1
|
Stehle R. Phosphate rebinding induces force reversal via slow backward cycling of cross-bridges. Front Physiol 2025; 15:1476876. [PMID: 39839531 PMCID: PMC11747208 DOI: 10.3389/fphys.2024.1476876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 01/23/2025] Open
Abstract
Objective Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (Pi) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding Pi. The aim was to explore the significance of force redevelopment kinetics (rate constant k TR) in cardiac myofibrils for the coupling between the Pi binding induced force reversal and the rate-limiting transition f - for backward cycling of cross-bridges from force-generating to non-force-generating states. Methods k TR and force generation of cardiac myofibrils from guinea pigs were investigated at 0.015-20 mM Pi. The observed force-[Pi], force-log [Pi], k TR-[Pi], and k TR-force relations were assessed with various single-pathway models of the cross-bridge cycle that differed in sequence and kinetics of reversible Pi release, reversible force-generating step and reversible rate-limiting transition. Based on the interpretation that k TR reflects the sum of rate-limiting transitions in the cross-bridge cycle, an indicator, the coupling strength, was defined to quantify the contribution of Pi binding induced force reversal to the rate-limiting transition f - from the [Pi]-modulated k TR-force relation. Results Increasing [Pi] decreased force by a bi-linear force-log [Pi] relation, increased k TR in a slightly downward curved dependence with [Pi], and altered k TR almost reciprocally to force reflected by the k TR-force relation. Force-[Pi] and force-log [Pi] relations provided less selectivity for the exclusion of models than the k TR-[Pi] and k TR-force relations. The k TR-force relation observed in experiments with cardiac myofibrils yielded the coupling strength +0.84 ± 0.08 close to 1, the maximum coupling strength expected for the reciprocal k TR-force relationship. Single pathway models consisting of fast reversible force generation before or after rapid reversible Pi release failed to describe the observed k TR-force relation. Single pathway models consistent with the observed k TR-force relation had either slow Pi binding or slow force reversal, i.e., in the consistent single pathway models, f - was assigned to the rate of either Pi binding or force reversal. Conclusion Backward flux of cross-bridges from force-generating to non-force-generating states is limited by the rates of Pi binding or force reversal ruling out other rate-limiting steps uncoupled from Pi binding induced force reversal.
Collapse
Affiliation(s)
- Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| |
Collapse
|
2
|
Patel JR, Park KJ, Bradshaw AS, Phan T, Fitzsimons DP. Cooperative mechanisms underlie differences in myocardial contractile dynamics between large and small mammals. J Gen Physiol 2023; 155:e202213315. [PMID: 37725091 PMCID: PMC10509357 DOI: 10.1085/jgp.202213315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/08/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Ca2+ binding to troponin C (TnC) and myosin cross-bridge binding to actin act in a synergistic cooperative manner to modulate myocardial contraction and relaxation. The responsiveness of the myocardial thin filament to the activating effects of Ca2+ and myosin cross-bridge binding has been well-characterized in small mammals (e.g., mice). Given the nearly 10-fold difference in resting heart rates and twitch kinetics between small and large mammals, it is unlikely that the cooperative mechanisms underlying thin filament activation are identical in these two species. To test this idea, we measured the Ca2+ dependencies of steady-state force and the rate constant of force redevelopment (ktr) in murine and porcine permeabilized ventricular myocardium. While murine myocardium exhibited a steep activation-dependence of ktr, the activation-dependent profile of ktr was significantly reduced in porcine ventricular myocardium. Further insight was attained by examining force-pCa and ktr-pCa relationships. In the murine myocardium, the pCa50 for ktr was right-shifted compared with the pCa50 for force, meaning that increases in steady-state force occurred well before increases in the rate of force redevelopment were observed. In the porcine myocardium, we observed a tighter coupling of the force-pCa and ktr-pCa relationships, as evidenced by near-maximal rates of force redevelopment at low levels of Ca2+ activation. These results demonstrate that the molecular mechanisms underlying the cooperative activation of force are a dynamic property of the mammalian heart, involving, at least in part, the species- and tissue-specific expression of cardiac myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jitandrakumar R. Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kayla J.V. Park
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| | - Aidan S. Bradshaw
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| | - Tuan Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Daniel P. Fitzsimons
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
3
|
Villalobos Lizardi JC, Baranger J, Nguyen MB, Asnacios A, Malik A, Lumens J, Mertens L, Friedberg MK, Simmons CA, Pernot M, Villemain O. A guide for assessment of myocardial stiffness in health and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:8-22. [PMID: 39196108 DOI: 10.1038/s44161-021-00007-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 08/29/2024]
Abstract
Myocardial stiffness is an intrinsic property of the myocardium that influences both diastolic and systolic cardiac function. Myocardial stiffness represents the resistance of this tissue to being deformed and depends on intracellular components of the cardiomyocyte, particularly the cytoskeleton, and on extracellular components, such as collagen fibers. Myocardial disease is associated with changes in myocardial stiffness, and its assessment is a key diagnostic marker of acute or chronic pathological myocardial disease with the potential to guide therapeutic decision-making. In this Review, we appraise the different techniques that can be used to estimate myocardial stiffness, evaluate their advantages and disadvantages, and discuss potential clinical applications.
Collapse
Affiliation(s)
- José Carlos Villalobos Lizardi
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jerome Baranger
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Minh B Nguyen
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Aimen Malik
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France
| | - Olivier Villemain
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021; 14:366-385. [PMID: 34711701 PMCID: PMC8611306 DOI: 10.15283/ijsc21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Liu F, Wu H, Yang X, Dong Y, Huang G, Genin GM, Lu TJ, Xu F. A new model of myofibroblast-cardiomyocyte interactions and their differences across species. Biophys J 2021; 120:3764-3775. [PMID: 34280368 DOI: 10.1016/j.bpj.2021.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Although coupling between cardiomyocytes and myofibroblasts is well known to affect the physiology and pathophysiology of cardiac tissues across species, relating these observations to humans is challenging because the effect of this coupling varies across species and because the sources of these effects are not known. To identify the sources of cross-species variation, we built upon previous mathematical models of myofibroblast electrophysiology and developed a mechanoelectrical model of cardiomyocyte-myofibroblast interactions as mediated by electrotonic coupling and transforming growth factor-β1. The model, as verified by experimental data from the literature, predicted that both electrotonic coupling and transforming growth factor-β1 interaction between myocytes and myofibroblast prolonged action potential in rat myocytes but shortened action potential in human myocytes. This variance could be explained by differences in the transient outward K+ current associated with differential Kv4.2 gene expression across species. Results are useful for efforts to extrapolate the results of animal models to the predicted effects in humans and point to potential therapeutic targets for fibrotic cardiomyopathy.
