1
|
Ruhrländer J, Syntila S, Schieffer E, Schieffer B. The Orexin System and Its Impact on the Autonomic Nervous and Cardiometabolic System in Post-Acute Sequelae of COVID-19. Biomedicines 2025; 13:545. [PMID: 40149526 PMCID: PMC11940130 DOI: 10.3390/biomedicines13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/29/2025] Open
Abstract
Orexins (OXs) are critical for regulating circadian rhythms, arousal, appetite, energy metabolism, and electrolyte balance, affecting both the autonomic nervous system (ANS) and the cardiovascular system (CVS). Disruption of the OX system can result in symptoms similar to those observed in post-acute sequelae of COVID-19 (PASC). This review emphasizes the adverse effects of OX dysregulation on autonomic and cardiometabolic functions in patients with PASC. Additionally, we highlight the potential of anti-OX therapies to provide neuroprotective, anti-inflammatory, and immunoregulatory benefits, offering hope for alleviating some of the debilitating symptoms associated with PASC.
Collapse
Affiliation(s)
- Jana Ruhrländer
- Department of Cardiology, Angiology and Critical Care Medicine, Philipps University Marburg, 35043 Marburg, Germany; (J.R.); (S.S.); (E.S.)
- State of Hessen Post-COVID Coordination Center, 35043 Marburg, Germany
| | - Styliani Syntila
- Department of Cardiology, Angiology and Critical Care Medicine, Philipps University Marburg, 35043 Marburg, Germany; (J.R.); (S.S.); (E.S.)
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology and Critical Care Medicine, Philipps University Marburg, 35043 Marburg, Germany; (J.R.); (S.S.); (E.S.)
| | - Bernhard Schieffer
- Department of Cardiology, Angiology and Critical Care Medicine, Philipps University Marburg, 35043 Marburg, Germany; (J.R.); (S.S.); (E.S.)
- State of Hessen Post-COVID Coordination Center, 35043 Marburg, Germany
| |
Collapse
|
2
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. The neurotensin receptor 1 agonist PD149163 alleviates visceral hypersensitivity and colonic hyperpermeability in rat irritable bowel syndrome model. Neurogastroenterol Motil 2024; 36:e14925. [PMID: 39314062 DOI: 10.1111/nmo.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND An impaired intestinal barrier with the activation of corticotropin-releasing factor (CRF), Toll-like receptor 4 (TLR4), and proinflammatory cytokine signaling, resulting in visceral hypersensitivity, is a crucial aspect of irritable bowel syndrome (IBS). The gut exhibits abundant expression of neurotensin; however, its role in the pathophysiology of IBS remains uncertain. This study aimed to clarify the effects of PD149163, a specific agonist for neurotensin receptor 1 (NTR1), on visceral sensation and gut barrier in rat IBS models. METHODS The visceral pain threshold in response to colonic balloon distention was electrophysiologically determined by monitoring abdominal muscle contractions, while colonic permeability was measured by quantifying absorbed Evans blue in colonic tissue in vivo in adult male Sprague-Dawley rats. We employed the rat IBS models, i.e., lipopolysaccharide (LPS)- and CRF-induced visceral hypersensitivity and colonic hyperpermeability, and explored the effects of PD149163. KEY RESULTS Intraperitoneal PD149163 (160, 240, 320 μg kg-1) prevented LPS (1 mg kg-1, subcutaneously)-induced visceral hypersensitivity and colonic hyperpermeability dose-dependently. It also prevented the gastrointestinal changes induced by CRF (50 μg kg-1, intraperitoneally). Peripheral atropine, bicuculline (a GABAA receptor antagonist), sulpiride (a dopamine D2 receptor antagonist), astressin2-B (a CRF receptor subtype 2 [CRF2] antagonist), and intracisternal SB-334867 (an orexin 1 receptor antagonist) reversed these effects of PD149163 in the LPS model. CONCLUSIONS AND INFERENCES PD149163 demonstrated an improvement in visceral hypersensitivity and colonic hyperpermeability in rat IBS models through the dopamine D2, GABAA, orexin, CRF2, and cholinergic pathways. Activation of NTR1 may modulate these gastrointestinal changes, helping to alleviate IBS symptoms.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
3
|
Mohammadkhani A, Qiao M, Borgland SL. Distinct Neuromodulatory Effects of Endogenous Orexin and Dynorphin Corelease on Projection-Defined Ventral Tegmental Dopamine Neurons. J Neurosci 2024; 44:e0682242024. [PMID: 39187377 PMCID: PMC11426376 DOI: 10.1523/jneurosci.0682-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) respond to motivationally relevant cues, and circuit-specific signaling drives different aspects of motivated behavior. Orexin (ox; also known as hypocretin) and dynorphin (dyn) are coexpressed lateral hypothalamic (LH) neuropeptides that project to the VTA. These peptides have opposing effects on the firing activity of VTADA neurons via orexin 1 (Ox1R) or kappa opioid (KOR) receptors. Given that Ox1R activation increases VTADA firing, and KOR decreases firing, it is unclear how the coreleased peptides contribute to the net activity of DA neurons. We tested if optical stimulation of LHox/dyn neuromodulates VTADA neuronal activity via peptide release and if the effects of optically driven LHox/dyn release segregate based on VTADA projection targets including the basolateral amygdala (BLA) or the lateral or medial shell of the nucleus accumbens (lAcbSh, mAchSh). Using a combination of circuit tracing, optogenetics, and patch-clamp electrophysiology in male and female orexincre mice, we showed a diverse response of LHox/dyn optical stimulation on VTADA neuronal firing, which is not mediated by fast transmitter release and is blocked by antagonists to KOR and Ox1R signaling. Additionally, where optical stimulation of LHox/dyn inputs in the VTA inhibited firing of the majority of BLA-projecting VTADA neurons, optical stimulation of LHox/dyn inputs in the VTA bidirectionally affects firing of either lAcbSh- or mAchSh-projecting VTADA neurons. These findings indicate that LHox/dyn corelease may influence the output of the VTA by balancing ensembles of neurons within each population which contribute to different aspects of reward seeking.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Min Qiao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
4
|
Narai E, Koba S. Effect of optogenetic excitation of non-orexinergic neurons in the hypothalamic perifornical area on motor behaviors and cardiovascular parameters in rats. Neurosci Lett 2024; 837:137915. [PMID: 39059460 DOI: 10.1016/j.neulet.2024.137915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Central command, a motor volition originating in the rostral part of the brain, plays a pivotal role in the precise regulation of autonomic nervous and cardiovascular systems. Central neuronal substrates responsible for transmitting central command signals remain incompletely understood. This study aimed to investigate the effect of optogenetic excitation of non-orexinergic (NOrx) neurons in the hypothalamic perifornical area (PeFA), where orexinergic neurons are densely distributed, on motor behaviors and cardiovascular parameters in rats. An adeno-associated viral serotype 2 vector carrying the human synapsin promoter encoding channelrhodopsin 2 (ChR2) fused to EYFP was injected into the PeFA of Sprague-Dawley rats, resulting in selective expression of ChR2-EYFP in NOrx PeFA neurons. In conscious rats, optogenetic excitation of NOrx PeFA neurons rapidly elicited walking or biting behavior, simultaneously causing pressor and tachycardiac responses regardless of the observed behavioral patterns. Under anesthesia, this excitation rapidly increased renal sympathetic nerve activity, immediately followed by sympathoinhibition. These findings suggest that NOrx PeFA neurons transmit central command signals, concurrently regulating somatomotor and autonomic nervous systems for locomotor exercise or biting behavior.
