1
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
2
|
Regional Targeting of Bladder and Urethra Afferents in the Lumbosacral Spinal Cord of Male and Female Rats: A Multiscale Analysis. eNeuro 2021; 8:ENEURO.0364-21.2021. [PMID: 34772694 PMCID: PMC8690816 DOI: 10.1523/eneuro.0364-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor circuits of the lumbosacral spinal cord are required for lower urinary tract (LUT) regulation as well as being engaged in pelvic pain states. To date, no molecular markers have been identified to enable specific visualization of LUT afferents, which are embedded within spinal cord segments that also subserve somatic functions. Moreover, previous studies have not fully investigated the patterning within or across spinal segments, compared afferent innervation of the bladder and urethra, or explored possible structural sex differences in these pathways. We have addressed these questions in adult Sprague Dawley rats, using intramural microinjection of the tract tracer, B subunit of cholera toxin (CTB). Afferent distribution was analyzed within individual sections and 3D reconstructions from sections across four spinal cord segments (L5-S2), and in cleared intact spinal cord viewed with light sheet microscopy. Simultaneous mapping of preganglionic neurons showed their location throughout S1 but restricted to the caudal half of L6. Afferents from both LUT regions extended from L5 to S2, even where preganglionic motor pathways were absent. In L6 and S1, most afferents were associated with the sacral preganglionic nucleus (SPN) and sacral dorsal commissural nucleus (SDCom), with very few in the superficial laminae of the dorsal horn. Spinal innervation patterns by bladder and urethra afferents were remarkably similar, likewise the patterning in male and female rats. In conclusion, microscale to macroscale mapping has identified distinct features of LUT afferent projections to the lumbosacral cord and provided a new anatomic approach for future studies on plasticity, injury responses, and modeling of these pathways.
Collapse
|
3
|
Coolen RL, Cambier JC, Spantidea PI, van Asselt E, Blok BFM. Androgen receptors in areas of the spinal cord and brainstem: A study in adult male cats. J Anat 2021; 239:125-135. [PMID: 33619726 PMCID: PMC8197961 DOI: 10.1111/joa.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Sex hormones, including androgens and estrogens, play an important role in autonomic, reproductive and sexual behavior. The areas that are important in these behaviors lie within the spinal cord and brainstem. Relevant dysfunctional behavior in patients with altered androgen availability or androgen receptor sensitivity might be explained by the distribution of androgens and their receptors in the central nervous system. We hypothesize that autonomic dysfunction is correlated with the androgen sensitivity of spinal cord and brainstem areas responsible for autonomic functions. In this study, androgen receptor immunoreactive (AR‐IR) nuclei in the spinal cord and brainstem were studied using the androgen receptor antibody PG21 in four uncastrated young adult male cats. A dense distribution of AR‐IR nuclei was detected in the superior layers of the dorsal horn, including lamina I. Intensely stained nuclei, but less densely distributed, were found in lamina X and preganglionic sympathetic and parasympathetic cells of the intermediolateral cell column. Areas in the caudal brainstem showing a high density of AR‐IR nuclei included the area postrema, the dorsal motor vagus nucleus and the retrotrapezoid nucleus. More cranially, the central linear nucleus in the pons contained a dense distribution of AR‐IR nuclei. The mesencephalic periaqueductal gray (PAG) showed a dense distribution of AR‐IR nuclei apart from the most central part of the PAG directly adjacent to the ependymal lining. Other areas in the mesencephalon with a dense distribution of AR‐IR nuclei were the dorsal raphe nucleus, the retrorubral nucleus, the substantia nigra and the ventral tegmental area of Tsai. It is concluded that AR‐IR nuclei are located in specific areas of the central nervous system that are involved in the control of sensory function and autonomic behavior. Furthermore, damage of these AR‐IR areas might explain related dysfunction in humans.
Collapse
Affiliation(s)
- Rosa L Coolen
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Els van Asselt
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bertil F M Blok
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Moscatelli A, Nimbi FM, Ciotti S, Jannini EA. Haptic and Somesthetic Communication in Sexual Medicine. Sex Med Rev 2020; 9:267-279. [PMID: 32690471 DOI: 10.1016/j.sxmr.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The word "haptics" refers to sensory inputs arising from receptors in the skin and in the musculoskeletal system, particularly crucial in sexual economy. Haptic stimuli provide information about mechanical properties of touched objects and about the position and motion of the body. An important area in this field is the development of robotic interfaces for communication through the "haptic channel," which typically requires a collaboration between engineers, neuroscientists, and psychologists. Many aspects of human sexuality, such as arousal and intercourse, can be considered from a haptic perspective. OBJECTIVES To review the current literature on haptics and somatosensation, and discuss potential applications of haptic interfaces in sexual medicine. METHODS Articles for this review were collected based on the results of a bibliographic search of relevant papers in Cochrane Library, Google Scholar, Web of Science, Scopus, and EBSCO. The search terms used, including asterisks, were "haptic∗," "somatosensor∗," "sexual∗," and related terms describing the role of touch, technology, and sexuality. Additional terms included "interface∗," "touch," and "sex∗." RESULTS We have provided a functional and anatomical description of the somatosensory system in humans, with special focus on neural structures involved in affective and erotic touch. One interesting topic is the development of haptic interfaces, which are specialized robots generating mechanical signals that stimulate our somatosensory system. We provided an overview on haptic interfaces and evaluated the role of haptics in sexual medicine. CONCLUSION Haptics and studies on the neuroscience of the somatosensory system are expected to provide useful insights for sexual medicine and novel tools for sexual dysfunction. In the future, crosstalk between sexology and haptics may produce a novel generation of user-friendly haptic devices generating a higher level of realism and presence in providing stimuli. Moscatelli A, Nimbi FM, Ciotti S, et al. Haptic and Somesthetic Communication in Sexual Medicine. J Sex Med 2021;9:267-279.
Collapse
Affiliation(s)
- Alessandro Moscatelli
- Course of Physiology, Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy; Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Filippo M Nimbi
- Course of Psychosexology, Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Simone Ciotti
- Course of Physiology, Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy; Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology & Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Coria-Avila GA, Herrera-Covarrubias D, Ismail N, Pfaus JG. The role of orgasm in the development and shaping of partner preferences. SOCIOAFFECTIVE NEUROSCIENCE & PSYCHOLOGY 2016; 6:31815. [PMID: 27799080 PMCID: PMC5087697 DOI: 10.3402/snp.v6.31815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/03/2022]
Abstract
BACKGROUND The effect of orgasm on the development and shaping of partner preferences may involve a catalysis of the neurochemical mechanisms of bonding. Therefore, understanding such process is relevant for neuroscience and psychology. METHODS A systematic review was carried out using the terms Orgasm, Sexual Reward, Partner Preference, Pair Bonding, Brain, Learning, Sex, Copulation. RESULTS In humans, concentrations of arousing neurotransmitters and potential bonding neurotransmitters increase during orgasm in the cerebrospinal fluid and the bloodstream. Similarly, studies in animals indicate that those neurotransmitters (noradrenaline, oxytocin, prolactin) and others (e.g. dopamine, opioids, serotonin) modulate the appetitive and consummatory phases of sexual behavior and reward. This suggests a link between the experience of orgasm/sexual reward and the neurochemical mechanisms of pair bonding. Orgasm/reward functions as an unconditioned stimulus (UCS). Some areas in the nervous system function as UCS-detection centers, which become activated during orgasm. Partner-related cues function as conditioned stimuli (CS) and are processed in CS-detector centers. CONCLUSIONS Throughout the article, we discuss how UCS- and CS-detection centers must interact to facilitate memory consolidation and produce recognition and motivation during future social encounters.
