1
|
Hu XQ, Song R, Dasgupta C, Twum-Barimah S, Liu T, Ahmed A, Hanson SF, Zhang L, Blood AB. MicroRNA-210 Mediates Hypoxic Pulmonary Hypertension in the Newborn Lamb. Hypertension 2025; 82:1151-1163. [PMID: 40265266 PMCID: PMC12077996 DOI: 10.1161/hypertensionaha.124.23061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Pulmonary hypertension of the newborn is a life-threatening disorder characterized by elevated pulmonary vascular resistance due to maladaptation of the pulmonary circulation after birth. The pathogenesis and mechanisms underlying pulmonary hypertension of the newborn remain unclear, hindering the development of effective treatment. We hypothesize that perinatal chronic hypoxia upregulates microRNA-210, which is essential for suppression of pulmonary arterial spontaneous transient outward currents (STOCs), resulting in pulmonary hypertension of the newborn. METHODS We tested this hypothesis in a large animal model of pregnant sheep and newborn lambs exposed to chronic hypoxia by comparing loss- versus gain-of-function of microRNA-210. RESULTS Chronic perinatal hypoxia increases pulmonary vascular resistance and pulmonary arterial pressure in newborn lambs. The effect was mainly mediated by hypoxia after birth in the newborn. Mechanistically, we showed a significant decrease in microRNA-210 in pulmonary arteries after birth, but newborn hypoxia abolished this birth-induced reduction. We found that microRNA-210 mimic suppressed STOCs in newborn pulmonary arteries, and knockdown of microRNA-210 by microRNA-210-LNA prevented the hypoxia-induced reduction of pulmonary arterial STOCs. In vivo loss-of-function and gain-of-function experiments reveal that microRNA-210 is essential in the hypoxia-induced suppression of pulmonary arterial STOCs, increased pulmonary vascular resistance, and pulmonary hypertension in newborn lambs. Mechanistically, microRNA-210 suppressed pulmonary arterial STOCs via downregulation of iron-sulfur cluster assembly enzyme and large-conductance Ca2+-activated K+ channels. CONCLUSIONS We provide explicit evidence that neonatal hypoxia increases microRNA-210 expression, which is essential for suppression of STOCs, resulting in pulmonary hypertension in newborn lambs. Our study reveals new insights into the mechanisms and clinically meaningful targets for treatment of pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Stephen Twum-Barimah
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| | - Abu Ahmed
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Shawn F. Hanson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Arlin B. Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA
| |
Collapse
|
2
|
Peers de Nieuwburgh M, Hunt M, Chandrasekaran P, Vincent TL, Hayes KB, Randazzo IR, Gunder M, De Bie FR, Colson A, Lu M, Wen H, Michki SN, Rychik J, Debiève F, Katzen J, Young LR, Davey MG, Flake AW, Gaynor JW, Frank DB. Chronic Hypoxia in an EXTrauterine Environment for Neonatal Development Impairs Lung Development. Am J Respir Cell Mol Biol 2025; 72:441-452. [PMID: 39453404 DOI: 10.1165/rcmb.2024-0012oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Severe fetal hypoxia poses a significant risk to lung development, resulting in severe postnatal complications. Existing chronic hypoxia animal models lack the ability to achieve pathologically reduced fetal oxygen without compromising animal development, placental blood flow, or maternal health. Using an established model of isolated chronic hypoxia involving the Extrauterine Environment for Neonatal Development, we are able to investigate the direct impact of fetal hypoxia on lung development. Oxygen delivery to preterm fetal lambs (105-110 d gestational age) delivered by cesarean section was reduced, and animals were supported using the Extrauterine Environment for Neonatal Development through the canalicular or saccular stage of lung development. Fetal lambs in hypoxic conditions showed significant growth restriction compared with their normoxic counterparts. We also observed modest aberrant vascular remodeling in the saccular group after hypoxic conditions, with decreased macrovessel numbers and microvascular endothelial cell numbers and increased peripheral vessel muscularization. In addition, fetal hypoxia resulted in enlarged distal airspaces and decreased septal wall volume. Moreover, there was a reduction in mature SFTPB (surfactant protein B) and processed SFTPC protein expression concomitant with a decrease in alveolar type 2 cell number. These findings demonstrate that maternally independent fetal hypoxia predominantly affects distal airway development, alveolar type 2 cell number, and surfactant production, with mild effects on the vasculature.
Collapse
Affiliation(s)
| | - Mallory Hunt
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tiffany L Vincent
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, and
- Service d'Obstétrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Sylvia N Michki
- Division of Cardiology
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Fréderic Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, and
- Service d'Obstétrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Jeremy Katzen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R Young
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
3
|
Shateeva VS, Simonenko SD, Khlystova MA, Selivanova EK, Borzykh AA, Gaynullina DK, Shvetsova AA. Perinatal hypoxia augments contractile impact of NADPH oxidase-derived ROS in early postnatal rat arteries. Pediatr Res 2025; 97:1220-1226. [PMID: 39127838 DOI: 10.1038/s41390-024-03466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Reactive oxygen species (ROS), including those produced by NADPH oxidase (NOX), play an important vasomotor role, especially at early postnatal period. Mechanisms for regulating vascular tone can change significantly due to neonatal asphyxia and accompanying hypoxia. We tested the hypothesis that normobaric hypoxia (8% O2) for 2 h at the second day of life changes the functional contribution of NOX-derived ROS to the regulation of agonist-induced contraction in early postnatal rats. METHODS We studied saphenous arteries from 11- to 14-day-old male offspring using isometric myography and Western blotting and assessed the content of biochemical parameters in blood serum. RESULTS The values of main biochemical parameters in blood serum and the protein content of NOXs and superoxide dismutases in arterial tissue did not differ between "Control" and "Hypoxia" pups. The NOX inhibitor VAS2870 equally reduced the contractile responses of arteries to α1-adrenoceptor agonist methoxamine in "Control" and "Hypoxia" pups, but its effect was more pronounced in the arteries from "Hypoxia" pups when vasocontraction was evoked by the agonist of thromboxane A2 receptors U46619. CONCLUSION Perinatal hypoxia at the second day of life increases procontractile influence of NOX-derived ROS to the regulation of U46619-induced vasocontraction in the systemic arteries at early postnatal ontogenesis. IMPACT Nothing is known about programming effects of perinatal hypoxia, including birth asphyxia, on the ROS-mediated regulation of contraction in systemic arteries of early postnatal organism. 2-h normobaric hypoxia (8% O2) in rats at the second day of life increases the procontractile contribution of NOX-produced ROS to the regulation of U46619-induced vasocontraction in the systemic arteries at early postnatal ontogenesis. This fact may serve as a risk factor for the development of various disorders at later developmental stages and should be considered regarding the therapy for newborns who have suffered neonatal asphyxia.
Collapse
Affiliation(s)
- Valentina S Shateeva
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sofia D Simonenko
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Margarita A Khlystova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina K Selivanova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- ChemRar Research and Development Institute, Khimki, Russia
| | - Anna A Borzykh
- Laboratory of Exercise Physiology, State Research Center of the Russian Federation-Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dina K Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia A Shvetsova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
4
|
Arenas GA, Lorca RA. Effects of hypoxia on uteroplacental and fetoplacental vascular function during pregnancy. Front Physiol 2024; 15:1490154. [PMID: 39744703 PMCID: PMC11688409 DOI: 10.3389/fphys.2024.1490154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/03/2024] [Indexed: 02/13/2025] Open
Abstract
During pregnancy, marked changes in vasculature occur. The placenta is developed, and uteroplacental and fetoplacental circulations are established. These processes may be negatively affected by genetic anomalies, maternal environment (i.e., obesity or diabetes), and environmental conditions such as pollutants and hypoxia. Chronic hypoxia has detrimental effects on the vascular adaptations to pregnancy and fetal growth. The typical pregnancy-dependent rise in uterine blood flow by vascular remodeling and vasodilation of maternal uterine arteries is reduced, leading to increases in vascular tone. These maladaptations may lead to complications such as fetal growth restriction (FGR) and preeclampsia. In this review, the effect of hypoxia on uteroplacental and fetoplacental circulation and its impact on pregnancy outcomes in humans and animal models are discussed. Evidence is provided for several mechanisms that affect pregnancy through hypoxia-induced alterations. Future directions to fill gaps in knowledge and develop therapeutic strategies to prevent or alleviate hypoxia-related pregnancy complications, such as FGR and preeclampsia, are suggested.