Collapse
Affiliation(s)
- Fusheng Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hou Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China
| | - Xiaoyu Yang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China
| | - Yuqin Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, P.R. China
| | - Guy M Genin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Mechanical Engineering & Materials Science, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China.
| | - Feng Xu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
6
|
The effects of inorganic phosphate on contractile function of slow skeletal muscle fibres are length-dependent. Biochem Biophys Res Commun 2020; 533:818-823. [DOI: 10.1016/j.bbrc.2020.09.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
|
7
|
Johnson D, Landim-Vieira M, Solı S C, Zhu L, Robinson JM, Pinto JR, Chalovich JM. Eliminating the First Inactive State and Stabilizing the Active State of the Cardiac Regulatory System Alters Behavior in Solution and in Ordered Systems. Biochemistry 2020; 59:3487-3497. [PMID: 32840354 DOI: 10.1021/acs.biochem.0c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium binding to troponin C (TnC) is insufficient for full activation of myosin ATPase activity by actin-tropomyosin-troponin. Previous attempts to investigate full activation utilized ATP-free myosin or chemically modified myosin to stabilize the active state of regulated actin. We utilized the Δ14-TnT and the A8V-TnC mutants to stabilize the activated state at saturating Ca2+ and to eliminate one of the inactive states at low Ca2+. The observed effects differed in solution studies and in the more ordered in vitro motility assay and in skinned cardiac muscle preparations. At saturating Ca2+, full activation with Δ14-TnT·A8V-TnC decreased the apparent KM for actin-activated ATPase activity compared to bare actin filaments. Rates of in vitro motility increased at both high and low Ca2+ with Δ14-TnT; the maximum shortening speed at high Ca2+ increased 1.8-fold. Cardiac muscle preparations exhibited increased Ca2+ sensitivity and large increases in resting force with either Δ14-TnT or Δ14-TnT·A8V-TnC. We also observed a significant increase in the maximal rate of tension redevelopment. The results of full activation with Ca2+ and Δ14-TnT·A8V-TnC confirmed and extended several earlier observations using other means of reaching full activation. Furthermore, at low Ca2+, elimination of the first inactive state led to partial activation. This work also confirms, in three distinct experimental systems, that troponin is able to stabilize the active state of actin-tropomyosin-troponin without the need for high-affinity myosin binding. The results are relevant to the reason for two inactive states and for the role of force producing myosin in regulation.
Collapse
Affiliation(s)
- Dylan Johnson
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Christopher Solı S
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Li Zhu
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| | - John M Robinson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
8
|
McDonald KS, Hanft LM, Robinett JC, Guglin M, Campbell KS. Regulation of Myofilament Contractile Function in Human Donor and Failing Hearts. Front Physiol 2020; 11:468. [PMID: 32523542 PMCID: PMC7261867 DOI: 10.3389/fphys.2020.00468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
Heart failure (HF) often includes changes in myocardial contractile function. This study addressed the myofibrillar basis for contractile dysfunction in failing human myocardium. Regulation of contractile properties was measured in cardiac myocyte preparations isolated from frozen, left ventricular mid-wall biopsies of donor (n = 7) and failing human hearts (n = 8). Permeabilized cardiac myocyte preparations were attached between a force transducer and a position motor, and both the Ca2+ dependence and sarcomere length (SL) dependence of force, rate of force, loaded shortening, and power output were measured at 15 ± 1°C. The myocyte preparation size was similar between groups (donor: length 148 ± 10 μm, width 21 ± 2 μm, n = 13; HF: length 131 ± 9 μm, width 23 ± 1 μm, n = 16). The maximal Ca2+-activated isometric force was also similar between groups (donor: 47 ± 4 kN⋅m-2; HF: 44 ± 5 kN⋅m-2), which implicates that previously reported force declines in multi-cellular preparations reflect, at least in part, tissue remodeling. Maximal force development rates were also similar between groups (donor: k tr = 0.60 ± 0.05 s-1; HF: k tr = 0.55 ± 0.04 s-1), and both groups exhibited similar Ca2+ activation dependence of k tr values. Human cardiac myocyte preparations exhibited a Ca2+ activation dependence of loaded shortening and power output. The peak power output normalized to isometric force (PNPO) decreased by ∼12% from maximal Ca2+ to half-maximal Ca2+ activations in both groups. Interestingly, the SL dependence of PNPO was diminished in failing myocyte preparations. During sub-maximal Ca2+ activation, a reduction in SL from ∼2.25 to ∼1.95 μm caused a ∼26% decline in PNPO in donor myocytes but only an ∼11% change in failing myocytes. These results suggest that altered length-dependent regulation of myofilament function impairs ventricular performance in failing human hearts.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Maya Guglin
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Aoyama J, Homma K, Tanabe N, Usui S, Miyagi Y, Matsuura K, Kaneda M, Nitta T. Spatiotemporal imaging documented the maturation of the cardiomyocytes from human induced pluripotent stem cells. J Thorac Cardiovasc Surg 2019; 159:2260-2271.e7. [PMID: 31409490 DOI: 10.1016/j.jtcvs.2019.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Cardiomyocytes derived from human induced pluripotent stem cells are a promising source of cells for regenerative medicine. However, contractions in such derived cardiomyocytes are often irregular and asynchronous, especially at early stages of differentiation. This study aimed to determine the differentiation stage of initiation of synchronized and regular contractions, using spatiotemporal imaging and physiological and genetic analyses. METHODS Knock-in human induced pluripotent stem cell lines were established with clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 to analyze cardiac and pacemaker cell maturation. Time-frequency analysis and Ca2+ imaging were performed, and the expression of related proteins and specific cardiac/pacemaker mRNAs in contracting embryoid bodies was analyzed at various differentiation stages. RESULTS Time-frequency analysis and Ca2+ imaging revealed irregular, asynchronous contractions at the early stage of differentiation with altered electrophysiological properties upon differentiation. Genes associated with electrophysiological properties were upregulated after 70 days of culturing in differentiation media, whereas pacemaker genes were initially upregulated during the early stage and downregulated at the later stage. CONCLUSIONS A differentiation period >70 days is required for adequate development of cardiac elements including ion channels and gap junctions and for sarcomere maturation.
