1
|
Banitalebi E, Abdizadeh T, Khademi Dehkordi M, Saghaei E, Mardaniyan Ghahfarrokhi M. In silico study of potential immunonutrient-based sports supplements against COVID-19 via targeting ACE2 inhibition using molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:1041-1061. [PMID: 34931597 DOI: 10.1080/07391102.2021.2016489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Use of some sports supplements can inhibit angiotensin-converting enzyme II (ACE2), a receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as reviewed through molecular docking and sequent molecular dynamics (MD) simulations against this condition. The crystal structures of ACE2 receptors of SARS-CoV-2 and SARS-CoV, applied in docking analysis, were taken from the Protein Data Bank (PDB). The receptors were then prepared using the Molecular Operating Environment (MOE), as a drug-discovery software platform for docking. Supplements such as quercetin and beta glucan (β-glucan) were the top docked compounds to ACE2 receptor though they strongly interacted with CoV target protein. The study data showed that immune responses to immunonutrient-based sports compounds (viz. quercetin and β-glucan) in Coronavirus disease 2019 (COVID-19) were essential in mounting successful immune responses by athletes. While awaiting the development of an effective vaccine, there is a need to focus on immunonutrient-based sports supplements as preventive and therapeutic options that can be implemented in a safe and quick manner to bolster immune responses in athletes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Elham Saghaei
- Physiology and Pharmacology Department, School of medicine, Shahrekord University of medical sciences, Shahrekord, Iran.,Medical plants research center, Basic health science, Shahrekord University of medical sciences, Shahrekord, Iran
| | | |
Collapse
|
2
|
Tomas M, Capanoglu E, Bahrami A, Hosseini H, Akbari‐Alavijeh S, Shaddel R, Rehman A, Rezaei A, Rashidinejad A, Garavand F, Goudarzi M, Jafari SM. The direct and indirect effects of bioactive compounds against coronavirus. FOOD FRONTIERS 2021; 3:96-123. [PMID: 35462942 PMCID: PMC9015578 DOI: 10.1002/fft2.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging viruses are known to pose a threat to humans in the world. COVID‐19, a newly emerging viral respiratory disease, can spread quickly from people to people via respiratory droplets, cough, sneeze, or exhale. Up to now, there are no specific therapies found for the treatment of COVID‐19. In this sense, the rising demand for effective antiviral drugs is stressed. The main goal of the present study is to cover the current literature about bioactive compounds (e.g., polyphenols, glucosinolates, carotenoids, minerals, vitamins, oligosaccharides, bioactive peptides, essential oils, and probiotics) with potential efficiency against COVID‐19, showing antiviral activities via the inhibition of coronavirus entry into the host cell, coronavirus enzymes, as well as the virus replication in human cells. In turn, these compounds can boost the immune system, helping fight against COVID‐19. Overall, it can be concluded that bioactives and the functional foods containing these compounds can be natural alternatives for boosting the immune system and defeating coronavirus.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering Faculty of Engineering and Natural Sciences Istanbul Sabahattin Zaim University Halkali Istanbul Turkey
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak Istanbul Turkey
| | - Akbar Bahrami
- Center for Excellence in Post‐Harvest Technologies North Carolina Agricultural and Technical State University Kannapolis North Carolina USA
| | - Hamed Hosseini
- Food Additives Department Food Science and Technology Research Institute Research Center for Iranian Academic Center for Education Culture and Research (ACECR) Mashhad Iran
| | - Safoura Akbari‐Alavijeh
- Department of Food Science and Technology Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology Jiangnan University Jiangsu Wuxi China
- Collaborative Innovation Centre of Food Safety and Quality Control Wuxi Jiangsu Province China
| | - Atefe Rezaei
- Department of Food Science and Technology School of Nutrition and Food Science Isfahan University of Medical Sciences Isfahan Iran
| | | | - Farhad Garavand
- Department of Food Chemistry and Technology Teagasc Food Research Centre, Moorepark Fermoy, Co. Cork Ireland
| | - Mostafa Goudarzi
- Department of Food Science and Engineering University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering Gorgan University of Agricultural Science and Natural Resources Gorgan Iran