Collapse
Affiliation(s)
| | - Ramón A. Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
6
|
Hu XQ, Zhang L. Role of transient receptor potential channels in the regulation of vascular tone. Drug Discov Today 2024; 29:104051. [PMID: 38838960 PMCID: PMC11938208 DOI: 10.1016/j.drudis.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
7
|
Yan Z, Yang J, Wei WT, Zhou ML, Mo DX, Wan X, Ma R, Wu MM, Huang JH, Liu YJ, Lv FH, Li MH. A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues. Nat Commun 2024; 15:3970. [PMID: 38730227 PMCID: PMC11087590 DOI: 10.1038/s41467-024-48261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.
Collapse
Affiliation(s)
- Ze Yan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen-Tian Wei
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ming-Liang Zhou
- Sichuan Academy of Grassland Science, Chengdu, 611743, China
| | - Dong-Xin Mo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing Wan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rui Ma
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mei-Ming Wu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Jing Liu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng-Hua Lv
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Beñaldo FA, Araya-Quijada C, Ebensperger G, Herrera EA, Reyes RV, Moraga FA, Riquelme A, Gónzalez-Candia A, Castillo-Galán S, Valenzuela GJ, Serón-Ferré M, Llanos AJ. Cinaciguat (BAY-582667) Modifies Cardiopulmonary and Systemic Circulation in Chronically Hypoxic and Pulmonary Hypertensive Neonatal Lambs in the Alto Andino. Front Physiol 2022; 13:864010. [PMID: 35733986 PMCID: PMC9207417 DOI: 10.3389/fphys.2022.864010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neonatal pulmonary hypertension (NPHT) is produced by sustained pulmonary vasoconstriction and increased vascular remodeling. Soluble guanylyl cyclase (sGC) participates in signaling pathways that induce vascular vasodilation and reduce vascular remodeling. However, when sGC is oxidized and/or loses its heme group, it does not respond to nitric oxide (NO), losing its vasodilating effects. sGC protein expression and function is reduced in hypertensive neonatal lambs. Currently, NPHT is treated with NO inhalation therapy; however, new treatments are needed for improved outcomes. We used Cinaciguat (BAY-582667), which activates oxidized and/or without heme group sGC in pulmonary hypertensive lambs studied at 3,600 m. Our study included 6 Cinaciguat-treated (35 ug kg−1 day−1x 7 days) and 6 Control neonates. We measured acute and chronic basal cardiovascular variables in pulmonary and systemic circulation, cardiovascular variables during a superimposed episode of acute hypoxia, remodeling of pulmonary arteries and changes in the right ventricle weight, vasoactive functions in small pulmonary arteries, and expression of NO-sGC-cGMP signaling pathway proteins involved in vasodilation. We observed a decrease in pulmonary arterial pressure and vascular resistance during the acute treatment. In contrast, the pulmonary pressure did not change in the chronic study due to increased cardiac output, resulting in lower pulmonary vascular resistance in the last 2 days of chronic study. The latter may have had a role in decreasing right ventricular hypertrophy, although the direct effect of Cinaciguat on the heart should also be considered. During acute hypoxia, the pulmonary vascular resistance remained low compared to the Control lambs. We observed a higher lung artery density, accompanied by reduced smooth muscle and adventitia layers in the pulmonary arteries. Additionally, vasodilator function was increased, and vasoconstrictor function was decreased, with modifications in the expression of proteins linked to pulmonary vasodilation, consistent with low pulmonary vascular resistance. In summary, Cinaciguat, an activator of sGC, induces cardiopulmonary modifications in chronically hypoxic and pulmonary hypertensive newborn lambs. Therefore, Cinaciguat is a potential therapeutic tool for reducing pulmonary vascular remodeling and/or right ventricular hypertrophy in pulmonary arterial hypertension syndrome.
Collapse
Affiliation(s)
- Felipe A. Beñaldo
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Araya-Quijada
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Roberto V. Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernando A. Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Alexander Riquelme
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Research and Innovation Center Biomedical (CIIB), Faculty of Medicine, University of Los Andes, Santiago, Chile
| | - Guillermo J. Valenzuela
- Department of Women’s Health, Arrowhead Regional Medical Center, San Bernardino, CA, United States
| | - María Serón-Ferré
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal J. Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
- *Correspondence: Aníbal J. Llanos,
| |
Collapse
|
9
|
Castillo-Galán S, Parrau D, Hernández I, Quezada S, Díaz M, Ebensperger G, Herrera EA, Moraga FA, Iturriaga R, Llanos AJ, Reyes RV. The Action of 2-Aminoethyldiphenyl Borinate on the Pulmonary Arterial Hypertension and Remodeling of High-Altitude Hypoxemic Lambs. Front Physiol 2022; 12:765281. [PMID: 35082688 PMCID: PMC8784838 DOI: 10.3389/fphys.2021.765281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 01/17/2023] Open
Abstract
Calcium signaling is key for the contraction, differentiation, and proliferation of pulmonary arterial smooth muscle cells. Furthermore, calcium influx through store-operated channels (SOCs) is particularly important in the vasoconstrictor response to hypoxia. Previously, we found a decrease in pulmonary hypertension and remodeling in normoxic newborn lambs partially gestated under chronic hypoxia, when treated with 2-aminoethyldiphenyl borinate (2-APB), a non-specific SOC blocker. However, the effects of 2-APB are unknown in neonates completely gestated, born, and raised under environmental hypoxia. Accordingly, we studied the effects of 2-APB-treatment on the cardiopulmonary variables in lambs under chronic hypobaric hypoxia. Experiments were done in nine newborn lambs gestated, born, and raised in high altitude (3,600 m): five animals were treated with 2-APB [intravenous (i.v.) 10 mg kg–1] for 10 days, while other four animals received vehicle. During the treatment, cardiopulmonary variables were measured daily, and these were also evaluated during an acute episode of superimposed hypoxia, 1 day after the end of the treatment. Furthermore, pulmonary vascular remodeling was assessed by histological analysis 2 days after the end of the treatment. Basal cardiac output and mean systemic arterial pressure (SAP) and resistance from 2-APB- and vehicle-treated lambs did not differ along with the treatment. Mean pulmonary arterial pressure (mPAP) decreased after the first day of 2-APB treatment and remained lower than the vehicle-treated group until the third day, and during the fifth, sixth, and ninth day of treatment. The net mPAP increase in response to acute hypoxia did not change, but the pressure area under the curve (AUC) during hypoxia was slightly lower in 2-APB-treated lambs than in vehicle-treated lambs. Moreover, the 2-APB treatment decreased the pulmonary arterial wall thickness and the α-actin immunoreactivity and increased the luminal area with no changes in the vascular density. Our findings show that 2-APB treatment partially reduced the contractile hypoxic response and reverted the pulmonary vascular remodeling, but this is not enough to normalize the pulmonary hemodynamics in chronically hypoxic newborn lambs.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Parrau
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ismael Hernández
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Quezada
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Marcela Díaz
- Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Aníbal J Llanos
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Hansell JA, Richter HG, Camm EJ, Herrera EA, Blanco CE, Villamor E, Patey OV, Lock MC, Trafford AW, Galli GLJ, Giussani DA. Maternal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy. J Pineal Res 2022; 72:e12766. [PMID: 34634151 DOI: 10.1111/jpi.12766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
