1
|
Heuser SK, Li J, Pudewell S, LoBue A, Li Z, Cortese-Krott MM. Biochemistry, pharmacology, and in vivo function of arginases. Pharmacol Rev 2025; 77:100015. [PMID: 39952693 DOI: 10.1124/pharmrev.124.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
The enzyme arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea. The 2 existing isoforms Arg1 and Arg2 exhibit different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide (NO) production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell type-specific, species-specific, and profoundly different in mice and humans. The main differences are in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of l-ornithine, polyamine, and l-proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginases, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. SIGNIFICANCE STATEMENT: Further basic and translational research is needed to deepen our understanding of the regulation of Arg1 and Arg2 in different cell types in consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This will lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infectious diseases, and cancer.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Saparuddin F, Mohd Nawi MN, Ahmad Zamri L, Mansor F, Md Noh MF, Omar MA, Abdul Aziz NS, Wahab NA, Mediani A, Rajab NF, Sharif R. Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women. Nutrients 2024; 16:3501. [PMID: 39458496 PMCID: PMC11510420 DOI: 10.3390/nu16203501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
Differences in metabolic regulation among obesity phenotypes, specifically metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) women, may lead to varied responses to interventions, which could be elucidated through metabolomics. Therefore, this study aims to investigate the differences in metabolite profiles between MHO and MUO women and the changes following a lifestyle intervention. Serum samples from 36 MHO and 34 MUO women who participated in a lifestyle intervention for weight loss were analysed using untargeted proton nuclear magnetic resonance spectroscopy (1H NMR) at baseline and 6 months post-intervention. Anthropometric, clinical, and dietary intake parameters were assessed at both time points. Both groups showed differential metabolite profiles at baseline and after six months. Seven metabolites, including trimethylamine-N-oxide (TMAO), arginine, ribose, aspartate, carnitine, choline, and tyrosine, significantly changed between groups post-intervention, which all showed a decreasing pattern in MHO. Significant reductions in body weight and body mass index (BMI) in the MUO correlated with changes in the carnitine and tyrosine levels. In conclusion, metabolite profiles differed significantly between MHO and MUO women before and after a lifestyle intervention. The changes in carnitine and tyrosine levels in MUO were correlated with weight loss, suggesting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatin Saparuddin
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Naeem Mohd Nawi
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Liyana Ahmad Zamri
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Azahadi Omar
- Sector for Biostatistic and Data Repository, National Institute of Heath, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | | | - Norasyikin A. Wahab
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
3
|
Wan C, Xia Y, Yan J, Lin W, Yao L, Zhang M, Gaisler-Salomon I, Mei L, Yin DM, Chen Y. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus. Cell Death Dis 2024; 15:167. [PMID: 38396027 PMCID: PMC10891175 DOI: 10.1038/s41419-024-06557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Neuronal nitric oxide synthase (nNOS, gene name Nos1) orchestrates the synthesis of nitric oxide (NO) within neurons, pivotal for diverse neural processes encompassing synaptic transmission, plasticity, neuronal excitability, learning, memory, and neurogenesis. Despite its significance, the precise regulation of nNOS activity across distinct neuronal types remains incompletely understood. Erb-b2 receptor tyrosine kinase 4 (ErbB4), selectively expressed in GABAergic interneurons and activated by its ligand neuregulin 1 (NRG1), modulates GABA release in the brain. Our investigation reveals the presence of nNOS in a subset of GABAergic interneurons expressing ErbB4. Notably, NRG1 activates nNOS via ErbB4 and its downstream phosphatidylinositol 3-kinase (PI3K), critical for NRG1-induced GABA release. Genetic removal of nNos from Erbb4-positive neurons impairs GABAergic transmission, partially rescued by the NO donor sodium nitroprusside (SNP). Intriguingly, the genetic deletion of nNos from Erbb4-positive neurons induces schizophrenia-relevant behavioral deficits, including hyperactivity, impaired sensorimotor gating, and deficient working memory and social interaction. These deficits are ameliorated by the atypical antipsychotic clozapine. This study underscores the role and regulation of nNOS within a specific subset of GABAergic interneurons, offering insights into the pathophysiological mechanisms of schizophrenia, given the association of Nrg1, Erbb4, Pi3k, and Nos1 genes with this mental disorder.
Collapse
Affiliation(s)
- Chaofan Wan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Rehabilitation, School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Weipeng Lin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Lin Mei
- Chinese Institute for Medical Research, Beijing, 100069, China
- Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Dong-Min Yin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China.
| | - Yongjun Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Zhu Y, Wang J, Yao L, Huang Y, Yang H, Yu X, Chen X, Chen Y. Electroacupuncture at BL15 attenuates chronic fatigue syndrome by downregulating iNOS/NO signaling in C57BL/6 mice. Anat Rec (Hoboken) 2023; 306:3073-3084. [PMID: 35608198 DOI: 10.1002/ar.24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/19/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
Chronic fatigue syndrome (CFS) has a high incidence due to the increased pressure of daily life and work in modern society. Our previous clinical studies have found the effects of electroacupuncture (EA) on CFS patients, however, the mechanism of EA on CFS is still unknown. In this study, we investigated the effects of EA on cardiac function in a CFS mouse model to explore its underlying mechanism. The mice were randomly divided into three groups: control, CFS, and CFS mice receiving EA (CFS + EA). After behavioral assessments and echocardiographic measurement, blood and heart tissue of the mice were collected for biochemical tests, and then we evaluated the effects of EA on the CFS mouse model when nitric oxide (NO) levels were enhanced by l-arginine. The results showed that EA ameliorated the injured motor and cardiac function. Meanwhile, EA also inhibited increased expression of inducible nitric oxide synthase (iNOS) at heart tissue and the serum NO levels in mice subjected to sustained forced swimming stress. Furthermore, the NO level in serum increased with l-arginine administration, which blocked the effects of EA on CFS mice. This study suggested that EA could improve the motor function and cardiac function in CFS mice and its effects may be associated with the down-regulation of iNOS/NO signaling.