| |
Collapse
|
3
|
Chen O, Mah E, Dioum E, Marwaha A, Shanmugam S, Malleshi N, Sudha V, Gayathri R, Unnikrishnan R, Anjana RM, Krishnaswamy K, Mohan V, Chu Y. The Role of Oat Nutrients in the Immune System: A Narrative Review. Nutrients 2021; 13:1048. [PMID: 33804909 PMCID: PMC8063794 DOI: 10.3390/nu13041048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal nutrition is the foundation for the development and maintenance of a healthy immune system. An optimal supply of nutrients is required for biosynthesis of immune factors and immune cell proliferation. Nutrient deficiency/inadequacy and hidden hunger, which manifests as depleted nutrients reserves, increase the risk of infectious diseases and aggravate disease severity. Therefore, an adequate and balanced diet containing an abundant diversity of foods, nutrients, and non-nutrient chemicals is paramount for an optimal immune defense against infectious diseases, including cold/flu and non-communicable diseases. Some nutrients and foods play a larger role than others in the support of the immune system. Oats are a nutritious whole grain and contain several immunomodulating nutrients. In this narrative review, we discuss the contribution of oat nutrients, including dietary fiber (β-glucans), copper, iron, selenium, and zinc, polyphenolics (ferulic acid and avenanthramides), and proteins (glutamine) in optimizing the innate and adaptive immune system's response to infections directly by modulating the innate and adaptive immunity and indirectly by eliciting changes in the gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Oliver Chen
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Eunice Mah
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
| | - ElHadji Dioum
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| | - Ankita Marwaha
- PepsiCo Health & Nutrition Sciences, AMESA, Gurgaon 122101, India;
| | - Shobana Shanmugam
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Nagappa Malleshi
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Vasudevan Sudha
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Rajagopal Gayathri
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Kamala Krishnaswamy
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| |
Collapse
|
4
|
Liu ZH, Niu FJ, Xie YX, Xie SM, Liu YN, Yang YY, Zhou CZ, Wan XH. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomed Pharmacother 2020; 129:110469. [DOI: 10.1016/j.biopha.2020.110469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
|
5
|
Nieman DC. Coronavirus disease-2019: A tocsin to our aging, unfit, corpulent, and immunodeficient society. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:293-301. [PMID: 32389882 PMCID: PMC7205734 DOI: 10.1016/j.jshs.2020.05.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 05/07/2023]
Abstract
Acute and chronic respiratory illnesses cause widespread morbidity and mortality, and this class of illness now includes the novel coronavirus severe acute respiratory syndrome that is causing coronavirus disease-2019 (COVID-19). The world is experiencing a major demographic shift toward an older, obese, and physically inactive populace. Risk factor assessments based on pandemic data indicate that those at higher risk for severe illness from COVID-19 include older males, and people of all ages with obesity and related comorbidities such as hypertension and type 2 diabetes. Aging in and of itself leads to negative changes in innate and adaptive immunity, a process termed immunosenescence. Obesity causes systemic inflammation and adversely impacts immune function and host defense in a way that patterns immunosenescence. Two primary prevention strategies to reduce the risk for COVID-19 at both the community and individual levels include mitigation activities and the adoption of lifestyle practices consistent with good immune health. Animal and human studies support the idea that, in contrast to high exercise workloads, regular moderate-intensity physical activity improves immunosurveillance against pathogens and reduces morbidity and mortality from viral infection and respiratory illnesses including the common cold, pneumonia, and influenza. The odds are high that infectious disease pandemics spawned by novel pathogens will continue to inflict morbidity and mortality as the world's population becomes older and more obese. COVID-19 is indeed a wake-up call, a tocsin, to the world that primary prevention countermeasures focused on health behaviors and hygiene demand our full attention and support.
