1
|
Zhang C, He X, Murphy SR, Zhang H, Wang S, Ge Y, Gao W, Williams JM, Geurts AM, Roman RJ, Fan F. Knockout of Dual-Specificity Protein Phosphatase 5 Protects Against Hypertension-Induced Renal Injury. J Pharmacol Exp Ther 2019; 370:206-217. [PMID: 31118214 PMCID: PMC6636243 DOI: 10.1124/jpet.119.258954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Dual-specificity protein phosphatase 5 (DUSP5) is a member of the tyrosine-threonine phosphatase family with the ability to dephosphorylate and inactivate extracellular signal-related kinase (ERK). The present study investigates whether knockout (KO) of Dusp5 improves renal hemodynamics and protects against hypertension-induced renal injury. The renal expression of DUSP5 was reduced, and the levels of phosphorylated (p) ERK1/2 and p-protein kinase C (PKC) α were elevated in the KO rats. KO of Dusp5 enhanced the myogenic tone of the renal afferent arteriole and interlobular artery in vitro with or without induction of deoxycorticosterone acetate-salt hypertension. Inhibition of ERK1/2 and PKC diminished the myogenic response to a greater extent in Dusp5 KO rats. Autoregulation of renal blood flow was significantly impaired in hypertensive wild-type (WT) rats but remained intact in Dusp5 KO animals. Proteinuria was markedly decreased in hypertensive KO versus WT rats. The degree of glomerular injury was reduced, and the expression of nephrin in the glomerulus was higher in hypertensive Dusp5 KO rats. Renal fibrosis and medullary protein cast formation were attenuated in hypertensive Dusp5 KO rats in association with decreased expression of monocyte chemoattractant protein 1, transforming growth factor-β1, matrix metalloproteinase (MMP) 2, and MMP9. These results indicate that KO of Dusp5 protects against hypertension-induced renal injury, at least in part, by maintaining the myogenic tone of the renal vasculature and extending the range of renal blood flow autoregulation to higher pressures, which diminish glomerular injury, protein cast formation, macrophage infiltration, and epithelial-mesenchymal transformation in the kidney. SIGNIFICANCE STATEMENT: Dual-specificity protein phosphatase 5 (DUSP5) is a tyrosine-threonine phosphatase that inactivates extracellular signal-related kinase (ERK). We previously reported that knockout (KO) of Dusp5 enhanced the myogenic response and autoregulation in the cerebral circulation. The present study investigates whether KO of DUSP5 improves renal hemodynamics and protects against hypertension-induced renal injury. Downregulation of DUSP5 enhanced the myogenic tone of renal arteriole and artery and autoregulation of renal blood flow in association with reduced proteinuria, glomerular injury, and interstitial fibrosis after the induction of hypertension. Inhibition of ERK1/2 and protein kinase C diminished the myogenic response to a greater extent in Dusp5 KO rats. These results suggest that DUSP5 might be a viable drug target for the treatment of hypertension nephropathy.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Sydney R Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Aron M Geurts
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| |
Collapse
|
2
|
Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A 1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K + channels. Mol Cell Biochem 2016; 422:197-206. [PMID: 27629787 DOI: 10.1007/s11010-016-2821-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Soluble epoxide hydrolase (sEH) converts epoxyeicosatrienoic acids that are endothelium-derived hyperpolarizing factors into less active dihydroxyeicosatrienoic acids. Previously, we reported a decrease in adenosine A1 receptor (A1AR) protein levels in sEH knockout (sEH-/-) and an increase in sEH and A1AR protein levels in A2AAR-/- mice. Additionally, KATP channels are involved in adenosine receptor (AR)-dependent vascular relaxation. Thus, we hypothesize that a potential relationship may exist among sEH over-expression, A1AR upregulation, inactivation of KATP channels, and increased in vascular tone. We performed DMT myograph muscle tension measurements and western blot analysis in isolated mouse mesenteric arteries (MAs) from wild-type (WT) and endothelial over-expression of sEH (Tie2-sEH Tr) mice. Our data revealed that NECA (a non-selective adenosine receptors agonist)-induced relaxation was significantly reduced in Tie2-sEH Tr mice, and CCPA (A1AR agonist)-induced contraction was increased in Tie2-sEH Tr mice. A1AR-dependent contraction in Tie2-sEH Tr mice was significantly attenuated by pharmacological inhibition of CYP4A (HET0016, 10 µM), PKCα (GO6976, 1 µM), and ERK1/2 (PD58059, 1 µM). Our western blot analysis revealed significantly higher basal protein expression of CYP4A, A1AR, and reduced p-ERK in MAs of Tie2-sEH Tr mice. Notably, pinacidil (KATP channel opener)-induced relaxation was also significantly reduced in MAs of Tie2-sEH Tr mice. Furthermore, KATP channel-dependent relaxation in MAs was enhanced by inhibition of PKCα and ERK1/2 in WT but not Tie2-sEH Tr mice. In conclusion, our data suggest that over-expression of sEH enhances A1AR-dependent contraction and reduces KATP channel-dependent relaxation in MAs. These results suggest a possible interaction between sEH, A1AR, and KATP channels in regulating vascular tone.