Collapse
Affiliation(s)
- Yang Zhu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingya Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxuan Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojiang Yu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinghua Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
5
|
JIN S, LIU Y, HAN X, CAI M, XU J, LU H, CHEN Q. Dark red tongue color formation caused by hyperglycemia is attributed to decreased blood flow of tongue tissue partially due to nuclear factor-kappa B pathway activation. J TRADIT CHIN MED 2023; 43:1118-1125. [PMID: 37946474 PMCID: PMC10623255 DOI: 10.19852/j.cnki.jtcm.20231018.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/16/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To investigate the potential mechanisms underlying the dark red tongue color formation induced by hyperglycemia. METHODS A high-fat diet and intraperitoneal injection of streptozotocin were used to establish a diabetes model. The color and blood flow of tongues were analyzed by the Tongue Diagnosis Analysis System and laser Doppler flowmetry, respectively. Inflammatory factors and adhesion factors were measured in the circulation and tongue tissue by an enzyme-linked immunosorbent assay. Western blotting was employed to evaluate nuclear factor-kappa B (NF-κB) p50 and inhibitor of kappa B kinase protein expression levels in the tongue. Then, the NF-κB inhibitor, pyrrolidine dithiocarbamic acid ammonium salt was utilized to repress NF-κB pathway activation to validate that the NF-κB pathway plays a key role in blood flow and dark red tongue color formation. RESULTS The diabetic rats displayed a dark red tongue color that was accompanied by NF-κB pathway activation and decreased blood flow in the tongue. These effects could be reversed by the NF-κB inhibitor. CONCLUSIONS Our investigation demonstrated that hyperglycemia led to dark red tongue color formation by decreasing blood flow in the tongue, which was partly due to NF-κB pathway activation.
Collapse
Affiliation(s)
- Shenyi JIN
- 1 Department of Endocrinology, Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yahua LIU
- 1 Department of Endocrinology, Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu HAN
- 1 Department of Endocrinology, Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengjie CAI
- 1 Department of Endocrinology, Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiatuo XU
- 2 Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao LU
- 1 Department of Endocrinology, Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingguang CHEN
- 1 Department of Endocrinology, Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Mazrouei S, Petry SF, Sharifpanah F, Javanmard SH, Kelishadi R, Schulze PC, Franz M, Jung C. Pathophysiological correlation of arginase-1 in development of type 2 diabetes from obesity in adolescents. Biochim Biophys Acta Gen Subj 2023; 1867:130263. [PMID: 36309295 DOI: 10.1016/j.bbagen.2022.130263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND There is great interest to understand causal pathophysiological correlation between obesity and diabetes mellitus (DM). Vascular endothelial dysfunction is crucially involved in pathogenesis of vascular complications in DM. Recently, increased arginase expression and activity have been described as underlying mechanisms of endothelial dysfunction in DM and vascular inflammation in obesity. By limiting L-arginine bioavailability to endothelial nitric oxide synthase (NOS III), nitric oxide production is potentially impaired. METHODS We investigated the impact of plasma from diabetic and obese adolescents on arginase and NOS III expression in cultured human endothelial cells (ECs). A total of 148 male adolescents participated in this study including 18 obese, 28 type 1-, 28 type 2-DM patients, and 74 age-matched healthy volunteers. RESULTS A concurrent increase in arginase-1 (1.97-fold) and decrease in NOS III expression (1.45-fold) was observed in ECs exposed to type 2 diabetic plasma compared to control subjects. ECs incubated with type 1 DM plasma had a diminished NOS III level without impact on arginase-1 expression. Urea-assay featured an increased arginase activity in treated ECs with type 1- or 2-DM plasma. Despite increased pro-inflammatory cytokines and chemokines in obese plasma, arginase-1 expression/activity did not change in treated ECs. However, NOS III expression was significantly reduced. Pearson analysis revealed positive correlation between arginase-1, but not NOS III, expression with FBS in ECs treated with type 2-DM plasma. CONCLUSIONS Our data demonstrate that increased arginase-1 expression/activity in ECs, as critical pathogenic factor is correlated with development of obesity-related type 2-DM and linked vascular disease.
Collapse
Affiliation(s)
- Safoura Mazrouei
- Department of Internal Medicine I, University Hospital Jena, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Fatemeh Sharifpanah
- Dentistry Department, Faculty of Medicine, Philipps University of Marburg, Germany
| | | | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Germany.
| |
Collapse
|
7
|
James K, Bryl-Gorecka P, Olde B, Gidlof O, Torngren K, Erlinge D. Increased expression of miR-224-5p in circulating extracellular vesicles of patients with reduced coronary flow reserve. BMC Cardiovasc Disord 2022; 22:321. [PMID: 35850658 PMCID: PMC9290204 DOI: 10.1186/s12872-022-02756-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Endothelial and microvascular dysfunction are pivotal causes of major adverse cardiac events predicted by coronary flow reserve (CFR). Extracellular Vesicles (EVs) have been studied extensively in the pathophysiology of coronary artery disease. However, little is known on the impact of the non-coding RNA content of EVs with respect to CFR. Methods We carried out a study among 120 patients divided by high-CFR and low-CFR to profile the miRNA content of circulating EVs. Results A multiplex array profiling on circulating EVs revealed mir-224-5p (p-value ≤ 0.000001) as the most differentially expressed miRNA in the Low-CFR group and showed a significantly independent relationship to CFR. Literature survey indicated the origin of the miR from liver cells and not of platelet, leukocyte, smooth muscle or endothelial (EC) origin. A q-PCR panel of the conventional cell type-EVs along with hepatic EVs showed that EVs from liver cells showed higher expression of the miR-224-5p. FACS analysis demonstrated the presence of liver-specific (ASGPR-1+/CD14−) EVs in the plasma of our cohort with the presence of Vanin-1 required to enter the EC barrier. Hepatic EVs with and without the miR-224-5p were introduced to ECs in-vitro, but with no difference in effect on ICAM-1 or eNOS expression. However, hepatic EVs elevated endothelial ICAM-1 levels per se independent of the miR-224-5p. Conclusion This indicated a role of hepatic EVs identified by the miR-224-5p in endothelial dysfunction in patients with Low CFR. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02756-w.