Collapse
Affiliation(s)
- David C Nieman
- Department of Biology, College of Arts and Sciences, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
6
|
Zabriskie HA, Blumkaitis JC, Moon JM, Currier BS, Stefan R, Ratliff K, Harty PS, Stecker RA, Rudnicka K, Jäger R, Roberts MD, Young K, Jagim AR, Kerksick CM. Yeast Beta-Glucan Supplementation Downregulates Markers of Systemic Inflammation after Heated Treadmill Exercise. Nutrients 2020; 12:nu12041144. [PMID: 32325856 PMCID: PMC7230631 DOI: 10.3390/nu12041144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aerobic exercise and thermal stress instigate robust challenges to the immune system. Various attempts to modify or supplement the diet have been proposed to bolster the immune system responses. The purpose of this study was to identify the impact of yeast beta-glucan (Saccharomyces cerevisiae) supplementation on exercise-induced muscle damage and inflammation. Healthy, active men (29.6 ± 6.7 years, 178.1 ± 7.2 cm, 83.2 ± 11.2 kg, 49.6 ± 5.1 mL/kg/min, n = 16) and women (30.1 ± 8.9 years, 165.6 ± 4.1 cm, 66.7 ± 10.0 kg, 38.7 ± 5.8 mL/kg/min, n = 15) were randomly assigned in a double-blind and cross-over fashion to supplement for 13 days with either 250 mg/day of yeast beta-glucan (YBG) or a maltodextrin placebo (PLA). Participants arrived fasted and completed a bout of treadmill exercise at 55% peak aerobic capacity (VO2Peak) in a hot (37.2 ± 1.8 °C) and humid (45.2 ± 8.8%) environment. Prior to and 0, 2, and 72 h after completing exercise, changes in white blood cell counts, pro- and anti-inflammatory cytokines, markers of muscle damage, markers of muscle function, soreness, and profile of mood states (POMS) were assessed. In response to exercise and heat, both groups experienced significant increases in white blood cell counts, plasma creatine kinase and myoglobin, and soreness along with reductions in peak torque and total work with no between-group differences. Concentrations of serum pro-inflammatory cytokines in YBG were lower than PLA for macrophage inflammatory protein 1β (MIP-1β) (p = 0.044) and tended to be lower for interleukin 8 (IL-8) (p = 0.079), monocyte chemoattractment protein 1 (MCP-1) (p = 0.095), and tumor necrosis factor α (TNF-α) (p = 0.085). Paired samples t-tests using delta values between baseline and 72 h post-exercise revealed significant differences between groups for IL-8 (p = 0.044, 95% Confidence Interval (CI): (0.013, 0.938, d = −0.34), MCP-1 (p = 0.038, 95% CI: 0.087, 2.942, d = −0.33), and MIP-1β (p = 0.010, 95% CI: 0.13, 0.85, d = −0.33). POMS outcomes changed across time with anger scores in PLA exhibiting a sharper decline than YBG (p = 0.04). Vigor scores (p = 0.04) in YBG remained stable while scores in PLA were significantly reduced 72 h after exercise. In conclusion, a 13-day prophylactic period of supplementation with 250 mg of yeast-derived beta-glucans invoked favorable changes in cytokine markers of inflammation after completing a prolonged bout of heated treadmill exercise.
Collapse
Affiliation(s)
| | - Julia C. Blumkaitis
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Jessica M. Moon
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Brad S. Currier
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Riley Stefan
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Kayla Ratliff
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Patrick S. Harty
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Richard A. Stecker
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI 53202, USA;
| | | | - Kaelin Young
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
- Correspondence: ; Tel.: +1-636-627-4629
| |
Collapse
|
7
|
Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules 2019; 24:molecules24071251. [PMID: 30935016 PMCID: PMC6479769 DOI: 10.3390/molecules24071251] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Glucans are part of a group of biologically active natural molecules and are steadily gaining strong attention not only as an important food supplement, but also as an immunostimulant and potential drug. This paper represents an up-to-date review of glucans (β-1,3-glucans) and their role in various immune reactions and the treatment of cancer. With more than 80 clinical trials evaluating their biological effects, the question is not if glucans will move from food supplement to widely accepted drug, but how soon.
Collapse
|
8
|
Chaari F, Belghith-Fendri L, Zaouri-Ellouzi S, Driss D, Blibech M, Kallel F, Bouaziz F, Mehdi Y, Ellouz-Chaabouni S, Ghorbel R. Antibacterial and antioxidant properties of mixed linkage beta-oligosaccharides from extracted β-glucan hydrolysed by Penicillium occitanis EGL lichenase. Nat Prod Res 2015; 30:1353-9. [DOI: 10.1080/14786419.2015.1056185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fatma Chaari
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Lilia Belghith-Fendri
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Soumaya Zaouri-Ellouzi
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Dorra Driss
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Monia Blibech
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Fatma Kallel
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Fatma Bouaziz
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Yosra Mehdi
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Semia Ellouz-Chaabouni
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
- Unité de service commun bioréacteur couplé à un ultrafiltre, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| | - Raoudha Ghorbel
- Unité Enzymes et Bioconversion, Biology Department, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
- Unité de service commun bioréacteur couplé à un ultrafiltre, Sfax National School of Engineers, Sfax University, B.P 1173 - 3038 Sfax Cedex, Tunisia
| |
Collapse
|
9
|
Arena MP, Caggianiello G, Fiocco D, Russo P, Torelli M, Spano G, Capozzi V. Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria. Int J Mol Sci 2014; 15:3025-39. [PMID: 24562330 PMCID: PMC3958897 DOI: 10.3390/ijms15023025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 12/15/2022] Open
Abstract
Currently, the majority of prebiotics in the market are derived from non-digestible oligosaccharides. Very few studies have focused on non-digestible long chain complex polysaccharides in relation to their potential as novel prebiotics. Cereals β-glucans have been investigated for immune-modulating properties and beneficial effects on obesity, cardiovascular diseases, diabetes, and cholesterol levels. Moreover, β-glucans have been reported to be highly fermentable by the intestinal microbiota in the caecum and colon, and can enhance both growth rate and lactic acid production of microbes isolated from the human intestine. In this work, we report the effects of food matrices containing barley β-glucans on growth and probiotic features of four Lactobacillus strains. Such matrices were able to improve the growth rate of the tested bacteria both in unstressed conditions and, importantly, after exposure to in vitro simulation of the digestive tract. Moreover, the effect of β-glucans-containing food on bacterial adhesion to enterocyte-like cells was analyzed and a positive influence on probiotic-enterocyte interaction was observed.