Adopting an integrative approach, by combining studies of cardiovascular function with those at cellular and molecular levels, this study investigated whether maternal treatment with melatonin protects against programmed cardiovascular dysfunction in the offspring using an established rodent model of hypoxic pregnancy. Wistar rats were divided into normoxic (N) or hypoxic (H, 10% O2 ) pregnancy ± melatonin (M) treatment (5 μg·ml-1 .day-1 ) in the maternal drinking water. Hypoxia ± melatonin treatment was from day 15-20 of gestation (term is ca. 22 days). To control for possible effects of maternal hypoxia-induced reductions in maternal food intake, additional dams underwent pregnancy under normoxic conditions but were pair-fed (PF) to the daily amount consumed by hypoxic dams from day 15 of gestation. In one cohort of animals from each experimental group (N, NM, H, HM, PF, PFM), measurements were made at the end of gestation. In another, following delivery of the offspring, investigations were made at adulthood. In both fetal and adult offspring, fixed aorta and hearts were studied stereologically and frozen hearts were processed for molecular studies. In adult offspring, mesenteric vessels were isolated and vascular reactivity determined by in-vitro wire myography. Melatonin treatment during normoxic, hypoxic or pair-fed pregnancy elevated circulating plasma melatonin in the pregnant dam and fetus. Relative to normoxic pregnancy, hypoxic pregnancy increased fetal haematocrit, promoted asymmetric fetal growth restriction and resulted in accelerated postnatal catch-up growth. Whilst fetal offspring of hypoxic pregnancy showed aortic wall thickening, adult offspring of hypoxic pregnancy showed dilated cardiomyopathy. Similarly, whilst cardiac protein expression of eNOS was downregulated in the fetal heart, eNOS protein expression was elevated in the heart of adult offspring of hypoxic pregnancy. Adult offspring of hypoxic pregnancy further showed enhanced mesenteric vasoconstrictor reactivity to phenylephrine and the thromboxane mimetic U46619. The effects of hypoxic pregnancy on cardiovascular remodelling and function in the fetal and adult offspring were independent of hypoxia-induced reductions in maternal food intake. Conversely, the effects of hypoxic pregnancy on fetal and postanal growth were similar in pair-fed pregnancies. Whilst maternal treatment of normoxic or pair-fed pregnancies with melatonin on the offspring cardiovascular system was unremarkable, treatment of hypoxic pregnancies with melatonin in doses lower than those recommended for overcoming jet lag in humans enhanced fetal cardiac eNOS expression and prevented all alterations in cardiovascular structure and function in fetal and adult offspring. Therefore, the data support that melatonin is a potential therapeutic target for clinical intervention against developmental origins of cardiovascular dysfunction in pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Jeremy A Hansell
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hans G Richter
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Emily J Camm
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emilio A Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Carlos E Blanco
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Eduardo Villamor
- Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Olga V Patey
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mitchell C Lock
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew W Trafford
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Gina L J Galli
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge BHF Centre for Research Excellence, Cambridge, UK
- Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
11
|
Lakshman R, Spiroski AM, McIver LB, Murphy MP, Giussani DA. Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy. Hypertension 2021; 78:1818-1828. [PMID: 34757774 PMCID: PMC8577293 DOI: 10.1161/hypertensionaha.121.17926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rama Lakshman
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Lauren B McIver
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Michael P Murphy
- MRC Mitochondria Biology Unit (M.P.M.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge Strategic Research Initiative in Reproduction, United Kingdom (D.A.G.)
| |
Collapse
|
12
|
Gonzaléz-Candia A, Arias PV, Aguilar SA, Figueroa EG, Reyes RV, Ebensperger G, Llanos AJ, Herrera EA. Melatonin Reduces Oxidative Stress in the Right Ventricle of Newborn Sheep Gestated under Chronic Hypoxia. Antioxidants (Basel) 2021; 10:antiox10111658. [PMID: 34829529 PMCID: PMC8614843 DOI: 10.3390/antiox10111658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension of newborns (PAHN) constitutes a critical condition involving both severe cardiac remodeling and right ventricle dysfunction. One main cause of this condition is perinatal hypoxia and oxidative stress. Thus, it is a public health concern for populations living above 2500 m and in cases of intrauterine chronic hypoxia in lowlands. Still, pulmonary and cardiac impairments in PAHN lack effective treatments. Previously we have shown the beneficial effects of neonatal melatonin treatment on pulmonary circulation. However, the cardiac effects of this treatment are unknown. In this study, we assessed whether melatonin improves cardiac function and modulates right ventricle (RV) oxidative stress. Ten lambs were gestated, born, and raised at 3600 m. Lambs were divided in two groups. One received daily vehicle as control, and another received daily melatonin (1 mg·kg-1·d-1) for 21 days. Daily cardiovascular measurements were recorded and, at 29 days old, cardiac tissue was collected. Melatonin decreased pulmonary arterial pressure at the end of the experimental period. In addition, melatonin enhanced manganese superoxide dismutase and catalase (CAT) expression, while increasing CAT activity in RV. This was associated with a decrease in superoxide anion generation at the mitochondria and NADPH oxidases in RV. Finally, these effects were associated with a marked decrease of oxidative stress markers in RV. These findings support the cardioprotective effects of an oral administration of melatonin in newborns that suffer from developmental chronic hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzaléz-Candia
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- Institute of Health Sciences, University of O’Higgins, Libertador Bernardo O’Higgins 611, Rancagua 2820000, Chile
| | - Pamela V. Arias
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Simón A. Aguilar
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Esteban G. Figueroa
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Roberto V. Reyes
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Germán Ebensperger
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Aníbal J. Llanos
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
| | - Emilio A. Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
- Correspondence: ; Tel.: +56-2-2977-0543
| |
Collapse
|
13
|
Moraga FA, Reyes RV, Ebensperger G, López V, Llanos AJ. Enhanced Vasoconstriction Mediated by α 1-Adrenergic Mechanisms in Small Femoral Arteries in Newborn Llama and Sheep Gestated at Low and High Altitudes. Front Physiol 2021; 12:697211. [PMID: 34421636 PMCID: PMC8371382 DOI: 10.3389/fphys.2021.697211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022] Open
Abstract
The authors previously demonstrated that newborn llama (NBLL) express high levels of α1 adrenergic receptors, which provide a potent vasoconstriction response when compared with newborn sheep (NBSH) gestated at sea level. However, data regarding the impact of chronic gestational hypobaric hypoxia on α-adrenergic vasoconstriction in the neonatal life has not been studied. We evaluated if gestation under chronic hypobaric hypoxia modifies α1-adrenergic vasoconstrictor function in NBLL and NBSH. We compared the vasoconstrictor response induced by potassium and α-adrenergic stimuli in isolated small femoral arteries of NBLL and NBSH gestated at high altitude (HA; 3,600 m) or low altitude (LA; 580 m). The maximal contraction (RMAX) and potency (EC50) to potassium, noradrenaline (NA), and phenylephrine (PHE) were larger in HA-NBLL than LA-NBLL. RMAX to potassium, NA, and PHE were lower in HA-NBSH when compared with LA-NBSH and potency results were similar. Competitive blockade with prazosin showed that RNLL LA/HA have a similar pA2. In contrast, NBSH had increased pA2 values in HA when compared with LA. Finally, small femoral arteries denudated or treated with LNAME in LA and HA lacked NO or endothelium participation in response to PHE stimulation. In contrast, NBSH displayed that denudation or blockade with LNAME support NO or endothelium participation in response to PHE activation. In conclusion, HA chronic hypoxia enhances α1 adrenergic receptor activity in small femoral arteries in NBLL to a higher degree than NBSH, implying a higher vasoconstriction function.
Collapse
Affiliation(s)
- Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Roberto V Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Internacional de Estudios Andinos (INCAS), Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Internacional de Estudios Andinos (INCAS), Universidad de Chile, Santiago, Chile
| | - Vasthi López
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Aníbal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Internacional de Estudios Andinos (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
The newborn sheep translational model for pulmonary arterial hypertension of the neonate at high altitude. J Dev Orig Health Dis 2021; 11:452-463. [PMID: 32705972 DOI: 10.1017/s2040174420000616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic hypoxia during gestation induces greater occurrence of perinatal complications such as intrauterine growth restriction, fetal hypoxia, newborn asphyxia, and respiratory distress, among others. This condition may also cause a failure in the transition of the fetal to neonatal circulation, inducing pulmonary arterial hypertension of the neonate (PAHN), a syndrome that involves pulmonary vascular dysfunction, increased vasoconstrictor tone and pathological remodeling. As this syndrome has a relatively low prevalence in lowlands (~7 per 1000 live births) and very little is known about its prevalence and clinical evolution in highlands (above 2500 meters), our understanding is very limited. Therefore, studies on appropriate animal models have been crucial to comprehend the mechanisms underlying this pathology. Considering the strengths and weaknesses of any animal model of human disease is fundamental to achieve an effective and meaningful translation to clinical practice. The sheep model has been used to study the normal and abnormal cardiovascular development of the fetus and the neonate for almost a century. The aim of this review is to highlight the advances in our knowledge on the programming of cardiopulmonary function with the use of high-altitude newborn sheep as a translational model of PAHN.