Collapse
Affiliation(s)
- Emi Narai
- Division of Integrative Physiology, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori 6838503, Japan; Division of Veterinary Physiology, Joint Department of Veterinary Medicine, Tottori University Faculty of Agriculture, 4-101 Koyama-cho Minami, Tottori 6808553, Japan.
| | - Satoshi Koba
- Division of Integrative Physiology, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori 6838503, Japan; Division of Veterinary Physiology, Joint Department of Veterinary Medicine, Tottori University Faculty of Agriculture, 4-101 Koyama-cho Minami, Tottori 6808553, Japan.
| |
Collapse
|
5
|
Moscatelli F, Monda A, Messina A, Monda M, Monda V, Villano I, De Maria A, Nicola M, Marsala G, de Stefano MI, Limone P, Messina G, Polito R. Evaluation of Orexin-A Salivary Levels and its Correlation with Attention After Non-invasive Brain Stimulation in Female Volleyball Players. SPORTS MEDICINE - OPEN 2024; 10:32. [PMID: 38573446 PMCID: PMC10994895 DOI: 10.1186/s40798-024-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND The capacity to change attention from one area to another depending on the many environmental circumstances present is a crucial aspect of selective attention and is strictly correlated to reaction time. The cholinergic system of the basal forebrain is crucial for attentive abilities. Several inputs, particularly orexin neurons, whose cell bodies are found in the postero-lateral hypothalamus, can activate the cholinergic system. The aim of this study was to investigate if high frequencies rTMS at dorsolateral prefrontal cortex (DLPFC) in highly trained volleyball players can change Orexin-A levels, attention and reaction time. This study was a double-blinded (participant and evaluator) matched-pair experimental design. Twenty right-handed female volleyball players were recruited for the study (age 24.6 ± 2.7 years; height 177.0 ± 5.5 cm; body mass 67.5 ± 6.5 kg; BMI 21.5 ± 1.2). RESULTS The main finding of this study was that 10 Hz rTMS to the DLPFC seems to increase Orexin-A salivary levels and the percentage of correct answers, while decreasing RT. After rTMS, the athletes show an increase in the percentage of correct answers immediately after the end of stimulation, and also after 15 and 30 min. Moreover, the athletes show decreases in reaction time after the end of stimulation and after 15 and 30 min to the end of stimulation, while no differences were found at the end of stimulation. Finally, the athletes show significant increases in Orexin-A salivary levels after stimulation with a peak after 30' of the end. CONCLUSION The results of our study seem to indicate that there is a relationship between salivary Orexin-A levels and RT. These results could provide useful tools for modulating sports training; in fact, if confirmed, they could lead coaches to offer their athletes rTMS sessions appropriately integrated with training. In fact, alternating attention is a mental flexibility that enables people to change their point of focus and switch between tasks requiring various levels of cognition.
Collapse
Affiliation(s)
- Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Antonietta Monda
- Department of Human Science and Quality of Life Promotion, San Raffaele Telematic University, Rome, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", Naples, Italy
| | - Ines Villano
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Antonella De Maria
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Mancini Nicola
- Faculty of Physical Education and Sports, "Babes Bolyai" University, Cluj-Napoca, Italy
| | - Gabriella Marsala
- Faculty of Physical Education and Sports, "Babes Bolyai" University, Cluj-Napoca, Italy
- Drug's Department, ASP Catania, Catania, Italy
| | - Maria Ida de Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pierpaolo Limone
- Department of Psychology and Education, Pegaso Telematic University, Naples, Italy
| | - Giovanni Messina
- Department of Human Science and Quality of Life Promotion, San Raffaele Telematic University, Rome, Italy.
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
6
|
Harada M, Capdevila LS, Wilhelm M, Burdakov D, Patriarchi T. Stimulation of VTA dopamine inputs to LH upregulates orexin neuronal activity in a DRD2-dependent manner. eLife 2024; 12:RP90158. [PMID: 38567902 PMCID: PMC10990487 DOI: 10.7554/elife.90158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Dopamine and orexins (hypocretins) play important roles in regulating reward-seeking behaviors. It is known that hypothalamic orexinergic neurons project to dopamine neurons in the ventral tegmental area (VTA), where they can stimulate dopaminergic neuronal activity. Although there are reciprocal connections between dopaminergic and orexinergic systems, whether and how dopamine regulates the activity of orexin neurons is currently not known. Here we implemented an opto-Pavlovian task in which mice learn to associate a sensory cue with optogenetic dopamine neuron stimulation to investigate the relationship between dopamine release and orexin neuron activity in the lateral hypothalamus (LH). We found that dopamine release can be evoked in LH upon optogenetic stimulation of VTA dopamine neurons and is also naturally evoked by cue presentation after opto-Pavlovian learning. Furthermore, orexin neuron activity could also be upregulated by local stimulation of dopaminergic terminals in the LH in a way that is partially dependent on dopamine D2 receptors (DRD2). Our results reveal previously unknown orexinergic coding of reward expectation and unveil an orexin-regulatory axis mediated by local dopamine inputs in the LH.
Collapse
Affiliation(s)
- Masaya Harada
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | | | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | - Denis Burdakov
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
- Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
| |
Collapse
|
7
|
Narai E, Yoshimura Y, Honaga T, Mizoguchi H, Yamanaka A, Hiyama TY, Watanabe T, Koba S. Orexinergic neurons contribute to autonomic cardiovascular regulation for locomotor exercise. J Physiol 2024. [PMID: 38380995 DOI: 10.1113/jp285791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
While the hypothalamic orexinergic nervous system is established as having a pivotal role in the long-term regulation of various organismic functions, including wakefulness, metabolism and hypertensive states, whether this system contributes to the rapid autonomic cardiovascular regulation during physical activity remains elusive. This study aimed to elucidate the role of the orexinergic nervous system in transmitting volitional motor signals, i.e. central command, to drive somatomotor and sympathetic cardiovascular responses. We first found that this system is activated by voluntary locomotor exercise as evidenced by an increased expression of Fos, a marker of neural activation, in the orexinergic neurons of Sprague-Dawley rats engaged in spontaneous wheel running. Next, using transgenic Orexin-Cre rats for optogenetic manipulation of orexinergic neurons, we found that optogenetic excitation of orexinergic neurons caused sympathoexcitation on a subsecond timescale under anaesthesia. In freely moving conscious rats, this excitatory stimulation rapidly elicited exploration-like behaviours, predominantly locomotor activity, along with pressor and tachycardiac responses. Meanwhile, optogenetic inhibition of orexinergic neurons during spontaneous wheel running immediately suppressed locomotor activities and blood pressure elevation without affecting basal cardiovascular homeostasis. Taken together, these findings demonstrate the essential role of the orexinergic nervous system in the central circuitry that transmits central command signals for locomotor exercise. This study not only offers insights into the brain circuit mechanisms precisely regulating autonomic cardiovascular systems during voluntary exercise but also likely contributes to our understanding of brain mechanisms underlying abnormal cardiovascular adjustments to exercise in pathological conditions, such as hypertension. KEY POINTS: The hypothalamic orexinergic nervous system plays various roles in the long-term regulation of autonomic and endocrine functions, as well as motivated behaviours. We present a novel, rapid role of the orexinergic nervous system, revealing its significance as a crucial substrate in the brain circuit mechanisms that coordinate somatomotor and autonomic cardiovascular controls for locomotor exercise. Our data demonstrate that orexinergic neurons relay volitional motor signals, playing a necessary and sufficient role in the autonomic cardiovascular regulation required for locomotor exercise in rats. The findings contribute to our understanding of how the brain precisely regulates autonomic cardiovascular systems during voluntary exercise, providing insights into the central neural mechanisms that enhance physical performance moment-by-moment during exercise.
Collapse
Affiliation(s)
- Emi Narai
- Division of Integrative Physiology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yuki Yoshimura
- Division of Integrative Physiology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Takaho Honaga
- Division of Integrative Physiology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Akihiro Yamanaka
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, China
| | - Takeshi Y Hiyama
- Division of Integrative Physiology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tatsuo Watanabe
- Division of Integrative Physiology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Satoshi Koba
- Division of Integrative Physiology, Tottori University Faculty of Medicine, Yonago, Japan
- Division of Veterinary Physiology, Tottori University Faculty of Agriculture, Tottori, Japan
| |
Collapse
|
8
|
Arciniegas DB, Gurin LJ, Zhang B. Structural and Functional Neuroanatomy of Core Consciousness: A Primer for Disorders of Consciousness Clinicians. Phys Med Rehabil Clin N Am 2024; 35:35-50. [PMID: 37993192 DOI: 10.1016/j.pmr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Understanding the structural and functional neuroanatomy of core consciousness (ie, wakefulness and awareness) is an asset to clinicians caring for persons with disorders of consciousness. This article provides a primer on the structural and functional neuroanatomy of wakefulness and awareness. The neuroanatomical structures supporting these elements of core consciousness functions are reviewed first, after which brief description of the clinically evaluable relationships between disruption of these structures and disorders of consciousness (ie, brain-behavior relationships) are outlined. Consideration of neuroanatomy at the mesoscale (ie, the mesocircuit hypothesis) as well as in relation to several large-scale neural networks is offered.