Collapse
Affiliation(s)
- Mattia P Arena
- S.A.F.E. Department, University of Foggia, Via Napoli 25, 71100 Foggia, Italy.
| | | | - Daniela Fiocco
- Department of Clinical and Experimental medicine, University of Foggia, Via Pinto, 1, 71122 Foggia, Italy.
| | - Pasquale Russo
- S.A.F.E. Department, University of Foggia, Via Napoli 25, 71100 Foggia, Italy.
| | - Michele Torelli
- Pastificio Attilio Matromauro Granoro s.r.l., Strada provinciale 231 km. 35,100-Corato (Bari), Italy.
| | - Giuseppe Spano
- S.A.F.E. Department, University of Foggia, Via Napoli 25, 71100 Foggia, Italy.
| | - Vittorio Capozzi
- S.A.F.E. Department, University of Foggia, Via Napoli 25, 71100 Foggia, Italy.
| |
Collapse
|
10
|
Meneguello-Coutinho M, Caperuto E, Bacurau AVN, Chamusca G, Uchida MC, Tibana RA, Pereira GB, Navalta JW, Wasinski F, Cavaglieri CR, Prestes J, Costa Rosa LFBP, Bacurau RF. Effects of dietary restriction or swimming on lymphocytes and macrophages functionality from old rats. Immunol Invest 2013; 43:113-22. [PMID: 24206426 DOI: 10.3109/08820139.2013.847456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although aging compromises the functionality of macrophages (MΦ) and lymphocytes (LY), and dietary restriction (DR) and exercise partially counterbalance immunosenescence, it is unknown what effects of both strategies have on the functionality of these immune cells. Rats were randomly distributed into adult control (AD), older group (OLD), older submitted to 50% of DR (DR) and older submitted to swimming (EX) (n = 10 in each group). The function of immune cells (proliferative index, phagocytic capacity and H₂O₂ production), the weight and protein content of lymphoid organs (thymus and spleen), plasma glutamine concentration, interleukins (IL-1, IL-2, IL-6) and, immunoglobulins (IgA and IgG) were analysed. There was an increase of 74% in body weight in aged animals as compared with the AD group, while body weight reduced 19% in the DR as compared with the OLD group. Swimming training stimulated MΦ phagocytosis, while the EX group presented a decrease of the proliferative capacity of LY from the mesenteric lymph nodes (44% and 62%, respectively), when stimulated with ConA and LPS as compared with the old rats. These data demonstrated that DR and exercise affects differentially MΦ and LY function.
Collapse
|
11
|
Carpenter KC, Breslin WL, Davidson T, Adams A, McFarlin BK. Baker's yeast β-glucan supplementation increases monocytes and cytokines post-exercise: implications for infection risk? Br J Nutr 2013; 109:478-86. [PMID: 22575076 DOI: 10.1017/s0007114512001407] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strenuous aerobic exercise is known to weaken the immune system, and while many nutritional supplements have been proposed to boost post-exercise immunity, few are known to be effective. The purpose of the present study was to evaluate whether 10 d of supplementation with a defined source of baker's yeast β-glucan (BG, Wellmune WGP®) could minimise post-exercise immunosuppression. Recreationally active men and women (n 60) completed two 10 d trial conditions using a cross-over design with a 7 d washout period: placebo (rice flour) and baker's yeast BG (250 mg/d of β-1,3/1,6-glucans derived from Saccharomyces cerevisiae) before a bout of cycling (49 ± 6 min) in a hot (38 ± 2°C), humid (45 ± 2 % relative humidity) environment. Blood was collected at baseline (before supplement), pre- (PRE), post- (POST) and 2 h (2H) post-exercise. Total and subset monocyte concentration was measured by four-colour flow cytometry. Plasma cytokine levels and lipopolysaccharide (LPS)-stimulated cytokine production were measured using separate multiplex assays. Total (CD14⁺) and pro-inflammatory monocyte concentrations (CD14⁺/CD16⁺) were significantly greater at POST and 2H (P<0·05) with BG supplementation. BG supplementation boosted LPS-stimulated production of IL-2, IL-4, IL-5 and interferon-γ (IFN-γ) at PRE and POST (P<0·05). Plasma IL-4, IL-5 and IFN-γ concentrations were greater at 2H following BG supplementation. It appears that 10 d of supplementation with BG increased the potential of blood leucocytes for the production of IL-2, IL-4, IL-5 and IFN-γ. The key findings of the present study demonstrate that BG may have potential to alter immunity following a strenuous exercise session.