Collapse
|
15
|
Rivera E, Canales C, Pacheco M, García-Herrera C, Macías D, Celentano DJ, Herrera EA. Biomechanical characterization of the passive response of the thoracic aorta in chronic hypoxic newborn lambs using an evolutionary strategy. Sci Rep 2021; 11:13875. [PMID: 34230509 PMCID: PMC8260639 DOI: 10.1038/s41598-021-93267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The present study involves experiments and modelling aimed at characterizing the passive structural mechanical behavior of the chronic hypoxic lamb thoracic aorta, whose gestation, birth and postnatal period were carried at high altitude (3600 masl). To this end, the mechanical response was studied via tensile and pressurization tests. The tensile and pressurization tests measurements were used simultaneously to calibrate the material parameters of the Gasser-Holzapfel-Ogden (GHO) hyperelasctic anisotropic constitutive model through an analytical-numerical optimization procedure solved with an evolutionary strategy that guarantees a stable response of the model. The model and procedure of calibration adequately adjust to the material behavior in a wide deformation range with an appropriate physical description. The results of this study predict the mechanical response of the lamb thoracic aorta under generalized loading states like those that can occur in physiological conditions and/or in systemic arterial hypertension. Finally, the novel use of the evolutionary strategy, together with the set of experiments and tools used in this study, provide a robust alternative to validate biomechanical characterizations.
Collapse
Affiliation(s)
- Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile.
| | - Claudio Canales
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Matías Pacheco
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Demetrio Macías
- ICD, P2MN, L2n, Université de Technologie de Troyes, ERL 7004, CNRS, Troyes, France
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago de Chile, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, ICBM, Universidad de Chile, Av. Salvador 486, Santiago de Chile, Chile
| |
Collapse
|
16
|
Mundo W, Wolfson G, Moore LG, Houck JA, Park D, Julian CG. Hypoxia-induced inhibition of mTORC1 activity in the developing lung: a possible mechanism for the developmental programming of pulmonary hypertension. Am J Physiol Heart Circ Physiol 2021; 320:H980-H990. [PMID: 33416457 PMCID: PMC7988757 DOI: 10.1152/ajpheart.00520.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Perinatal hypoxia induces permanent structural and functional changes in the lung and its pulmonary circulation that are associated with the development of pulmonary hypertension (PH) in later life. The mechanistic target of the rapamycin (mTOR) pathway is vital for fetal lung development and is implicated in hypoxia-associated PH, yet its involvement in the developmental programming of PH remains unclear. Pregnant C57/BL6 dams were placed in hyperbaric (760 mmHg) or hypobaric chambers during gestation (505 mmHg, day 15 through postnatal day 4) or from weaning through adulthood (420 mmHg, postnatal day 21 through 8 wk). Pulmonary hemodynamics and right ventricular systolic pressure (RVSP) were measured at 8 wk. mTOR pathway proteins were assessed in fetal (day 18.5) and adult lung (8 wk). Perinatal hypoxia induced PH during adulthood, even in the absence of a sustained secondary hypoxic exposure, as indicated by reduced pulmonary artery acceleration time (PAAT) and peak flow velocity through the pulmonary valve, as well as greater RVSP, right ventricular (RV) wall thickness, and RV/left ventricular (LV) weight. Such effects were independent of increased blood viscosity. In fetal lung homogenates, hypoxia reduced the expression of critical downstream mTOR targets, most prominently total and phosphorylated translation repressor protein (4EBP1), as well as vascular endothelial growth factor, a central regulator of angiogenesis in the fetal lung. In contrast, adult offspring of hypoxic dams tended to have elevated p4EBP1 compared with controls. Our data suggest that inhibition of mTORC1 activity in the fetal lung as a result of gestational hypoxia may interrupt pulmonary vascular development and thereby contribute to the developmental programming of PH.NEW & NOTEWORTHY We describe the first study to evaluate a role for the mTOR pathway in the developmental programming of pulmonary hypertension. Our findings suggest that gestational hypoxia impairs mTORC1 activation in the fetal lung and may impede pulmonary vascular development, setting the stage for pulmonary vascular disease in later life.
Collapse
Affiliation(s)
- William Mundo
- School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Gabriel Wolfson
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Houck
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Do Park
- School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Colleen G Julian
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
17
|
Sorensen DW, Carreon D, Williams JM, Pearce WJ. Hypoxic modulation of fetal vascular MLCK abundance, localization, and function. Am J Physiol Regul Integr Comp Physiol 2021; 320:R1-R18. [PMID: 33112654 PMCID: PMC7847055 DOI: 10.1152/ajpregu.00212.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
Changes in vascular contractility are among the most important physiological effects of acute and chronic fetal hypoxia. Given the essential role of myosin light-chain kinase (MLCK) in smooth muscle contractility and its heterogeneous distribution, this study explores the hypothesis that subcellular changes in MLCK distribution contribute to hypoxic modulation of fetal carotid artery contractility. Relative to common carotid arteries from normoxic term fetal lambs (FN), carotids from fetal lambs gestated at high altitude (3,802 m) (FH) exhibited depressed contractility without changes in MLCK mRNA or protein abundance. Patterns of confocal colocalization of MLCK with α-actin and 20-kDa regulatory myosin light chain (MLC20) enabled calculation of subcellular MLCK fractions: 1) colocalized with the contractile apparatus, 2) colocalized with α-actin distant from the contractile apparatus, and 3) not colocalized with α-actin. Chronic hypoxia did not affect MLCK abundance in the contractile fraction, despite a concurrent decrease in contractility. Organ culture for 72 h under 1% O2 decreased total MLCK abundance in FN and FH carotid arteries, but decreased the contractile MLCK abundance only in FH carotid arteries. Correspondingly, culture under 1% O2 depressed contractility more in FH than FN carotid arteries. In addition, hypoxia appeared to attenuate ubiquitin-independent proteasomal degradation of MLCK, as reported for other proteins. In aggregate, these results demonstrate that the combination of chronic hypoxia followed by hypoxic culture can induce MLCK translocation among at least three subcellular fractions with possible influences on contractility, indicating that changes in MLCK distribution are a significant component of fetal vascular responses to hypoxia.
Collapse
Affiliation(s)
- Dane W Sorensen
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Desirelys Carreon
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - James M Williams
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - William J Pearce
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
18
|
Rivera E, García-Herrera C, González-Candia A, Celentano DJ, Herrera EA. Effects of melatonin on the passive mechanical response of arteries in chronic hypoxic newborn lambs. J Mech Behav Biomed Mater 2020; 112:104013. [PMID: 32846285 DOI: 10.1016/j.jmbbm.2020.104013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Chronic hypoxia is a condition that increases the cardiovascular complications of newborns gestated and born at high altitude (HA), over 2500 m above sea level (masl). A particularly complex pathology is pulmonary arterial hypertension of the neonate (PHN), which is increased at HA due to hypobaric hypoxia. Basic and clinical research have recognized that new treatments are needed, because current ones are, in general, palliative and with low effectiveness. Therefore, recently we have proposed melatonin as a potential adjuvant treatment to improve cardiopulmonary function. However, melatonin effects on the mechanical response of the arteries and their microstructure are not known. This study assesses the effects of a neonatal treatment with daily low doses of melatonin on the passive biomechanical behavior of the aorta artery and main pulmonary artery of PHN lambs born in chronic hypobaric hypoxia (at 3600 masl). With this purpose, ex-vivo measurements were made on axial stretch, tensile and opening ring tests together with a histological analysis to explore the morphometry and microstructure of the arteries. Our results show that the passive mechanical properties of the aorta artery and main pulmonary artery of lambs do not seem to be affected by a treatment based on low melatonin doses. However, we found evidence that melatonin has microstructural effects, particularly, diminishing cell proliferation, which is an indicator of antiremodeling capacity. Therefore, the use of melatonin as an adjuvant against pathologies like PHN would present antiproliferative effect at the microstructural level, keeping the macroscopic properties of the aorta artery and main pulmonary artery.