Collapse
Affiliation(s)
| | - Deissy Herrera-Covarrubias
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - Nafissa Ismail
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - James G Pfaus
- Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Canada
| |
Collapse
|
6
|
Winder K, Linker RA, Seifert F, Deutsch M, Engelhorn T, Dörfler A, Lee DH, Hösl KM, Hilz MJ. Neuroanatomic Correlates of Female Sexual Dysfunction in Multiple Sclerosis. Ann Neurol 2016; 80:490-8. [DOI: 10.1002/ana.24746] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/09/2016] [Accepted: 07/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Klemens Winder
- Department of Neurology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Ralf A. Linker
- Department of Neurology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Frank Seifert
- Department of Neurology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Martina Deutsch
- Department of Neurology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Tobias Engelhorn
- Department of Neuroradiology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Arnd Dörfler
- Department of Neuroradiology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - De-Hyung Lee
- Department of Neurology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Katharina M. Hösl
- Department of Psychiatry and Psychotherapy; Paracelsus Medical University; Nürnberg Germany
| | - Max J. Hilz
- Department of Neurology; University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
7
|
Alexander MS, Kozyrev N, Bosma RL, Figley CR, Richards JS, Stroman PW. fMRI Localization of Spinal Cord Processing Underlying Female Sexual Arousal. JOURNAL OF SEX & MARITAL THERAPY 2016; 42:36-47. [PMID: 25635474 DOI: 10.1080/0092623x.2015.1010674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using functional magnetic resonance imaging, the authors aimed to determine the roles of the human spinal cord in mediating sexual responses in women. Functional magnetic resonance imaging of the entire lower thoracic, lumbar, and sacral spinal cord was performed using a sexual stimulation paradigm designed to elicit psychological and physical components of sexual arousal. Responses were measured in 9 healthy adult women during 3 consecutive conditions: (a) erotic audiovisual, (b) manual clitoral, and (c) audiovisual plus manual stimulation. Functional magnetic resonance imaging results in healthy subjects demonstrate that this method is sensitive for mapping sexual function in the spinal cord, and identify several key regions involved in human sexual response, including the intermediolateral cell column, the dorsal commissural nucleus, and the sacral parasympathetic nucleus. Using spinal functional magnetic resonance imaging, this study identified many of the spinal cord regions involved in female sexual responses. Results from audiovisual and manual clitoral stimulation correspond with previous data regarding lumbar and sacral neurologic changes during sexual arousal. This study provides the first characterization of neural activity in the human spinal cord underlying healthy female sexual responses and sets a foundation for future studies aimed at mapping changes that result from sexual dysfunction, spinal cord trauma or disease.
Collapse
Affiliation(s)
- Marcalee S Alexander
- a Department of Physical Medicine and Rehabilitation , University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - Natalie Kozyrev
- b Centre for Neuroscience Studies , Queen's University , Kingston , Ontario , Canada
| | - Rachael L Bosma
- b Centre for Neuroscience Studies , Queen's University , Kingston , Ontario , Canada
| | - Chase R Figley
- b Centre for Neuroscience Studies , Queen's University , Kingston , Ontario , Canada
| | - J Scott Richards
- a Department of Physical Medicine and Rehabilitation , University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - Patrick W Stroman
- b Centre for Neuroscience Studies , Queen's University , Kingston , Ontario , Canada
| |
Collapse
|
8
|
Marson L, Giamberardino MA, Costantini R, Czakanski P, Wesselmann U. Animal Models for the Study of Female Sexual Dysfunction. Sex Med Rev 2015; 1:108-122. [PMID: 27784584 DOI: 10.1002/smrj.14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. AIM To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. METHODS Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. MAIN OUTCOMES MEASURES Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. RESULTS The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women's sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. CONCLUSIONS Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain. These models are important for understanding the etiology of female sexual function and for future development of pharmacological treatments for sexual dysfunctions with or without pain. Marson L, Giamberardino MA, Costantini R, Czakanski P, and Wesselmann U. Animal models for the study of female sexual dysfunction. Sex Med Rev 2013;1:108-122.
Collapse
Affiliation(s)
- Lesley Marson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | - Peter Czakanski
- University of Alabama at Birmingham-Departments of Anesthesiology and Obstetrics & Gynecology, Birmingham, AL, USA
| | - Ursula Wesselmann
- University of Alabama at Birmingham-Departments of Anesthesiology and Neurology, Birmingham, AL, USA
| |
Collapse
|
9
|
Winder K, Seifert F, Koehn J, Deutsch M, Engelhorn T, Dörfler A, Lee DH, Linker RA, Hilz MJ. Site and size of multiple sclerosis lesions predict enhanced or decreased female orgasmic function. J Neurol 2015; 262:2731-8. [DOI: 10.1007/s00415-015-7907-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
|
10
|
Iyilikci O, Baxter S, Balthazart J, Ball GF. Fos expression in monoaminergic cell groups in response to sociosexual interactions in male and female Japanese quail. Behav Neurosci 2014; 128:48-60. [PMID: 24512065 DOI: 10.1037/a0035427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Monoaminergic neurotransmitters regulate different components of sexual behaviors, but how the different monoaminergic cell groups selectively regulate these behaviors is not well understood. We examined the potential contribution of these different cell groups in the control of different aspects of sexual behaviors in male and female quail. We used double-label immunohistochemistry, labeling the protein product of the immediate early gene, Fos, along with tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH), markers for catecholaminergic or indolaminergic cells, respectively. Rhythmic Cloacal Sphincter Movements (RCSM) were recorded as a measure of male appetitive sexual behavior. Consummatory sexual behaviors were evaluated based on the species-typical copulation sequence. Enhanced Fos expression in the medial preoptic nucleus and bed nucleus of the stria terminalis was observed in association with both physical and visual contact to the opposite sex for males, but not for females. Fos induction associated with physical contact was observed in the ventral tegmental area and anterior periaqueductal gray in both sexes. In males only, the number of Fos-immunoreactive (ir) cells increased in the visual contact condition in these 2 dopaminergic cell groups, however no significant effect was observed for double-labeled TH-Fos-ir cells. In addition, consummatory but not appetitive sexual behavior increased Fos expression in TPH-ir cells in the raphe pallidus of males. This increase following physical but not visual contact agrees with the notion that activation of the serotoninergic system is implicated in the development of sexual satiation but not activated by simply viewing a female, in contrast to the dopaminergic system.