Collapse
|
3
|
Trappanese DM, Sivilich S, Ets HK, Kako F, Autieri MV, Moreland RS. Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle. Am J Physiol Cell Physiol 2016; 310:C921-30. [PMID: 27053523 DOI: 10.1152/ajpcell.00311.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1.
Collapse
Affiliation(s)
- Danielle M Trappanese
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Sarah Sivilich
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hillevi K Ets
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Farah Kako
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Michael V Autieri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Jiang W, Zhu J, Zhuang X, Zhang X, Luo T, Esser KA, Ren H. Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-regulated Cell Cycle Withdrawal. J Biol Chem 2015; 290:23646-55. [PMID: 26296887 DOI: 10.1074/jbc.m115.686519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Lipin1, an intracellular protein, plays critical roles in controlling lipid synthesis and energy metabolism through its enzymatic activity and nuclear transcriptional functions. Several mouse models of skeletal muscle wasting are associated with lipin1 mutation or altered expression. Recent human studies have suggested that children with homozygous null mutations in the LPIN1 gene suffer from rhabdomyolysis. However, the underlying pathophysiologic mechanism is still poorly understood. In the present study we examined whether lipin1 contributes to regulating muscle regeneration. We characterized the time course of skeletal muscle regeneration in lipin1-deficient fld mice after injury. We found that fld mice exhibited smaller regenerated muscle fiber cross-sectional areas compared with wild-type mice in response to injury. Our results from a series of in vitro experiments suggest that lipin1 is up-regulated and translocated to the nucleus during myoblast differentiation and plays a key role in myogenesis by regulating the cytosolic activation of ERK1/2 to form a complex and a downstream effector cyclin D3-mediated cell cycle withdrawal. Overall, our study reveals a previously unknown role of lipin1 in skeletal muscle regeneration and expands our understanding of the cellular and molecular mechanisms underlying skeletal muscle regeneration.
Collapse
Affiliation(s)
- Weihua Jiang
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Saha Cardiovascular Center
| | - Jing Zhu
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Saha Cardiovascular Center
| | - Xun Zhuang
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Saha Cardiovascular Center
| | - Xiping Zhang
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Tao Luo
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Saha Cardiovascular Center
| | - Karyn A Esser
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Hongmei Ren
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Saha Cardiovascular Center,
| |
Collapse
|
5
|
Raffai G, Khang G, Vanhoutte PM. Vanillin and vanillin analogs relax porcine coronary and basilar arteries by inhibiting L-type Ca2+ channels. J Pharmacol Exp Ther 2015; 352:14-22. [PMID: 25344384 DOI: 10.1124/jpet.114.217935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vanillin (VA) and vanillyl alcohol (VAA), components of natural vanilla, and ethyl vanillin (EtVA; synthetic analog) are used as flavoring agents and/or as additives by the food, cosmetic, or pharmaceutic industries. VA, VAA, and EtVA possess antioxidant and anti-inflammatory properties, but their vascular effects have not been determined. Therefore, we compared in isolated porcine coronary and basilar arteries the changes in isometric tension caused by VA, VAA, and EtVA. VA and its analogs caused concentration-dependent relaxations of both preparations during contractions from U46619 (9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α, a thromboxane A2 receptor agonist), and of coronary arteries contracted with KCl or endothelin-1. The order of potency was VAA < VA < EtVA. The relaxations were not inhibited by endothelium removal, by inhibitors of NO synthases (N(ω)-nitro-l-arginine methyl ester hydrochloride), cyclooxygenases (indomethacin), soluble guanylyl cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one [ODQ]), KCa (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole [TRAM-34], 6,12,19,20,25,26-hexahydro-5,27:13,18:21,24-trietheno-11,7-metheno-7H-dibenzo[b,n][1,5,12,16]tetraazacyclotricosine-5,13-diium ditrifluoroacetate hydrate [UCL-1684], or iberiotoxin), by KATP (glibenclamide), by Kir (BaCl2), by transient receptor potential receptor vanilloid 3 (TRPV3) channels (ruthenium red), or by antioxidants (catalase, apocynin, tempol, N-acetylcysteine, tiron). VA and its analogs inhibited contractions induced by Ca(2+) reintroduction in coronary arteries, and by an opener of L-type Ca(2+)-channels (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate [Bay K8644]) in coronary and basilar arteries. They inhibited contractions of coronary rings induced by the protein kinase C activator phorbol 12,13-dibutyrate to the same extent as the removal of extracellular Ca(2+) or incubation with nifedipine. Thus, in porcine arteries, relaxation from VA (and its analogs) is due to inhibition of L-type Ca(2+) channels. Hence, these compounds could be used to relieve coronary or cerebral vasospasms due to exaggerated Ca(2+) influx, but therapeutic efficacy would require exposures that far exceed the current levels obtained by the use of vanillin additives.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| | - Gilson Khang