Collapse
Affiliation(s)
- Kreema James
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden.
| | - Paulina Bryl-Gorecka
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Björn Olde
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Olof Gidlof
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - Kristina Torngren
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Biomedical Centre, Faculty of Medicine, Lund University, D12, Sölvegatan 17, 22362, Lund, Sweden
| |
Collapse
|
8
|
Wang G, Dong J. Network pharmacology approach to evaluate the therapeutic effects of mulberry leaf components for obesity. Exp Ther Med 2021; 23:56. [PMID: 34917182 PMCID: PMC8630443 DOI: 10.3892/etm.2021.10978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/28/2021] [Indexed: 11/06/2022] Open
Abstract
Obesity is a chronic condition that has become a serious public health challenge globally due to the association with a high incidence of complications. Mulberry leaf is one of the most commonly used medicinal and herbal medicines that has been reported to ameliorate obesity and hyperlipidemia. However, the mechanism remains unclear. In the present study, a network pharmacology approach was used to explore the potential mechanism underlying the effects of mulberry leaf extract on obesity. First, the potential targets of mulberry leaf and obesity were predicted using SwissTargetPrediction, Online Mendelian Inheritance in Man, GeneCards and Comparative Toxicogenomics Database databases, which were then used to construct the protein-protein interaction networks. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyzes were performed using R version 3.6.3. Finally, results of this network analysis were verified by using the mulberry leaf extract to treat high-fat diet-induced obese mice. In total, 24 target genes associated with obesity that could potentially be affected by mulberry leaf treatment were predicted by network pharmacology, using which top seven related pathways were determined by KEGG enrichment analysis. Triglyceride (TG) and total cholesterol (TC) levels in mice serum were detected using TG and TC assay kits. Hepatic fat accumulation was detected by H&E staining whereas liver lipid droplets were detected by Oil red O staining in mice tissues. The expression of IL-1β, NF-κB inhibitor α, inducible nitric oxide synthase, AMP-activated protein kinase (AMPK), sterol regulatory element-binding proteins and fatty acid synthase in the visceral white adipose tissues of mice was analyzed by western blotting. The expression of TNF-α, peroxisome proliferator activated receptor (PPAR)D, PPARG, fatty acid amide hydrolase (FAAH) and hydroxysteroid 11-β dehydrogenase 1 (HSD11B1) in the visceral white adipose tissues of mice was detected by reverse transcription-quantitative PCR. Mulberry leaf extract was found to reduce fat accumulation and hepatic lipid droplet formation. Mulberry leaf also alleviated inflammation and lipogenesis whilst promoting lipid catabolism and fatty acid oxidation by promoting the AMPK signaling pathway. The possible anti-obesity effects of mulberry leaf on the mice may be due to the downregulation of TNF-α, PPARD and PPARG and the upregulation of FAAH and HSD11B1. These results were consistent with the GO enrichment analysis and suggested that mulberry leaf may regulate lipid metabolism and catabolism, fatty acid metabolism and biosynthesis and the inflammatory response to reduce obesity.
Collapse
Affiliation(s)
- Guidan Wang
- Health Management Research Laboratory, Hunan Future Health Technology Group Co., Ltd. (Future Health University), Changsha, Hunan 410000, P.R. China
| | - Jine Dong
- Health Management Research Laboratory, Hunan Future Health Technology Group Co., Ltd. (Future Health University), Changsha, Hunan 410000, P.R. China
| |
Collapse
|
9
|
PPARγ-A Factor Linking Metabolically Unhealthy Obesity with Placental Pathologies. Int J Mol Sci 2021; 22:ijms222313167. [PMID: 34884974 PMCID: PMC8658556 DOI: 10.3390/ijms222313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
Obesity is a known factor in the development of preeclampsia. This paper links adipose tissue pathologies with aberrant placental development and the resulting preeclampsia. PPARγ, a transcription factor from the ligand-activated nuclear hormone receptor family, appears to be one common aspect of both pathologies. It is the master regulator of adipogenesis in humans. At the same time, its aberrantly low activity has been observed in placental pathologies. Overweight and obesity are very serious health problems worldwide. They have negative effects on the overall mortality rate. Very importantly, they are also conducive to diseases linked to impaired placental development, including preeclampsia. More and more people in Europe are suffering from overweight (35.2%) and obesity (16%) (EUROSTAT 2021 data), some of them young women planning pregnancy. As a result, we will be increasingly encountering obese pregnant women with a considerable risk of placental development disorders, including preeclampsia. An appreciation of the mechanisms shared by these two conditions may assist in their prevention and treatment. Clearly, it should not be forgotten that health education concerning the need for a proper diet and physical activity is of utmost importance here.
Collapse
|
10
|
Arredondo Eve A, Tunc E, Liu YJ, Agrawal S, Erbak Yilmaz H, Emren SV, Akyıldız Akçay F, Mainzer L, Žurauskienė J, Madak Erdogan Z. Identification of Circulating Diagnostic Biomarkers for Coronary Microvascular Disease in Postmenopausal Women Using Machine-Learning Techniques. Metabolites 2021; 11:metabo11060339. [PMID: 34070374 PMCID: PMC8230313 DOI: 10.3390/metabo11060339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/13/2023] Open
Abstract
Coronary microvascular disease (CMD) is a common form of heart disease in postmenopausal women. It is not due to plaque formation but dysfunction of microvessels that feed the heart muscle. The majority of the patients do not receive a proper diagnosis, are discharged prematurely and must go back to the hospital with persistent symptoms. Because of the lack of diagnostic biomarkers, in the current study, we focused on identifying novel circulating biomarkers of CMV (cytomegalovirus) that could potentially be used for developing a diagnostic test. We hypothesized that plasma metabolite composition is different for postmenopausal women with no heart disease, CAD (coronary artery disease), or CMD. A total of 70 postmenopausal women, 26 healthy individuals, 23 individuals with CMD and 21 individuals with CAD were recruited. Their full health screening and tests were completed. Basic cardiac examination, including detailed clinical history, additional disease and prescribed drugs, were noted. Electrocardiograph, transthoracic echocardiography and laboratory analysis were also obtained. Additionally, we performed full metabolite profiling of plasma samples from these individuals using gas chromatography-mass spectrometry (GC–MS) analysis, identified and classified circulating biomarkers using machine learning approaches. Stearic acid and ornithine levels were significantly higher in postmenopausal women with CMD. In contrast, valine levels were higher for women with CAD. Our research identified potential circulating plasma biomarkers of this debilitating heart disease in postmenopausal women, which will have a clinical impact on diagnostic test design in the future.