Collapse
Affiliation(s)
- Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Bernardo O'Higgins, 3363, Santiago de Chile, Chile
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Bernardo O'Higgins, 3363, Santiago de Chile, Chile.
| | - Alejandro González-Candia
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano S/n, Putre, Chile; Institute of Health Sciences, University of O'Higgins, Libertador Bernardo O'Higgins 611, Rancagua, Chile
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago de Chile, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, ICBM, Universidad de Chile, Av. Salvador 486, Santiago de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano S/n, Putre, Chile
| |
Collapse
|
19
|
Krishnan S, Stearman RS, Zeng L, Fisher A, Mickler EA, Rodriguez BH, Simpson ER, Cook T, Slaven JE, Ivan M, Geraci MW, Lahm T, Tepper RS. Transcriptomic modifications in developmental cardiopulmonary adaptations to chronic hypoxia using a murine model of simulated high-altitude exposure. Am J Physiol Lung Cell Mol Physiol 2020; 319:L456-L470. [PMID: 32639867 DOI: 10.1152/ajplung.00487.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms driving adaptive developmental responses to chronic high-altitude (HA) exposure are incompletely known. We developed a novel rat model mimicking the human condition of cardiopulmonary adaptation to HA starting at conception and spanning the in utero and postnatal timeframe. We assessed lung growth and cardiopulmonary structure and function and performed transcriptome analyses to identify mechanisms facilitating developmental adaptations to chronic hypoxia. To generate the model, breeding pairs of Sprague-Dawley rats were exposed to hypobaric hypoxia (equivalent to 9,000 ft elevation). Mating, pregnancy, and delivery occurred in hypoxic conditions. Six weeks postpartum, structural and functional data were collected in the offspring. RNA-Seq was performed on right ventricle (RV) and lung tissue. Age-matched breeding pairs and offspring under room air (RA) conditions served as controls. Hypoxic rats exhibited significantly lower body weights and higher hematocrit levels, alveolar volumes, pulmonary diffusion capacities, RV mass, and RV systolic pressure, as well as increased pulmonary artery remodeling. RNA-Seq analyses revealed multiple differentially expressed genes in lungs and RVs from hypoxic rats. Although there was considerable similarity between hypoxic lungs and RVs compared with RA controls, several upstream regulators unique to lung or RV were identified. We noted a pattern of immune downregulation and regulation patterns of immune and hormonal mediators similar to the genome from patients with pulmonary arterial hypertension. In summary, we developed a novel murine model of chronic hypoxia exposure that demonstrates functional and structural phenotypes similar to human adaptation. We identified transcriptomic alterations that suggest potential mechanisms for adaptation to chronic HA.
Collapse
Affiliation(s)
- Sheila Krishnan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert S Stearman
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lily Zeng
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda Fisher
- Department of Anesthesiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth A Mickler
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brooke H Rodriguez
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward R Simpson
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Todd Cook
- Indiana Center for Vascular Biology and Medicine, Indianapolis, Indiana
| | - James E Slaven
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medicine, Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mircea Ivan
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark W Geraci
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Robert S Tepper
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
20
|
Reyes RV, Herrera EA, Ebensperger G, Sanhueza EM, Giussani DA, Llanos AJ. Perinatal cardiopulmonary adaptation to the thin air of the Alto Andino by a native Altiplano dweller, the llama. J Appl Physiol (1985) 2020; 129:152-161. [PMID: 32584666 DOI: 10.1152/japplphysiol.00800.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most mammals have a poor tolerance to hypoxia, and prolonged O2 restriction can lead to organ injury, particularly during fetal and early postnatal life. Nevertheless, the llama (Lama Glama) has evolved efficient mechanisms to adapt to acute and chronic perinatal hypoxia. One striking adaptation is the marked peripheral vasoconstriction measured in the llama fetus in response to acute hypoxia, which allows efficient redistribution of cardiac output toward the fetal heart and adrenal glands. This strong peripheral vasoconstrictor tone is triggered by a carotid body reflex and critically depends on α-adrenergic signaling. A second adaptation is the ability of the llama fetus to protect its brain against hypoxic damage. During hypoxia, in the llama fetus there is no significant increase in brain blood flow. Instead, there is a fall in brain O2 consumption and temperature, together with a decrease of Na+-K+-ATPase activity and Na+ channels expression, protecting against seizures and neuronal death. Finally, the newborn llama does not develop pulmonary hypertension in response to chronic hypoxia. In addition to maintaining basal pulmonary arterial pressure at normal levels the pulmonary arterial pressor response to acute hypoxia is lower in highland than in lowland llamas. The protection against hypoxic pulmonary arterial hypertension and pulmonary contractile hyperreactivity is partly due to increased hemoxygenase-carbon monoxide signaling and decreased Ca2+ sensitization in the newborn llama pulmonary vasculature. These three striking physiological adaptations of the llama allow this species to live and thrive under the chronic influence of the hypobaric hypoxia of life at high altitude.
Collapse
Affiliation(s)
- R V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - G Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - A J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Friedrich J, Wiener P. Selection signatures for high-altitude adaptation in ruminants. Anim Genet 2020; 51:157-165. [PMID: 31943284 DOI: 10.1111/age.12900] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
High-altitude areas are important socio-economical habitats with ruminants serving as a major source of food and commodities for humans. Living at high altitude, however, is extremely challenging, predominantly due to the exposure to hypoxic conditions, but also because of cold temperatures and limited feed for livestock. To survive in high-altitude environments over the long term, ruminants have evolved adaptation strategies, e.g. physiological and morphological modifications, which allow them to cope with these harsh conditions. Identification of such selection signatures in ruminants may contribute to more informed breeding decisions, and thus improved productivity. Moreover, studying the genetic background of altitude adaptation in ruminants provides insights into a common molecular basis across species and thus a better understanding of the physiological basis of this adaptation. In this paper, we review the major effects of high altitude on the mammalian body and highlight some of the most important short-term (coping) and genetically evolved (adaptation) physiological modifications. We then discuss the genetic architecture of altitude adaptation and target genes that show evidence of being under selection based on recent studies in various species, with a focus on ruminants. The yak is presented as an interesting native species that has adapted to the high-altitude regions of Tibet. Finally, we conclude with implications and challenges of selection signature studies on altitude adaptation in general. We found that the number of studies on genetic mechanisms that enable altitude adaptation in ruminants is growing, with a strong focus on identifying selection signatures, and hypothesise that the investigation of genetic data from multiple species and regions will contribute greatly to the understanding of the genetic basis of altitude adaptation.