Collapse
|
11
|
Neural mechanisms of female sexual behavior in the rat; comparison with male ejaculatory control. Pharmacol Biochem Behav 2014; 121:16-30. [DOI: 10.1016/j.pbb.2013.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023]
|
12
|
Neurobiology of social attachments. Neurosci Biobehav Rev 2014; 43:173-82. [DOI: 10.1016/j.neubiorev.2014.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/05/2014] [Accepted: 04/10/2014] [Indexed: 01/21/2023]
|
13
|
Brain neuronal activation induced by flibanserin treatment in female rats. Psychopharmacology (Berl) 2013; 230:639-52. [PMID: 23857113 DOI: 10.1007/s00213-013-3194-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
RATIONALE Flibanserin, a 5-HT1A agonist and 5-HT2A antagonist, is developed for the treatment of hypoactive sexual desire disorder in women, and its efficacy has been evidenced in several clinical studies. Flibanserin prosexual effects have been also evidenced in preclinical animal models. However, the mechanism of action of flibanserin remains not fully understood. OBJECTIVE The aim of the present study was to examine brain neuronal activation in female rats treated with flibanserin, using single immunocytochemical labeling of Fos protein, a marker of neuronal activation, and co-localization of Fos and catecholaminergic marker. METHOD Six groups of female rats received either acute or chronic administrations of vehicle, flibanserin 15 mg/kg or flibanserin 45 mg/kg. The brains were collected and processed for immunocytochemical labeling. RESULTS Acute flibanserin increased levels of Fos immunoreactivity in the nucleus accumbens, arcuate hypothalamic nucleus, locus coeruleus, lateral paragigantocellular nucleus, and nucleus of the solitary tract. Chronic 22-day treatment with flibanserin increased Fos expression in the medial preoptic area and arcuate nucleus of the hypothalamus, ventral tegmental area, locus coeruleus, and lateral paragigantocellular nucleus. Both acute and chronic flibanserin increased the density of activated catecholaminergic neurons in the ventral tegmental area but not in the locus coeruleus. CONCLUSION Altogether, our results showed that flibanserin, at the dose known to enhance female sexual motivation, preferentially activated the brain regions belonging to the mesolimbic dopaminergic pathway and hypothalamic structures involved in the integration of sexual cues related to sexual motivation.
Collapse
|
14
|
Ayala C, Pennacchio GE, Soaje M, Carreño NB, Bittencourt JC, Jahn GA, Celis ME, Valdez SR. Effects of thyroid status on NEI concentration in specific brain areas related to reproduction during the estrous cycle. Peptides 2013; 49:74-80. [PMID: 24028792 DOI: 10.1016/j.peptides.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023]
Abstract
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina; Sección de Desarrollo Cerebral Perinatal (SPBD), Instituto de Histología y Embriología Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Parque General San Martín, CP 5500 Mendoza, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Piekarski DJ, Zhao S, Jennings KJ, Iwasa T, Legan SJ, Mikkelsen JD, Tsutsui K, Kriegsfeld LJ. Gonadotropin-inhibitory hormone reduces sexual motivation but not lordosis behavior in female Syrian hamsters (Mesocricetus auratus). Horm Behav 2013; 64:501-10. [PMID: 23827890 PMCID: PMC3955721 DOI: 10.1016/j.yhbeh.2013.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
Reproductive success is maximized when female sexual motivation and behavior coincide with the time of optimal fertility. Both processes depend upon coordinated hormonal events, beginning with signaling by the gonadotropin-releasing hormone (GnRH) neuronal system. Two neuropeptidergic systems that lie upstream of GnRH, gonadotropin-inhibitory hormone (GnIH; also known as RFamide related peptide-3) and kisspeptin, are potent inhibitory and excitatory modulators of GnRH, respectively, that participate in the timing of the preovulatory luteinizing hormone (LH) surge and ovulation. Whether these neuropeptides serve as neuromodulators to coordinate female sexual behavior with the limited window of fertility has not been thoroughly explored. In the present study, either intact or ovariectomized, hormone-treated female hamsters were implanted for fifteen days with chronic release osmotic pumps filled with GnIH or saline. The effect of GnIH on sexual motivation, vaginal scent marking, and lordosis was examined. Following mating, FOS activation was quantified in brain regions implicated in the regulation of female sexual behavior. Intracerebroventricular administration of GnIH reduced sexual motivation and vaginal scent marking, but not lordosis behavior. GnIH administration altered FOS expression in key neural loci implicated in female reproductive behavior, including the medial preoptic area, medial amygdala and bed nucleus of the stria terminalis, independent of changes in circulating gonadal steroids and kisspeptin cell activation. Together, these data point to GnIH as an important modulator of female proceptive sexual behavior and motivation, independent of downstream alterations in sex steroid production.
Collapse
Affiliation(s)
| | - Sheng Zhao
- Department of Psychology, University of California, Berkeley, CA, USA
| | | | - Takeshi Iwasa
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Sandra J. Legan
- Department of Physiology, University of Kentucky, Lexington, KY USA
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, USA
- Department of Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Please Address Correspondence to: Lance J. Kriegsfeld, PhD, Neurobiology Laboratory, Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, #1650, University of California, Berkeley, CA 94720-1650, Phone: (510) 642-5148, Fax: (510) 642-5293,
| |
Collapse
|
16
|
Castiglione F, Bergamini A, Russo A, La Croce G, Castagna G, Colciago G, Salonia A, Rigatti P, Montorsi F, Hedlund P. Inhibition of phosphodiesterase 4 enhances clitoral and vaginal blood flow responses to dorsal clitoral nerve stimulation or PGE1 in anesthetized female rats. J Sex Med 2013; 10:939-50. [PMID: 23347325 DOI: 10.1111/jsm.12058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION.: Cyclic adenosine 3'5' monophosphate (cAMP) is produced by adenylate cyclase after activation by, e.g., vasoactive intestinal polypeptide or prostaglandin E1 (PGE1). The cAMP-degrading phosphodiesterase 4 (PDE4) is expressed in the vagina and clitoris, but no information is available on the functional role for PDE4-related signals in the female neurovascular genital response. AIM.: The aim of this study is to study the effect of inhibition of PDE4 with rolipram on nerve- and PGE1-induced vaginal and clitoral blood flow responses of rat. METHODS.: Measure of clitoral and vaginal blood flow and blood pressure in anesthetized rats during activation of the dorsal clitoral nerve (DCN) before and after intraperitoneal administration of rolipram or sildenafil (phosphodiesterase type 5 inhibitors [PDE5]) and nitro-L-arginine (L-NNA) (nitric oxide synthase inhibitor). Effect by topical administration of PGE1 on genital blood flow was also evaluated. MAIN OUTCOME MEASURE.: Blood flow was recorded as tissue perfusion units (TPU) by a Laser Doppler Flowmeter. Mean arterial blood pressure (MAP) was recorded (cmH2 O) in the carotid artery. Blood flow responses are expressed as TPU/MAP. Unpaired t-test and an analysis of variance were used. RESULTS.: Compared with control stimulations, rolipram (0.3 mg/kg) caused a twofold increase in peak blood flow (P < 0.05) and fourfold increase of the rate of clitoral blood flow during activation of the DCN (P < 0.05). Simultaneously, a twofold increase in peak blood flow and threefold increase in rate of blood flow were noted in the vagina (P < 0.05). Similar effects were noted for sildenafil (0.2 mg/kg) (P < 0.05). Inhibitory effects by L-NNA (60 mg/kg) on blood flow responses to DCN activation were significantly lower for rats treated with rolipram than with sildenafil (P < 0.05). PGE1-induced (10 μg) blood flow responses were significantly higher (P < 0.05) in rats treated with rolipram than with sildenafil. CONCLUSIONS.: These findings suggest that the cAMP/PDE4 system may be of similar functional importance as the nitric oxide/cyclic guanosine monophosphate/PDE5 pathway for neurovascular genital responses of the female rat.