Collapse
Affiliation(s)
- K C Carpenter
- Laboratory of Integrated Physiology, University of Houston, 3855 Holman Street, Houston, TX 77204, USA
| | - W L Breslin
- Laboratory of Integrated Physiology, University of Houston, 3855 Holman Street, Houston, TX 77204, USA
| | - T Davidson
- Laboratory of Integrated Physiology, University of Houston, 3855 Holman Street, Houston, TX 77204, USA
| | - A Adams
- Laboratory of Integrated Physiology, University of Houston, 3855 Holman Street, Houston, TX 77204, USA
| | - B K McFarlin
- Laboratory of Integrated Physiology, University of Houston, 3855 Holman Street, Houston, TX 77204, USA
| |
Collapse
|
12
|
Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Effects of oat β-glucan on the macrophage cytokine response to herpes simplex virus 1 infection in vitro. J Interferon Cytokine Res 2012; 32:362-7. [PMID: 22817337 DOI: 10.1089/jir.2011.0067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oat β-glucan can counteract the increased risk for Herpes Simplex Virus 1 (HSV-1) infection in mice, the effects of which have, at least in part, been attributed to macrophages. However, the specific responses of macrophages to oat β-glucan treatment in this model have yet to be elucidated. We examined the effects of varying doses of oat β-glucan on the pro-inflammatory cytokine response in both peritoneal and lung macrophages with and without exposure to HSV-1 infection in vitro. Peritoneal and lung macrophages were obtained from mice and cultured with varying concentrations of oat β-glucan (0 (control), 10, 100, and 1,000 μg) for 24 h and supernatants were collected. A standardized dose of HSV-1 was added for a second 24 h incubation period after which supernatants were again collected. Samples were analyzed for interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) using enzyme linked immunosorbent assay (ELISA). In most cases, oat β-glucan resulted in a dose-dependent increase in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in lung and peritoneal macrophages with and without exposure to HSV-1 infection. When comparing across macrophage source, this response was greater for IL-1β and IL-6 in peritoneal macrophages and for TNF-α in lung macrophages. This may be a mechanism for the decreased risk for HSV-1 infection following oat β-glucan feedings in mice.
Collapse
Affiliation(s)
- E Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29201, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Rieder A, Knutsen SH, Ballance S, Grimmer S, Airado-Rodríguez D. Cereal β-glucan quantification with calcofluor-application to cell culture supernatants. Carbohydr Polym 2012; 90:1564-72. [PMID: 22944417 DOI: 10.1016/j.carbpol.2012.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022]
Abstract
The specific binding of the fluorescent dye calcofluor to cereal β-glucan results in increased fluorescence intensity of the formed complex and is in use for the quantification of β-glucan above a critical molecular weight (MW) by flow injection analysis. In this study, this method was applied in a fast and easy batch mode. In order to emphasize the spectral information of the emission spectra of the calcofluor/β-glucan complexes, derivative signals were calculated. A linear relationship was found between the amplitude of the second derivative signals and the β-glucan concentration between 0.1 and 0.4 μg/mL. The low detection limit of this new method (0.045 μg/mL) enabled its use to study the transport of cereal β-glucans over differentiated Caco-2 cell monolayers. Additionally, the method was applied to quantify β-glucan in arabinoxylan samples, which correlated well with data by an enzyme based method.
Collapse
Affiliation(s)
- Anne Rieder
- Nofima AS, Norwegian Institute of Food, Fishery and Aquaculture Research, Osloveien 1, 1430 Ås, Norway.