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| | - Paul M Vanhoutte
- Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People's Republic of China (P.M.V.)
| |
Collapse
|
6
|
Fan F, Geurts AM, Pabbidi MR, Smith SV, Harder DR, Jacob H, Roman RJ. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS One 2014; 9:e112878. [PMID: 25397684 PMCID: PMC4232417 DOI: 10.1371/journal.pone.0112878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/18/2014] [Indexed: 12/11/2022] Open
Abstract
We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow (RBF and CBF) were impaired in Fawn Hooded hypertensive (FHH) rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN) containing 15 genes including dual-specificity protein phosphatase-5 (Dusp5) were transferred into the FHH genetic background. We identified 4 single nucleotide polymorphisms in the Dusp5 gene in FHH as compared with BN rats, two of which altered CpG sites and another that caused a G155R mutation. To determine whether Dusp5 contributes to the impaired myogenic response in FHH rats, we created a Dusp5 knockout (KO) rat in the FHH.1BN genetic background using a zinc-finger nuclease that introduced an 11 bp frame-shift deletion and a premature stop codon at AA121. The expression of Dusp5 was decreased and the levels of its substrates, phosphorylated ERK1/2 (p-ERK1/2), were enhanced in the KO rats. The diameter of the MCA decreased to a greater extent in Dusp5 KO rats than in FHH.1BN and FHH rats when the perfusion pressure was increased from 40 to 140 mmHg. CBF increased markedly in FHH rats when MAP was increased from 100 to 160 mmHg, and CBF was better autoregulated in the Dusp5 KO and FHH.1BN rats. The expression of Dusp5 was higher at the mRNA level but not at the protein level and the levels of p-ERK1/2 and p-PKC were lower in cerebral microvessels and brain tissue isolated from FHH than in FHH.1BN rats. These results indicate that Dusp5 modulates myogenic reactivity in the cerebral circulation and support the view that a mutation in Dusp5 may enhance Dusp5 activity and contribute to the impaired myogenic response in FHH rats.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Aron M. Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mallikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Stanley V. Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David R. Harder
- Department of Physiology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Howard Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wickramasekera NT, Gebremedhin D, Carver KA, Vakeel P, Ramchandran R, Schuett A, Harder DR. Role of dual-specificity protein phosphatase-5 in modulating the myogenic response in rat cerebral arteries. J Appl Physiol (1985) 2012; 114:252-61. [PMID: 23172031 DOI: 10.1152/japplphysiol.01026.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study examined the role of the dual-specificity protein phosphatase-5 (DUSP-5) in the pressure-induced myogenic responses of organ-cultured cerebral arterial segments. In these studies, we initially compared freshly isolated and organ-cultured cerebral arterial segments with respect to responses to step increases in intravascular pressure, vasodilator and vasoconstrictor stimuli, activities of the large-conductance arterial Ca(2+)-activated K(+) (K(Ca)) single-channel current, and stable protein expression of DUSP-5 enzyme. The results demonstrate maintained pressure-dependent myogenic vasoconstriction, DUSP-5 protein expression, endothelium-dependent and -independent dilations, agonist-induced constriction, and unitary K(Ca) channel conductance in organ-cultured cerebral arterial segments similar to that in freshly isolated cerebral arteries. Furthermore, using a permeabilization transfection technique in organ-cultured cerebral arterial segments, gene-specific small interfering RNA (siRNA) induced knockdown of DUSP-5 mRNA and protein, which were associated with enhanced pressure-dependent cerebral arterial myogenic constriction and increased phosphorylation of PKC-βII. In addition, siRNA knockdown of DUSP-5 reduced levels of phosphorylated ROCK and ERK1 with no change in the level of phosphorylated ERK2. Pharmacological inhibition of ERK1/2 phosphorylation significantly attenuated pressure-induced myogenic constriction in cerebral arteries. The findings within the present studies illustrate that DUSP-5, native in cerebral arterial muscle cells, appears to regulate signaling of pressure-dependent myogenic cerebral arterial constriction, which is crucial for the maintenance of constant cerebral blood flow to the brain.