Collapse
Affiliation(s)
- Junya Aoyama
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan; Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Kohei Homma
- Department of Physiology, Nippon Medical School, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Nari Tanabe
- SUWA, Tokyo University of Science, Nagano, Japan
| | - Sumiko Usui
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Yasuo Miyagi
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Katsuhisa Matsuura
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
10
|
Vikhorev PG, Vikhoreva NN. Cardiomyopathies and Related Changes in Contractility of Human Heart Muscle. Int J Mol Sci 2018; 19:ijms19082234. [PMID: 30065175 PMCID: PMC6121228 DOI: 10.3390/ijms19082234] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
About half of hypertrophic and dilated cardiomyopathies cases have been recognized as genetic diseases with mutations in sarcomeric proteins. The sarcomeric proteins are involved in cardiomyocyte contractility and its regulation, and play a structural role. Mutations in non-sarcomeric proteins may induce changes in cell signaling pathways that modify contractile response of heart muscle. These facts strongly suggest that contractile dysfunction plays a central role in initiation and progression of cardiomyopathies. In fact, abnormalities in contractile mechanics of myofibrils have been discovered. However, it has not been revealed how these mutations increase risk for cardiomyopathy and cause the disease. Much research has been done and still much is being done to understand how the mechanism works. Here, we review the facts of cardiac myofilament contractility in patients with cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Petr G Vikhorev
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Natalia N Vikhoreva
- Heart Science Centre, Magdi Yacoub Institute, Harefield Hospital, London UB9 6JH, UK.
| |
Collapse
|
11
|
Wang Z, Patel JR, Schreier DA, Hacker TA, Moss RL, Chesler NC. Organ-level right ventricular dysfunction with preserved Frank-Starling mechanism in a mouse model of pulmonary arterial hypertension. J Appl Physiol (1985) 2018; 124:1244-1253. [PMID: 29369739 PMCID: PMC6008075 DOI: 10.1152/japplphysiol.00725.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is due to right ventricular (RV) failure. It is unclear whether RV dysfunction initiates at the organ level or the subcellular level or both. We hypothesized that chronic pressure overload-induced RV dysfunction begins at the organ level with preserved Frank-Starling mechanism in myocytes. To test this hypothesis, we induced PAH with Sugen + hypoxia (HySu) in mice and measured RV whole organ and subcellular functional changes by in vivo pressure-volume measurements and in vitro trabeculae length-tension measurements, respectively, at multiple time points for up to 56 days. We observed progressive changes in RV function at the organ level: in contrast to early PAH (14-day HySu), in late PAH (56-day HySu) ejection fraction and ventricular-vascular coupling were decreased. At the subcellular level, direct measurements of myofilament contraction showed that RV contractile force was similarly increased at any stage of PAH development. Moreover, cross-bridge kinetics were not changed and length dependence of force development (Frank-Starling relation) were not different from baseline in any PAH group. Histological examinations confirmed increased cardiomyocyte cross-sectional area and decreased von Willebrand factor expression in RVs with PAH. In summary, RV dysfunction developed at the organ level with preserved Frank-Starling mechanism in myofilaments, and these results provide novel insight into the development of RV dysfunction, which is critical to understanding the mechanisms of RV failure. NEW & NOTEWORTHY A multiscale investigation of pulmonary artery pressure overload in mice showed time-dependent organ-level right ventricular (RV) dysfunction with preserved Frank-Starling relations in myofilaments. Our findings provide novel insight into the development of RV dysfunction, which is critical to understanding mechanisms of RV failure.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin
- Department of Mechanical Engineering, Colorado State University , Fort Collins, Colorado
| | - Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin
| | - David A Schreier
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
12
|
Patel JR, Barton GP, Braun RK, Goss KN, Haraldsdottir K, Hopp A, Diffee G, Hacker TA, Moss RL, Eldridge MW. Altered Right Ventricular Mechanical Properties Are Afterload Dependent in a Rodent Model of Bronchopulmonary Dysplasia. Front Physiol 2017; 8:840. [PMID: 29118720 PMCID: PMC5660986 DOI: 10.3389/fphys.2017.00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/09/2017] [Indexed: 02/02/2023] Open
Abstract
Infants born premature are at increased risk for development of bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), and ultimately right ventricular (RV) dysfunction, which together carry a high risk of neonatal mortality. However, the role alveolar simplification and abnormal pulmonary microvascular development in BPD affects RV contractile properties is unknown. We used a rat model of BPD to examine the effect of hyperoxia-induced PH on RV contractile properties. We measured in vivo RV pressure as well as passive force, maximum Ca2+ activated force, calcium sensitivity of force (pCa50) and rate of force redevelopment (ktr) in RV skinned trabeculae isolated from hearts of 21-and 35-day old rats pre-exposed to 21% oxygen (normoxia) or 85% oxygen (hyperoxia) for 14 days after birth. Systolic and diastolic RV pressure were significantly higher at day 21 in hyperoxia exposed rats compared to normoxia control rats, but normalized by 35 days of age. Passive force, maximum Ca2+ activated force, and calcium sensitivity of force were elevated and cross-bridge cycling kinetics depressed in 21-day old hyperoxic trabeculae, whereas no differences between normoxic and hyperoxic trabeculae were seen at 35 days. Myofibrillar protein analysis revealed that 21-day old hyperoxic trabeculae had increased levels of beta-myosin heavy chain (β-MHC), atrial myosin light chain 1 (aMLC1; often referred to as essential light chain), and slow skeletal troponin I (ssTnI) compared to age matched normoxic trabeculae. On the other hand, 35-day old normoxic and hyperoxic trabeculae expressed similar level of α- and β-MHC, ventricular MLC1 and predominantly cTnI. These results suggest that neonatal exposure to hyperoxia increases RV afterload and affect both the steady state and dynamic contractile properties of the RV, likely as a result of hyperoxia-induced expression of β-MHC, delayed transition of slow skeletal TnI to cardiac TnI, and expression of atrial MLC1. These hyperoxia-induced changes in contractile properties are reversible and accompany the resolution of PH with further developmental age, underscoring the importance of reducing RV afterload to allow for normalization of RV function in both animal models and humans with BPD.