Collapse
Affiliation(s)
- Alicia Arredondo Eve
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
| | - Elif Tunc
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
| | - Yu-Jeh Liu
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
| | - Saumya Agrawal
- Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
| | - Huriye Erbak Yilmaz
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
| | - Sadık Volkan Emren
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
| | - Filiz Akyıldız Akçay
- Research and Training Hospital, Katip Celebi University, Izmir 35620, Turkey; (H.E.Y.); (S.V.E.); (F.A.A.)
| | - Luidmila Mainzer
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (J.Ž.)
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Justina Žurauskienė
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (J.Ž.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2T, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.A.E.); (E.T.); (Y.-J.L.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (J.Ž.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
11
|
Zhang L, Qu S, Wang L, Wang C, Yu Q, Zhang Z, Diao Y, Zhang B, Li Y, Shi Y, Wang P. Tianlongkechuanling Inhibits Pulmonary Fibrosis Through Down-Regulation of Arginase-Ornithine Pathway. Front Pharmacol 2021; 12:661129. [PMID: 33995084 PMCID: PMC8114272 DOI: 10.3389/fphar.2021.661129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary Fibrosis (PF) is an interstitial lung disease characterized by excessive accumulation of extracellular matrix in the lungs, which disrupts the structure and gas exchange of the alveoli. There are only two approved therapies for PF, nintedanib (Nib) and pirfenidone. Therefore, the use of Chinese medicine for PF is attracting attention. Tianlongkechuanling (TL) is an effective Chinese formula that has been applied clinically to alleviate PF, which can enhance lung function and quality of life. Purpose: The potential effects and specific mechanisms of TL have not been fully explored, yet. In the present study, proteomics was performed to explore the therapeutic protein targets of TL on Bleomycin (BLM)-induced Pulmonary Fibrosis. Method: BLM-induced PF mice models were established. Hematoxylineosin staining and Masson staining were used to analyze histopathological changes and collagen deposition. To screen the differential proteins expression between the Control, BLM, BLM + TL and BLM + Nib (BLM + nintedanib) groups, quantitative proteomics was performed using tandem mass tag (TMT) labeling with nanoLC-MS/MS [nano liquid chromatographymass spectrometry]). Changes in the profiles of the expressed proteins were analyzed using the bioinformatics tools Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein–protein interactions (PPI) were established by STRING. Expressions of α-smooth muscle actin (α-SMA), Collagen I (Col1a1), Fibronectin (Fn1) and enzymes in arginase-ornithine pathway were detected by Western blot or RT-PCR. Result: TL treatments significantly ameliorated BLM-induced collagen deposition in lung tissues. Moreover, TL can inhibit the protein expressions of α-SMA and the mRNA expressions of Col1a1 and Fn1. Using TMT technology, we observed 253 differentially expressed proteins related to PPI networks and involved different KEGG pathways. Arginase-ornithine pathway is highly significant. The expression of arginase1 (Arg1), carbamoyltransferase (OTC), carbamoy-phosphate synthase (CPS1), argininosuccinate synthase (ASS1), ornithine aminotransferase (OAT) argininosuccinate lyase (ASL) and inducible nitric oxide synthase (iNOS) was significantly decreased after TL treatments. Conclusion: Administration of TL in BLM-induced mice resulted in decreasing pulmonary fibrosis. Our findings propose that the down regulation of arginase-ornithine pathway expression with the reduction of arginase biosynthesis is a central mechanism and potential treatment for pulmonary fibrosis with the prevention of TL.
Collapse
Affiliation(s)
- Lili Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qinghe Yu
- Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhimin Zhang
- Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yirui Diao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yadong Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Peng Wang
- Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Protection against Doxorubicin-Induced Cardiotoxicity through Modulating iNOS/ARG 2 Balance by Electroacupuncture at PC6. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6628957. [PMID: 33824696 PMCID: PMC8007344 DOI: 10.1155/2021/6628957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022]
Abstract
Background Doxorubicin (DOX) is a commonly used chemotherapeutic drug but is limited in clinical applications by its cardiotoxicity. Neiguan acupoint (PC6) is a well-recognized acupoint for the treatment of cardiothoracic disease. However, whether acupuncture at PC6 could be effective in preventing DOX-induced cardiotoxicity is still unknown. Methods A set of experiments were performed with myocardial cells, wild type, inducible nitric oxide synthase knockout (iNOS-/-), and myocardial-specific ablation arginase 2 (Myh6-ARG 2-/-) mice. We investigated the protective effect and the underlying mechanisms for electroacupuncture (EA) against DOX-induced cardiotoxicity by echocardiography, immunostaining, biochemical analysis, and molecular biotechnology in vivo and in vitro analysis. Results We found that DOX-mediated nitric oxide (NO) production was positively correlated with the iNOS level but has a negative correlation with the arginase 2 (ARG 2) level in both myocardial cells and tissues. Meanwhile, EA at PC6 alleviated cardiac dysfunction and cardiac hypertrophy in DOX-treated mice. EA at PC6 blocked the upregulation of NO production in accompanied with the downregulated iNOS and upregulated ARG 2 levels in myocardial tissue induced by DOX. Furthermore, knockout iNOS prevented cardiotoxicity and EA treatment did not cause the further improvement of cardiac function in iNOS-/- mice treated by DOX. In contrast, deficiency of myocardial ARG 2 aggravated DOX-induced cardiotoxicity and reduced EA protective effect. Conclusion These results suggest that EA treatment at PC6 can prevent DOX-induced cardiotoxicity through modulating NO production by modulating the iNOS/ARG 2 balance in myocardial cells.
