available lines of evidence could be useful for further comprehension of processes in AD brain.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
35
|
α-Tocopherol protects renal cells from nicotine- or oleic acid-provoked oxidative stress via inducing heme oxygenase-1. J Physiol Biochem 2014; 71:1-7. [DOI: 10.1007/s13105-014-0372-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/18/2014] [Indexed: 02/06/2023]
|
36
|
El-Ani D, Philipchik I, Stav H, Levi M, Zerbib J, Shainberg A. Tumor necrosis factor alpha protects heart cultures against hypoxic damage via activation of PKA and phospholamban to prevent calcium overload. Can J Physiol Pharmacol 2014; 92:917-25. [PMID: 25349921 DOI: 10.1139/cjpp-2014-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aims to elucidate the mechanisms by which tumor necrosis factor alpha (TNFα) provides protection from hypoxic damage to neonatal rat cardiomyocyte cultures. We show that when intracellular Ca(2+) ([Ca(2+)]i) levels are elevated by extracellular Ca(2+) ([Ca(2+)]o) or by hypoxia, then TNFα decreased [Ca(2+)]i in individual cardiomyocytes. However, TNFα did not reduce [Ca(2+)]i after its increase by thapsigargin, (a SERCA2a inhibitor), indicating that TNFα attenuates Ca(2+) overload through Ca(2+) uptake by SERCA2a. TNFα did not reduce [Ca(2+)]i, following its elevation when [Ca(2+)]o levels were elevated in TNFα receptor knock-out mice. H-89, a protein kinase A (PKA) inhibitor, attenuated the protective effect of TNFα when the cardiomyoctyes were subjected to hypoxia, as determined by lactate dehydrogenase (LDH) and creatine kinase (CK) released and from the cardiomyocytes. Moreover, when the levels of [Ca(2+)]i were increased by hypoxia, H-89, but not KN93, (a calmodulin kinase II inhibitor), prevented the reduction in [Ca(2+)]i by TNFα. TNFα increased the phosphorylation of PKA in normoxic and hypoxic cardiomyoctes, indicating that the cardioprotective effect of TNFα against hypoxic damage was via PKA activation. Hypoxia decreased phosphorylated phospholamban levels; however, TNFα attenuated this decrease following hypoxia. It is suggested that TNFα activates phospholamban phosphorylation in hypoxic heart cultures via PKA to stimulate SERCA2a activity to limit Ca(2+) overload.
Collapse
Affiliation(s)
- Dalia El-Ani
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Issan Y, Kornowski R, Aravot D, Shainberg A, Laniado-Schwartzman M, Sodhi K, Abraham NG, Hochhauser E. Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress. PLoS One 2014; 9:e92246. [PMID: 24658657 PMCID: PMC3962395 DOI: 10.1371/journal.pone.0092246] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/20/2014] [Indexed: 01/23/2023] Open
Abstract
Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with a concomitant inhibition of pGSK3β leading to preserved mitochondrial membrane potential.
Collapse
Affiliation(s)
- Yossi Issan
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
| | - Ran Kornowski
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Tel-Aviv University, Petah-Tikva, Israel
| | - Dan Aravot
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
- Cardiac Surgery department, Rabin Medical Center, Tel-Aviv University, Petah-Tikva, Israel
| | - Asher Shainberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Komal Sodhi
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, United States of America
| | - Nader G. Abraham
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, United States of America
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
- Cardiac Surgery department, Rabin Medical Center, Tel-Aviv University, Petah-Tikva, Israel
- * E-mail:
| |
Collapse
|
38
|
Origassa CST, Câmara NOS. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J Hepatol 2013; 5:541-9. [PMID: 24179613 PMCID: PMC3812456 DOI: 10.4254/wjh.v5.i10.541] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/08/2012] [Accepted: 11/25/2012] [Indexed: 02/06/2023] Open
Abstract
The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.
Collapse
Affiliation(s)
- Clarice Silvia Taemi Origassa
- Clarice Silvia Taemi Origassa, Laboratory of Experimental and Clinical Immunology, Nephrology Division, Medicine Department, Federal University of São Paulo, 04039-032 São Paulo, Brazil
| | | |
Collapse
|
39
|
Hemin and Zinc Protoporphyrin IX Affect Granisetron Constipating Effects In Vitro and In Vivo. ISRN GASTROENTEROLOGY 2013; 2013:612037. [PMID: 23864955 PMCID: PMC3705784 DOI: 10.1155/2013/612037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/20/2022]
Abstract
Granisetron is a 5-HT3 receptors antagonist used in the management of emesis associated with anticancer chemotherapy. It affects intestinal motility with constipating effect. Since the pathway heme oxygenase/carbon monoxide (HO/CO) is involved in gastrointestinal motility, we evaluated the possible interplay between granisetron and agents affecting HO/CO pathways such as zinc protoporphyrin IX (ZnPPIX), an HO inhibitor, or hemin, an HO-1 inducer. ZnPPIX (10 µM) or hemin (10 µM), but not granisetron (0.1, 0.3, 1 µM), affected spontaneous basal activity recorded in rat duodenal strips, in noncholinergic nonadrenergic conditions. Granisetron restored spontaneous basal activity after ZnPPIX, but not after hemin. ZnPPIX decreased and hemin increased the inhibition of activity after electrical field stimulation (EFS), but they did not affect the contraction that follows the relaxation induced by EFS called off contraction. Granisetron did not alter the response to EFS per se but abolished both ZnPPIX and hemin effect when coadministered. In vivo study showed constipating effect of granisetron (25, 50, 75 µg/kg/sc) but no effect of either ZnPPIX (50 µg/kg/i.p.) or hemin (50 µM/kg/i.p.). When coadministered, granisetron effect was abolished by ZnPPIX and increased by hemin. Specimens from rats treated in vivo with hemin (50 µM/kg/i.p.) showed increased HO-1 protein levels. In conclusion, granisetron seems to interact with agents affecting HO/CO pathway both in vitro and in vivo.