Collapse
Affiliation(s)
- Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory P Barton
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Rudolf K Braun
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kara N Goss
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristin Haraldsdottir
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexandria Hopp
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gary Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
13
|
Kinetic coupling of phosphate release, force generation and rate-limiting steps in the cross-bridge cycle. J Muscle Res Cell Motil 2017; 38:275-289. [PMID: 28918606 DOI: 10.1007/s10974-017-9482-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
A basic goal in muscle research is to understand how the cyclic ATPase activity of cross-bridges is converted into mechanical force. A direct approach to study the chemo-mechanical coupling between Pi release and the force-generating step is provided by the kinetics of force response induced by a rapid change in [Pi]. Classical studies on fibres using caged-Pi discovered that rapid increases in [Pi] induce fast force decays dependent on final [Pi] whose kinetics were interpreted to probe a fast force-generating step prior to Pi release. However, this hypothesis was called into question by studies on skeletal and cardiac myofibrils subjected to Pi jumps in both directions (increases and decreases in [Pi]) which revealed that rapid decreases in [Pi] trigger force rises with slow kinetics, similar to those of calcium-induced force development and mechanically-induced force redevelopment at the same [Pi]. A possible explanation for this discrepancy came from imaging of individual sarcomeres in cardiac myofibrils, showing that the fast force decay upon increase in [Pi] results from so-called sarcomere 'give'. The slow force rise upon decrease in [Pi] was found to better reflect overall sarcomeres cross-bridge kinetics and its [Pi] dependence, suggesting that the force generation coupled to Pi release cannot be separated from the rate-limiting transition. The reasons for the different conclusions achieved in fibre and myofibril studies are re-examined as the recent findings on cardiac myofibrils have fundamental consequences for the coupling between Pi release, rate-limiting steps and force generation. The implications from Pi-induced force kinetics of myofibrils are discussed in combination with historical and recent models of the cross-bridge cycle.
Collapse
|
14
|
Chung JH, Biesiadecki BJ, Ziolo MT, Davis JP, Janssen PML. Myofilament Calcium Sensitivity: Role in Regulation of In vivo Cardiac Contraction and Relaxation. Front Physiol 2016; 7:562. [PMID: 28018228 PMCID: PMC5159616 DOI: 10.3389/fphys.2016.00562] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Myofilament calcium sensitivity is an often-used indicator of cardiac muscle function, often assessed in disease states such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). While assessment of calcium sensitivity provides important insights into the mechanical force-generating capability of a muscle at steady-state, the dynamic behavior of the muscle cannot be sufficiently assessed with a force-pCa curve alone. The equilibrium dissociation constant (Kd) of the force-pCa curve depends on the ratio of the apparent calcium association rate constant (kon) and apparent calcium dissociation rate constant (koff) of calcium on TnC and as a stand-alone parameter cannot provide an accurate description of the dynamic contraction and relaxation behavior without the additional quantification of kon or koff, or actually measuring dynamic twitch kinetic parameters in an intact muscle. In this review, we examine the effect of length, frequency, and beta-adrenergic stimulation on myofilament calcium sensitivity and dynamic contraction in the myocardium, the effect of membrane permeabilization/mechanical- or chemical skinning on calcium sensitivity, and the dynamic consequences of various myofilament protein mutations with potential implications in contractile and relaxation behavior.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| |
Collapse
|
15
|
Hanft LM, Cornell TD, McDonald CA, Rovetto MJ, Emter CA, McDonald KS. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function. Arch Biochem Biophys 2016; 601:22-31. [PMID: 26854722 DOI: 10.1016/j.abb.2016.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA-induced phosphorylation of cMyBP-C and cTnI may contribute to ventricular pump failure.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Timothy D Cornell
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Colin A McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Michael J Rovetto
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Craig A Emter
- Department of Biomedical Sciences, College of Veterinary Medicine University of Missouri, Columbia, MO 65211, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Beussman KM, Rodriguez ML, Leonard A, Taparia N, Thompson CR, Sniadecki NJ. Micropost arrays for measuring stem cell-derived cardiomyocyte contractility. Methods 2016; 94:43-50. [PMID: 26344757 PMCID: PMC4761463 DOI: 10.1016/j.ymeth.2015.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
Stem cell-derived cardiomyocytes have the potential to be used to study heart disease and maturation, screen drug treatments, and restore heart function. Here, we discuss the procedures involved in using micropost arrays to measure the contractile forces generated by stem cell-derived cardiomyocytes. Cardiomyocyte contractility is needed for the heart to pump blood, so measuring the contractile forces of cardiomyocytes is a straightforward way to assess their function. Microfabrication and soft lithography techniques are utilized to create identical arrays of flexible, silicone microposts from a common master. Micropost arrays are functionalized with extracellular matrix protein to allow cardiomyocytes to adhere to the tips of the microposts. Live imaging is used to capture videos of the deflection of microposts caused by the contraction of the cardiomyocytes. Image analysis code provides an accurate means to quantify these deflections. The contractile forces produced by a beating cardiomyocyte are calculated by modeling the microposts as cantilever beams. We have used this assay to assess techniques for improving the maturation and contractile function of stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Curtis R Thompson
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|
18
|
Amiad Pavlov D, Landesberg A. The cross-bridge dynamics is determined by two length-independent kinetics: Implications on muscle economy and Frank–Starling Law. J Mol Cell Cardiol 2016; 90:94-101. [DOI: 10.1016/j.yjmcc.2015.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
|
19
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
20
|
Tanner BCW, Breithaupt JJ, Awinda PO. Myosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium. Am J Physiol Heart Circ Physiol 2015; 309:H2087-97. [PMID: 26475586 DOI: 10.1152/ajpheart.00555.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022]
Abstract