| | | | | | | | | |
Collapse
|
14
|
Daou C, Zhang H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2012.00189.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF. Eur J Appl Physiol 2012; 113:117-25. [DOI: 10.1007/s00421-012-2418-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/02/2012] [Indexed: 01/08/2023]
|
16
|
Rieder A, Samuelsen AB. Do cereal mixed-linked β-glucans possess immune-modulating activities? Mol Nutr Food Res 2012; 56:536-47. [DOI: 10.1002/mnfr.201100723] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anne Rieder
- Nofima Mat; Norwegian Institute of Food; Fisheries and Aquaculture Research; Aas Norway
| | - Anne Berit Samuelsen
- Department of Pharmaceutical Chemistry; Pharmacognosy, School of Pharmacy; University of Oslo; Oslo Norway
| |
Collapse
|
17
|
Cereal β-glucan preparations of different weight average molecular weights induce variable cytokine secretion in human intestinal epithelial cell lines. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Murphy EA, Davis JM, McClellan JL, Carmichael MD, Rooijen NV, Gangemi JD. Susceptibility to Infection and Inflammatory Response Following Influenza Virus (H1N1, A/PR/8/34) Challenge: Role of Macrophages. J Interferon Cytokine Res 2011; 31:501-8. [DOI: 10.1089/jir.2010.0143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - J. Mark Davis
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Jamie L. McClellan
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Martin D. Carmichael
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Nico Van Rooijen
- Department of Cell Biology and Immunology, Vrije Universiteit of Amsterdam, Amsterdam, Netherlands
| | - J. David Gangemi
- Department of Microbiology and Molecular Medicine, Clemson University, Clemson, South Carolina
| |
Collapse
|
19
|
Bobovčák M, Kuniaková R, Gabriž J, Majtán J. Effect of Pleuran (β-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes. Appl Physiol Nutr Metab 2011; 35:755-62. [PMID: 21164546 DOI: 10.1139/h10-070] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive and exhausting physical loads depress the immune system. Carbohydrate consumption may minimize the postexercise suppression of the innate immune system. β-Glucan is a well-known immunomodulator, with positive effects on the functioning of immunocompetent cells. The goal of this study was to determine whether β-glucan dietary supplementation from the mushroom Pleurotus ostreatus decreases the suppressed immune system responses induced by short-term high-intensity exercise in humans. In this double-blind pilot study, 20 elite athletes were randomized to β-glucan (n = 9) or placebo (n = 11) groups; these groups consumed 100 mg of β-glucan (Imunoglukan) or placebo supplements, respectively, once a day for 2 months. Venous whole blood was collected before and after 2 months of supplementation (baseline), both immediately and 1 h after (recovery period) a 20-min intensive exercise bout at the end of the supplementation period. The blood samples were used to measure the cell counts of leukocytes, erythrocyte, and lymphocytes; subpopulations of lymphocytes, granulocytes, and monocytes; and natural killer (NK) cell activity (NKCA). A 28% reduction in NKCA (p < 0.01) below the baseline value was observed in the placebo group during the recovery period, whereas no significant reduction in NKCA was found in the β-glucan group. In addition, no significant decrease in NK cell count was measured in the β-glucan group during the recovery period. Immune cell counts did not differ significantly between the groups. These results indicate that insoluble β-glucan supplementation from P. ostreatus may play a role in modulating exercise-induced changes in NKCA in intensively training athletes.
Collapse
Affiliation(s)
- Marián Bobovčák
- Clinical Laboratory of Institute for Respiratory Disease, 5983 Nova Polianka-High Tatras, Slovakia
| | | | | | | |
Collapse
|
20
|
Bergendiova K, Tibenska E, Majtan J. Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur J Appl Physiol 2011; 111:2033-40. [PMID: 21249381 DOI: 10.1007/s00421-011-1837-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/07/2011] [Indexed: 11/24/2022]
Abstract
Prolonged and exhausting physical activity causes numerous changes in immunity and sometimes transient increases the risk of upper respiratory tract infections (URTIs). Nutritional supplements as countermeasures to exercise-induced changes have increasingly been studied in the last decade. One of the most promising nutritional supplements is β-glucan, a well-known immunomodulator with positive effects on the function of immunocompetent cells. In this double blind, placebo-controlled study, we investigated the effect of pleuran, an insoluble β-(1,3/1,6) glucan from mushroom Pleurotus ostreatus, on selected cellular immune responses and incidence of URTI symptoms in athletes. Fifty athletes were randomized to pleuran or placebo group, taking pleuran (commercial name Imunoglukan(®)) or placebo supplements during 3 months. Venous whole blood was collected before and after 3 months of supplementation and additionally 3 months after supplementation period was completed. Incidence of URTI symptoms together with characterization of changes in phagocytosis and natural killer (NK) cell count was monitored during the study. We found that pleuran significantly reduced the incidence of URTI symptoms and increased the number of circulating NK cells. In addition, the phagocytosis process remained stable in pleuran group during the study in contrast to placebo group where significant reduction of phagocytosis was observed. These findings indicate that pleuran may serve as an effective nutritional supplement for athletes under heavy physical training. Additional research is needed to determine the mechanisms of pleuran function.