Collapse
|
40
|
Guo C, Li R, Zheng N, Xu L, Liang T, He Q. Anti-diabetic effect of ramulus mori polysaccharides, isolated from Morus alba L., on STZ-diabetic mice through blocking inflammatory response and attenuating oxidative stress. Int Immunopharmacol 2013; 16:93-9. [DOI: 10.1016/j.intimp.2013.03.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 01/11/2023]
|
41
|
D5 dopamine receptor decreases NADPH oxidase, reactive oxygen species and blood pressure via heme oxygenase-1. Hypertens Res 2013; 36:684-90. [PMID: 23425954 DOI: 10.1038/hr.2013.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2012] [Accepted: 12/21/2012] [Indexed: 02/07/2023]
Abstract
D5 dopamine receptor (D5R) knock-out mice (D5(-/-)) have a higher blood pressure (BP) and higher reactive oxygen species (ROS) production than their D5R wild-type littermates (D5(+/+)). We tested the hypothesis that the high BP and increased ROS production in D5(-/-) mice may be caused by decreased heme oxygenase-1 (HO-1) expression and activity. We found that renal HO-1 protein expression and HO enzyme activity were decreased (65 and 50%, respectively) in D5(-/-) relative to D5(+/+) mice. A 24 h of administration of hemin, an HO-1 inducer, increased HO-1 expression and HO activity (6.8- and 1.9-fold, respectively) and normalized the increased ROS production and BP in D5(-/-) mice. Expression of HO-1 protein and HO activity were increased (2.3- and 1.5-fold, respectively) in HEK cells that heterologously expressed human wild-type D5R (HEK-hD5R), but not the empty vector-transfected HEK-293 cells. Fenoldopam (Fen), a D5R agonist, increased HO activity (3 h), HO-1 protein expression, HO-1 and D5R colocalization and co-immunoprecipitation in HEK-hD5R cells. Cellular NADPH oxidase activity was decreased by 35% in HEK-hD5R that was abrogated with silencing of the heme oxygenase 1 gene (HMOX1). HMOX1 siRNA also impaired the ability of Fen to decrease NADPH oxidase activity in HEK-hD5R cells. In summary, the D5R positively regulates HO-1 through direct protein/protein interaction in the short-term and by increasing HO-1 protein expression in the long-term. The impaired D5R regulation of HO-1 and ROS production contributes to the pathogenesis of hypertension in D5(-/-) mice.
Collapse
|
42
|
Li ZX, Chen JW, Yuan F, Huang YY, Zhao LY, Li J, Su HX, Liu J, Pang JY, Lin YC, Lu XL, Pei Z, Wang GL, Guan YY. Xyloketal B exhibits its antioxidant activity through induction of HO-1 in vascular endothelial cells and zebrafish. Mar Drugs 2013; 11:504-22. [PMID: 23429283 PMCID: PMC3640395 DOI: 10.3390/md11020504] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 01/31/2023] Open
Abstract
We previously reported that a novel marine compound, xyloketal B, has strong antioxidative actions in different models of cardiovascular diseases. Induction of heme oxygenase-1 (HO-1), an important endogenous antioxidant enzyme, has been considered as a potential therapeutic strategy for cardiovascular diseases. We here investigated whether xyloketal B exhibits its antioxidant activity through induction of HO-1. In human umbilical vein endothelial cells (HUVECs), xyloketal B significantly induced HO-1 gene expression and translocation of the nuclear factor-erythroid 2-related factor 2 (Nrf-2) in a concentration- and time-dependent manner. The protection of xyloketal B against angiotensin II-induced apoptosis and reactive oxygen species (ROS) production could be abrogated by the HO-1 specific inhibitor, tin protoporphyrin-IX (SnPP). Consistently, the suppressive effects of xyloketal B on NADPH oxidase activity could be reversed by SnPP in zebrafish embryos. In addition, xyloketal B induced Akt and Erk1/2 phosphorylation in a concentration- and time-dependent manner. Furthermore, PI3K inhibitor LY294002 and Erk1/2 inhibitor U0126 suppressed the induction of HO-1 and translocation of Nrf-2 by xyloketal B, whereas P38 inhibitor SB203580 did not. In conclusion, xyloketal B can induce HO-1 expression via PI3K/Akt/Nrf-2 pathways, and the induction of HO-1 is mainly responsible for the antioxidant and antiapoptotic actions of xyloketal B.