Collapse
Affiliation(s)
- David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Lindsey J Gurin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10017, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Physical Medicine & Rehabilitation, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bei Zhang
- Division of Physical Medicine and Rehabilitation, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
9
|
Fernandes M, Spanetta M, Placidi F, Izzi F, Negri F, Nuccetelli M, Bernardini S, Mercuri NB, Liguori C. A preliminary study investigating the clinical potential of measuring cerebrospinal-fluid lactate levels in patients with narcolepsy type 1 and 2. Physiol Behav 2023; 272:114371. [PMID: 37802459 DOI: 10.1016/j.physbeh.2023.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
STUDY OBJECTIVES Besides the quantification of orexin-A/hypocretin-1 cerebrospinal fluid (CSF) levels in narcolepsy for diagnostic purposes, several other CSF biomarkers have been evaluated, although with controversial results. Since CSF lactate concentrations fluctuate according to the sleep-wake cycle with higher levels during wakefulness and lower levels during sleep, as documented in animal model studies, the present study aimed at quantifying the CSF lactate levels in patients with narcolepsy type 1 (NT1) and 2 (NT2), which are two sleep disorders featured by excessive daytime sleepiness (EDS). METHODS Patients with NT1 and NT2 were enrolled in this study and compared to a control group of similar age and sex. All the subjects included in the study underwent a polysomnographic study followed by lumbar puncture for the quantification of CSF lactate levels at awakening. RESULTS 23 NT1 (43.5 % male; 36.43 ± 11.89 years) and 15 NT2 patients (46.7 % male; 37.8 ± 14.1 years) were compared to 17 controls (58.8 % male; 32.3 ± 8.4 years). CSF lactate concentrations were reduced in patients with NT1 and NT2 compared to controls but no differences were found between the two groups of patients. ROC curves analysis showed that CSF lactate ≤1.3 mmol/l had a sensitivity of 96.49 and a specificity of 82.35 % for discriminating patients with narcolepsy from controls. CONCLUSIONS The present study showed a decrease in CSF lactate levels in patients with narcolepsy. Notably, the reduction of lactate levels was present in both NT1 and NT2 patients, independently of CSF orexin levels. Narcolepsy patients present EDS with daytime napping and REM-related episodes, possibly substantiating the CSF lactate levels reduction related to the impaired daytime wakefulness which was demonstrated in animal studies. Moreover, CSF lactate levels present a good sensitivity and adequate specificity for differentiating narcolepsy from controls. Further studies are needed to understand the role of CSF lactate and its usefulness for monitoring daytime vigilance in patients with narcolepsy.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Francesco Negri
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Marzia Nuccetelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Sergio Bernardini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy.
| |
Collapse
|
10
|
Barrile F, Cassano D, Fernandez G, De Francesco PN, Reynaldo M, Cantel S, Fehrentz JA, Donato J, Schiöth HB, Zigman JM, Perello M. Ghrelin's orexigenic action in the lateral hypothalamic area involves indirect recruitment of orexin neurons and arcuate nucleus activation. Psychoneuroendocrinology 2023; 156:106333. [PMID: 37454647 PMCID: PMC10530520 DOI: 10.1016/j.psyneuen.2023.106333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Ghrelin is a potent orexigenic hormone, and the lateral hypothalamic area (LHA) has been suggested as a putative target mediating ghrelin's effects on food intake. Here, we aimed to investigate the presence of neurons expressing ghrelin receptor (a.k.a. growth hormone secretagogue receptor, GHSR) in the mouse LHA (LHAGHSR neurons), its physiological implications and the neuronal circuit recruited by local ghrelin action. METHODS We investigated the distribution of LHAGHSR neurons using different histologic strategies, including the use of a reporter mice expressing enhanced green fluorescent protein under the control of the GHSR promoter. Also, we investigated the physiological implications of local injections of ghrelin within the LHA, and the extent to which the orexigenic effect of intra-LHA-injected ghrelin involves the arcuate nucleus (ARH) and orexin neurons of the LHA (LHAorexin neurons) RESULTS: We found that: 1) LHAGHSR neurons are homogeneously distributed throughout the entire LHA; 2) intra-LHA injections of ghrelin transiently increase food intake and locomotor activity; 3) ghrelin's orexigenic effect in the LHA involves the indirect recruitment of LHAorexin neurons and the activation of ARH neurons; and 4) LHAGHSR neurons are not targeted by plasma ghrelin. CONCLUSIONS We provide a compelling neuroanatomical and functional characterization of LHAGHSR neurons in male mice that indicates that LHAGHSR cells are part of a hypothalamic neuronal circuit that potently induces food intake.
Collapse
Affiliation(s)
- Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - José Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
11
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus. Neuropeptides 2023; 101:102336. [PMID: 37290176 DOI: 10.1016/j.npep.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 06/10/2023]
Abstract
Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Somach RT, Jean ID, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Affects Orexin/Hypocretin Physiology Differently in Male and Female Mice. J Neurotrauma 2023; 40:2146-2163. [PMID: 37476962 PMCID: PMC10701510 DOI: 10.1089/neu.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) is known to affect the physiology of neural circuits in several brain regions, which can contribute to behavioral changes after injury. Disordered sleep is a behavior that is often seen after TBI, but there is little research into how injury affects the circuitry that contributes to disrupted sleep regulation. Orexin/hypocretin neurons (hereafter referred to as orexin neurons) located in the lateral hypothalamus normally stabilize wakefulness in healthy animals and have been suggested as a source of dysregulated sleep behavior. Despite this, few studies have examined how TBI affects orexin neuron circuitry. Further, almost no animal studies of orexin neurons after TBI have included female animals. Here, we address these gaps by studying changes to orexin physiology using ex vivo acute brain slices and whole-cell patch clamp recording. We hypothesized that orexin neurons would have reduced afferent excitatory activity after injury. Ultimately, this hypothesis was supported but there were additional physiological changes that occurred that we did not originally hypothesize. We studied physiological properties in orexin neurons approximately 1 week after mild traumatic brain injury (mTBI) in 6-8-week-old male and female mice. mTBI was performed with a lateral fluid percussion injury between 1.4 and 1.6 atmospheres. Mild TBI increased the size of action potential afterhyperpolarization in orexin neurons from female mice, but not male mice and reduced the action potential threshold in male mice, but not in female mice. Mild TBI reduced afferent excitatory activity and increased afferent inhibitory activity onto orexin neurons. Alterations in afferent excitatory activity occurred in different parameters in male and female animals. The increased afferent inhibitory activity after injury is more pronounced in recordings from female animals. Our results indicate that mTBI changes the physiology of orexin neuron circuitry and that these changes are not the same in male and female animals.
Collapse
Affiliation(s)
- Rebecca T. Somach
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian D. Jean
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M. Farrugia
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Shrivastava K, Swaminathan T, Barlotta A, Athreya V, Choudhry H, Rossi MA. Maternal overnutrition is associated with altered synaptic input to lateral hypothalamic area. Mol Metab 2023; 71:101702. [PMID: 36898526 PMCID: PMC10025284 DOI: 10.1016/j.molmet.2023.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE Maternal overnutrition is associated with adverse outcomes in offspring, including increased risk for obesity and diabetes. Here, we aim to test the effects of maternal obesity on lateral hypothalamic feeding circuit function and determine the relationship with body weight regulation. METHODS Using a mouse model of maternal obesity, we assessed how perinatal overnutrition affected food intake and body weight regulation in adult offspring. We then used channelrhodopsin-assisted circuit mapping and electrophysiological recordings to assess the synaptic connectivity within an extended amygdala-lateral hypothalamic pathway. RESULTS We show that maternal overnutrition during gestation and throughout lactation produces offspring that are heavier than controls prior to weaning. When weaned onto chow, the body weights of over-nourished offspring normalize to control levels. However, when presented with highly palatable food as adults, both male and female maternally over-nourished offspring are highly susceptible to diet-induced obesity. This is associated with altered synaptic strength in an extended amygdala-lateral hypothalamic pathway, which is predicted by developmental growth rate. Additionally, lateral hypothalamic neurons receiving synaptic input from the bed nucleus of the stria terminalis have enhanced excitatory input following maternal overnutrition which is predicted by early life growth rate. CONCLUSIONS Together, these results demonstrate one way in which maternal obesity rewires hypothalamic feeding circuits to predispose offspring to metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A Rossi
- Child Health Institute of New Jersey, USA; Department of Psychiatry, Robert Wood Johnson Medical School, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
15
|
Diaz C, de la Torre MM, Rubenstein JLR, Puelles L. Dorsoventral Arrangement of Lateral Hypothalamus Populations in the Mouse Hypothalamus: a Prosomeric Genoarchitectonic Analysis. Mol Neurobiol 2023; 60:687-731. [PMID: 36357614 PMCID: PMC9849321 DOI: 10.1007/s12035-022-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
The lateral hypothalamus (LH) has a heterogeneous cytoarchitectonic organization that has not been elucidated in detail. In this work, we analyzed within the framework of the prosomeric model the differential expression pattern of 59 molecular markers along the ventrodorsal dimension of the medial forebrain bundle in the mouse, considering basal and alar plate subregions of the LH. We found five basal (LH1-LH5) and four alar (LH6-LH9) molecularly distinct sectors of the LH with neuronal cell groups that correlate in topography with previously postulated alar and basal hypothalamic progenitor domains. Most peptidergic populations were restricted to one of these LH sectors though some may have dispersed into a neighboring sector. For instance, histaminergic Hdc-positive neurons were mostly contained within the basal LH3, Nts (neurotensin)- and Tac2 (tachykinin 2)-expressing cells lie strictly within LH4, Hcrt (hypocretin/orexin)-positive and Pmch (pro-melanin-concentrating hormone)-positive neurons appeared within separate LH5 subdivisions, Pnoc (prepronociceptin)-expressing cells were mainly restricted to LH6, and Sst (somatostatin)-positive cells were identified within the LH7 sector. The alar LH9 sector, a component of the Foxg1-positive telencephalo-opto-hypothalamic border region, selectively contained Satb2-expressing cells. Published studies of rodent LH subdivisions have not described the observed pattern. Our genoarchitectonic map should aid in systematic approaches to elucidate LH connectivity and function.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Margaret Martinez de la Torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
16
|
Liu S, Wang X, Zheng Q, Gao L, Sun Q. Sleep Deprivation and Central Appetite Regulation. Nutrients 2022; 14:nu14245196. [PMID: 36558355 PMCID: PMC9783730 DOI: 10.3390/nu14245196] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Research shows that reduced sleep duration is related to an increased risk of obesity. The relationship between sleep deprivation and obesity, type 2 diabetes, and other chronic diseases may be related to the imbalance of appetite regulation. To comprehensively illustrate the specific relationship between sleep deprivation and appetite regulation, this review introduces the pathophysiology of sleep deprivation, the research cutting edge of animal models, and the central regulatory mechanism of appetite under sleep deprivation. This paper summarizes the changes in appetite-related hormones orexin, ghrelin, leptin, and insulin secretion caused by long-term sleep deprivation based on the epidemiology data and animal studies that have established sleep deprivation models. Moreover, this review analyzes the potential mechanism of associations between appetite regulation and sleep deprivation, providing more clues on further studies and new strategies to access obesity and metabolic disease.