Collapse
Affiliation(s)
- J Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - P Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
22
|
Gonzaléz-Candia A, Candia AA, Figueroa EG, Feixes E, Gonzalez-Candia C, Aguilar SA, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Melatonin long-lasting beneficial effects on pulmonary vascular reactivity and redox balance in chronic hypoxic ovine neonates. J Pineal Res 2020; 68:e12613. [PMID: 31583753 DOI: 10.1111/jpi.12613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension of the neonate (PAHN) is a pathophysiological condition characterized by maladaptive pulmonary vascular remodeling and abnormal contractile reactivity. This is a multifactorial syndrome with chronic hypoxia and oxidative stress as main etiological drivers, and with limited effectiveness in therapeutic approaches. Melatonin is a neurohormone with antioxidant and vasodilator properties at the pulmonary level. Therefore, this study aims to test whether a postnatal treatment with melatonin during the neonatal period improves in a long-lasting manner the clinical condition of PAHN. Ten newborn lambs gestated and born at 3600 m were used in this study, five received vehicle and five received melatonin in daily doses of 1 mg kg-1 for the first 3 weeks of life. After 1 week of treatment completion, lung tissue and small pulmonary arteries (SPA) were collected for wire myography, molecular biology, and morphostructural analyses. Melatonin decreased pulmonary arterial pressure the first 4 days of treatment. At 1 month old, melatonin decreased the contractile response to the vasoconstrictors K+ , TX2 , and ET-1. Further, melatonin increased the endothelium-dependent and muscle-dependent vasodilation of SPA. Finally, the treatment decreased pulmonary oxidative stress by inducing antioxidant enzymes and diminishing pro-oxidant sources. In conclusion, melatonin improved vascular reactivity and oxidative stress at the pulmonary level in PAHN lambs gestated and born in chronic hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzaléz-Candia
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro A Candia
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Esteban G Figueroa
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Elisenda Feixes
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristopher Gonzalez-Candia
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Simón A Aguilar
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Rood K, Lopez V, La Frano MR, Fiehn O, Zhang L, Blood AB, Wilson SM. Gestational Hypoxia and Programing of Lung Metabolism. Front Physiol 2019; 10:1453. [PMID: 31849704 PMCID: PMC6895135 DOI: 10.3389/fphys.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational hypoxia is a risk factor in the development of pulmonary hypertension in the newborn and other sequela, however, the mechanisms associated with the disease remain poorly understood. This review highlights disruption of metabolism by antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn with discussion of model organisms and human populations. There is particular emphasis on modifications in glucose and lipid metabolism along with alterations in mitochondrial function. Additional focus is placed on increases in oxidative stress and the progression of pulmonary vascular disease in the newborn and on the need for further exploration using a combination of contemporary and classical approaches.
Collapse
Affiliation(s)
- Kristiana Rood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Vanessa Lopez
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
24
|
Smith B, Crossley JL, Elsey RM, Hicks JW, Crossley DA. Embryonic developmental oxygen preconditions cardiovascular functional response to acute hypoxic exposure and maximal β-adrenergic stimulation of anesthetized juvenile American alligators ( Alligator mississippiensis). ACTA ACUST UNITED AC 2019; 222:jeb.205419. [PMID: 31548289 DOI: 10.1242/jeb.205419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
The effects of the embryonic environment on juvenile phenotypes are widely recognized. We investigated the effect of embryonic hypoxia on the cardiovascular phenotype of 4-year-old American alligators (Alligator mississippiensis). We hypothesized that embryonic 10% O2 preconditions cardiac function, decreasing the reduction in cardiac contractility associated with acute 5% O2 exposure in juvenile alligators. Our findings indicate that dobutamine injections caused a 90% increase in systolic pressure in juveniles that were incubated in 21% and 10% O2, with the 10% O2 group responding with a greater rate of ventricular relaxation and greater left ventricle output compared with the 21% O2 group. Further, our findings indicate that juvenile alligators that experienced embryonic hypoxia have a faster rate of ventricular relaxation, greater left ventricle stroke volume and greater cardiac power following β-adrenergic stimulation, compared with juvenile alligators that did not experience embryonic hypoxia. When juveniles were exposed to 5% O2 for 20 min, normoxic-incubated juveniles had a 50% decline in left ventricle maximal rate of pressure development and maximal pressure; however, these parameters were unaffected and decreased less in the hypoxic-incubated juveniles. These data indicate that embryonic hypoxia in crocodilians alters the cardiovascular phenotype, changing the juvenile response to acute hypoxia and β-adrenergic stimulation.
Collapse
Affiliation(s)
- Brandt Smith
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Janna L Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
25
|
Moretta D, Papamatheakis DG, Morris DP, Giri PC, Blood Q, Murray S, Ramzy M, Romero M, Vemulakonda S, Lauw S, Longo LD, Zhang L, Wilson SM. Long-Term High-Altitude Hypoxia and Alpha Adrenoceptor-Dependent Pulmonary Arterial Contractions in Fetal and Adult Sheep. Front Physiol 2019; 10:1032. [PMID: 31555139 PMCID: PMC6723549 DOI: 10.3389/fphys.2019.01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Autonomic innervation of the pulmonary vasculature triggers vasomotor contractility predominately through activation of alpha-adrenergic receptors (α-ARs) in the fetal circulation. Long-term hypoxia (LTH) modulates pulmonary vasoconstriction potentially through upregulation of α1-AR in the vasculature. Our study aimed to elucidate the role of α-AR in phenylephrine (PE)-induced pulmonary vascular contractility, comparing the effects of LTH in the fetal and adult periods on α-AR subtypes and PE-mediated Ca2+ responses and contractions. To address this, we performed wire myography, Ca2+ imaging, and mRNA analysis of pulmonary arteries from ewes and fetuses exposed to LTH or normoxia. Postnatal maturation depressed PE-mediated contractile responses. α2-AR activation contracted fetal vessels; however, this was suppressed by LTH. α1A- and α1B-AR subtypes contributed to arterial contractions in all groups. The α1D-AR was also important to contractility in fetal normoxic vessels and LTH mitigated its function. Postnatal maturity increased the number of myocytes with PE-triggered Ca2+ responses while LTH decreased the percentage of fetal myocytes reacting to PE. The difference between myocyte Ca2+ responsiveness and vessel contractility suggests that fetal arteries are sensitized to changes in Ca2+. The results illustrate that α-adrenergic signaling and vascular function change during development and that LTH modifies adrenergic signaling. These changes may represent components in the etiology of pulmonary vascular disease and foretell the therapeutic potential of adrenergic receptor antagonists in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Dafne Moretta
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | | | - Daniel P Morris
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Paresh C Giri
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Quintin Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Samuel Murray
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Marian Ramzy
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Srilakshmi Vemulakonda
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sidney Lauw
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Lawrence D Longo
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Advanced Imaging and Microscopy Core, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
26
|
Herrera EA, Ebensperger G, Hernández I, Sanhueza EM, Llanos AJ, Reyes RV. The role of nitric oxide signaling in pulmonary circulation of high- and low-altitude newborn sheep under basal and acute hypoxic conditions. Nitric Oxide 2019; 89:71-80. [PMID: 31063821 DOI: 10.1016/j.niox.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
Nitric oxide (NO) is the main vasodilator agent that drives the rapid decrease of pulmonary vascular resistance for the respiratory onset during the fetal to neonatal transition. Nevertheless, the enhanced NO generation by the neonatal pulmonary arterial endothelium does not prevent development of hypoxic pulmonary hypertension in species without an evolutionary story at high altitude. Therefore, this study aims to describe the limits of the NO function at high-altitude during neonatal life in the sheep as an animal model without tolerance to perinatal hypoxia. We studied the effect of blockade of NO synthesis with l-NAME in the cardiopulmonary response of lowland (580 m) and highland (3600 m) newborn lambs basally and under an episode of acute hypoxia. We also determined the pulmonary expression of proteins that mediate the actions of the NO vasodilator pathway in the pulmonary vasoactive tone and remodeling. We observed an enhanced nitrergic function in highland lambs under basal conditions, evidenced as a markedly greater increase in basal mean pulmonary arterial pressure (mPAP) and resistance (PVR) under blockade of NO synthesis. Further, acute hypoxic challenge in lowland lambs infused with l-NAME markedly increased their mPAP and PVR to values greater than baseline, whilst in highland animals under NO synthesis blockade, these variables did not show additional increase in response to low PO2. Highland animals showed increased pulmonary RhoA expression, decreased PSer188-RhoA fraction, increased PSer311-p65-NFқβ fraction and up-regulated smooth muscle α-actin, relative to lowland controls. Taken together our data suggest that NO-mediated vasodilation is important to keep a low pulmonary vascular resistance under basal conditions and acute hypoxia at low-altitude. At high-altitude, the enhanced nitrergic signaling partially prevents excessive pulmonary hypertension but does not protect against acute hypoxia. The decreased vasodilator efficacy of nitrergic tone in high altitude lambs could be in part due to increased RhoA signaling that opposes to NO action in the hypoxic pulmonary circulation.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile
| | - Germán Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile
| | - Ismael Hernández
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile
| | - Emilia M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile
| | - Aníbal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile
| | - Roberto V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile.