Collapse
Affiliation(s)
- Zhen-Xing Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (Z.-X.L.); (F.Y.); (Y.-Y.H.); (L.-Y.Z.); (J.L.); (Y.-Y.G.)
| | - Jian-Wen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; E-Mail:
| | - Feng Yuan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (Z.-X.L.); (F.Y.); (Y.-Y.H.); (L.-Y.Z.); (J.L.); (Y.-Y.G.)
| | - Yun-Ying Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (Z.-X.L.); (F.Y.); (Y.-Y.H.); (L.-Y.Z.); (J.L.); (Y.-Y.G.)
| | - Li-Yan Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (Z.-X.L.); (F.Y.); (Y.-Y.H.); (L.-Y.Z.); (J.L.); (Y.-Y.G.)
| | - Jie Li
- Department of Anesthesiology, The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; E-Mail:
| | - Huan-Xing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; E-Mail:
| | - Jie Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (Z.-X.L.); (F.Y.); (Y.-Y.H.); (L.-Y.Z.); (J.L.); (Y.-Y.G.)
| | - Ji-Yan Pang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (J.-Y.P.); (Y.-C.L.)
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-Sen University, Bureau of Education, Guangzhou 510080, China
| | - Yong-Cheng Lin
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (J.-Y.P.); (Y.-C.L.)
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-Sen University, Bureau of Education, Guangzhou 510080, China
| | - Xi-Lin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; E-Mail:
| | - Zhong Pei
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-Sen University, Bureau of Education, Guangzhou 510080, China
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mails: (G.-L.W.); (Z.P.); Tel.: +86-020-8733-0300 (G.-L.W.); Fax: +86-020-8733-1155 (G.-L.W.); Tel./Fax: +86-020-8733-5935 (Z.P.)
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (Z.-X.L.); (F.Y.); (Y.-Y.H.); (L.-Y.Z.); (J.L.); (Y.-Y.G.)
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Sun Yat-Sen University, Bureau of Education, Guangzhou 510080, China
- Author to whom correspondence should be addressed; E-Mails: (G.-L.W.); (Z.P.); Tel.: +86-020-8733-0300 (G.-L.W.); Fax: +86-020-8733-1155 (G.-L.W.); Tel./Fax: +86-020-8733-5935 (Z.P.)
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (Z.-X.L.); (F.Y.); (Y.-Y.H.); (L.-Y.Z.); (J.L.); (Y.-Y.G.)
| |
Collapse
|
43
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
44
|
Chang SY, Chen YW, Zhao XP, Chenier I, Tran S, Sauvé A, Ingelfinger JR, Zhang SL. Catalase prevents maternal diabetes-induced perinatal programming via the Nrf2-HO-1 defense system. Diabetes 2012; 61:2565-74. [PMID: 22733796 PMCID: PMC3447903 DOI: 10.2337/db12-0248] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We investigated whether overexpression of catalase (CAT) in renal proximal tubular cells (RPTCs) could prevent the programming of hypertension and kidney disease in the offspring of dams with maternal diabetes. Male offspring of nondiabetic and diabetic dams from two transgenic (Tg) lines (Hoxb7-green fluorescent protein [GFP]-Tg [controls] and Hoxb7/CAT-GFP-Tg, which overexpress CAT in RPTCs) were studied from the prenatal period into adulthood. Nephrogenesis, systolic blood pressure, renal hyperfiltration, kidney injury, and reactive oxygen species (ROS) generation were assessed. Gene expression of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2p45-related factor-2 (Nrf2), and heme oxygenase-1 (HO-1) was tested in both in vitro and in vivo studies. Renal dysmorphogenesis was observed in offspring of Hoxb7-GFP-Tg dams with severe maternal diabetes; the affected male offspring displayed higher renal ROS generation and developed hypertension and renal hyperfiltration as well as renal injury with heightened TGF-β1 expression in adulthood. These changes were ameliorated in male offspring of diabetic Hoxb7/CAT-GFP-Tg dams via the Nrf2-HO-1 defense system. CAT promoted Nrf2 nuclear translocation and HO-1 gene expression, seen in both in vitro and in vivo studies. In conclusion, CAT overexpression in the RPTCs ameliorated maternal diabetes-induced perinatal programming, mediated, at least in part, by triggering the Nrf2-HO-1 defense system.
Collapse
Affiliation(s)
- Shiao-Ying Chang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada
| | - Yun-Wen Chen
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada
| | - Xin-Ping Zhao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada
| | - Stella Tran
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Sauvé
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Shao-Ling Zhang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada
- Corresponding author: Shao-Ling Zhang,
| |
Collapse
|