Collapse
Affiliation(s)
- Shuailing Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiya Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qian Zheng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lanyue Gao
- Experimental Center for School of Public Health, China Medical University, Shenyang 110122, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: ; Tel./Fax: +86-15840312720
| |
Collapse
|
17
|
Carrera-Cañas C, de Andrés I, Callejo M, Garzón M. Plasticity of the hypocretinergic/orexinergic system after a chronic treatment with suvorexant in rats. Role of the hypocretinergic/orexinergic receptor 1 as an autoreceptor. Front Mol Neurosci 2022; 15:1013182. [PMID: 36277486 PMCID: PMC9581150 DOI: 10.3389/fnmol.2022.1013182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
The hypothalamic hypocretinergic/orexinergic (Hcrt/Ox) system is involved in many physiological and pathophysiological processes. Malfunction of Hcrt/Ox transmission results in narcolepsy, a sleep disease caused in humans by progressive neurodegeneration of hypothalamic neurons containing Hcrt/Ox. To explore the Hcrt/Ox system plasticity we systemically administered suvorexant (a dual Hcrt/Ox receptor antagonist) in rats to chronically block Hcrt/Ox transmission without damaging Hcrt/Ox cells. Three groups of eight rats (four males and four females) received daily i.p. injections of suvorexant (10 or 30 mg/kg) or vehicle (DMSO) over a period of 7 days in which the body weight was monitored. After the treatments cerebrospinal fluid (CSF) Hcrt1/OxA concentration was measured by ELISA, and hypothalamic Hcrt/OxR1 and Hcrt/OxR2 levels by western blot. The systemic blockade of the Hcrt/Ox transmission with the suvorexant high dose produced a significant increase in body weight at the end of the treatment, and a significant decrease in CSF Hcrt1/OxA levels, both features typical in human narcolepsy type 1. Besides, a significant overexpression of hypothalamic Hcrt/OxR1 occurred. For the Hcrt/OxR2 two very close bands were detected, but they did not show significant changes with the treatment. Thus, the plastic changes observed in the Hcrt/Ox system after the chronic blockade of its transmission were a decrease in CSF Hcrt1/OXA levels and an overexpression of hypothalamic Hcrt/OxR1. These findings support an autoregulatory role of Hcrt/OxR1 within the hypothalamus, which would induce the synthesis/release of Hcrt/Ox, but also decrease its own availability at the plasma membrane after binding Hcrt1/OxA to preserve Hcrt/Ox system homeostasis.
Collapse
Affiliation(s)
| | | | | | - Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Villano I, La Marra M, Di Maio G, Monda V, Chieffi S, Guatteo E, Messina G, Moscatelli F, Monda M, Messina A. Physiological Role of Orexinergic System for Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8353. [PMID: 35886210 PMCID: PMC9323672 DOI: 10.3390/ijerph19148353] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Orexins, or hypocretins, are excitatory neuropeptides involved in the regulation of feeding behavior and the sleep and wakefulness states. Since their discovery, several lines of evidence have highlighted that orexin neurons regulate a great range of physiological functions, giving it the definition of a multitasking system. In the present review, we firstly describe the mechanisms underlining the orexin system and their interactions with the central nervous system (CNS). Then, the system's involvement in goal-directed behaviors, sleep/wakefulness state regulation, feeding behavior and energy homeostasis, reward system, and aging and neurodegenerative diseases are described. Advanced evidence suggests that the orexin system is crucial for regulating many physiological functions and could represent a promising target for therapeutical approaches to obesity, drug addiction, and emotional stress.
Collapse
Affiliation(s)
- Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| |
Collapse
|
19
|
Mavanji V, Georgopoulos AP, Kotz CM. Orexin enhances neuronal synchronization in adult rat hypothalamic culture: a model to study hypothalamic function. J Neurophysiol 2022; 127:1221-1229. [PMID: 35353632 PMCID: PMC9054260 DOI: 10.1152/jn.00041.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
The regulation of sleep/wake behavior and energy homeostasis is maintained in part by the hypothalamic neuropeptide orexin A (OXA, hypocretin). Reduction in orexin signaling is associated with sleep disorders and obesity, whereas higher lateral hypothalamic (LH) orexin signaling and sensitivity promotes obesity resistance. Similarly, dysregulation of hypothalamic neural networks is associated with onset of age-related diseases, including obesity and several neurological diseases. Despite the association of obesity and aging, and that adult populations are the target for the majority of pharmaceutical and obesity studies, conventional models for neuronal networks utilize embryonic neural cultures rather than adult neurons. Synchronous activity describes correlated changes in neuronal activity between neurons and is a feature of normal brain function, and is a measure of functional connectivity and final output from a given neural structure. Earlier studies show alterations in hypothalamic synchronicity following behavioral perturbations in embryonic neurons obtained from obesity-resistant rats and following application of orexin onto embryonic hypothalamic cultures. Synchronous network dynamics in adult hypothalamic neurons remain largely undescribed. To address this, we established an adult rat hypothalamic culture in multi-electrode-array (MEA) dishes and recorded the field potentials. Then we studied the effect of exogenous orexin on network synchronization of these adult hypothalamic cultures. In addition, we studied the wake promoting effects of orexin in vivo when directly injected into the lateral hypothalamus (LH). Our results showed that the adult hypothalamic cultures are viable for nearly 3 mo in vitro, good quality MEA recordings can be obtained from these cultures in vitro, and finally, that cultured adult hypothalamus is responsive to orexin. These results support that adult rat hypothalamic cultures could be used as a model to study the neural mechanisms underlying obesity. In addition, LH administration of OXA enhanced wakefulness in rats, indicating that OXA enhances wakefulness partly by promoting neural synchrony in the hypothalamus.NEW & NOTEWORTHY This study, for the first time, demonstrates that adult hypothalamic cultures are viable in vitro for a prolonged duration and are electrophysiologically active. In addition, the study shows that orexin enhances neural synchronization in adult hypothalamic cultures.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Apostolos P Georgopoulos
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Brain Sciences Center, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, Minnesota
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Catherine M Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Minnesota Nutrition and Obesity Research Center, St. Paul, Minnesota
- Geriatric Research Education Clinical Center, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
20
|
Linehan V, Hirasawa M. Short-term fasting induces alternate activation of orexin and melanin-concentrating hormone neurons in rats. Neuroscience 2022; 491:156-165. [DOI: 10.1016/j.neuroscience.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
|
21
|
Sunkaria A, Bhardwaj S. Sleep Disturbance and Alzheimer's Disease: The Glial Connection. Neurochem Res 2022; 47:1799-1815. [PMID: 35303225 DOI: 10.1007/s11064-022-03578-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Poor quality and quantity of sleep are very common in elderly people throughout the world. Growing evidence has suggested that sleep disturbances could accelerate the process of neurodegeneration. Recent reports have shown a positive correlation between sleep deprivation and amyloid-β (Aβ)/tau aggregation in the brain of Alzheimer's patients. Glial cells have long been implicated in the progression of Alzheimer's disease (AD) and recent findings have also suggested their role in regulating sleep homeostasis. However, how glial cells control the sleep-wake balance and exactly how disturbed sleep may act as a trigger for Alzheimer's or other neurological disorders have recently gotten attention. In an attempt to connect the dots, the present review has highlighted the role of glia-derived sleep regulatory molecules in AD pathogenesis. Role of glia in sleep disturbance and Alzheimer's progression.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
22
|
An S, Sun H, Wu M, Xie D, Hu SW, Ding HL, Cao JL. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit. Curr Biol 2021; 31:1379-1392.e4. [DOI: 10.1016/j.cub.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
|
23
|
Abstract