Collapse
|
13
|
Andrade FB, Gualberto A, Rezende C, Percegoni N, Gameiro J, Hottz ED. The Weight of Obesity in Immunity from Influenza to COVID-19. Front Cell Infect Microbiol 2021; 11:638852. [PMID: 33816341 PMCID: PMC8011498 DOI: 10.3389/fcimb.2021.638852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in December 2019 and rapidly outspread worldwide endangering human health. The coronavirus disease 2019 (COVID-19) manifests itself through a wide spectrum of symptoms that can evolve to severe presentations as pneumonia and several non-respiratory complications. Increased susceptibility to COVID-19 hospitalization and mortality have been linked to associated comorbidities as diabetes, hypertension, cardiovascular diseases and, recently, to obesity. Similarly, individuals living with obesity are at greater risk to develop clinical complications and to have poor prognosis in severe influenza pneumonia. Immune and metabolic dysfunctions associated with the increased susceptibility to influenza infection are linked to obesity-associated low-grade inflammation, compromised immune and endocrine systems, and to high cardiovascular risk. These preexisting conditions may favor virological persistence, amplify immunopathological responses and worsen hemodynamic instability in severe COVID-19 as well. In this review we highlight the main factors and the current state of the art on obesity as risk factor for influenza and COVID-19 hospitalization, severe respiratory manifestations, extrapulmonary complications and even death. Finally, immunoregulatory mechanisms of severe influenza pneumonia in individuals with obesity are addressed as likely factors involved in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Fernanda B. Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ana Gualberto
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Camila Rezende
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nathércia Percegoni
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
14
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
15
|
Electroacupuncture Ameliorates Neuroinflammation-Mediated Cognitive Deficits through Inhibition of NLRP3 in Presenilin1/2 Conditional Double Knockout Mice. Neural Plast 2021; 2021:8814616. [PMID: 33505459 PMCID: PMC7806385 DOI: 10.1155/2021/8814616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is considered as one of the crucial pathogenesis in promoting neurodegenerative progress of Alzheimer's disease (AD). As complementary and alternative therapy, electroacupuncture (EA) stimulation has been widely used in clinical practice for anti-inflammation. However, whether EA promotes the cognitive deficits resulting from neuroinflammation in AD remains unclear. In this study, the presenilin 1 and 2 conditional double knockout (PS cDKO) mice, exhibited a series of AD-like pathology, robust neuroinflammatory responses, and memory deficits, were used to evaluate the potential neuroprotective effect of EA at Baihui (GV 20) and Shenting (GV 24) by behavioral testing, electrophysiology recording, and molecular biology analyzing. First, we observed that EA improved memory deficits and impaired synaptic plasticity. Moreover, EA possesses an ability to suppress the hyperphosphorylated tau and robust elevated NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in PS cDKO mice. Importantly, MCC950, a potent and selective inhibitor of NLPR3 inflammasome, has similar effects on inhibiting the hyperphosphorylated tau and the robust elevated NLRP3 components and neuroinflammatory responses of PS cDKO mice as well as EA treatment. Furthermore, EA treatment is not able to further improve the AD-like phenotypes of PS cDKO mice in combination with the MCC950 administration. Therefore, EA stimulation at GV 20 and GV 24 acupoints may be a potential alternative therapy for deterring cognitive deficits in AD through suppression of NLRP3 inflammasome activation.
Collapse
|
16
|
Local and Systemic Alterations of the L-Arginine/Nitric Oxide Pathway in Sputum, Blood, and Urine of Pediatric Cystic Fibrosis Patients and Effects of Antibiotic Treatment. J Clin Med 2020; 9:jcm9123802. [PMID: 33255369 PMCID: PMC7761143 DOI: 10.3390/jcm9123802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the L-arginine (Arg)/nitric oxide (NO) pathway have been reported in cystic fibrosis (CF; OMIM 219700) as the result of various factors including systemic and local inflammatory activity in the airways. The aim of the present study was to evaluate the Arg/NO metabolism in pediatric CF patients with special emphasis on lung impairment and antibiotic treatment. Seventy CF patients and 78 healthy controls were included in the study. CF patients (43% male, median age 11.8 years) showed moderately impaired lung functions (FEV1 90.5 ± 19.1% (mean ± SD); 21 (30%) had a chronic Pseudomonas aeruginosa (PSA) infection, and 24 (33%) had an acute exacerbation). Plasma, urinary, and sputum concentrations of the main Arg/NO metabolites, nitrate, nitrite, Arg, homoarginine (hArg), and asymmetric dimethylarginine (ADMA) were determined in pediatric CF patients and in healthy age-matched controls. Clinical parameters in CF patients included lung function and infection with PSA. Additionally, the Arg/NO pathway in sputum samples of five CF patients was analyzed before and after routine antibiotic therapy. CF patients with low fractionally exhaled NO (FENO) showed lower plasma Arg and nitrate concentrations. During acute exacerbation, sputum Arg and hArg levels were high and dropped after antibiotic treatment: Arg: pre-antibiotics: 4.14 nmol/25 mg sputum vs. post-antibiotics: 2.33 nmol/25 mg sputum, p = 0.008; hArg: pre-antibiotics: 0.042 nmol/25 mg sputum vs. post-antibiotics: 0.029 nmol/25 mg sputum, p = 0.035. The activated Arg/NO metabolism in stable CF patients may be a result of chronic inflammation. PSA infection did not play a major role regarding these differences. Exacerbation increased and antibiotic therapy decreased sputum Arg concentrations.
Collapse
|
17
|
Xia Y, Zhang Z, Lin W, Yan J, Zhu C, Yin D, He S, Su Y, Xu N, Caldwell RW, Yao L, Chen Y. Modulating microglia activation prevents maternal immune activation induced schizophrenia-relevant behavior phenotypes via arginase 1 in the dentate gyrus. Neuropsychopharmacology 2020; 45:1896-1908. [PMID: 32599605 PMCID: PMC7608378 DOI: 10.1038/s41386-020-0743-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Prenatal infection during pregnancy increases the risk for developing neuropsychiatric disorders such as schizophrenia. This is linked to an inflammatory microglial phenotype in the offspring induced by maternal immune activation (MIA). Microglia are crucial for brain development and maintenance of neuronal niches, however, whether and how their activation is involved in the regulation of neurodevelopment remains unclear. Here, we used a MIA rodent model in which polyinosinic: polycytidylic acid (poly (I:C)) was injected into pregnant mice. We found fewer parvalbumin positive (PV+) cells and impaired GABAergic transmission in the dentate gyrus (DG), accompanied by schizophrenia-like behavior in the adult offspring. Minocycline, a potent inhibitor of microglia activation, successfully prevented the above-mentioned deficits in the offspring. Furthermore, by using microglia-specific arginase 1 (Arg1) ablation as well as overexpression in DG, we identified a critical role of Arg1 in microglia activation to protect against poly (I:C) imparted neuropathology and altered behavior in offspring. Taken together, our results highlight that Arg1-mediated alternative activation of microglia are potential therapeutic targets for psychiatric disorders induced by MIA.