Collapse
Affiliation(s)
- Fabio Castiglione
- Urological Research Institute, Department of Urology, San Raffaele Hospital, Via Olgettina 58, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ranson RN, Connelly JH, Santer RM, Watson AHD. Nuclear expression of PG-21, SRC-1, and pCREB in regions of the lumbosacral spinal cord involved in pelvic innervation in young adult and aged rats. Anat Cell Biol 2012; 45:241-58. [PMID: 23301192 PMCID: PMC3531588 DOI: 10.5115/acb.2012.45.4.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022] Open
Abstract
In rats, ageing results in dysfunctional patterns of micturition and diminished sexual reflexes that may reflect degenerative changes within spinal circuitry. In both sexes the dorsal lateral nucleus and the spinal nucleus of the bulbospongiosus, which lie in the L5-S1 spinal segments, contain motor neurons that innervate perineal muscles, and the external anal and urethral sphincters. Neurons in the sacral parasympathetic nucleus of these segments provide autonomic control of the bladder, cervix and penis and other lower urinary tract structures. Interneurons in the dorsal gray commissure and dorsal horn have also been implicated in lower urinary tract function. This study investigates the cellular localisation of PG-21 androgen receptors, steroid receptor co-activator one (SRC-1) and the phosphorylated form of c-AMP response element binding protein (pCREB) within these spinal nuclei. These are components of signalling pathways that mediate cellular responses to steroid hormones and neurotrophins. Nuclear expression of PG-21 androgen receptors, SRC-1 and pCREB in young and aged rats was quantified using immunohistochemistry. There was a reduction in the number of spinal neurons expressing these molecules in the aged males while in aged females, SRC-1 and pCREB expression was largely unchanged. This suggests that the observed age-related changes may be linked to declining testosterone levels. Acute testosterone therapy restored expression of PG-21 androgen receptor in aged and orchidectomised male rats, however levels of re-expression varied within different nuclei suggesting a more prolonged period of hormone replacement may be required for full restoration.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK. ; School of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
18
|
Parada M, Vargas EB, Kyres M, Burnside K, Pfaus JG. The role of ovarian hormones in sexual reward states of the female rat. Horm Behav 2012; 62:442-7. [PMID: 22902894 DOI: 10.1016/j.yhbeh.2012.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
To what extent does the reward value of sexual stimulation in females depend on ovarian hormones? The effects of estradiol benzoate (EB) and progesterone (P) were examined on the acquisition and expression of sexual reward induced by paced copulation and clitoral stimulation (CLS) in ovariectomized (OVX) rats. In experiment 1 we examined the expression of a pacing-induced conditioned place preference (CPP). Ovariectomized, hormone-primed rats were given experience with paced copulation associated with one side of a CPP apparatus. Changing hormonal status prior to the final CPP test did not alter pacing-induced CPP. However, subsequent partial extinction of CPP was observed only in rats primed with EB+P, a treatment previously shown to induce sexual desire and receptivity. In Experiment 2, significant CLS-induced CPP developed in ovariectomized rats regardless of hormone priming. Our results show that the expression of the sexual reward state induced by paced copulation, and CLS in particular, is independent of hormone priming. We propose that ovarian hormones sensitize sensory and motor pathways necessary for sexual behavior and stimulation to induce reward.
Collapse
Affiliation(s)
- Mayte Parada
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montréal, QC Canada.
| | | | | | | | | |
Collapse
|
19
|
Zouhairi N, Ba-M'hamed S, Bennis M. Maternal prenatal stress in rats influences c-fos expression in the spinal cord of the offspring. Acta Histochem 2012; 114:525-33. [PMID: 22000863 DOI: 10.1016/j.acthis.2011.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/17/2022]
Abstract
Previous studies in humans have reported a link between maternal stress and disturbed infant physiological behavior. The objective of our study was to examine in experimental rats how maternal prenatal stress induced by a forced swim test affects offspring afferent spinal responses mediated by stimulation of vaginocervical receptors. The activation of spinal cord neurons showing c-fos expression was examined following vaginocervical mechanical stimulation in adult rats, which were the offspring of dams exposed to gestational stress from E10 until delivery. Vaginocervical stimulation of both prenatal-stressed and non-prenatal-stressed rats induced an increase in immunoreactive protein in the spinal cord ranging from T12 to S1 segmental levels. However, a significantly higher (40%) increase in the expression of Fos-immunoreactive neurons was observed in vaginocervical stimulated prenatally stressed rats than in non-stimulated prenatally stressed ones. This increase was higher in L5-S1 levels than in T12-L4. When the regional distribution was examined, results showed that up to 80% of activated neurons were located in the dorsal horn in both non-stimulated prenatally stressed and stimulated prenatally stressed groups, with a significantly higher density in the latter. Our results demonstrate that maternal prenatal stress can have consequences on vaginocervical responses conveyed to the spinal cord. The increase in Fos labeled neurons in T12-S1 in prenatally stressed rats induced by vaginocervical stimulation suggests the hypersensitivity of the genital tract associated with activation of spinal circuits spanning multiple segments.
Collapse
Affiliation(s)
- Nadia Zouhairi
- Laboratoire de Pharmacologie, Neurobiologie et Comportement, Unité associée au CNRST, Université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Morocco
| | | | | |
Collapse
|
20
|
Georgiadis JR, Kringelbach ML. The human sexual response cycle: brain imaging evidence linking sex to other pleasures. Prog Neurobiol 2012; 98:49-81. [PMID: 22609047 DOI: 10.1016/j.pneurobio.2012.05.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/21/2012] [Accepted: 05/08/2012] [Indexed: 12/30/2022]
Abstract
Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable to that involved in processing other rewarding stimuli. Sexual behavior clearly follows the established principles and phases for wanting, liking and satiety involved in the pleasure cycle of other rewards. The studies have uncovered the brain networks involved in sexual wanting or motivation/anticipation, as well as sexual liking or arousal/consummation, while there is very little data on sexual satiety or post-orgasmic refractory period. Human sexual behavior also interacts with other pleasures, most notably social interaction and high arousal states. We discuss the changes in the underlying brain networks supporting sexual behavior in the context of the pleasure cycle, the changes to this cycle over the individual's life-time and the interactions between them. Overall, it is clear from the data that the functional neuroanatomy of sex is very similar to that of other pleasures and that it is unlikely that there is anything special about the brain mechanisms and networks underlying sex.
Collapse
Affiliation(s)
- J R Georgiadis
- Department of Neuroscience/Section Anatomy, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
| | | |
Collapse
|
21
|
Normandin JJ, Murphy AZ. Somatic genital reflexes in rats with a nod to humans: anatomy, physiology, and the role of the social neuropeptides. Horm Behav 2011; 59:656-65. [PMID: 21338605 PMCID: PMC3105176 DOI: 10.1016/j.yhbeh.2011.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/31/2022]
Abstract
Somatic genital reflexes such as ejaculation and vaginocervical contractions are produced through the striated muscles associated with the genitalia. The coordination of these reflexes is surprisingly complex and involves a number of lumbosacral spinal and supraspinal systems. The rat model has been proven to be an excellent source of information regarding these mechanisms, and many parallels to research in humans can be drawn. An understanding of the spinal systems involving the lumbosacral spinal cord, both efferent and afferent, has been generated through decades of research. Spinal and supraspinal mechanisms of descending excitation, through a spinal ejaculation generator in the lumbar spinal cord and thalamus, and descending inhibition, through the ventrolateral medulla, have been identified and characterized both anatomically and physiologically. In addition, delineation of the neural circuits whereby ascending genitosensory information regarding the regulation of somatic genital reflexes is relayed supraspinally has also been the topic of recent investigation. Lastly, the importance of the "social neuropeptides" oxytocin and vasopressin in the regulation of somatic genital reflexes, and associated sociosexual behaviors, is emerging. This work not only has implications for understanding how nervous systems generate sexual behavior but also provides treatment targets for sexual dysfunction in people.