The endogenous timekeeping system evolved to anticipate the time of the day through the 24 hours cycle of the Earth's rotation. In mammals, the circadian clock governs rhythmic physiological and behavioral processes, including the daily oscillation in glucose metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The results from a series of studies have demonstrated that environmental or genetic alterations of the circadian cycle in humans and rodents are strongly associated with metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests that astrocyte clocks have a crucial role in regulating molecular, physiological, and behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying glucose homeostasis regulation by the circadian clock and its dysregulation may improve glycemic control. In this review, we summarize the current knowledge on the tight interconnection between the timekeeping system, glucose homeostasis, and insulin sensitivity. We focus specifically on the involvement of astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Synchronous neuronal interactions in rat hypothalamic culture: a novel model for the study of network dynamics in metabolic disorders. Exp Brain Res 2021; 239:755-764. [PMID: 33388905 DOI: 10.1007/s00221-020-05977-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
Synchronous neural activity is a feature of normal brain function, and altered synchronization is observed in several neurological diseases. Dysfunction in hypothalamic pathways leads to obesity, suggesting that hypothalamic neural synchrony is critical for energy homeostasis. The lateral hypothalamic orexin neurons are extensively interconnected with other brain structures and are important for energy balance. Earlier studies show that rats with higher orexin sensitivity are obesity resistant. Similarly, topiramate, an anti-epileptic drug, has been shown to reduce weight in humans. Since orexin enhances neuronal excitation, we hypothesized that obesity-resistant rats with higher orexin sensitivity may exhibit enhanced hypothalamic synchronization. We further hypothesized that anti-obesity agents such as orexin and topiramate will enhance hypothalamic synchronization. To test this, we examined neural synchronicity in primary embryonic hypothalamic cell cultures, obtained from embryonic day 18 (E18) obesity-susceptible Sprague-Dawley (SD) and obesity-resistant rats. Hypothalamic tissue was cultured in multielectrode array (MEA), and recordings were performed twice weekly, from 4th to 32nd day in vitro (DIV). Next, we tested the effects of orexin and topiramate application on neural synchronicity of hypothalamic cultures obtained from SD rat embryos. Signals were analyzed for synchronization using cross correlation. Our results showed that (1) obesity-resistant hypothalamus exhibits significantly higher synchronization compared to obesity-sensitive hypothalamus; and (2) orexin and topiramate enhance hypothalamic synchronization. These results support that enhanced orexin sensitivity is associated with greater neural synchronization, and that anti-obesity treatments enhance network synchronization, thus constrain variability in hypothalamic output signals, to extrahypothalamic structures involved in energy homeostasis.
Collapse
|
25
|
Izuhara M, Miura S, Otsuki K, Nagahama M, Hayashida M, Hashioka S, Asou H, Kitagaki H, Inagaki M. Magnetic Resonance Spectroscopy in the Ventral Tegmental Area Distinguishes Responders to Suvorexant Prior to Treatment: A 4-Week Prospective Cohort Study. Front Psychiatry 2021; 12:714376. [PMID: 34497544 PMCID: PMC8419448 DOI: 10.3389/fpsyt.2021.714376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The ventral tegmental area (VTA; a dopaminergic nucleus) plays an important role in the sleep-wake regulation system including orexin system. In addition to neuronal activity, there is increasing evidence for an important role of glial cells (i.e., astrocytes and microglia) in these systems. The present study examined the utility of magnetic resonance spectroscopy (MRS) for detecting neural and/or glial changes in the VTA to distinguish responders from non-responders before treatment with the orexin receptor antagonist suvorexant. Methods: A total of 50 patients were screened and 9 patients were excluded. The remaining 41 patients with insomnia who have or not a psychiatric disease who were expected to receive suvorexant treatment were included in this study. We compared MRS signals in the VTA between responders to suvorexant and non-responders before suvorexant use. Based on previous reports, suvorexant responders were defined as patients who improved ≥3 points on the Pittsburgh Sleep Quality Index after 4 weeks of suvorexant use. MRS data included choline (reflects non-specific cell membrane breakdown, including of glial cells) and N-acetylaspartate (a decrease reflects neuronal degeneration). Results: Among 41 examined patients, 20 patients responded to suvorexant and 21 patients did not. By MRS, the choline/creatine and phosphorylcreatine ratio in the VTA was significantly high in non-responders compared with responders (p = 0.039) before suvorexant treatment. There was no difference in the N-acetylaspartate/creatine and phosphorylcreatine ratio (p = 0.297) between the two groups. Conclusions: Changes in glial viability in the VTA might be used to distinguish responders to suvorexant from non-responders before starting treatment. These findings may help with more appropriate selection of patients for suvorexant treatment in clinical practice. Further, we provide novel possible evidence for a relationship between glial changes in the VTA and the orexin system, which may aid in the development of new hypnotics focusing on the VTA and/or glial cells.
Collapse
Affiliation(s)
- Muneto Izuhara
- Department of Clinical Laboratory, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shoko Miura
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Koji Otsuki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Michiharu Nagahama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroya Asou
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hajime Kitagaki
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
26
|
de Ávila C, Chometton S, Calvez J, Guèvremont G, Kania A, Torz L, Lenglos C, Blasiak A, Rosenkilde MM, Holst B, Conrad CD, Fryer JD, Timofeeva E, Gundlach AL, Cifani C. Estrous Cycle Modulation of Feeding and Relaxin-3/Rxfp3 mRNA Expression: Implications for Estradiol Action. Neuroendocrinology 2021; 111:1201-1218. [PMID: 33333517 DOI: 10.1159/000513830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.
Collapse
Affiliation(s)
- Camila de Ávila
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada,
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark,
- Department of Neuroscience, Mayo Clinic, Scottsdale, Arizona, USA,
- Department of Psychology, Arizona State University, Tempe, Arizona, USA,
| | - Sandrine Chometton
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Juliane Calvez
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Geneviève Guèvremont
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Lola Torz
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christophe Lenglos
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, Arizona, USA
| | - Elena Timofeeva
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Carlo Cifani
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
27
|
Tenorio-Lopes L, Fournier S, Henry MS, Bretzner F, Kinkead R. Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO 2 inhalation in a female rat model of panic disorder. Transl Psychiatry 2020; 10:394. [PMID: 33173029 PMCID: PMC7656265 DOI: 10.1038/s41398-020-01076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Panic disorder (PD) is ~2 times more frequent in women. An excessive ventilatory response to CO2 inhalation is more likely during the premenstrual phase. While ovarian hormones appear important in the pathophysiology of PD, their role remains poorly understood as female animals are rarely used in pre-clinical studies. Using neonatal maternal separation (NMS) to induce a "PD-like" respiratory phenotype, we tested the hypothesis that NMS disrupts hormonal regulation of the ventilatory response to CO2 in female rats. We then determined whether NMS attenuates the inhibitory actions of 17-β estradiol (E2) on orexin neurons (ORX). Pups were exposed to NMS (3 h/day; postnatal day 3-12). The ventilatory response to CO2-inhalation was tested before puberty, across the estrus cycle, and following ovariectomy. Plasma E2 and hypothalamic ORXA were measured. The effect of an ORX1 antagonist (SB334867; 15 mg/kg) on the CO2 response was tested. Excitatory postsynaptic currents (EPSCs) were recorded from ORX neurons using whole-cell patch-clamp. NMS-related increase in the CO2 response was observed only when ovaries were functional; the largest ventilation was observed during proestrus. SB334867 blocked this effect. NMS augmented levels of ORXA in hypothalamus extracts. EPSC frequency varied according to basal plasma E2 levels across the estrus cycle in controls but not NMS. NMS reproduces developmental and cyclic changes of respiratory manifestations of PD. NMS disrupts the inhibitory actions of E2 on the respiratory network. Impaired E2-related inhibition of ORX neurons during proestrus is a novel mechanism in respiratory manifestations of PD in females.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Hotchkiss Brain Institute; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stéphanie Fournier
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, QC, Canada
| | - Mathilde S Henry
- INRAE, Université de Bordeaux, Bordeaux INP, Nutrineuro, UMR 1286, F-33000, Bordeaux, France
| | - Frédéric Bretzner
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences. Département de Psychiatrie et de Neurosciences, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, QC, Canada.