Cardiac contractility increases as sarcomere length increases, suggesting that intrinsic molecular mechanisms underlie the Frank-Starling relationship to confer increased cardiac output with greater ventricular filling. The capacity of myosin to bind with actin and generate force in a muscle cell is Ca(2+) regulated by thin-filament proteins and spatially regulated by sarcomere length as thick-to-thin filament overlap varies. One mechanism underlying greater cardiac contractility as sarcomere length increases could involve longer myosin attachment time (ton) due to slowed myosin kinetics at longer sarcomere length. To test this idea, we used stochastic length-perturbation analysis in skinned rat papillary muscle strips to measure ton as [MgATP] varied (0.05-5 mM) at 1.9 and 2.2 μm sarcomere lengths. From this ton-MgATP relationship, we calculated cross-bridge MgADP release rate and MgATP binding rates. As MgATP increased, ton decreased for both sarcomere lengths, but ton was roughly 70% longer for 2.2 vs. 1.9 μm sarcomere length at maximally activated conditions. These ton differences were driven by a slower MgADP release rate at 2.2 μm sarcomere length (41 ± 3 vs. 74 ± 7 s(-1)), since MgATP binding rate was not different between the two sarcomere lengths. At submaximal activation levels near the pCa50 value of the tension-pCa relationship for each sarcomere length, length-dependent increases in ton were roughly 15% longer for 2.2 vs. 1.9 μm sarcomere length. These changes in cross-bridge kinetics could amplify cooperative cross-bridge contributions to force production and thin-filament activation at longer sarcomere length and suggest that length-dependent changes in myosin MgADP release rate may contribute to the Frank-Starling relationship in the heart.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
21
|
Milani-Nejad N, Canan BD, Elnakish MT, Davis JP, Chung JH, Fedorov VV, Binkley PF, Higgins RSD, Kilic A, Mohler PJ, Janssen PML. The Frank-Starling mechanism involves deceleration of cross-bridge kinetics and is preserved in failing human right ventricular myocardium. Am J Physiol Heart Circ Physiol 2015; 309:H2077-86. [PMID: 26453335 DOI: 10.1152/ajpheart.00685.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mohammad T Elnakish
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Philip F Binkley
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Robert S D Higgins
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ahmet Kilic
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|
22
|
Wijnker PJM, Li Y, Zhang P, Foster DB, dos Remedios C, Van Eyk JE, Stienen GJM, Murphy AM, van der Velden J. A novel phosphorylation site, Serine 199, in the C-terminus of cardiac troponin I regulates calcium sensitivity and susceptibility to calpain-induced proteolysis. J Mol Cell Cardiol 2015; 82:93-103. [PMID: 25771144 DOI: 10.1016/j.yjmcc.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/28/2022]
Abstract
Phosphorylation of cardiac troponin I (cTnI) by protein kinase C (PKC) is implicated in cardiac dysfunction. Recently, Serine 199 (Ser199) was identified as a target for PKC phosphorylation and increased Ser199 phosphorylation occurs in end-stage failing compared with non-failing human myocardium. The functional consequences of cTnI-Ser199 phosphorylation in the heart are unknown. Therefore, we investigated the impact of phosphorylation of cTnI-Ser199 on myofilament function in human cardiac tissue and the susceptibility of cTnI to proteolysis. cTnI-Ser199 was replaced by aspartic acid (199D) or alanine (199A) to mimic phosphorylation and dephosphorylation, respectively, with recombinant wild-type (Wt) cTn as a negative control. Force development was measured at various [Ca(2+)] and at sarcomere lengths of 1.8 and 2.2 μm in demembranated cardiomyocytes in which endogenous cTn complex was exchanged with the recombinant human cTn complexes. In idiopathic dilated cardiomyopathy samples, myofilament Ca(2+)-sensitivity (pCa50) at 2.2 μm was significantly higher in 199D (pCa50 = 5.79 ± 0.01) compared to 199A (pCa50 = 5.65 ± 0.01) and Wt (pCa50 = 5.66 ± 0.02) at ~63% cTn exchange. Myofilament Ca(2+)-sensitivity was significantly higher even with only 5.9 ± 2.5% 199D exchange compared to 199A, and saturated at 12.3 ± 2.6% 199D exchange. Ser199 pseudo-phosphorylation decreased cTnI binding to both actin and actin-tropomyosin. Moreover, altered susceptibility of cTnI to proteolysis by calpain I was found when Ser199 was pseudo-phosphorylated. Our data demonstrate that low levels of cTnI-Ser199 pseudo-phosphorylation (~6%) increase myofilament Ca(2+)-sensitivity in human cardiomyocytes, most likely by decreasing the binding affinity of cTnI for actin-tropomyosin. In addition, cTnI-Ser199 pseudo-phosphorylation or mutation regulates calpain I mediated proteolysis of cTnI.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - Yuejin Li
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Pingbo Zhang
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - D Brian Foster
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cris dos Remedios
- Muscle Research Unit, Bosch Institute, The University of Sydney, Sydney, Australia
| | - Jennifer E Van Eyk
- The Advanced Clinical Biosystems Research Institute, The Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Anne M Murphy
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
23
|
Rodriguez ML, Graham BT, Pabon LM, Han SJ, Murry CE, Sniadecki NJ. Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. J Biomech Eng 2015; 136:051005. [PMID: 24615475 DOI: 10.1115/1.4027145] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/10/2014] [Indexed: 12/31/2022]
Abstract
Human stem cell-derived cardiomyocytes hold promise for heart repair, disease modeling, drug screening, and for studies of developmental biology. All of these applications can be improved by assessing the contractility of cardiomyocytes at the single cell level. We have developed an in vitro platform for assessing the contractile performance of stem cell-derived cardiomyocytes that is compatible with other common endpoints such as microscopy and molecular biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were seeded onto elastomeric micropost arrays in order to characterize the contractile force, velocity, and power produced by these cells. We assessed contractile function by tracking the deflection of microposts beneath an individual hiPSC-CM with optical microscopy. Immunofluorescent staining of these cells was employed to assess their spread area, nucleation, and sarcomeric structure on the microposts. Following seeding of hiPSC-CMs onto microposts coated with fibronectin, laminin, and collagen IV, we found that hiPSC-CMs on laminin coatings demonstrated higher attachment, spread area, and contractile velocity than those seeded on fibronectin or collagen IV coatings. Under optimized conditions, hiPSC-CMs spread to an area of approximately 420 μm2, generated systolic forces of approximately 15 nN/cell, showed contraction and relaxation rates of 1.74 μm/s and 1.46 μm/s, respectively, and had a peak contraction power of 29 fW. Thus, elastomeric micropost arrays can be used to study the contractile strength and kinetics of hiPSC-CMs. This system should facilitate studies of hiPSC-CM maturation, disease modeling, and drug screens as well as fundamental studies of human cardiac contraction.