Collapse
Affiliation(s)
- Joseph J. Normandin
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-5010
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-5010
| | - Anne Z. Murphy
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-5010
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-5010
| |
Collapse
|
22
|
Parada M, Abdul-Ahad F, Censi S, Sparks L, Pfaus JG. Context alters the ability of clitoral stimulation to induce a sexually-conditioned partner preference in the rat. Horm Behav 2011; 59:520-7. [PMID: 21310156 DOI: 10.1016/j.yhbeh.2011.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
Abstract
We have shown previously that clitoral stimulation (CLS) of female rats induces significant conditioned place preference (CPP), indicating that it is rewarding. The present study asked whether CLS could induce a conditioned partner preference. In the first experiment, sexually naïve females received 10 alternating trials of CLS and No-CLS in the presence of a male rat behind a wire-mesh screen. For one group, CLS was made in the presence of the male scented with almond extract. On alternating trials, those females received sham CLS in the presence of an unscented male behind the screen. The order was reversed for the other group. After 5 trials in each condition, females were placed into an open field with two sexually vigorous males, one scented and the other unscented. Contrary to expectation, females displayed a preference for the male associated with sham CLS. The second experiment examined whether a partner preference could be conditioned by associating CLS with the almond odor alone. A new group of sexually naive females received the same CLS-odor, No-CLS-No Odor pairings as above, but with the odor presented on cotton gauze in the chamber. During the final open field test, those females selectively solicited the scented male. We conclude that CLS that induces CPP also induces conditioned partner preference. However, we propose that CLS in the presence of an inaccessible male created a sexual inhibitory state for female rats.
Collapse
Affiliation(s)
- Mayte Parada
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montréal, QC H4B1R6, Canada.
| | | | | | | | | |
Collapse
|
23
|
Johnson RD, Chadha HK, Dugan VP, Gupta DS, Ferrero SL, Hubscher CH. Bilateral bulbospinal projections to pudendal motoneuron circuitry after chronic spinal cord hemisection injury as revealed by transsynaptic tracing with pseudorabies virus. J Neurotrauma 2011; 28:595-605. [PMID: 21265606 DOI: 10.1089/neu.2009.1180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Complications of spinal cord injury in males include losing brainstem control of pudendal nerve-innervated perineal muscles involved in erection and ejaculation. We previously described, in adult male rats, a bulbospinal pathway originating in a discrete area within the medullary gigantocellularis (GiA/Gi), and lateral paragigantocellularis (LPGi) nuclei, which when electrically microstimulated unilaterally, produces a bilateral inhibition of pudendal motoneuron reflex circuitry after crossing to the contralateral spinal cord below T8. Microstimulation following a long-term lateral hemisection, however, revealed reflex inhibition from both sides of the medulla, suggesting the development or unmasking of an injury-induced bulbospinal pathway crossing the midline cranial to the spinal lesion. In the present study, we investigated this pathway anatomically using the transsynaptic neuronal tracer pseudorabies virus (PRV) injected unilaterally into the bulbospongiosus muscle in uninjured controls, and ipsilateral to a chronic (1-2 months) unilateral lesion of the lateral funiculus. At 4.75 days post-injection, PRV-labeled cells were found bilaterally in the GiA/Gi/LPGi with equal side-to-side labeling in uninjured controls, and with significantly greater labeling contralateral to the lesion/injection in lesioned animals. The finding of PRV-labeled neurons on both sides of the medulla after removing the mid-thoracic spinal pathway on one side provides anatomical evidence for the bilaterality in both the brainstem origin and the lumbosacral pudendal circuit termination of the spared lateral funicular bulbospinal pathway. This also suggests that this bilaterality may contribute to the quick functional recovery of bladder and sexual functions observed in animals and humans with lateral hemisection injury.
Collapse
Affiliation(s)
- Richard D Johnson
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida 32610-0144, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Normandin JJ, Murphy AZ. Excitotoxic lesions of the nucleus paragigantocellularis facilitate male sexual behavior but attenuate female sexual behavior in rats. Neuroscience 2011; 175:212-23. [PMID: 21144886 PMCID: PMC3038650 DOI: 10.1016/j.neuroscience.2010.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/11/2010] [Accepted: 11/13/2010] [Indexed: 01/23/2023]
Abstract
Little is known regarding the descending inhibitory control of genital reflexes such as ejaculation and vaginal contractions. The brainstem nucleus paragigantocellularis (nPGi) projects bilaterally to the lumbosacral motoneuron pools that innervate the genital musculature of both male and female rats. Electrolytic nPGi lesions facilitate ejaculation in males, leading to the hypothesis that the nPGi is the source of descending inhibition to genital reflexes. However, the function of the nPGi in female sexual behavior remains to be elucidated. To this end, male and female rats received bilateral excitotoxic fiber-sparing lesions of the nPGi, and sexual behavior and sexual behavior-induced Fos expression were examined. In males, nPGi lesions facilitated copulation, supporting the hypothesis that the nPGi, and not fibers-of-passage, is the source of descending inhibition of genital reflexes in male rats. nPGi lesions in males did not alter sexual behavior-induced Fos expression in any brain region examined. nPGi-lesioned females spent significantly less time mating with stimulus males and had significantly longer ejaculation-return latencies compared to baseline. These results did not significantly differ from control females, but this trend warranted further analysis of the reinforcing value of sexual behavior. Both lesioned and non-lesioned females formed a conditioned place preference (CPP) for artificial vaginocervical stimulation (aVCS). However, post-reinforcement, nPGi-lesioned females did not differ in the percentage of time spent in the non-reinforced chamber versus the reinforced chamber, suggesting a weakened CPP for aVCS. nPGi lesions in females reduced sexual behavior-induced Fos expression throughout the hypothalamus and amygdala. Taken together, these results suggest that while nPGi lesions in males facilitate copulation, such lesions in females attenuate several aspects of sexual behavior resulting in a reduction in the rewarding value of copulation that may be mediated by nPGi control of genital reflexes. This work has important implications for the understanding and treatment of sexual dysfunction in people including delayed/premature ejaculation, involuntary vaginal spasms, and pain during intercourse.