| |
Collapse
|
28
|
Burdakov D, Karnani MM. Ultra-sparse Connectivity within the Lateral Hypothalamus. Curr Biol 2020; 30:4063-4070.e2. [PMID: 32822604 PMCID: PMC7575142 DOI: 10.1016/j.cub.2020.07.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
The lateral hypothalamic area (LH) is a vital controller of arousal, feeding, and metabolism [1, 2], which integrates external and internal sensory information. Whereas sensory and whole-body output properties of LH cell populations have received much interest, their intrinsic synaptic organization has remained largely unstudied. Local inhibitory and excitatory connections could help integrate and filter sensory information and mutually inhibitory connections [3] could allow coordinating activity between LH cell types, some of which have mutually exclusive behavioral effects, such as LH VGLUT2 and VGAT neurons [4-7] and orexin- (ORX) and melanin-concentrating hormone (MCH) neurons [8-10]. However, classical Golgi staining studies did not find interneurons with locally ramifying axons in the LH [11, 12], and nearby subthalamic and thalamic areas lack local synaptic connectivity [13, 14]. Studies with optogenetic circuit mapping within the LH have demonstrated only a minority of connections when a large pool of presynaptic neurons was activated [15-19]. Because multiple patch clamp has not been used to study LH connectivity, aside from a limited dataset of MCH neurons where no connections were discovered [15], we used quadruple whole-cell recordings to screen connectivity within the LH with standard methodology we previously used in the neocortex [20-22]. Finding a lack of local connectivity, we used optogenetic circuit mapping to study the strength of LH optogenetic responses and network oscillations, which were consistent with ultra-sparse intrinsic connectivity within the LH. These results suggest that input from other brain structures is decisive for selecting active populations in the LH.
Collapse
Affiliation(s)
- Denis Burdakov
- Laboratory of Neurobehavioral Dynamics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich 8603, Switzerland; The Francis Crick Institute, London NW1 1AT, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; Neuroscience Center Zürich (ZNZ), ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Mahesh M Karnani
- Laboratory of Neurobehavioral Dynamics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich 8603, Switzerland; The Francis Crick Institute, London NW1 1AT, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), CNRS, Paris 75006, France.
| |
Collapse
|
29
|
Romanova IV, Morina IY, Shpakov AO. Localization of 5-HT2C and
5-HT1B Serotonin Receptors in Orexinergic
Neurons of the Hypothlamic Perifornical Area of Rodents. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Polito R, Monda V, Nigro E, Messina A, Di Maio G, Giuliano MT, Orrù S, Imperlini E, Calcagno G, Mosca L, Mollica MP, Trinchese G, Scarinci A, Sessa F, Salerno M, Marsala G, Buono P, Mancini A, Monda M, Daniele A, Messina G. The Important Role of Adiponectin and Orexin-A, Two Key Proteins Improving Healthy Status: Focus on Physical Activity. Front Physiol 2020; 11:356. [PMID: 32390865 PMCID: PMC7188914 DOI: 10.3389/fphys.2020.00356] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise represents the most important integrative therapy in metabolic, immunologic and chronic diseases; it represents a valid strategy in the non-pharmacological intervention of lifestyle linked diseases. A large body of evidence indicates physical exercise as an effective measure against chronic non-communicable diseases. The worldwide general evidence for health benefits are both for all ages and skill levels. In a dysregulated lifestyle such as in the obesity, there is an imbalance in the production of different cytokines. In particular, we focused on Adiponectin, an adipokine producted by adipose tissue, and on Orexin-A, a neuropeptide synthesized in the lateral hypothalamus. The production of both Adiponectin and Orexin-A increases following regular and structured physical activity and both these hormones have similar actions. Indeed, they improve energy and glucose metabolism, and also modulate energy expenditure and thermogenesis. In addition, a relevant biological role of Adiponectin and Orexin A has been recently highlighted in the immune system, where they function as immune-suppressor factors. The strong connection between these two cytokines and healthy status is mediated by physical activity and candidates these hormones as potential biomarkers of the beneficial effects induced by physical activity. For these reasons, this review aims to underly the interconnections among Adiponectin, Orexin-A, physical activity and healthy status. Furthermore, it is analyzed the involvement of Adiponectin and Orexin-A in physical activity as physiological factors improving healthy status through physical exercise.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Girolamo Di Maio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Giuliano
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | | | - Giuseppe Calcagno
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Laura Mosca
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Maria Pina Mollica
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Giovanna Trinchese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Alessia Scarinci
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgery Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero Universitaria - Ospedali Riuniti, Foggia, Italy
| | - Pasqualina Buono
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Annamaria Mancini
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
31
|
Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med Hypotheses 2020; 135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
32
|
Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behav Brain Res 2019; 372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
33
|
Folgueira C, Beiroa D, Porteiro B, Duquenne M, Puighermanal E, Fondevila MF, Barja-Fernández S, Gallego R, Hernández-Bautista R, Castelao C, Senra A, Seoane P, Gómez N, Aguiar P, Guallar D, Fidalgo M, Romero-Pico A, Adan R, Blouet C, Labandeira-García JL, Jeanrenaud F, Kallo I, Liposits Z, Salvador J, Prevot V, Dieguez C, Lopez M, Valjent E, Frühbeck G, Seoane LM, Nogueiras R. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat Metab 2019; 1:811-829. [PMID: 31579887 PMCID: PMC6774781 DOI: 10.1038/s42255-019-0099-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.
Collapse
Affiliation(s)
- Cintia Folgueira
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Daniel Beiroa
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Begoña Porteiro
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Manon Duquenne
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | | | - Marcos F Fondevila
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Silvia Barja-Fernández
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rosalia Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, S. Francisco s/n, 15782 Santiago de Compostela (A Coruña), Spain
| | - René Hernández-Bautista
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Cecilia Castelao
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ana Senra
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Patricia Seoane
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Noemi Gómez
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Diana Guallar
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Amparo Romero-Pico
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Roger Adan
- Brain Center Rudolf Magnus, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Clemence Blouet
- MRC Metabolic Disease Unit. Institute of Metabolic Science. University of Cambridge, UK
| | - Jose Luís Labandeira-García
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases, CIBERNED, Madrid, Spain
| | - Françoise Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Imre Kallo
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | - Carlos Dieguez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Miguel Lopez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Emmanuel Valjent
- IGF, Inserm, CNRS, Univ. Montpellier, F-34094 Montpellier, France
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
34
|
Gomes-de-Souza L, Benini R, Costa-Ferreira W, Crestani CC. GABA A but not GABA B receptors in the lateral hypothalamus modulate the tachycardic response to emotional stress in rats. Eur Neuropsychopharmacol 2019; 29:672-680. [PMID: 30878320 DOI: 10.1016/j.euroneuro.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/05/2019] [Accepted: 03/02/2019] [Indexed: 01/26/2023]
Abstract
The lateral hypothalamus (LH) has been described as one of the hypothalamic areas involved in the behavioral and physiological responses triggered by aversive stimuli. Previous studies indicated involvement of the LH in cardiovascular responses to stress. Despite this evidence, the local neurochemical mechanisms involved in LH control of stress responses is still poorly understood. Therefore, in the present study, we investigated the role of GABAergic neurotransmission within the LH in cardiovascular responses induced by an acute session of restraint stress in rats. For this, we evaluated the effect of bilateral microinjection of selective antagonists of either GABAA or GABAB receptors into the LH on arterial pressure increase, heart rate (HR) increase and reduction in tail skin temperature induced by restraint stress. We found that microinjection of the selective GABAA receptor antagonist SR95531 into the LH decreased the increase in HR caused by restraint stress, but without affecting the increase in arterial pressure increase or the reduction in tail skin temperature. Conversely, LH treatment with the selective GABAB receptor antagonist CGP35348 did not affect the restraint-evoked cardiovascular changes. These findings indicate that GABAergic neurotransmission in the LH, acting through activation of local GABAA receptors, plays a facilitatory role in the tachycardic response observed during aversive threats.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, 14800-903 Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
35
|
Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2018; 1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Orexin-expressing neurons are located exclusively in the lateral hypothalamic and perifornical areas and exhibit complex connectivity. The intricate wiring pattern is evident from a diverse function for orexin neurons in regulating many physiological processes and behaviors including sleep, metabolism, circadian cycles, anxiety, and reward. Nevertheless, the precise synaptic and circuitry-level mechanisms mediating these processes remain enigmatic, partially due to the wide spread connectivity of the orexin system, complex neurochemistry of orexin neurons, and previous lack of suitable tools to address its complexity. Here we summarize recent advances, focusing on synaptic regulatory mechanisms in the orexin neurocircuitry, including both the synaptic inputs to orexin neurons as well as their downstream targets in the brain. A clear and detailed elucidation of these mechanisms will likely provide novel insight into how dysfunction in orexin-mediated signaling leads to human disease and may ultimately be treated with more precise strategies.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