Collapse
|
24
|
Kalász J, Tóth EP, Bódi B, Fagyas M, Tóth A, Pal BH, Vari SG, Balog M, Blažetić S, Heffer M, Papp Z, Borbély A. Single acute stress-induced progesterone and ovariectomy alter cardiomyocyte contractile function in female rats. Croat Med J 2014; 55:239-49. [PMID: 24891282 PMCID: PMC4049214 DOI: 10.3325/cmj.2014.55.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim To assess how ovarian-derived sex hormones (in particular progesterone) modify the effects of single acute stress on the mechanical and biochemical properties of left ventricular cardiomyocytes in the rat. Methods Non-ovariectomized (control, n = 8) and ovariectomized (OVX, n = 8) female rats were kept under normal conditions or were exposed to stress (control-S, n = 8 and OVX-S, n = 8). Serum progesterone levels were measured using a chemiluminescent immunoassay. Left ventricular myocardial samples were used for isometric force measurements and protein analysis. Ca2+-dependent active force (Factive), Ca2+-independent passive force (Fpassive), and Ca2+-sensitivity of force production were determined in single, mechanically isolated, permeabilized cardiomyocytes. Stress- and ovariectomy-induced alterations in myofilament proteins (myosin-binding protein C [MyBP-C], troponin I [TnI], and titin) were analyzed by sodium dodecyl sulfate gel electrophoresis using protein and phosphoprotein stainings. Results Serum progesterone levels were significantly increased in stressed rats (control-S, 35.6 ± 4.8 ng/mL and OVX-S, 21.9 ± 4.0 ng/mL) compared to control (10 ± 2.9 ng/mL) and OVX (2.8 ± 0.5 ng/mL) groups. Factive was higher in the OVX groups (OVX, 25.9 ± 3.4 kN/m2 and OVX-S, 26.3 ± 3.0 kN/m2) than in control groups (control, 16.4 ± 1.2 kN/m2 and control-S, 14.4 ± 0.9 kN/m2). Regarding the potential molecular mechanisms, Factive correlated with MyBP-C phosphorylation, while myofilament Ca2+-sensitivity inversely correlated with serum progesterone levels when the mean values were plotted for all animal groups. Fpassive was unaffected by any treatment. Conclusion Stress increases ovary-independent synthesis and release of progesterone, which may regulate Ca2+-sensitivity of force production in left ventricular cardiomyocytes. Stress and female hormones differently alter Ca2+-dependent cardiomyocyte contractile force production, which may have pathophysiological importance during stress conditions affecting postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Attila Borbély
- Attila Borbély, University of Debrecen, Institute of Cardiology, Division of Clinical Physiology, Móricz Zsigmond krt. 22, H-4032 Debrecen, Hungary,
| |
Collapse
|
25
|
Cardiac tissue structure, properties, and performance: a materials science perspective. Ann Biomed Eng 2014; 42:2003-13. [PMID: 25081385 DOI: 10.1007/s10439-014-1071-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
From an engineering perspective, many forms of heart disease can be thought of as a reduction in biomaterial performance, in which the biomaterial is the tissue comprising the ventricular wall. In materials science, the structure and properties of a material are recognized to be interconnected with performance. In addition, for most measurements of structure, properties, and performance, some processing is required. Here, we review the current state of knowledge regarding cardiac tissue structure, properties, and performance as well as the processing steps taken to acquire those measurements. Understanding the impact of these factors and their interactions may enhance our understanding of heart function and heart failure. We also review design considerations for cardiac tissue property and performance measurements because, to date, most data on cardiac tissue has been obtained under non-physiological loading conditions. Novel measurement systems that account for these design considerations may improve future experiments and lead to greater insight into cardiac tissue structure, properties, and ultimately performance.
Collapse
|
26
|
Elhamine F, Radke MH, Pfitzer G, Granzier H, Gotthardt M, Stehle R. Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics. J Cell Sci 2014; 127:3666-74. [PMID: 24982444 DOI: 10.1242/jcs.141796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mice which express truncated cardiac titins lacking the unique elastic N2B region. Compared with myofibrils from wild-type mice, myofibrils from knockout and heterozygous mice exhibit increased passive myofibrillar stiffness. To determine the kinetics of Ca(2+)-induced force development (rate constant kACT), myofibrils from knockout, heterozygous and wild-type mice were stretched to the same sarcomere length (2.3 µm) and rapidly activated with Ca(2+). Additionally, mechanically induced force-redevelopment kinetics (rate constant kTR) were determined by slackening and re-stretching myofibrils during Ca(2+)-mediated activation. Myofibrils from knockout mice exhibited significantly higher kACT, kTR and maximum Ca(2+)-activated tension than myofibrils from wild-type mice. By contrast, the kinetic parameters of biphasic force relaxation induced by rapidly reducing [Ca(2+)] were not significantly different among the three genotypes. These results indicate that increased titin stiffness promotes myocardial contraction by accelerating the formation of force-generating cross-bridges without decelerating relaxation.