Collapse
Affiliation(s)
- Nadi T Wickramasekera
- Department of Physiology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim MT, Park WJ, Kim S, Lee JW, Lee SY, Jeon JH, So I, Kim BJ, Kim SJ. Involvement of calmodulin kinase II in the action of sulphur mustard on the contraction of vascular smooth muscle. Basic Clin Pharmacol Toxicol 2011; 108:28-33. [PMID: 20735375 DOI: 10.1111/j.1742-7843.2010.00623.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sulphur mustard (SM) is an alkylating agent whose mechanism is not fully understood. To investigate the early action of SM, we examined the effect of SM on contraction of vascular smooth muscles. Phenylephrine (PE)-induced contraction was reduced by SM, but only marginally by 70 mM KCl(-) . Additional reduction was induced by nifedipine in SM-treated arteries. In the absence of extracellular Ca(2+) , contraction of arteries by PE was reduced, which was fully recovered by addition of 2 mM Ca(2+) . However, recovery was attenuated by pre-treatment with SM. The effect of SM on contraction by PE was not influenced by pre- and post-treatment with Phorbol 12, 13-dibutyrate. Calmodulin kinase II (CaMKII) was implicated as being responsible for the action of SM, because the contractile mechanisms of vascular smooth muscle via both Ca(2+) -calmodulin-myosin light chain kinase axis and protein kinase C-proline-rich tyrosine kinase axis were not related to the action of SM. Elevation of phosphorylated CaMKII level by Ionomycin or PE was attenuated by treatment of SM on western blot. CaMKII may be a candidate target molecule of SM in early stage contraction of vascular smooth muscle.
Collapse
Affiliation(s)
- Min Tae Kim
- Department of Rehabilitation Medicine, Kwandong University of Medicine, Goyang, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Goyal R, Mittal A, Chu N, Arthur RA, Zhang L, Longo LD. Maturation and long-term hypoxia-induced acclimatization responses in PKC-mediated signaling pathways in ovine cerebral arterial contractility. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1377-86. [PMID: 20702800 DOI: 10.1152/ajpregu.00344.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the developing fetus, cerebral arteries (CA) show striking differences in signal transduction mechanisms compared with the adult, and these differences are magnified in response to high-altitude long-term hypoxia (LTH). In addition, in the mature organism, cerebrovascular acclimatization to LTH may be associated with several clinical problems, the mechanisms of which are unknown. Because PKC plays a key role in regulating CA contractility, in fetal and adult cerebral arteries, we tested the hypothesis that LTH differentially regulates the PKC-mediated Ca(2+) sensitization pathways and contractility. In four groups of sheep [fetal normoxic (FN), fetal hypoxic (FH), adult normoxic (AN), and adult hypoxic (AH)], we examined, simultaneously, responses of CA tension and intracellular Ca(2+) concentration and measured CA levels of PKC, ERK1/2, RhoA, 20-kDa myosin light chain, and the 17-kDa PKC-potentiated myosin phosphatase inhibitor CPI-17. The PKC activator phorbol 12,13-dibutyrate (PDBu) produced robust contractions in all four groups. However, PDBu-induced contractions were significantly greater in AH CA than in the other groups. In all CA groups except AH, in the presence of MEK inhibitor (U-0126), the PDBu-induced contractions were increased a further 20-30%. Furthermore, in adult CA, PDBu led to increased phosphorylation of ERK1, but not ERK2; in fetal CA, the reverse was the case. PDBu-stimulated ERK2 phosphorylation also was significantly greater in FH than FN CA. Also, although RhoA/Rho kinase played a significant role in PDBu-mediated contractions of FN CA, this was not the case in FH or either adult group. Also, whereas CPI-17 had a significant role in adult CA contractility, this was not the case for the fetus. Overall, in ovine CA, the present study demonstrates several important maturational and LTH acclimatization changes in PKC-induced contractile responses and downstream pathways. The latter may play a key role in the pathophysiologic disorders associated with acclimatization to high altitude.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology and Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | |
Collapse
|
10
|
Goyal R, Mittal A, Chu N, Zhang L, Longo LD. alpha(1)-Adrenergic receptor subtype function in fetal and adult cerebral arteries. Am J Physiol Heart Circ Physiol 2010; 298:H1797-806. [PMID: 20348219 PMCID: PMC2886655 DOI: 10.1152/ajpheart.00112.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/24/2010] [Indexed: 11/22/2022]
Abstract
In the developing fetus, cerebral artery (CA) contractility demonstrates significant functional differences from that of the adult. This may be a consequence of differential activities of alpha(1)-adrenergic receptor (alpha(1)-AR) subtypes. Thus we tested the hypothesis that maturational differences in adrenergic-mediated CA contractility are, in part, a consequence of differential expression and/or activities of alpha(1)-AR subtypes. In CA from fetal ( approximately 140 days) and nonpregnant adult sheep, we used wire myography and imaging, with simultaneous measurement of tension and intracellular Ca(2+) concentration ([Ca(2+)](i)), radioimmunoassay, and Western immunoblots to examine phenylephrine (Phe)-induced contractile responses. The alpha(1A)-AR antagonists (5-MU and WB-4101) completely inhibited Phe-induced contraction in adult but not fetal CA; however, [Ca(2+)](i) increase was reduced significantly in both age groups. The alpha(1D)-AR antagonist (BMY-7378) blocked both Phe-induced contractions and Ca(2+) responses to a significantly greater extent in adult compared with fetal CA. In both age groups, inhibition of alpha(1A)-AR and alpha(1B)-AR, but not alpha(1D)-AR, significantly reduced inositol 1,4,5-trisphosphate responses to Phe. Western immunoblots demonstrated that the alpha(1)-AR subtype expression was only approximately 20% in fetal CA compared with the adult. Moreover, in fetal CA, the alpha(1D)-AR was expressed significantly greater than the other two subtypes. Also, in fetal but not adult CA, Phe induced a significant increase in activated ERK1/2; this increase in phosphorylated ERK was blocked by alpha(1B)-AR (CEC) and alpha(1D)-AR (BMY-7378) inhibitors, but not by alpha(1A)-AR inhibitors (5-MU or WB-4101). In conclusion, in the fetal CA, alpha(1B)-AR and alpha(1D)-AR subtypes play a key role in contractile response as well as in ERK activation. We speculate that in fetal CA alpha(1B)-AR and alpha(1D)-AR subtypes may be a critical factor associated with cerebrovascular growth and function.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda Univ., School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
11
|
Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain Renin-Angiotensin System: Fetal Epigenetic Programming by Maternal Protein Restriction During Pregnancy. Reprod Sci 2009; 17:227-38. [DOI: 10.1177/1933719109351935] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Departments of Physiology, and Obstetrics and Gynecology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Dipali Goyal
- Center for Perinatal Biology, Departments of Physiology, and Obstetrics and Gynecology, School of Medicine, Loma Linda University, Loma Linda, California
| | | | - Ciprian P. Gheorghe
- Center for Perinatal Biology, Departments of Physiology, and Obstetrics and Gynecology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Lawrence D. Longo
- Center for Perinatal Biology, Departments of Physiology, and Obstetrics and Gynecology, School of Medicine, Loma Linda University, Loma Linda, California,
| |
Collapse
|
12
|