36
|
Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018; 9:1061. [PMID: 30319410 PMCID: PMC6167434 DOI: 10.3389/fphar.2018.01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal’s activity and wakefulness. These sets of data are here reviewed. They concern the discharge profile during the sleep/wake cycle, spontaneous Fos induction, peptide synthesis and release reflected by immunostaining intensity and peptide levels in the cerebrospinal fluid as well as postsynaptic effects. At the synaptic level, adaptive capacity of orexin neurons subserved by remodeling of excitatory and inhibitory inputs has been shown in response to changes in the nutritional status and prolonged wakefulness. The present review wishes to highlight that synaptic plasticity in the wiring of orexin neurons also occurs in unperturbed conditions and could account for diurnal variations of orexin neuron activity. Data in zebrafish larvae have shown rhythmic changes in the density of inhibitory innervation of orexin dendrites in relation to vigilance states. Recent findings in mice have indicated a diurnal reorganization of the excitatory/inhibitory balance in the perisomatic innervation of orexin neurons. Taken together these sets of data point to “chronoconnectivity,” i.e., a synaptic rearrangement of inputs to orexin neurons over the course of the day in relation to sleep and wake states. This opens questions on the underlying circadian and homeostatic regulation and on the involved players at synaptic level, which could implicate dual transmitters, cytoskeletal rearrangements, hormonal regulation, as well as surrounding glial cells and extracellular matrix. Furthermore, the question arises of a “chronoconnectivity” in the wiring of other neuronal cell groups of the sleep-wake-regulatory network, many of which are characterized by variations of their firing rate during vigilance states.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona Unit, Verona, Italy
| |
Collapse
|
37
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep, a mysterious behavior, has recently been recognized as a crucial factor for health and longevity. The daily sleep/wake cycle provides the basis of biorhythms controlling whole-body homeostasis and homeodynamics; therefore, disruption of sleep causes several physical and psychological disorders, including cardiovascular disease, obesity, diabetes, cancer, anxiety, depression, and cognitive dysfunction. However, the mechanism linking sleep disturbances and sleep-related disorders remains unknown. Orexin (also known as hypocretin) is a neuropeptide produced in the hypothalamus. Central levels of orexin oscillate with the daily rhythm and peak at the awake phase. Orexin plays a major role in stabilizing the wakefulness state. Orexin deficiency causes sleep/wake-state instability, resulting in narcolepsy. Hyper-activation of the orexin system also causes sleep disturbances, such as insomnia, and hence, suvorexant, an orexin receptor antagonist, has been clinically used to treat insomnia. Importantly, central actions of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by coordinating the central-autonomic nervous systems and endocrine systems. These multiple actions of orexin maintain survival. However, it remains unknown whether chronopharmacological interventions targeting the orexin system ameliorate sleep-related disorders as well as sleep in humans. To understand the significance of adequate orexin action for prevention of these disorders, this review summarizes the physiological functions of daily orexin action and pathological implications of its mistimed or reduced action in sleep disturbances and sleep-related disorders (lifestyle-related physical and neurological disorders in particular). Timed administration of drugs targeting the orexin system may prevent lifestyle-related diseases by improving the quality of life in patients with sleep disturbances.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
38
|
Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D 1 receptors. Nat Commun 2018; 9:1576. [PMID: 29679009 PMCID: PMC5910424 DOI: 10.1038/s41467-018-03889-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Nucleus accumbens (NAc) is involved in behaviors that depend on heightened wakefulness, but its impact on arousal remains unclear. Here, we demonstrate that NAc dopamine D1 receptor (D1R)-expressing neurons are essential for behavioral arousal. Using in vivo fiber photometry in mice, we find arousal-dependent increases in population activity of NAc D1R neurons. Optogenetic activation of NAc D1R neurons induces immediate transitions from non-rapid eye movement sleep to wakefulness, and chemogenetic stimulation prolongs arousal, with decreased food intake. Patch-clamp, tracing, immunohistochemistry, and electron microscopy reveal that NAc D1R neurons project to the midbrain and lateral hypothalamus, and might disinhibit midbrain dopamine neurons and lateral hypothalamus orexin neurons. Photoactivation of terminals in the midbrain and lateral hypothalamus is sufficient to induce wakefulness. Silencing of NAc D1R neurons suppresses arousal, with increased nest-building behaviors. Collectively, our data indicate that NAc D1R neuron circuits are essential for the induction and maintenance of wakefulness. The nucleus accumbens regulates many behaviours that depend on arousal. Here the authors show that dopamine D1 receptor neurons in the nucleus accumbens can directly regulate wakefulness.
Collapse
Affiliation(s)
- Yan-Jia Luo
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences,, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine,, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 201108, China
| | - Ya-Dong Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences,, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine,, Fudan University, Shanghai, 200032, China
| | - Su-Rong Yang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences,, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine,, Fudan University, Shanghai, 200032, China
| | - Xiang-Shan Yuan
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Juan Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Jiang-Fan Chen
- The Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Wei-Min Qu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China. .,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences,, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine,, Fudan University, Shanghai, 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China. .,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences,, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine,, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
39
|
Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018; 38:1588-1599. [PMID: 29311142 DOI: 10.1523/jneurosci.1925-17.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/04/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Orexin (also known as hypocretin) neurons are considered a key component of the ascending arousal system. They are active during wakefulness, at which time they drive and maintain arousal, and are silent during sleep. Their activity is controlled by long-range inputs from many sources, as well as by more short-range inputs, including from presumptive GABAergic neurons in the lateral hypothalamus/perifornical region (LH/PF). To characterize local GABAergic input to orexin neurons, we used channelrhodopsin-2-assisted circuit mapping in brain slices. We expressed channelrhodopsin-2 in GABAergic neurons (Vgat+) in the LH/PF and recorded from genetically identified surrounding orexin neurons (LH/PFVgat → Orx). We performed all experiments in mice of either sex. Photostimulation of LH/PF GABAergic neurons inhibited the firing of orexin neurons through the release of GABA, evoking GABAA-mediated IPSCs in orexin neurons. These photo-evoked IPSCs were maintained in the presence of TTX, indicating direct connectivity. Carbachol inhibited LH/PFVgat → Orx input through muscarinic receptors. By contrast, application of orexin was without effect on LH/PFVgat → Orx input, whereas dynorphin, another peptide produced by orexin neurons, inhibited LH/PFVgat → Orx input through κ-opioid receptors. Our results demonstrate that orexin neurons are under inhibitory control by local GABAergic neurons and that this input is depressed by cholinergic signaling, unaffected by orexin and inhibited by dynorphin. We propose that local release of dynorphin may, via collaterals, provides a positive feedback to orexin neurons and that, during wakefulness, orexin neurons may be disinhibited by acetylcholine and by their own release of dynorphin.SIGNIFICANCE STATEMENT The lateral hypothalamus contains important wake-promoting cell populations, including orexin-producing neurons. Intermingled with the orexin neurons, there are other cell populations that selectively discharge during nonrapid eye movement or rapid eye movement sleep. Some of these sleep-active neurons release GABA and are thought to inhibit wake-active neurons during rapid eye movement and nonrapid eye movement sleep. However, this hypothesis had not been tested. Here we show that orexin neurons are inhibited by a local GABAergic input. We propose that this local GABAergic input inhibits orexin neurons during sleep but that, during wakefulness, this input is depressed, possibly through cholinergically mediated disinhibition and/or by release of dynorphin from orexin neurons themselves.
Collapse
|
40
|
Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol Psychol 2018; 131:31-42. [DOI: 10.1016/j.biopsycho.2016.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/10/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022]
|
41
|
Sánchez-García A, Cabral-Pacheco GA, Zomosa-Signoret VC, Ortiz-López R, Camacho A, Tabera-Tarello PM, Garnica-López JA, Vidaltamayo R. Modular organization of a hypocretin gene minimal promoter. Mol Med Rep 2017; 17:2263-2270. [PMID: 29207107 PMCID: PMC5783473 DOI: 10.3892/mmr.2017.8142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Orexins or hypocretins are neurotransmitters produced by a small population of neurons in the lateral hypothalamus. This family of peptides modulates sleep-wake cycle, arousal and feeding behaviors; however, the mechanisms regulating their expression remain to be fully elucidated. There is an interest in defining the key molecular elements in orexin regulation, as these may serve to identify targets for generating novel therapies for sleep disorders, obesity and addiction. Our previous studies showed that the expression of orexin was decreased in mice carrying null-mutations of the transcription factor early B-cell factor 2 (ebf2) and that the promoter region of the prepro-orexin (Hcrt) gene contained two putative ebf-binding sites, termed olf-1 sites. In the present study, a minimal promoter region of the murine Hcrt gene was identified, which was able to drive the expression of a luciferase reporter gene in the human 293 cell line. Deletion of the olf1-site proximal to the transcription start site of the Hcrt gene increased reporter gene expression, whereas deletion of the distal olf1-like site decreased its expression. The lentiviral transduction of murine transcription factor ebf2 cDNA into 293 cells increased the gene expression driven by this minimal Hcrt-gene promoter and an electrophoretic mobility shift assays demonstrated that the distal olf1-like sequence was a binding site for ebf2.