Collapse
Affiliation(s)
- Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| | - Michael H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| | - Henk Granzier
- Sarver Molecular Cardiovascular Research and Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| |
Collapse
|
27
|
Hanft LM, Greaser ML, McDonald KS. Titin-mediated control of cardiac myofibrillar function. Arch Biochem Biophys 2014; 552-553:83-91. [PMID: 24269766 PMCID: PMC4028433 DOI: 10.1016/j.abb.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 01/06/2023]
Abstract
According to the Frank-Starling relationship, ventricular pressure or stroke volume increases with end-diastolic volume. This is regulated, in large part, by the sarcomere length (SL) dependent changes in cardiac myofibrillar force, loaded shortening, and power. Consistent with this, both cardiac myofibrillar force and absolute power fall at shorter SL. However, when Ca(2+) activated force levels are matched between short and long SL (by increasing the activator [Ca(2+)]), short SL actually yields faster loaded shortening and greater peak normalized power output (PNPO). A potential mechanism for faster loaded shortening at short SL is that, at short SL, titin becomes less taut, which increases the flexibility of the cross-bridges, a process that may be mediated by titin's interactions with thick filament proteins. We propose a more slackened titin yields greater myosin head radial and azimuthal mobility and these flexible cross-bridges are more likely to maintain thin filament activation, which would allow more force-generating cross-bridges to work against a fixed load resulting in faster loaded shortening. We tested this idea by measuring SL-dependence of power at matched forces in rat skinned cardiac myocytes containing either N2B titin or a longer, more compliant N2BA titin. We predicted that, in N2BA titin containing cardiac myocytes, power-load curves would not be shifted upward at short SL compared to long SL (when force is matched). Consistent with this, peak normalized power was actually less at short SL versus long SL (at matched force) in N2BA-containing myocytes (N2BA titin: ΔPNPO (Short SL peak power minus long SL peak power)=-0.057±0.049 (n=5) versus N2B titin: ΔPNPO=+0.012±0.012 (n=5). These findings support a model whereby SL per se controls mechanical properties of cross-bridges and this process is mediated by titin. This myofibrillar mechanism may help sustain ventricular power during periods of low preloads, and perhaps a breakdown of this mechanism is involved in impaired function of failing hearts.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Marion L Greaser
- Muscle Biology Laboratory, University of Wisconsin, Madison, WI 53706, United States
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
28
|
Milani-Nejad N, Xu Y, Davis JP, Campbell KS, Janssen PML. Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature. ACTA ACUST UNITED AC 2013; 141:133-9. [PMID: 23277479 PMCID: PMC3536524 DOI: 10.1085/jgp.201210894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K+ contractures to induce a tonic level of force, we showed the ktr was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of ktr in rat muscle at optimal length (Lopt) and 90% of optimal length (L90) revealed that ktr was significantly slower at Lopt (27.7 ± 3.3 and 27.8 ± 3.0 s−1 in duplicate analyses) than at L90 (45.1 ± 7.6 and 47.5 ± 9.2 s−1). We therefore show that ktr can be measured in intact rat and rabbit cardiac trabeculae, and that the ktr decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank–Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
29
|
Loong CKP, Takeda AK, Badr MA, Rogers JS, Chase PB. Slowed Dynamics of Thin Filament Regulatory Units Reduces Ca 2+-Sensitivity of Cardiac Biomechanical Function. Cell Mol Bioeng 2013; 6:183-198. [PMID: 23833690 DOI: 10.1007/s12195-013-0269-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Actomyosin kinetics in both skinned skeletal muscle fibers at maximum Ca2+-activation and unregulated in vitro motility assays are modulated by solvent microviscosity in a manner consistent with a diffusion limited process. Viscosity might also influence cardiac thin filament Ca2+-regulatory protein dynamics. In vitro motility assays were conducted using thin filaments reconstituted with recombinant human cardiac troponin and tropomyosin; solvent microviscosity was varied by addition of sucrose or glucose. At saturating Ca2+, filament sliding speed (s) was inversely proportional to viscosity. Ca2+-sensitivity (pCa50 ) of s decreased markedly with elevated viscosity (η/η0 ≥ ~1.3). For comparison with unloaded motility assays, steady-state isometric force (F) and kinetics of isometric tension redevelopment (kTR ) were measured in single, permeabilized porcine cardiomyocytes when viscosity surrounding the myofilaments was altered. Maximum Ca2+-activated F changed little for sucrose ≤ 0.3 M (η/η0 ~1.4) or glucose ≤ 0.875 M (η/η0 ~1.66), but decreased at higher concentrations. Sucrose (0.3 M) or glucose (0.875 M) decreased pCa50 for F. kTR at saturating Ca2+ decreased steeply and monotonically with increased viscosity but there was little effect on kTR at sub-maximum Ca2+. Modeling indicates that increased solutes affect dynamics of cardiac muscle Ca2+-regulatory proteins to a much greater extent than actomyosin cross-bridge cycling.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University, Tallahassee, FL, 32306, USA ; Department of Physics, The Florida State University, Tallahassee, FL, 32306, USA
| | | | | | | | | |
Collapse
|
30
|
Han JC, Tran K, Taberner AJ, Nickerson DP, Kirton RS, Nielsen PMF, Ward ML, Nash MP, Crampin EJ, Loiselle DS. Myocardial twitch duration and the dependence of oxygen consumption on pressure-volume area: experiments and modelling. J Physiol 2012; 590:4603-22. [PMID: 22570375 PMCID: PMC3477760 DOI: 10.1113/jphysiol.2012.228965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/02/2012] [Indexed: 11/08/2022] Open
Abstract
We tested the proposition that linear length dependence of twitch duration underlies the well-characterised linear dependence of oxygen consumption (V(O(2)) ) on pressure–volume area (PVA) in the heart. By way of experimental simplification, we reduced the problem from three dimensions to one by substituting cardiac trabeculae for the classically investigated whole-heart. This allowed adoption of stress–length area (SLA) as a surrogate for PVA, and heat as a proxy for V(O(2)) . Heat and stress (force per cross-sectional area), at a range of muscle lengths and at both 1 mM and 2 mM [Ca(2+)](o), were recorded from continuously superfused rat right-ventricular trabeculae undergoing fixed-end contractions. The heat–SLA relations of trabeculae (reported here, for the first time) are linear. Twitch duration increases monotonically (but not strictly linearly) with muscle length. We probed the cellular mechanisms of this phenomenon by determining: (i) the length dependence of the duration of the Ca(2+) transient, (ii) the length dependence of the rate of force redevelopment following a length impulse (an index of Ca(2+) binding to troponin-C), (iii) the effect on the simulated time course of the twitch of progressive deletion of length and Ca(2+)-dependent mechanisms of crossbridge cooperativity, using a detailed mathematical model of the crossbridge cycle, and (iv) the conditions required to achieve these multiple length dependencies, using a greatly simplified model of twitch mechano-energetics. From the results of these four independent investigations, we infer that the linearity of the heat–SLA relation (and, by analogy, the V(O(2))–PVA relation) is remarkably robust in the face of departures from linearity of length-dependent twitch duration.