Collapse
Affiliation(s)
- Yucen Xia
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Zhiqing Zhang
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Weipeng Lin
- grid.22069.3f0000 0004 0369 6365Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062 China
| | - Jinglan Yan
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Chuan’an Zhu
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Dongmin Yin
- grid.22069.3f0000 0004 0369 6365Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062 China
| | - Su He
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yang Su
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Nenggui Xu
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Robert William Caldwell
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912 USA
| | - Lin Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China. .,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Ritter A, Kreis NN, Louwen F, Yuan J. Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics. Int J Mol Sci 2020; 21:E5793. [PMID: 32806722 PMCID: PMC7460849 DOI: 10.3390/ijms21165793] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 COVID-19 pandemic is rapidly spreading worldwide and is becoming a major public health crisis. Increasing evidence demonstrates a strong correlation between obesity and the COVID-19 disease. We have summarized recent studies and addressed the impact of obesity on COVID-19 in terms of hospitalization, severity, mortality, and patient outcome. We discuss the potential molecular mechanisms whereby obesity contributes to the pathogenesis of COVID-19. In addition to obesity-related deregulated immune response, chronic inflammation, endothelium imbalance, metabolic dysfunction, and its associated comorbidities, dysfunctional mesenchymal stem cells/adipose-derived mesenchymal stem cells may also play crucial roles in fueling systemic inflammation contributing to the cytokine storm and promoting pulmonary fibrosis causing lung functional failure, characteristic of severe COVID-19. Moreover, obesity may also compromise motile cilia on airway epithelial cells and impair functioning of the mucociliary escalators, reducing the clearance of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Obese diseased adipose tissues overexpress the receptors and proteases for the SARS-CoV-2 entry, implicating its possible roles as virus reservoir and accelerator reinforcing violent systemic inflammation and immune response. Finally, anti-inflammatory cytokines like anti-interleukin 6 and administration of mesenchymal stromal/stem cells may serve as potential immune modulatory therapies for supportively combating COVID-19. Obesity is conversely related to the development of COVID-19 through numerous molecular mechanisms and individuals with obesity belong to the COVID-19-susceptible population requiring more protective measures.
Collapse
Affiliation(s)
- Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (N.-N.K.); (F.L.)
| | | | | | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (N.-N.K.); (F.L.)
| |
Collapse
|
19
|
Huang J, Liu C, Ming XF, Yang Z. Inhibition of p38mapk Reduces Adipose Tissue Inflammation in Aging Mediated by Arginase-II. Pharmacology 2020; 105:491-504. [PMID: 32454488 DOI: 10.1159/000507635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adipose tissue inflammation occurs not only in obesity but also in aging and is mechanistically linked with age-associated diseases. Studies show that ablation of the l-arginine-metabolizing enzyme arginase-II (Arg-II) reduces adipose tissue inflammation and improves glucose tolerance in obesity. However, the role of Arg-II in aging adipose tissue inflammation is not clear. OBJECTIVE This study investigated the role of Arg-II in age-associated adipose tissue inflammation. METHODS Visceral adipose tissues of young (3-6 months) and old (20-24 months) wild-type (WT) and Arg-II-/- mice were investigated. Immunofluorescence confocal microscopy was performed for analysis of macrophage accumulation and cellular localization of arginase and cytokines; expression of arginase and cytokines was analyzed by qRT-PCR or immunoblotting or ELISA; activation of mitogen-activated protein kinases in adipose tissues was analyzed by immunoblotting; and arginase activity was measured by colorimetric determination of urea production. RESULTS In the old WT mice, there is more macrophage accumulation in the visceral adipose tissues than in Arg-II knockout animals. An age-associated increase in arginase activity and Arg-II expression in adipose tissues of WT mice is observed. Arg-II knockout enhances Arg-I expression and activity, but inhibits interleukin (IL)-6 expression and secretion and reduces active p38mapk in aging adipose tissue macrophages and stromal cells. Treatment of aging adipose tissues of WT mice with a specific p38mapk inhibitor SB203580 reduces IL-6 secretion. CONCLUSIONS Arg-II promotes IL-6 production in aging adipose tissues through p38mapk. The results suggest that targeting Arg-II or inhibiting p38mapk could be beneficial in reducing age-associated adipose tissue inflammation.
Collapse
Affiliation(s)
- Ji Huang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Chang Liu
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland, .,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland,
| |
Collapse
|
20
|
Poor glycemic control impairs the cardioprotective effects of red blood cells on myocardial ischemia/reperfusion injury. Nitric Oxide 2020; 97:1-10. [DOI: 10.1016/j.niox.2020.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/29/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022]
|
21
|
Cheng H, Lu T, Wang J, Xia Y, Chai X, Zhang M, Yao Y, Zhou N, Zhou S, Chen X, Su W, Liu C, Yi W, Chen Y, Yao L. HuangqiGuizhiWuwu Decoction Prevents Vascular Dysfunction in Diabetes via Inhibition of Endothelial Arginase 1. Front Physiol 2020; 11:201. [PMID: 32269530 PMCID: PMC7109290 DOI: 10.3389/fphys.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia induces vascular endothelial dysfunction, which contributes to the development of vascular complication of diabetes. A classic prescription of traditional medicine, HuangqiGuizhiWuwu Decoction (HGWWD) has been used for the treatment of various cardiovascular and cerebrovascular diseases, which all are related with vascular pathology. The present study investigated the effect of HGWWD treatment in streptozocin (STZ)-induced vascular dysfunction in mouse models. In vivo studies were performed using wild type mice as well as arginase 1 knockout specific in endothelial cells (EC-A1-/-) of control mice, diabetes mice and diabetes mice treated with HGWWD (60 g crude drugs/kg/d) for 2 weeks. For in vitro studies, aortic tissues were treated with mice serum containing HGWWD with or without adenoviral arginase 1 (Ad-A1) transduction in high glucose (HG) medium. We found that HGWWD treatment restored STZ-induced impaired mean velocity and pulsatility index of mouse left femoral arteries, aortic pulse wave velocity and vascular endothelial relaxation accompanied by elevated NO production in the aorta and plasma, as well as reduced endothelial arginase activity and aortic arginase 1 expression. The protective effect of HGWWD is reversed by an inhibitor of nitric oxide synthesis. Meanwhile, the preventive effect of serum containing HGWWD in endothelial vascular dysfunction is completely blocked by Ad-A1 transduction in HG incubated aortas. HGWWD treatment further improved endothelial vascular dysfunction in STZ induced EC-A1-/- mice. This study demonstrates that HGWWD improved STZ-induced vascular dysfunction through arginase 1 - NO signaling, specifically targeting endothelial arginase 1.