Collapse
Affiliation(s)
- Adriana Sánchez-García
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Griselda A Cabral-Pacheco
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Viviana C Zomosa-Signoret
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Rocío Ortiz-López
- Genomics Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Alberto Camacho
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Paulo M Tabera-Tarello
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| | - José A Garnica-López
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| | - Román Vidaltamayo
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| |
Collapse
|
42
|
Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017; 4:eN-NWR-0013-17. [PMID: 28966976 PMCID: PMC5617207 DOI: 10.1523/eneuro.0013-17.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/14/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
The lateral hypothalamic area (LHA) lies at the intersection of multiple neural and humoral systems and orchestrates fundamental aspects of behavior. Two neuronal cell types found in the LHA are defined by their expression of hypocretin/orexin (Hcrt/Ox) and melanin-concentrating hormone (MCH) and are both important regulators of arousal, feeding, and metabolism. Conflicting evidence suggests that these cell populations have a more complex signaling repertoire than previously appreciated, particularly in regard to their coexpression of other neuropeptides and the machinery for the synthesis and release of GABA and glutamate. Here, we undertook a single-cell expression profiling approach to decipher the neurochemical phenotype, and heterogeneity therein, of Hcrt/Ox and MCH neurons. In transgenic mouse lines, we used single-cell quantitative polymerase chain reaction (qPCR) to quantify the expression of 48 key genes, which include neuropeptides, fast neurotransmitter components, and other key markers, which revealed unexpected neurochemical diversity. We found that single MCH and Hcrt/Ox neurons express transcripts for multiple neuropeptides and markers of both excitatory and inhibitory fast neurotransmission. Virtually all MCH and approximately half of the Hcrt/Ox neurons sampled express both the machinery for glutamate release and GABA synthesis in the absence of a vesicular GABA release pathway. Furthermore, we found that this profile is characteristic of a subpopulation of LHA glutamatergic neurons but contrasts with a broad population of LHA GABAergic neurons. Identifying the neurochemical diversity of Hcrt/Ox and MCH neurons will further our understanding of how these populations modulate postsynaptic excitability through multiple signaling mechanisms and coordinate diverse behavioral outputs.
Collapse
|
43
|
The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct Funct 2017; 222:3847-3859. [PMID: 28669028 DOI: 10.1007/s00429-017-1466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A+ somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn+/VGluT2+) and GABAergic (Syn+/VGAT+) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2+ together with postsynaptic density protein 95+ excitatory contacts, and daytime prevalence of VGAT+ together with gephyrin+ inhibitory contacts, while also showing that they formed synapses on OX-A+ cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.
Collapse
|
44
|
NERP-2 regulates gastric acid secretion and gastric emptying via the orexin pathway. Biochem Biophys Res Commun 2017; 485:409-413. [DOI: 10.1016/j.bbrc.2017.02.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/12/2017] [Indexed: 11/20/2022]
|
45
|
Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A, Chieffi S, Cibelli G, Monda M, Messina G. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci 2017; 11:10. [PMID: 28197081 PMCID: PMC5281635 DOI: 10.3389/fnbeh.2017.00010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022] Open
Abstract
The basal forebrain (BF) cholinergic system has an important role in attentive functions. The cholinergic system can be activated by different inputs, and in particular, by orexin neurons, whose cell bodies are located within the postero-lateral hypothalamus. Recently the orexin-producing neurons have been proved to promote arousal and attention through their projections to the BF. The aim of this review article is to summarize the evidence showing that the orexin system contributes to attentional processing by an increase in cortical acetylcholine release and in cortical neurons activity.
Collapse
Affiliation(s)
- Ines Villano
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy; Department of Motor, Human and Health Science, University of Rome, "Foro Italico"Rome, Italy
| | - Teresa Esposito
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Maria Esposito
- Department of Mental Health, Physical and Preventive Medicine, Second University of Naples Naples, Italy
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Second University of Naples Naples, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Second University of NaplesNaples, Italy; Neapolitan Brain Group (NBG), Clinic of Child and Adolescent Neuropsychiatry, Department of Mental, Physical Health and Preventive Medicine, Second University of NaplesNaples, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno Salerno, Italy
| | - Sergio Chieffi
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Second University of NaplesNaples, Italy; Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| |
Collapse
|
46
|
Chernysheva MP, Nozdrachev AD. Neuroendocrine hypothalamus as a homeostat of endogenous time. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s002209301701001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Elbaz I, Levitas-Djerbi T, Appelbaum L. The Hypocretin/Orexin Neuronal Networks in Zebrafish. Curr Top Behav Neurosci 2017; 33:75-92. [PMID: 28012092 DOI: 10.1007/7854_2016_59] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.
Collapse
Affiliation(s)
- Idan Elbaz
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Talia Levitas-Djerbi
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Lior Appelbaum
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
48
|
Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep 2016; 6:36039. [PMID: 27824065 PMCID: PMC5099903 DOI: 10.1038/srep36039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/10/2016] [Indexed: 01/23/2023] Open
Abstract
Orexin/hypocretin neurons play a crucial role in the regulation of sleep/wakefulness, primarily in the maintenance of wakefulness. These neurons innervate wide areas of the brain and receive diverse synaptic inputs including those from serotonergic (5-HT) neurons in the raphe nucleus. Previously we showed that pharmacological application of 5-HT directly inhibited orexin neurons via 5-HT1A receptors. However, it was still unclear how 5-HT neurons regulated orexin neurons since 5-HT neurons contain not only 5-HT but also other neurotransmitters. To reveal this, we generated new triple transgenic mice in which orexin neurons express enhanced green fluorescent protein (EGFP) and 5-HT neurons express channelrhodopsin2 (ChR2). Immunohistochemical studies show that nerve endings of ChR2-expressing 5-HT neurons are in close apposition to EGFP-expressing orexin neurons in the lateral hypothalamic area. Using these mice, we could optogenetically activate 5-HT nerve terminals and record postsynaptic effects from orexin neurons. Activation of nerve terminals of 5-HT neurons directly inhibited orexin neurons via the 5HT1A receptor, and also indirectly inhibited orexin neurons by facilitating GABAergic inhibitory inputs without affecting glutamatergic inputs. Increased GABAergic inhibitory inputs in orexin neurons were confirmed by the pharmacological application of 5-HT. These results suggest that orexin neurons are inhibited by 5-HT neurons, primarily via 5-HT, in both direct and indirect manners.
Collapse
Affiliation(s)
- Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
49
|
Rosario W, Singh I, Wautlet A, Patterson C, Flak J, Becker TC, Ali A, Tamarina N, Philipson LH, Enquist LW, Myers MG, Rhodes CJ. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions. Diabetes 2016; 65:2711-23. [PMID: 27207534 PMCID: PMC5001176 DOI: 10.2337/db15-0629] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia.
Collapse
Affiliation(s)
- Wilfredo Rosario
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Inderroop Singh
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Arnaud Wautlet
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Christa Patterson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Jonathan Flak
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC
| | - Almas Ali
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Natalia Tamarina
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Louis H Philipson
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| |
Collapse
|
50
|
Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016; 594:6443-6462. [PMID: 27302606 DOI: 10.1113/jp271946] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
The hypothalamus is among the most phylogenetically conserved regions in the vertebrate brain, reflecting its critical role in maintaining physiological and behavioural homeostasis. By integrating signals arising from both the brain and periphery, it governs a litany of behaviourally important functions essential for survival. In particular, the lateral hypothalamic area (LHA) is central to the orchestration of sleep-wake states, feeding, energy balance and motivated behaviour. Underlying these diverse functions is a heterogeneous assembly of cell populations typically defined by neurochemical markers, such as the well-described neuropeptides hypocretin/orexin and melanin-concentrating hormone. However, anatomical and functional evidence suggests a rich diversity of other cell populations with complex neurochemical profiles that include neuropeptides, receptors and components of fast neurotransmission. Collectively, the LHA acts as a hub for the integration of diverse central and peripheral signals and, through complex local and long-range output circuits, coordinates adaptive behavioural responses to the environment. Despite tremendous progress in our understanding of the LHA, defining the identity of functionally discrete LHA cell types, and their roles in driving complex behaviour, remain significant challenges in the field. In this review, we discuss advances in our understanding of the neurochemical and cellular heterogeneity of LHA neurons and the recent application of powerful new techniques, such as opto- and chemogenetics, in defining the role of LHA circuits in feeding, reward, arousal and stress. From pioneering work to recent developments, we review how the interrogation of LHA cells and circuits is contributing to a mechanistic understanding of how the LHA coordinates complex behaviour.
Collapse
Affiliation(s)
- Patricia Bonnavion
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB)-UNI, 1050, Brussels, Belgium
| | - Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Akie Fujita
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|