Collapse
Affiliation(s)
- Joseph J. Normandin
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-5010
| | - Anne Z. Murphy
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-5010
| |
Collapse
|
25
|
Gelez H, Poirier S, Facchinetti P, Allers KA, Wayman C, Bernabé J, Alexandre L, Giuliano F. Neuroanatomical distribution of the melanocortin-4 receptors in male and female rodent brain. J Chem Neuroanat 2010; 40:310-24. [DOI: 10.1016/j.jchemneu.2010.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
|
26
|
Giuliano F, Pfaus J, Balasubramanian S, Hedlund P, Hisasue SI, Marson L, Wallen K. Experimental Models for the Study of Female and Male Sexual Function. J Sex Med 2010; 7:2970-95. [DOI: 10.1111/j.1743-6109.2010.01960.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Hahn JD, Swanson LW. Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. BRAIN RESEARCH REVIEWS 2010; 64:14-103. [PMID: 20170674 PMCID: PMC2886810 DOI: 10.1016/j.brainresrev.2010.02.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/26/2022]
Abstract
We have analyzed at high resolution the neuroanatomical connections of the juxtaparaventricular region of the lateral hypothalamic area (LHAjp); as a control and in comparison to this, we also performed a preliminary analysis of a nearby LHA region that is dorsal to the fornix, namely the LHA suprafornical region (LHAs). The connections of these LHA regions were revealed with a coinjection tract-tracing technique involving a retrograde (cholera toxin B subunit) and anterograde (Phaseolus vulgaris leucoagglutinin) tracer. The LHAjp and LHAs together connect with almost every major division of the cerebrum and cerebrospinal trunk, but their connection profiles are markedly different and distinct. In simple terms, the connections of the LHAjp indicate a possible primary role in the modulation of defensive behavior; for the LHAs, a role in the modulation of ingestive behavior is suggested. However, the relation of the LHAjp and LHAs to potential modulation of these behaviors, as indicated by their neuroanatomical connections, appears to be highly integrative as it includes each of the major functional divisions of the nervous system that together determine behavior, i.e., cognitive, state, sensory, and motor. Furthermore, although a primary role is indicated for each region with respect to a particular mode of behavior, intermode modulation of behavior is also indicated. In summary, the extrinsic connections of the LHAjp and LHAs (so far as we have described them) suggest that these regions have a profoundly integrative role in which they may participate in the orchestrated modulation of elaborate behavioral repertoires.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA.
| | | |
Collapse
|
28
|
Gelez H, Poirier S, Facchinetti P, Allers KA, Wayman C, Alexandre L, Giuliano F. Neuroanatomical Evidence for a Role of Central Melanocortin-4 Receptors and Oxytocin in the Efferent Control of the Rodent Clitoris and Vagina. J Sex Med 2010; 7:2056-2067. [DOI: 10.1111/j.1743-6109.2010.01760.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Richards N, Wayman C, Allers KA. Neuronal Activity in the Hypothalamic Paraventricular Nucleus Varies Across the Estrous Cycle in Anesthetized Female Rats: Effects of Dopamine Receptor Agonism. J Sex Med 2010; 7:1104-15. [DOI: 10.1111/j.1743-6109.2009.01675.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Allers KA, Richards N, Scott L, Sweatman C, Cheung J, Reynolds D, Casey JH, Wayman C. II. Slow Oscillations in Vaginal Blood Flow: Regulation of Vaginal Blood Flow Patterns in Rat by Central and Autonomic Mechanisms. J Sex Med 2010; 7:1088-103. [DOI: 10.1111/j.1743-6109.2009.01466.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Direct projections from the sacral spinal cord to the medial preoptic area in cat and guinea pig. Neuroscience 2009; 164:1732-43. [DOI: 10.1016/j.neuroscience.2009.08.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 01/20/2023]
|
32
|
Georgiadis JR, Reinders AATS, Paans AMJ, Renken R, Kortekaas R. Men versus women on sexual brain function: prominent differences during tactile genital stimulation, but not during orgasm. Hum Brain Mapp 2009; 30:3089-101. [PMID: 19219848 DOI: 10.1002/hbm.20733] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biological differences in male and female sexuality are obvious in the behavioral domain, but the central mechanisms that might explain these behavioral gender differences remain unclear. In this study, we merged two earlier positron emission tomography data sets to enable systematic comparison of the brain responses in heterosexual men and women during sexual tactile genital (penile and clitoral) stimulation and during orgasm. Gender commonalities were most evident during orgasm, a phase which demonstrated activations in the anterior lobe of the cerebellar vermis and deep cerebellar nuclei, and deactivations in the left ventromedial and orbitofrontal cortex in both men and women. During tactile genital stimulation, deactivations in the right amygdala and left fusiform gyrus were found for both genders. Marked gender differences were seen during this phase: left fronto-parietal areas (motor cortices, somatosensory area 2 and posterior parietal cortex) were activated more in women, whereas in men, the right claustrum and ventral occipitotemporal cortex showed larger activation. The only prominent gender difference during orgasm was male-biased activation of the periaqueductal gray matter. From these results, we conclude that during the sexual act, differential brain responses across genders are principally related to the stimulatory (plateau) phase and not to the orgasmic phase itself. These results add to a better understanding of the neural underpinnings of human sexuality, which might benefit treatment of psychosexual disorders.
Collapse
Affiliation(s)
- Janniko R Georgiadis
- Department of Neurosciences, Section Anatomy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Clark AS, Meerts SH, Guarraci FA. Zaprinast, a phosphodiesterase type-5 inhibitor, alters paced mating behavior in female rats. Physiol Behav 2009; 96:289-93. [PMID: 18996134 PMCID: PMC2766541 DOI: 10.1016/j.physbeh.2008.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/02/2008] [Accepted: 10/10/2008] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is the primary mediator of blood flow in female genital tissues and drugs that enhance the activity of nitric oxide, such as phosphodiesterase type-5 (PDE-5) inhibitors, increase vaginal blood flow in anesthetized rats. The goal of the present study was to test the effects of one PDE-5 inhibitor, zaprinast, on the display of sexual behaviors in gonadectomized, estrogen- and progesterone-treated female rats. Experiment 1 demonstrates that zaprinast alters paced mating behavior by lengthening the contact-return latency to ejaculation; there is a significant relationship between dose of zaprinast (range 1.5-6 mg/kg) and contact-return latency to ejaculation. Experiment 2 illustrates that zaprinast has no effect on preference for an intact male as measured in a No Contact partner preference test. Rats receiving zaprinast tend to exhibit reduced locomotor activity in both experiments. Collectively, these findings demonstrate that modulation of the NO-cGMP pathway using a PDE-5 inhibitor alters the display of paced mating behaviors in rats.
Collapse
Affiliation(s)
- Ann S Clark
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover NH 03755, USA.
| | | | | |
Collapse
|
34
|
Martin-Alguacil N, Schober JM, Sengelaub DR, Pfaff DW, Shelley DN. Clitoral sexual arousal: neuronal tracing study from the clitoris through the spinal tracts. J Urol 2008; 180:1241-8. [PMID: 18707740 PMCID: PMC2740385 DOI: 10.1016/j.juro.2008.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE Although genital tactile stimulation is regarded as a precursor to sexual arousal and a recognized initiator of central nervous system arousal, specific afferent neural pathways transmit sensory stimuli of arousal, beginning at the epithelial level on the clitoris and following the course of arousal stimuli through the central nervous system. Limited knowledge exists of the pathway from the cutaneous receptors of nerves originating in the epithelial tissue of the clitoris and continuing to spinal cord afferents. Such information may contribute to an understanding of sexual arousal, particularly in female vertebrates. We further defined the neural pathways and mechanisms responsible for arousal originating in the epithelium of the clitoris as well as related neural pathways to the spinal cord in a murine model. MATERIALS AND METHODS We performed a comprehensive review of the published relevant clinical and histological material from human and nonhuman vertebrate studies. In 29 adult female C57B1/6 mice the distribution of pelvic nerves and vessels was mapped. Gross dissection of 4 female mice was facilitated by resin injection of the vascular system in 2. Neuronal tracing was performed in 25 mice that received clitoral injection of wheat germ agglutinin-horseradish peroxidase into the clitoris and were sacrificed after 72 to 96 hours. The spinal cord and periclitoral tissue were removed and fixed. Immunohistochemistry was performed. RESULTS Gross anatomy of the mouse clitoris showed that pudendal and hypogastric nerves have a major role in the innervation of the external genitalia. Neuronal tracing revealed that the greatest nerve density was noted in the L5/6 spinal cord. The distribution extended from S1 to L2 with no labeling seen in the L3 spinal cord. Wheat germ agglutinin-horseradish peroxidase labeling was seen caudal in levels S1 through L4 and rostral in L2. CONCLUSIONS Understanding the neuroanatomy of the clitoris using a murine model may provide a valuable tool for the study of sexual arousal disorders and the further understanding of sexual function related to neural pathologies and trauma.