Collapse
|
21
|
Ramberg JE, Nelson ED, Sinnott RA. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 2010; 9:54. [PMID: 21087484 PMCID: PMC2998446 DOI: 10.1186/1475-2891-9-54] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 11/18/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. METHODS Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. RESULTS We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. CONCLUSIONS Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and immune function in human RCTs of cancer patients; glucans, arabinogalactans and fucoidans elicited immunomodulatory effects in controlled studies of healthy adults and patients with canker sores and seasonal allergies. This review provides a foundation that can serve to guide future research on immune modulation by well-characterized polysaccharide compounds.
Collapse
Affiliation(s)
- Jane E Ramberg
- Mannatech™, Incorporated, 600 S, Royal Lane, Suite 200, Coppell, TX 75019 USA.
| | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To examine the recent scientific literature on the immune modulating effects of β-glucans and subsequent benefits on infection and cancer. RECENT FINDINGS β-Glucans have been investigated for their ability to protect against infection and cancer and more recently for their therapeutic potential when combined with cancer therapy. Their immune modulating effects are attributed to the ability to bind to pattern recognition receptors including complement receptor 3, scavenger receptors, lactosylceramide, and dectin-1 that results in activation of different aspects of the immune response depending on the cell types and species involved although there is some controversy about the relative importance of each of these receptors. Most of the available evidence comes from preclinical data and human studies are just now beginning to appear in the literature, therefore firm conclusions on its clinical importance cannot yet be made. Perhaps the most promising evidence to date in human trials has come from recent studies on a benefit of β-glucan on quality of life and survival when given in combination with cancer treatment. We identify the need for future studies that compare purified forms of β-glucans from different sources to further the understanding of the mechanisms of action and aid in the development of clinical studies. SUMMARY β-Glucans appear to be effective at enhancing immune function and reducing susceptibility to infection and cancer. A better understanding of the mechanisms of β-glucan recognition and subsequent immune activation is necessary for the design of effective treatment approaches in future clinical trials.
Collapse
Affiliation(s)
- E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA.
| | | | | |
Collapse
|
23
|
Wu ML, Huang TC, Hung HJ, Yu JH, Chung WB, Chaung HC. Investigation of beta-glucans binding to human/mouse dectin-1 and associated immunomodulatory effects on two monocyte/macrophage cell lines. Biotechnol Prog 2010; 26:1391-9. [DOI: 10.1002/btpr.429] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Murphy EA, Davis JM, Carmichael MD, Mayer EP, Ghaffar A. Benefits of oat β-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1188-94. [DOI: 10.1152/ajpregu.00396.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oat β-glucan can counteract the exercise-induced increased risk for upper respiratory tract infection (URTI) in mice, which is at least partly mediated by its effects on lung macrophages. Substantial evidence in humans indicates that carbohydrate-containing sports drinks can offset the decreased immune function associated with stressful exercise. However, no studies in animals or humans have directly examined their effects on URTI using a controlled virus-challenge model. We examined the effects of sucrose feedings alone and in combination with oat β-glucan on susceptibility to infection and on macrophage antiviral resistance in mice following stressful exercise. These effects were also examined in rested, nonimmunocompromised control mice. Mice were assigned to one of four groups: H2O (water), sucrose (S), oat β-glucan (OβG), and sucrose + oat β-glucan (S+OβG). OβG and S treatments consisted of a solution of 50% OβG and 6% sucrose, respectively, and were administered in drinking water for 10 consecutive days. Exercise consisted of a treadmill run to fatigue performed on three consecutive days. Mice were then intranasally inoculated with a standardized dose of herpes simplex virus 1 (HSV-1) and monitored for morbidity and mortality for 21 days. Additional mice were used to determine macrophage antiviral resistance. In the exercise experiment, S, OβG, and S+OβG all reduced morbidity ( P < 0.05), while only S+OβG reduced mortality ( P < 0.05). Macrophage antiviral resistance was also increased in S, OβG, and S+OβG treatments ( P < 0.05). In resting controls, S and S+OβG reduced morbidity and mortality ( P < 0.05) and showed a trend toward increased macrophage antiviral resistance. There was no significant additive effect of S and OβG in either control or exercised animals. These data extend our previous work on the benefits of oat β-glucan to show that sucrose feedings have similar effects on susceptibility to respiratory infection and macrophage antiviral resistance in both resting controls and following exercise stress.