| |
Collapse
|
27
|
Gonzalez-Candia A, Veliz M, Carrasco-Pozo C, Castillo RL, Cárdenas JC, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Antenatal melatonin modulates an enhanced antioxidant/pro-oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biol 2019; 22:101128. [PMID: 30771751 PMCID: PMC6375064 DOI: 10.1016/j.redox.2019.101128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Chronic hypobaric hypoxia during fetal and neonatal life induces neonatal pulmonary hypertension. Hypoxia and oxidative stress are driving this condition, which implies an increase generation of reactive oxygen species (ROS) and/or decreased antioxidant capacity. Melatonin has antioxidant properties that decrease oxidative stress and improves pulmonary vascular function when administered postnatally. However, the effects of an antenatal treatment with melatonin in the neonatal pulmonary function and oxidative status are unknown. Therefore, we hypothesized that an antenatal therapy with melatonin improves the pulmonary arterial pressure and antioxidant status in high altitude pulmonary hypertensive neonates. Twelve ewes were bred at high altitude (3600 m); 6 of them were used as a control group (vehicle 1.4% ethanol) and 6 as a melatonin treated group (10 mg d-1 melatonin in vehicle). Treatments were given once daily during the last third of gestation (100-150 days). Lambs were born and raised with their mothers until 12 days old, and neonatal pulmonary arterial pressure and resistance, plasma antioxidant capacity and the lung oxidative status were determined. Furthermore, we measured the pulmonary expression and activity for the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, and the oxidative stress markers 8-isoprostanes, 4HNE and nitrotyrosine. Finally, we assessed pulmonary pro-oxidant sources by the expression and function of NADPH oxidase, mitochondria and xanthine oxidase. Melatonin decreased the birth weight. However, melatonin enhanced the plasma antioxidant capacity and decreased the pulmonary antioxidant activity, associated with a diminished oxidative stress during postnatal life. Interestingly, melatonin also decreased ROS generation at the main pro-oxidant sources. Our findings suggest that antenatal administration of melatonin programs an enhanced antioxidant/pro-oxidant status, modulating ROS sources in the postnatal lung.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile
| | - Marcelino Veliz
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile
| | - Catalina Carrasco-Pozo
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago, Chile
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile; Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J Cesar Cárdenas
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Germán Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile
| | - Roberto V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile
| | - Aníbal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre, Chile.
| |
Collapse
|
28
|
Beñaldo FA, Llanos AJ, Araya-Quijada C, Rojas A, Gonzalez-Candia A, Herrera EA, Ebensperger G, Cabello G, Valenzuela GJ, Serón-Ferré M. Effects of Melatonin on the Defense to Acute Hypoxia in Newborn Lambs. Front Endocrinol (Lausanne) 2019; 10:433. [PMID: 31354619 PMCID: PMC6640618 DOI: 10.3389/fendo.2019.00433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Neonatal lambs, as other neonates, have physiologically a very low plasma melatonin concentration throughout 24 h. Previously, we found that melatonin given to neonates daily for 5 days decreased heart weight and changed plasma cortisol and gene expression in the adrenal and heart. Whether these changes could compromise the responses to life challenges is unknown. Therefore, firstly, we studied acute effects of melatonin on the defense mechanisms to acute hypoxia in the neonate. Eleven lambs, 2 weeks old, were instrumented and subjected to an episode of acute isocapnic hypoxia, consisting of four 30 min periods: normoxia (room air), normoxia after an i.v. bolus of melatonin (0.27 mg kg-1, n = 6) or vehicle (ethanol 1:10 NaCl 0.9%, n = 5), hypoxia (PaO2: 30 ± 2 mmHg), and recovery (room air). Mean pulmonary and systemic blood pressures, heart rate, and cardiac output were measured, and systemic and pulmonary vascular resistance and stroke volume were calculated. Blood samples were taken every 30 min to measure plasma norepinephrine, cortisol, glucose, triglycerides, and redox markers (8-isoprostane and FRAP). Melatonin blunted the increase of pulmonary vascular resistance triggered by hypoxia, markedly exacerbated the heart rate response, decreased heart stroke volume, and lessened the magnitude of the increase of plasmatic norepinephrine and cortisol levels induced by hypoxia. No changes were observed in pulmonary blood pressure, systemic blood pressures and resistance, cardiac output, glucose, triglyceride plasma concentrations, or redox markers. Melatonin had no effect on cardiovascular, endocrine, or metabolic variables, under normoxia. Secondly, we examined whether acute melatonin administration under normoxia could have an effect in gene expression on the adrenal, lung, and heart. Lambs received a bolus of vehicle or melatonin and were euthanized 30 min later to collect tissues. We found that melatonin affected expression of the immediate early genes egr1 in adrenal, ctgf in lung, and nr3c1, the glucocorticoid receptor, in adrenal and heart. We speculate that these early gene responses may contribute to the observed alterations of the newborn defense mechanisms to hypoxia. This could be particularly important since the use of melatonin is proposed for several diseases in the neonatal period in humans.
Collapse
Affiliation(s)
- Felipe A. Beñaldo
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal J. Llanos
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Claudio Araya-Quijada
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Auristela Rojas
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Emilio A. Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gertrudis Cabello
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Guillermo J. Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, CA, United States
| | - María Serón-Ferré
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Correspondence: María Serón-Ferré
| |
Collapse
|
29
|
Reyes RV, Díaz M, Ebensperger G, Herrera EA, Quezada SA, Hernandez I, Sanhueza EM, Parer JT, Giussani DA, Llanos AJ. The role of nitric oxide in the cardiopulmonary response to hypoxia in highland and lowland newborn llamas. J Physiol 2018; 596:5907-5923. [PMID: 29369354 PMCID: PMC6265547 DOI: 10.1113/jp274340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS Perinatal hypoxia causes pulmonary hypertension in neonates, including humans. However, in species adapted to hypoxia, such as the llama, there is protection against pulmonary hypertension. Nitric oxide (NO) is a vasodilatator with an established role in the cardiopulmonary system of many species, but its function in the hypoxic pulmonary vasoconstrictor response in the newborn llama is unknown. Therefore, we studied the role of NO in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. We show that high- compared to lowland newborn llamas have a reduced pulmonary vasoconstrictor response to acute hypoxia. Protection against excessive pulmonary vasoconstriction in the highland llama is mediated via enhancement of NO pathways, including increased MYPT1 and reduced ROCK expression as well as Ca2+ desensitization. Blunting of pulmonary hypertensive responses to hypoxia through enhanced NO pathways may be an adaptive mechanism to withstand life at high altitude in the newborn llama. ABSTRACT Llamas are born in the Alto Andino with protection against pulmonary hypertension. The physiology underlying protection against pulmonary vasoconstrictor responses to acute hypoxia in highland species is unknown. We determined the role of nitric oxide (NO) in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. The cardiopulmonary function of newborn llamas born at low (580 m) or high altitude (3600 m) was studied under acute hypoxia, with and without NO blockade. In pulmonary arteries, we measured the reactivity to potassium and sodium nitroprusside (SNP), and in lung we determined the content of cGMP and the expression of the NO-related proteins: BKCa, PDE5, PSer92-PDE5, PKG-1, ROCK1 and 2, MYPT1, PSer695-MYPT1, PThr696-MYPT1, MLC20 and PSer19-MLC20. Pulmonary vascular remodelling was evaluated by morphometry and based on α-actin expression. High- compared to lowland newborn llamas showed lower in vivo pulmonary arterial pressor responses to acute hypoxia. This protection involved enhanced NO function, as NO blockade reverted the effect and the pulmonary arterial dilatator response to SNP was significantly enhanced in highland neonates. The pulmonary expression of ROCK2 and the phosphorylation of MLC20 were lower in high-altitude llamas. Conversely, MYPT1 was up-regulated whilst PSer695-MYPT1 and PThr695-MYPT1 did not change. Enhanced NO-dependent mechanisms were insufficient to prevent pulmonary arterial remodelling. Combined, the data strongly support that in the highland newborn llama reduced ROCK, increased MYPT1 expression and Ca2+ desensitization in pulmonary tissue allow an enhanced NO biology to limit hypoxic pulmonary constrictor responses. Blunting of hypoxic pulmonary hypertensive responses may be an adaptive mechanism to life at high altitude.