Goyal R, Mittal A, Chu N, Shi L, Zhang L, Longo LD. Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am J Physiol Heart Circ Physiol 2009; 297:H2242-52. [PMID: 19749163 DOI: 10.1152/ajpheart.00681.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+-independent pathways such as protein kinase C (PKC), extracellular-regulated kinases 1 and 2 (ERK1/2), and Rho kinase 1 and 2 (ROCK1/2) play important roles in modulating cerebral vascular tone. Because the roles of these kinases vary with maturational age, we tested the hypothesis that PKC differentially regulates the Ca2+-independent pathways and their effects on cerebral arterial contractility with development. We simultaneously examined the responses of arterial tension and intracellular Ca2+ concentration and used Western immunoblot analysis to measure ERK1/2, RhoA, 20 kDa regulatory myosin light chain (MLC20), PKC-potentiated inhibitory protein of 17 kDa (CPI-17), and caldesmon. Phorbol 12,13-dibutyrate (PDBu)-mediated PKC activation produced a robust contractile response, which was increased a further 20 to 30% by U-0126 (MEK inhibitor) in cerebral arteries of both age groups. Of interest, in the fetal cerebral arteries, PDBu leads to an increased phosphorylation of ERK2 compared with ERK1, whereas in adult arteries, we observed an increased phosphorylation of ERK1 compared with ERK2. Also, in the present study, RhoA/ROCK played a significant role in the PDBu-mediated contractility of fetal cerebral arteries, whereas in adult cerebral arteries, CPI-17 and caldesmon had a significantly greater role compared with the fetus. PDBu also led to an increased MLC20 phosphorylation, a response blunted by the inhibition of myosin light chain kinase only in the fetus. Overall, the present study demonstrates an important maturational shift from RhoA/ROCK-mediated to CPI-17/caldesmon-mediated PKC-induced contractile response in ovine cerebral arteries.
Collapse
Affiliation(s)
- Ravi Goyal
- Department of Physiology, Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lee HJ, Ji Y, Paul S, Maehr H, Uskokovic M, Suh N. Activation of bone morphogenetic protein signaling by a Gemini vitamin D3 analogue is mediated by Ras/protein kinase C alpha. Cancer Res 2008; 67:11840-7. [PMID: 18089814 DOI: 10.1158/0008-5472.can-07-1549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMP) are members of the transforming growth factor-beta superfamily, and they play an important role for embryonic development, for bone and cartilage formation, and during carcinogenesis. We have previously shown that the novel Gemini vitamin D(3) analogue, Ro-438-3582 [Ro3582; 1 alpha,25-dihydroxy-20S,21(3-hydroxy-3-methylbutyl)-23-yne-26,27-hexafluorocholecalciferol], inhibited cell proliferation and activated the BMP/Smad signaling pathway in MCF10AT1 breast epithelial cells. In this report, we investigated the upstream signaling pathways responsible for the activation of BMP/Smad signaling by Ro3582. Among seven different serine/threonine kinase inhibitors that we tested, protein kinase C (PKC) inhibitors blocked the effects of Ro3582 on the phosphorylation of Smad1/5, mRNA synthesis for BMP-2 and BMP-6, and cell growth in MCF10AT1 cells. Overexpression of PKC alpha, but not PKC epsilon, PKC delta or PKC zeta isoforms, increased Ro3582-induced phosphorylation of Smad1/5, suggesting that PKC alpha mediates the activation of Smad signaling and inhibition of cell proliferation. Interestingly, the activation of Smad signaling by Ro3582 was shown in Ha-ras-transfected MCF10AT1 cells, but not in the parent cell line (MCF10A without Ras). Inhibiting Ras activity blocked the translocation of PKC alpha to the plasma membrane and the phosphorylation of Smad1/5 induced by Ro3582, indicating that Ras is necessary for the activation of PKC alpha and Smad signaling. In conclusion, Ro3582 inhibits cell proliferation and activates BMP/Smad signaling via a Ras and PKC alpha pathway in breast epithelial cells.