Collapse
Affiliation(s)
- Hong Cheng
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Lu
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingya Wang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucen Xia
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoshu Chai
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyi Zhang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yutong Yao
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na Zhou
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sisi Zhou
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiwei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cunzhi Liu
- Acupuncture Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Yi
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Mahdi A, Kövamees O, Pernow J. Improvement in endothelial function in cardiovascular disease - Is arginase the target? Int J Cardiol 2019; 301:207-214. [PMID: 31785959 DOI: 10.1016/j.ijcard.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
Endothelial dysfunction represents an early change in the vascular wall in areas prone to atherosclerotic plaque formation and is present in association with several risk factors for cardiovascular disease. The underlying mechanisms behind endothelial dysfunction are multifactorial and complex. Arginase has emerged as a key player in the regulation of endothelial integrity by the ability of reciprocally inhibits nitric oxide formation and promoting oxidative stress. A chain of evidence suggest that arginase is implicated in the pathogenesis underlying endothelial dysfunction induced by several cardiovascular risk factors and established cardiovascular disease including diabetes, hypercholesteremia, ischemia/reperfusion, atherosclerosis, obesity, ageing and hypertension. Recent data has unveiled a key role of arginase as one of the key mechanisms underlying endothelial dysfunction in diabetes and may serve as a potential therapeutic target in previously overlooked compartments including red blood cells. The current review is devoted to discuss arginase as a key mediator in endothelial dysfunction and the potential for therapeutic possibilities to target this enzyme in various diseases, especially type 2 diabetes, atherosclerosis and ischemia/reperfusion with focus on translational and clinical aspects. Moreover, approaches of how and in which patient group(s) arginase may be targeted in future clinical trials are discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
23
|
Lv H, Zhu C, Wu R, Ni H, Lian J, Xu Y, Xia Y, Shi G, Li Z, Caldwell RB, Caldwell RW, Yao L, Chen Y. Chronic mild stress induced anxiety-like behaviors can Be attenuated by inhibition of NOX2-derived oxidative stress. J Psychiatr Res 2019; 114:55-66. [PMID: 31039481 DOI: 10.1016/j.jpsychires.2019.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Chronic stress-induced anxiety disorder is a highly-prevalent, modern social disease in which oxidative stress plays an important role. It is necessary to determine the underlying mechanisms governing this disorder to establish an effective treatment target for anxiety disorders. In this study, we examined the behavioral changes in mice subjected to chronic mild stress (CMS). We found that CMS exposure leads to anxiety-like phenotypes and increased levels of oxidative stress in the ventral hippocampus of mice. Furthermore, CMS increased the excitatory synaptic transmission of pyramidal cells in the ventral CA1 (vCA1). Administration of 4-hydroxy-3-methoxy-acetophenone (apocynin), an inhibitor of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, clearly ameliorated the changes induced by CMS exposure. In addition, our results of behavioral tests and analyses of reactive oxygen species (ROS) using NOX2-deficient mice indicate that CMS-induced enhanced oxidative stress level is primarily caused by the increased expression of NOX2. NOX2-derived oxidative stress can serve as a target for anxiety therapy led by chronic stress.
Collapse
Affiliation(s)
- Hang Lv
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuan'an Zhu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruolin Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Ni
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiating Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yunlong Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucen Xia
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guoqi Shi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhixing Li
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Ruth B Caldwell
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert William Caldwell
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lin Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
24
|
de Sousa GC, Cruz FF, Heil LB, Sobrinho CJS, Saddy F, Knibel FP, Pereira JB, Schultz MJ, Pelosi P, Gama de Abreu M, Silva PL, Rocco PRM. Intraoperative immunomodulatory effects of sevoflurane versus total intravenous anesthesia with propofol in bariatric surgery (the OBESITA trial): study protocol for a randomized controlled pilot trial. Trials 2019; 20:300. [PMID: 31138279 PMCID: PMC6540380 DOI: 10.1186/s13063-019-3399-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Obesity is associated with a chronic systemic inflammatory process. Volatile or intravenous anesthetic agents may modulate immune function, and may do so differentially in obesity. However, no study has evaluated whether these potential immunomodulatory effects differ according to type of anesthesia in obese patients undergoing laparoscopic bariatric surgery. Methods/design The OBESITA trial is a prospective, nonblinded, single-center, randomized, controlled clinical pilot trial. The trial will include 48 patients with a body mass index ≥ 35 kg/m2, scheduled for laparoscopic bariatric surgery using sleeve or a Roux-en-Y gastric bypass technique, who will be allocated 1:1 to undergo general inhalational anesthesia with sevoflurane or total intravenous anesthesia (TIVA) with propofol. The primary endpoint is the difference in plasma interleukin (IL)-6 levels when comparing the two anesthetic agents. Blood samples will be collected prior to anesthesia induction (baseline), immediately after anesthetic induction, and before endotracheal extubation. Levels of other proinflammatory and anti-inflammatory cytokines, neutrophil chemotaxis, macrophage differentiation, phagocytosis, and occurrence of intraoperative and postoperative complications will also be evaluated. Discussion To our knowledge, this is the first randomized clinical trial designed to compare the effects of two different anesthetics on immunomodulation in obese patients undergoing laparoscopic bariatric surgery. Our hypothesis is that anesthesia with sevoflurane will result in a weaker proinflammatory response compared to anesthesia with propofol, with lower circulating levels of IL-6 and other proinflammatory mediators, and increased macrophage differentiation into the M2 phenotype in adipose tissue. Trial registration Registro Brasileiro de Ensaios Clínicos, RBR-77kfj5. Registered on 25 July 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3399-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giselle Carvalho de Sousa