Collapse
Affiliation(s)
- Nieves Martin-Alguacil
- From the Department of Neurobiology and Behavior, Rockefeller University (NMA, JMS, DWP, DNS), New York, New York, Department of Anatomy and Embryology, School of Veterinary Medicine, Universidad Complutense de Madrid (NMA), Madrid, Spain, Hamot Medical Center (JMS), Erie, Pennsylvania, and Department of Psychological and Brain Sciences, Indiana University (DRS), Bloomington, Indiana
| | - Justine M. Schober
- From the Department of Neurobiology and Behavior, Rockefeller University (NMA, JMS, DWP, DNS), New York, New York, Department of Anatomy and Embryology, School of Veterinary Medicine, Universidad Complutense de Madrid (NMA), Madrid, Spain, Hamot Medical Center (JMS), Erie, Pennsylvania, and Department of Psychological and Brain Sciences, Indiana University (DRS), Bloomington, Indiana
| | - Dale R. Sengelaub
- From the Department of Neurobiology and Behavior, Rockefeller University (NMA, JMS, DWP, DNS), New York, New York, Department of Anatomy and Embryology, School of Veterinary Medicine, Universidad Complutense de Madrid (NMA), Madrid, Spain, Hamot Medical Center (JMS), Erie, Pennsylvania, and Department of Psychological and Brain Sciences, Indiana University (DRS), Bloomington, Indiana
| | - Donald W. Pfaff
- From the Department of Neurobiology and Behavior, Rockefeller University (NMA, JMS, DWP, DNS), New York, New York, Department of Anatomy and Embryology, School of Veterinary Medicine, Universidad Complutense de Madrid (NMA), Madrid, Spain, Hamot Medical Center (JMS), Erie, Pennsylvania, and Department of Psychological and Brain Sciences, Indiana University (DRS), Bloomington, Indiana
| | - Deborah N. Shelley
- From the Department of Neurobiology and Behavior, Rockefeller University (NMA, JMS, DWP, DNS), New York, New York, Department of Anatomy and Embryology, School of Veterinary Medicine, Universidad Complutense de Madrid (NMA), Madrid, Spain, Hamot Medical Center (JMS), Erie, Pennsylvania, and Department of Psychological and Brain Sciences, Indiana University (DRS), Bloomington, Indiana
| |
Collapse
|
35
|
Normandin JJ, Murphy AZ. Nucleus paragigantocellularis afferents in male and female rats: organization, gonadal steroid receptor expression, and activation during sexual behavior. J Comp Neurol 2008; 508:771-94. [PMID: 18393295 PMCID: PMC2823478 DOI: 10.1002/cne.21704] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The supraspinal regulation of genital reflexes is poorly understood. The brainstem nucleus paragigantocellularis (nPGi) of rats is a well-established source of tonic inhibition of genital reflexes. However, the organization, gonadal steroid receptor expression, and activity of nPGi afferents during sex have not been fully characterized in male and female rats. To delineate the anatomical and physiological organization of nPGi afferents, the retrograde tracer Fluoro-Gold (FG) was injected into the nPGi of sexually experienced male and female rats. Animals engaged in sexual behavior 1 hour before sacrifice. Cells containing FG, estrogen receptor-alpha (ER(alpha)), androgen receptor (AR), and the immediate-early gene product Fos were identified immunocytochemically. Retrograde labeling from the nPGi was prominent in the bed nucleus of the stria terminalis, paraventricular nucleus (PVN), posterior hypothalamus, precommissural nucleus, deep mesencephalic nucleus, and periaqueductal gray (PAG) of both sexes. Sex differences were observed in the caudal medial preoptic area (MPO), with significantly more FG+ cells observed in males, and in the PAG and inferior colliculus, where significantly more FG+ cells were observed in females. The majority of regions that contained FG+ cells also contained ER(alpha) or AR, indicating sensitivity to gonadal steroids. The proportions of FG+ cells that co-localized with sex-induced Fos was high in the PVN of both sexes and high in the MPO of males but low in the PAG of both sexes despite the large number of PAG-nPGi output neurons and Fos+ cells in both sexes. The characterization of these afferents will lead to a further understanding of the neural regulation of genital reflexes.
Collapse
Affiliation(s)
- Joseph J Normandin
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
36
|
Loyd DR, Morgan MM, Murphy AZ. Sexually dimorphic activation of the periaqueductal gray-rostral ventromedial medullary circuit during the development of tolerance to morphine in the rat. Eur J Neurosci 2008; 27:1517-24. [PMID: 18364026 PMCID: PMC2821209 DOI: 10.1111/j.1460-9568.2008.06100.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The midbrain periaqueductal gray (PAG) and its descending projections to the rostral ventromedial medulla (RVM) provides an essential neural circuit for the antinociceptive effects of opiates, and has been implicated in the development of tolerance to morphine. Systemic morphine activates a greater proportion of PAG-RVM neurons in male vs female rats, and induces tolerance to a greater degree in males. The present studies tested the hypothesis that if the PAG-RVM pathway is essential for the development of tolerance, then: (i) morphine activation of the PAG-RVM pathway should decline as tolerance develops; and (ii) sex differences in the development of tolerance to morphine should be reflected as a greater decline in the activation of this pathway in males. These hypotheses were tested in male and female rats using behavioral testing (hot-plate) and immunohistochemistry to map the activation of the PAG-RVM pathway following repeated morphine administration (5 mg/kg; s.c.). In males, morphine potency decreased from 3.0 to 6.3 mg/kg, indicating tolerance, and this was paralleled by a steady decline in the percentage of PAG-RVM output neurons activated by morphine. In contrast, in females the shift in morphine potency was significantly attenuated (D(50) 6-8.3 mg/kg), and no significant difference in the activity of PAG-RVM output neurons was noted. These results demonstrate that the greater development of tolerance to morphine administration in male rats corresponds with a significant reduction in the activation of the PAG-RVM circuit and suggest a central role for the PAG in the development of tolerance to morphine.