Collapse
Affiliation(s)
- E. Angela Murphy
- Division of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia; and
| | - J. Mark Davis
- Division of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia; and
| | - Martin D. Carmichael
- Division of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia; and
| | - Eugene P. Mayer
- Department of Pathology and Microbiology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Abdul Ghaffar
- Department of Pathology and Microbiology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
25
|
Chaung HC, Huang TC, Yu JH, Wu ML, Chung WB. Immunomodulatory effects of beta-glucans on porcine alveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Vet Immunol Immunopathol 2009; 131:147-57. [PMID: 19410299 DOI: 10.1016/j.vetimm.2009.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 11/27/2022]
Abstract
The immunopharmacological activities of beta-glucans with a backbone of beta-1,3/beta-1,6-linkages associated with anti-tumor, anti-viral, bacterial and fungal infections have been well documented. Dectin-1, a specific pattern recognition receptor for beta-1,3/beta-1,6-glucans, is expressed mainly on phagocytes, especially macrophages and dendritic cells (DCs). In this study, the encoding nucleotide for the carbohydrate-recognition domain (CRD) of porcine dectin-1 was sequenced for the first time, and the immunomodulatory functions of a synthetic particulate beta-glucan (p-beta-glucan) were examined. Results showed that p-beta-glucan significantly enhanced cell activity and phagocytosis in porcine alveolar macrophages (AMs), immature DCs (imDCs) and mature DCs (mDCs), in a similar way to zymosan. Zymosan enhanced dectin-1/TLR2/TLR4 expression and TNF-alpha/IL-10 production in all of three types of cell, whereas p-beta-glucan increased dectin-1/TLR4 and TNF-alpha/IL-12 production in AMs but inhibited IL-10 in mDCs. These results indicate that the complex collaborating interactions between dectin-1 and TLRs in the recognition of beta-1,3/beta-1,6-glucans with different structural features may direct different cellular responses.
Collapse
Affiliation(s)
- Hso-Chi Chaung
- Department of Veterinary Medicine, National Pingtung University of Science & Technology, Pingtung 912, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
26
|
Nieman DC, Henson DA, McMahon M, Wrieden JL, Davis JM, Murphy EA, Gross SJ, McAnulty LS, Dumke CL. Beta-glucan, immune function, and upper respiratory tract infections in athletes. Med Sci Sports Exerc 2008; 40:1463-71. [PMID: 18614945 DOI: 10.1249/mss.0b013e31817057c2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study investigated the effects of oat beta-glucan (BG) supplementation on chronic resting immunity, exercise-induced changes in immune function, and self-reported upper respiratory tract infection (URTI) incidence in human endurance athletes. METHODS Trained male cyclists were randomized to BG (N = 19) or placebo (P; N = 17) groups and under double-blind procedures received BG (5.6 g x d(-1)) or P beverage supplements for 2 wk before, during, and 1 d after a 3-d period in which subjects cycled for 3 h x d(-1) at approximately 57% maximal watts. URTI symptoms were monitored during BG supplementation and for 2 wk afterward. Blood samples were collected before and after 2 wk of supplementation (both samples, 8:00 a.m.), immediately after the 3-h exercise bout on day 3 (6:00 p.m.), and 14 h after exercise (8:00 a.m.) and were assayed for natural killer cell activity (NKCA), polymorphonuclear respiratory burst activity (PMN-RBA), phytohemagglutinin-stimulated lymphocyte proliferation (PHA-LP), plasma interleukin 6 (IL-6), IL-10, IL-1 receptor agonist (IL-1ra), and IL-8, and blood leukocyte IL-10, IL-8, and IL-1ra mRNA expression. RESULTS Chronic resting levels and exercise-induced changes in NKCA, PMN-RBA, PHA-LP, plasma cytokines, and blood leukocyte cytokine mRNA did not differ significantly between BG and P groups. URTI incidence during the 2-wk postexercise period did not differ significantly between groups. CONCLUSIONS An 18-d period of BG versus P ingestion did not alter chronic resting or exercise-induced changes in immune function or URTI incidence in cyclists during the 2-wk period after an intensified exercise.
Collapse
Affiliation(s)
- David C Nieman
- Department of Health, Leisure, and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Multiple components of the immune systems in athletes exhibit transient dysfunction after prolonged, heavy exertion. During this "open window" of impaired immunity, pathogens may gain a foothold, increasing infection risk. Nutritional supplements have been studied as countermeasures to exercise-induced immune changes and infection risk. This review focuses on findings from recent exercise-based studies with macro- and micronutrient supplements, and "advanced" immunonutrition supplements including beta-glucan, curcumin, and quercetin. Results from these studies indicate that immunonutrition supplements have the potential to lessen the magnitude of exercise-induced perturbations in immune function and to reduce the risk of upper respiratory tract infections.
Collapse
Affiliation(s)
- David C Nieman
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina 28608, USA.
| |
Collapse
|