Collapse
Affiliation(s)
- J-C Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
McDonald KS, Hanft LM, Domeier TL, Emter CA. Length and PKA Dependence of Force Generation and Loaded Shortening in Porcine Cardiac Myocytes. Biochem Res Int 2012; 2012:371415. [PMID: 22844597 PMCID: PMC3398585 DOI: 10.1155/2012/371415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022] Open
Abstract
In healthy hearts, ventricular ejection is determined by three myofibrillar properties; force, force development rate, and rate of loaded shortening (i.e., power). The sarcomere length and PKA dependence of these mechanical properties were measured in porcine cardiac myocytes. Permeabilized myocytes were prepared from left ventricular free walls and myocyte preparations were calcium activated to yield ~50% maximal force after which isometric force was measured at varied sarcomere lengths. Porcine myocyte preparations exhibited two populations of length-tension relationships, one being shallower than the other. Moreover, myocytes with shallow length-tension relationships displayed steeper relationships following PKA. Sarcomere length-K(tr) relationships also were measured and K(tr) remained nearly constant over ~2.30 μm to ~1.90 μm and then increased at lengths below 1.90 μm. Loaded-shortening and peak-normalized power output was similar at ~2.30 μm and ~1.90 μm even during activations with the same [Ca(2+)], implicating a myofibrillar mechanism that sustains myocyte power at lower preloads. PKA increased myocyte power and yielded greater shortening-induced cooperative deactivation in myocytes, which likely provides a myofibrillar mechanism to assist ventricular relaxation. Overall, the bimodal distribution of myocyte length-tension relationships and the PKA-mediated changes in myocyte length-tension and power are likely important modulators of Frank-Starling relationships in mammalian hearts.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Laurin M. Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Timothy L. Domeier
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Craig A. Emter
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
32
|
Patel JR, Pleitner JM, Moss RL, Greaser ML. Magnitude of length-dependent changes in contractile properties varies with titin isoform in rat ventricles. Am J Physiol Heart Circ Physiol 2011; 302:H697-708. [PMID: 22140043 DOI: 10.1152/ajpheart.00800.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of differential expression of titin isoforms on sarcomere length (SL)-dependent changes in passive force, maximum Ca(2+)-activated force, apparent cooperativity in activation of force (n(H)), Ca(2+) sensitivity of force (pCa(50)), and rate of force redevelopment (k(tr)) were investigated in rat cardiac muscle. Skinned right ventricular trabeculae were isolated from wild-type (WT) and mutant homozygote (Ho) hearts expressing predominantly a smaller N2B isoform (2,970 kDa) and a giant N2BA-G isoform (3,830 kDa), respectively. Stretching WT and Ho trabeculae from SL 2.0 to 2.35 μm increased passive force, maximum Ca(2+)-activated force, and pCa(50), and it decreased n(H) and k(tr). Compared with WT trabeculae, the magnitude of SL-dependent changes in passive force, maximum Ca(2+)-activated force, pCa(50), and n(H) was significantly smaller in Ho trabeculae. These results suggests that, at least in rat ventricle, the magnitude of SL-dependent changes in passive force, maximum Ca(2+)-activated force, pCa(50), n(H), and k(tr) is defined by the titin isoform.
Collapse
|
33
|
Stehle R, Iorga B. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J Mol Cell Cardiol 2010; 48:843-50. [PMID: 20060002 DOI: 10.1016/j.yjmcc.2009.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/03/2009] [Accepted: 12/27/2009] [Indexed: 11/19/2022]
Abstract
The sarcomere is the core structure responsible for active mechanical heart function. It is formed primarily by myosin, actin, and titin filaments. Cyclic interactions occur between the cross-bridges of the myosin filaments and the actin filaments. The forces generated by these cyclic interactions provide the molecular basis for cardiac pressure, while the motion produced by these interactions provides the basis for ejection. The cross-bridge cycle is controlled by upstream mechanisms located in the membrane and by downstream mechanisms inside the sarcomere itself. These downstream mechanisms involve the Ca(2+)-controlled conformational change of the regulatory proteins troponin and tropomyosin and strong cooperative interactions between neighboring troponin-tropomyosin units along the actin filament. The kinetics of upstream and downstream processes have been measured in intact and demembranated myocardial preparations. This review outlines a conceptual model of the timing of these processes during the individual mechanical heart phases. Particular focus is given to kinetic data from studies on contraction-relaxation cycles under mechanical loads. Evidence is discussed that the dynamics of cardiac contraction and relaxation are determined mainly by sarcomeric downstream mechanisms, in particular by the kinetics of the cross-bridge cycle. The rate and extent of ventricular pressure development is essentially subjected to the mechanistic principles of cross-bridge action and its upstream and downstream regulation. Sarcomere relengthening during myocardial relaxation plays a key role in the rapid decay of ventricular pressure and in early diastolic filling.
Collapse
Affiliation(s)
- Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str 39, Cologne, Germany.
| | | |
Collapse
|
34
|
Edes IF, Tóth A, Csányi G, Lomnicka M, Chłopicki S, Edes I, Papp Z. Late-stage alterations in myofibrillar contractile function in a transgenic mouse model of dilated cardiomyopathy (Tgalphaq*44). J Mol Cell Cardiol 2008; 45:363-72. [PMID: 18674539 DOI: 10.1016/j.yjmcc.2008.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/17/2022]
Abstract
Mechanical and biochemical alterations were investigated in permeabilized cardiomyocytes along with the progression of dilated cardiomyopathy (DCM) in a transgenic mouse line overexpressing the activated Galphaq protein (Tgalphaq*44). The isometric force, its Ca(2+) sensitivity (pCa(50)) and the turnover rate of the actin-myosin cycle (k(tr)) were determined at sarcomere lengths (SLs) of 1.9 mum and 2.3 mum before (at 4 and 10 months of age) and after hemodynamic decompensation (at 14 and 18 months of age) in Tgalphaq*44 cardiomyocytes and in age-matched control cardiomyocytes. The SL-dependence of pCa(50) was not different in Tgalphaq*44 and control hearts. In contrast, a significant increase in pCa(50) was observed in the Tgalphaq*44 cardiomyocytes (DeltapCa(50): 0.10-0.15 vs. the controls) after 10 months of age that could be diminished by exposures to the catalytic subunit of protein kinase A (PKA). Accordingly, a decline in endogenous PKA activity and decreased troponin I phosphorylation were detected after 10 months in the Tgalphaq*44 hearts. Finally, the maximal Ca(2+)-activated force (F(o)) and k(tr) were lower and the passive force (F(passive)) was higher at 18 months in the Tgalphaq*44 cardiomyocytes compared to the control. These mechanical alterations were paralleled by a robust increase in beta-myosin heavy chain expression in the Tgalphaq*44 hearts. In conclusion, our data suggested that an initial decrease of PKA signaling and subsequent changes in myofilament protein expression may contribute to the development of dilated cardiomyopathy in Tgalphaq*44 hearts.
Collapse
Affiliation(s)
- István Ferenc Edes
- Division of Clinical Physiology, Institute of Cardiology University of Debrecen, Medical and Health Science Center, Faculty of Medicine Móricz Zs. krt. 22. H-4032 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
35
|
McDonald KS. Regulation of cardiac muscle contraction: how paramount are the sarcomeres? Am J Physiol Regul Integr Comp Physiol 2007. [DOI: 10.1152/ajpregu.00426.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|