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.,Department of Anesthesiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Luciana Boavista Heil
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | | | - Felipe Saddy
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.,Institute D'Or of Research and Teaching, Rio de Janeiro, Brazil
| | | | | | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
25
|
Age-Dependent Oxidative Stress Elevates Arginase 1 and Uncoupled Nitric Oxide Synthesis in Skeletal Muscle of Aged Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1704650. [PMID: 31205583 PMCID: PMC6530149 DOI: 10.1155/2019/1704650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022]
Abstract
Aging is associated with reduced muscle mass (sarcopenia) and poor bone quality (osteoporosis), which together increase the incidence of falls and bone fractures. It is widely appreciated that aging triggers systemic oxidative stress, which can impair myoblast cell survival and differentiation. We previously reported that arginase plays an important role in oxidative stress-dependent bone loss. We hypothesized that arginase activity is dysregulated with aging in muscles and may be involved in muscle pathophysiology. To investigate this, we analyzed arginase activity and its expression in skeletal muscles of young and aged mice. We found that arginase activity and arginase 1 expression were significantly elevated in aged muscles. We also demonstrated that SOD2, GPx1, and NOX2 increased with age in skeletal muscle. Most importantly, we also demonstrated elevated levels of peroxynitrite formation and uncoupling of eNOS in aged muscles. Our in vitro studies using C2C12 myoblasts showed that the oxidative stress treatment increased arginase activity, decreased cell survival, and increased apoptotic markers. These effects were reversed by treatment with an arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH). Our study provides strong evidence that L-arginine metabolism is altered in aged muscle and that arginase inhibition could be used as a novel therapeutic target for age-related muscle complications.
Collapse
|
26
|
Role of Arginase 2 in Systemic Metabolic Activity and Adipose Tissue Fatty Acid Metabolism in Diet-Induced Obese Mice. Int J Mol Sci 2019; 20:ijms20061462. [PMID: 30909461 PMCID: PMC6472154 DOI: 10.3390/ijms20061462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Visceral adipose tissue (VAT) inflammation and metabolic dysregulation are key components of obesity-induced metabolic disease. Upregulated arginase, a ureahydrolase enzyme with two isoforms (A1-cytosolic and A2-mitochondrial), is implicated in pathologies associated with obesity and diabetes. This study examined A2 involvement in obesity-associated metabolic and vascular disorders. WT and globally deleted A2(−/−) or A1(+/−) mice were fed either a high fat/high sucrose (HFHS) diet or normal diet (ND) for 16 weeks. Increases in body and VAT weight of HFHS-fed WT mice were abrogated in A2−/−, but not A1+/−, mice. Additionally, A2−/− HFHS-fed mice exhibited higher energy expenditure, lower blood glucose, and insulin levels compared to WT HFHS mice. VAT and adipocytes from WT HFHS fed mice showed greater A2 expression and adipocyte size and reduced expression of PGC-1α, PPAR-γ, and adiponectin. A2 deletion blunted these effects, increased levels of active AMPK-α, and upregulated genes involved in fatty acid metabolism. A2 deletion prevented HFHS-induced VAT collagen deposition and inflammation, which are involved in adipocyte metabolic dysfunction. Endothelium-dependent vasorelaxation, impaired by HFHS diet, was significantly preserved in A2−/− mice, but more prominently maintained in A1+/− mice. In summary, A2 is critically involved in HFHS-induced VAT inflammation and metabolic dysfunction.
Collapse
|
27
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
28
|
An X, Zhang M, Zhou S, Lu T, Chen Y, Yao L. Xiao-Shen-Formula, a Traditional Chinese Medicine, Improves Glomerular Hyper-Filtration in Diabetic Nephropathy via Inhibiting Arginase Activation and Heparanase Expression. Front Physiol 2018; 9:1195. [PMID: 30319431 PMCID: PMC6169603 DOI: 10.3389/fphys.2018.01195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Hyperglycemia induces glomerular hyper-filtration, which contributes to the development of diabetic nephropathy (DN), a condition that remains a challenge for treatment. The present study investigated the effect of Xiao-Shen-Formula (XSF) used for treatment of renal injury in type 1 DN mice model induced by streptozotocin (STZ) and its underlying mechanism in cultured human glomerular endothelial cell (hGECs). Studies were performed using control, diabetic DN, DN treated with XSF groups (1 g/kg/d, LXSF or 3 g/kg/d, HXSF) for 6 weeks and hGECs were post-treated with mice serum containing HXSF (MS-HXSF) and arginase inhibitor (ABH, 100 μM) in high glucose medium. HXSF treatment restored STZ-induced renal hyper-filtration, glomerulosclerosis, renal microvascular remodeling and the increased levels of systemic reactive oxidative species and inflammatory cytokines, accompanied by preventing the decreased expression of glomerular heparin sulfate and the increased levels of cortical heparanase and argianse2 protein and arginase activity. In hGECs study, MS-HXSF ameliorated the enhancement in arginase activity, the protein/mRNA expression of heparanase, mRNA levels of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, monocyte chemoattractant protein-1 and permeability of hGECs monolayers as well as the depression of nitric oxide production. Besides all these protective effects, XSF blunted the mRNA expression of TNF-α in vivo and vitro studies as well, which was not changed by the post-treatment of ABH or HXSF plus ABH. This study demonstrated that the protective effect of XSF might be related with vascular prevention, anti-inflammation and anti-oxidation through intervening multi-targets including glomerular endothelial arginase-heparanase signaling pathway in DN model.
Collapse
Affiliation(s)
- Xiaofei An
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Maoxiang Zhang
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China.,Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sisi Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China.,Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|