Collapse
Affiliation(s)
- Dayna R Loyd
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA
| | | | | |
Collapse
|
37
|
Gerrits PO, Veening JG, Blomsma SA, Mouton LJ. The nucleus para-retroambiguus: a new group of estrogen receptive cells in the caudal ventrolateral medulla of the female golden hamster. Horm Behav 2008; 53:329-41. [PMID: 18076882 DOI: 10.1016/j.yhbeh.2007.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/19/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
Receptive female hamsters display very rigid lordotic postures. Estradiol facilitates this behavior via activation of estrogen receptors. In the hamster brainstem estrogen receptor-alpha-immunoreactive neurons (ER-alpha-IR) are present in various brainstem regions including nucleus retroambiguus (NRA) in the caudal ventrolateral medulla (CVLM) and nucleus of the solitary tract. ER-alpha-IR neurons in the CVLM project to the thoracic and upper lumbar cord. However, A1 neurons in this region do not project to the spinal cord, in contrast to overlapping C1 neurons. The question now arises: are ER-alpha-IR cells in the CVLM part of the A1/C1 group, or do they belong to the NRA or do they compose a separate cluster. A study in ovariectomized female hamsters using a combination of double immunostaining and retrograde tracing techniques and measurement of soma diameters was carried out. The results showed that A1/C1 neurons in the CVLM are almost never ER-alpha-positive; neurons inside or bordering the NRA can be divided in two different types: large multipolar and small; the large NRA-neurons, projecting caudally, are neither tyrosine hydroxylase- (TH) nor ER-alpha-IR; the small neurons, bordering the NRA and projecting caudally, are ER-alpha-IR but not TH-IR. From the available evidence and the present findings it can be concluded that the group of small ER-alpha-IR neurons in the CVLM has to be considered as a distinct entity, probably involved in the autonomic physiological changes concurring with successive phases of the estrous cycle. Because the location is closely related to the NRA itself the nucleus is called nucleus para-retroambiguus, abbreviated (NPRA).
Collapse
Affiliation(s)
- P O Gerrits
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Chadha HK, Hubscher CH. Convergence of nociceptive information in the forebrain of female rats: reproductive organ response variations with stage of estrus. Exp Neurol 2007; 210:375-87. [PMID: 18096159 DOI: 10.1016/j.expneurol.2007.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/30/2022]
Abstract
Neurons in the preoptic area (POA) of the hypothalamus and the bed nucleus of stria terminalis (BST) play an important role in the neuroendocrine control of the reproductive cycle, mating behaviors and nociception. Single unit extracellular recordings were performed in the POA and BST region of 20 urethane anesthetized female rats during either the proestrus (elevated levels of estrogen/progesterone) or metestrus (low circulating hormones) stage of the estrous cycle. A total of 118 neurons in the POA and 65 neurons in the BST responded to the search stimuli, bilateral electrical stimulation of the viscerocutaneous branch of the pelvic nerve and/or sensory branch of the pudendal nerve (i.e., dorsal nerve of clitoris). Most of the neurons responding to the electrical search stimuli received a high degree of somatovisceral convergence, including inputs from the abdominal branches of the vagus, cervix, vagina, colon and skin territories on the perineum and trunk. Mean neuronal response thresholds for vaginal and cervical stimulation but not colon distention were significantly higher for animals tested during proestrus. Also, there was a shift in POA and BST neuronal responsiveness towards more inhibition and less excitation during proestrus for a variety of somatovisceral inputs. These data demonstrate that the changes in hormonal status affect the properties of POA and BST neurons, which likely relates not only to the functional importance of these inputs for reproductive behaviors but also for nociceptive processing as well.
Collapse
Affiliation(s)
- Harpreet K Chadha
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | | |
Collapse
|
39
|
Barrett LF, Lindquist KA, Bliss-Moreau E, Duncan S, Gendron M, Mize J, Brennan L. Of Mice and Men: Natural Kinds of Emotions in the Mammalian Brain? A Response to Panksepp and Izard. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2007; 2:297-312. [PMID: 19079552 PMCID: PMC2597798 DOI: 10.1111/j.1745-6916.2007.00046.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For almost 5 decades, the scientific study of emotion has been guided by the assumption that categories such as anger, sadness, and fear cut nature at its joints. Barrett (2006a) provided a comprehensive review of the empirical evidence from the study of emotion in humans and concluded that this assumption has outlived its usefulness. Panksepp and Izard have written lengthy papers (published in this issue) containing complementary but largely nonover lapping criticisms of Barrett (2006a). In our response, we address three of their concerns. First, we discuss the value of correlational versus experimental studies for evaluating the natural-kind model of emotion and refute the claim that the evidence offered in Barrett (2006a) was merely correlational. Second, we take up the issue of whether or not there is evidence for "coherently organized neural circuits for natural kinds of emotions in the mammalian brain and counter the claim that Barrett (2006a) ignored crucial evidence for existence of discrete emotions as natural kinds. Third, we address Panksepp and Izard's misconceptions of an alternative view, the conceptual act model of emotion, that was briefly discussed in Barrett (2006a). Finally, we end the article with some thoughts on how to move the scientific study of emotion beyond the debate over whether or not emotions are natural kinds.
Collapse
|
40
|
Ch'ng TH, Spear PG, Struyf F, Enquist LW. Glycoprotein D-independent spread of pseudorabies virus infection in cultured peripheral nervous system neurons in a compartmented system. J Virol 2007; 81:10742-57. [PMID: 17652377 PMCID: PMC2045490 DOI: 10.1128/jvi.00981-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments was employed. We discovered that PRV infection could spread efficiently from neurons to cells and back to neurons in the absence of gD, the viral ligand required for entry of extracellular particles. Unexpectedly, PRV infection can also spread transneuronally via axo-axonal contacts. We show that this form of interaxonal spread between neurons is gD independent and is not mediated by extracellular virions. We also found that unlike PRV gD, HSV-1 gD is required for neuron-to-cell spread of infection. Neither of the host cell gD receptors (HVEM and nectin-1) is required in target primary fibroblasts for neuron-to-cell spread of HSV-1 or PRV infection.
Collapse
Affiliation(s)
- T H Ch'ng
- Schultz Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
41
|
Loyd DR, Morgan MM, Murphy AZ. Morphine preferentially activates the periaqueductal gray-rostral ventromedial medullary pathway in the male rat: a potential mechanism for sex differences in antinociception. Neuroscience 2007; 147:456-68. [PMID: 17540508 PMCID: PMC1949345 DOI: 10.1016/j.neuroscience.2007.03.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/16/2007] [Accepted: 03/20/2007] [Indexed: 01/06/2023]
Abstract
The midbrain periaqueductal gray (PAG), and its descending projections to the rostral ventromedial medulla (RVM), provide an essential neural circuit for opioid-produced antinociception. Recent anatomical studies have reported that the projections from the PAG to the RVM are sexually dimorphic and that systemic administration of morphine significantly suppresses pain-induced activation of the PAG in male but not female rats. Given that morphine antinociception is produced in part by disinhibition of PAG output neurons, it is hypothesized that a differential activation of PAG output neurons mediates the sexually dimorphic actions of morphine. The present study examined systemic morphine-induced activation of PAG-RVM neurons in the absence of pain. The retrograde tracer Fluorogold (FG) was injected into the RVM to label PAG-RVM output neurons. Activation of PAG neurons was determined by quantifying the number of Fos-positive neurons 1 h following systemic morphine administration (4.5 mg/kg). Morphine produced comparable activation of the PAG in both male and female rats, with no significant differences in either the quantitative or qualitative distribution of Fos. While microinjection of FG into the RVM labeled significantly more PAG output neurons in female rats than male rats, very few of these neurons (20%) were activated by systemic morphine administration in comparison to males (50%). The absolute number of PAG-RVM neurons activated by morphine was also greater in males. These data demonstrate widespread disinhibition of PAG neurons following morphine administration. The greater morphine-induced activation of PAG output neurons in male compared with female rats is consistent with the greater morphine-induced antinociception observed in males.
Collapse
Affiliation(s)
- Dayna R. Loyd
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010
| | - Michael M. Morgan
- Department of Psychology, Washington State University, Vancouver, Washington 98686-9600
| | - Anne Z. Murphy
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010
| |
Collapse
|