Collapse
Affiliation(s)
- Hong Jin Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lim JH, Lee JI, Suh YH, Kim W, Song JH, Jung MH. Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells. Diabetologia 2006; 49:1924-36. [PMID: 16736133 DOI: 10.1007/s00125-006-0278-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 02/18/2006] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Mitochondrial dysfunction is considered a critical component in the development of diabetes. The aim of this study was to elucidate the molecular mechanisms involved in the development of insulin resistance and diabetes through investigation of mitochondrial retrograde signalling. MATERIALS AND METHODS Mitochondrial function of C2C12 myotube cells was impaired by genetic (ethidium bromide) and metabolic (oligomycin) stress, and changes in target molecules related to insulin signalling were analysed. RESULTS Concomitant with reductions in mitochondrial membrane potential (DeltaPsim) and ATP synthesis, production of IRS1 and solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4, formerly known as GLUT4) were reduced. Moreover, serine phosphorylation of IRS1 increased, resulting in decreased tyrosine phosphorylation. This indicates that mitochondrial dysfunction decreases insulin-stimulated SLC2A4 translocation and glucose uptake. Mitochondrial stress activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) signalling in a Ca(2+)-dependent manner, and removal of free Ca(2+) by BAPTA-AM, as well as inhibition of JNK and p38 MAPK, abrogated mitochondrial stress-induced reductions in IRS1 and SLC2A4 production. Mitochondrial dysfunction after oligomycin treatment significantly increased levels of activating transcription factor 3 (ATF3), which represses Irs1 promoter activity. Removal of the 5' flanking region of Irs1 demonstrated that the promoter region within 191 bases from the transcription site may be involved in the transcriptional repression of Irs1 by mitochondrial stress. CONCLUSIONS/INTERPRETATION We show distinct mitochondrial retrograde signalling, where Irs1 is downregulated through ATF3 in a Ca(2+)-, JNK- and p38 MAPK-dependent manner, and IRS1 is inactivated. Therefore, mitochondrial dysfunction causes aberrant insulin signalling and abnormal utilisation of glucose, as observed in many insulin resistance states.
Collapse
Affiliation(s)
- J H Lim
- Division of Metabolic Disease, Department of Biomedical Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes. Purinergic Signal 2006; 2:637-49. [PMID: 18404467 PMCID: PMC2096658 DOI: 10.1007/s11302-006-9011-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 04/20/2006] [Indexed: 11/25/2022] Open
Abstract
The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain.
Collapse
|
16
|
Zhang H, Xiao D, Longo LD, Zhang L. Regulation of alpha1-adrenoceptor-mediated contractions of uterine arteries by PKC: effect of pregnancy. Am J Physiol Heart Circ Physiol 2006; 291:H2282-9. [PMID: 16699075 DOI: 10.1152/ajpheart.00321.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.
Collapse
Affiliation(s)
- Hongying Zhang
- Center for Perinatal Biology, Dept. of Physiology and Pharmacology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
17
|
Lee YR, Lee CK, Park HJ, Kim H, Kim J, Kim J, Lee KS, Lee YL, Min KO, Kim B. c-Jun N-terminal kinase contributes to norepinephrine-induced contraction through phosphorylation of caldesmon in rat aortic smooth muscle. J Pharmacol Sci 2006; 100:119-25. [PMID: 16474208 DOI: 10.1254/jphs.fp0050777] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Vascular smooth muscle contraction is mediated by activation of extracellular signal-regulated kinase (ERK) 1/2, an isoform of mitogen-activated protein kinase (MAPK). However, the role of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) in vascular smooth muscle contraction has not been defined. We investigated the role of JNK in the contractile response to norepinephrine (NE) in rat aortic smooth muscle. NE evoked contraction in a dose-dependent manner, and this effect was inhibited by the JNK inhibitor SP600125. NE increased the phosphorylation of JNK, which was greater in aortic smooth muscle from hypertensive rats than from normotensive rats. NE-induced JNK phosphorylation was significantly inhibited by SP600125 and the conventional-type PKC (cPKC) inhibitor Gö6976, but not by the Rho kinase inhibitor Y27632 or the phosphatidylinositol 3-kinase inhibitor LY294002. Thymeleatoxin, a selective activator of cPKC, increased JNK phosphorylation, which was inhibited by Gö6976. SP600125 attenuated the phosphorylation of caldesmon, an actin-binding protein whose phosphorylation is increased by NE. These results show that JNK contributes to NE-mediated contraction through phosphorylation of caldesmon in rat aortic smooth muscle, and that this effect is regulated by the PKC pathway, especially cPKC.
Collapse
Affiliation(s)
- Youn Ri Lee
- Department of Physiology, College of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Choong-Buk, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|