Collapse
Affiliation(s)
- Roberto V. Reyes
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
| | - Marcela Díaz
- Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de MedicinaUniversidad de ChileSantiagoChile
- Laboratorio de Mecanismos de Stress y Adaptación Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Germán Ebensperger
- Laboratorio de Mecanismos de Stress y Adaptación Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Emilio A. Herrera
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Sebastián A. Quezada
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Ismael Hernandez
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Emilia M. Sanhueza
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Julian T. Parer
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San FranciscoCaliforniaUSA
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeUK
| | - Aníbal J. Llanos
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| |
Collapse
|
30
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
32
|
López V, Moraga FA, Llanos AJ, Ebensperger G, Taborda MI, Uribe E. Plasmatic Concentrations of ADMA and Homocystein in Llama ( Lama glama) and Regulation of Arginase Type II: An Animal Resistent to the Development of Pulmonary Hypertension Induced by Hypoxia. Front Physiol 2018; 9:606. [PMID: 29896110 PMCID: PMC5986928 DOI: 10.3389/fphys.2018.00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
There are animal species that have adapted to life at high altitude and hypobaric hypoxia conditions in the Andean highlands. One such species is the llama (Lama glama), which seem to have developed efficient protective mechanisms to avoid maladaptation resulting from chronic hypoxia, such as a resistance to the development of hypoxia -induced pulmonary hypertension. On the other hand, it is widely known that different models of hypertension can arise as a result of changes in endothelial function. The respect, one of the common causes of deregulation in endothelial vasodilator function have been associated with down-regulation of the NO synthesis and an increase in plasma levels of asymmetric dimethylarginine (ADMA) and homocysteine. Additionally, it is also known that NO production can be regulated by plasma levels of L-arginine as a result of the competition between nitric oxide synthase (NOS) and arginase. The objective of this study, was to determine the baseline concentrations of ADMA and homocysteine in llama, and to evaluate their effect on the arginase pathway and their involvement in the resistance to the development of altitude-induced pulmonary hypertension. METHOD Lowland and highland newborn sheep and llama were investigated near sea level and at high altitude. Blood determinations of arterial blood gases, ADMA and homocysteíne are made and the effect of these on the arginase activity was evaluated. RESULTS The basal concentrations of ADMA and homocysteine were determined in llama, and they were found to be significantly lower than those found in other species and in addition, the exposure to hypoxia is unable to increase its concentration. On the other hand, it was observed that the llama exhibited 10 times less arginase II activity as compared to sheep, and the expression was not induced by hypoxia. Finally, ADMA y Hcy, has no effect on the type II arginase pathway. CONCLUSION Based on our results, we propose that low concentrations of ADMA and homocysteine found in llamas, the low expression of arginase type II, DDAH-2 and CBS, as well as its insensitivity to activation by homocysteine could constitute an adaptation mechanism of these animals to the hypoxia.
Collapse
Affiliation(s)
- Vasthi López
- Laboratorio de Metabolismo de Aminoácidos e Hipoxia, Departamento de Ciencias Biomédicas, Universidad Católica del Norte, Coquimbo, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomedicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Anibal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Departamento de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - German Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Departamento de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - María I Taborda
- Laboratorio de Metabolismo de Aminoácidos e Hipoxia, Departamento de Ciencias Biomédicas, Universidad Católica del Norte, Coquimbo, Chile
| | - Elena Uribe
- Laboratorio de Enzimología, Departamento de Bioquímica y Biología Molecular, Universidad of Concepción, Concepción, Chile
| |
Collapse
|
33
|
Astorga CR, González-Candia A, Candia AA, Figueroa EG, Cañas D, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs. Front Physiol 2018; 9:185. [PMID: 29559926 PMCID: PMC5845624 DOI: 10.3389/fphys.2018.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia.
Collapse
Affiliation(s)
- Cristian R Astorga
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro González-Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro A Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago, Chile
| | - Esteban G Figueroa
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniel Cañas
- Department of Mechanical Engineering, Faculty of Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Germán Ebensperger
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
34
|
de Wijs-Meijler DP, Duncker DJ, Tibboel D, Schermuly RT, Weissmann N, Merkus D, Reiss IK. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. Pulm Circ 2017; 7:55-66. [PMID: 28680565 PMCID: PMC5448552 DOI: 10.1086/689748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called "fetal or perinatal programming." Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future.
Collapse
Affiliation(s)
- Daphne P. de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care Unit, Department of Pediatric Surgery, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph T. Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
35
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
36
|
Castillo-Galán S, Quezada S, Moraga FA, Ebensperger G, Herrera EA, Beñaldo F, Hernandez I, Ebensperger R, Ramirez S, Llanos AJ, Reyes RV. 2-AMINOETHYLDIPHENYLBORINATE MODIFIES THE PULMONARY CIRCULATION IN PULMONARY HYPERTENSIVE NEWBORN LAMBS WITH PARTIAL GESTATION AT HIGH ALTITUDE. Am J Physiol Lung Cell Mol Physiol 2016; 311:L788-L799. [PMID: 27542806 DOI: 10.1152/ajplung.00230.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/14/2016] [Indexed: 12/22/2022] Open
Abstract
Calcium signaling through store operated channels (SOC) is involved in hypoxic pulmonary hypertension. We determined whether a treatment with 2-aminoethyldiphenylborinate (2-APB), a compound with SOC blocker activity, reduces pulmonary hypertension and vascular remodeling. Twelve newborn lambs exposed to perinatal chronic hypoxia were studied, 6 of them received a 2-APB treatment and the other 6 received vehicle treatment, for 10 days in both cases. Throughout this period, we recorded cardiopulmonary variables and on day 11 we evaluated the response to an acute hypoxic challenge. Additionally, we assessed the vasoconstrictor and vasodilator function in isolated pulmonary arteries as well as their remodeling in lung slices. 2-APB reduced pulmonary arterial pressure at the third and tenth days, cardiac output between the fourth and eighth days, and pulmonary vascular resistance at the tenth day of treatment. The pulmonary vasoconstrictor response to acute hypoxia was reduced by the end of treatment. 2-APB also decreased maximal vasoconstrictor response to the thromboxane mimetic U46619 and endothelin-1 and increased maximal relaxation to 8-Br-cGMP. The maximal relaxation and potency to phosphodiesterase-5 and Rho-kinase inhibition with sildenafil and fasudil respectively, were also increased. Finally, 2-APB reduced the medial and adventitial layers' thickness, the expression of α-actin and the percentage of Ki67+ nuclei of small pulmonary arteries. Taken together, our results indicate that 2-APB reduces pulmonary hypertension, vasoconstrictor responses and pathological remodeling in pulmonary hypertensive lambs. We conclude that SOC targeting may be a useful strategy for the treatment of neonatal pulmonary hypertension, however, further testing of specific blockers is needed.
Collapse
Affiliation(s)
| | - Sebastián Quezada
- Universidad de Chile, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM)
| | | | - Germán Ebensperger
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | | | | | - Ismael Hernandez
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | - Renato Ebensperger
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | - Santiago Ramirez
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | | | - Roberto V Reyes
- Universidad de Chile, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM)
| |
Collapse
|
37
|
González-Candia A, Veliz M, Araya C, Quezada S, Ebensperger G, Serón-Ferré M, Reyes RV, Llanos AJ, Herrera EA. Potential adverse effects of antenatal melatonin as a treatment for intrauterine growth restriction: findings in pregnant sheep. Am J Obstet Gynecol 2016; 215:245.e1-7. [PMID: 26902986 DOI: 10.1016/j.ajog.2016.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. OBJECTIVES The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. STUDY DESIGN High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). RESULTS Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. CONCLUSIONS Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans.
Collapse
|
38
|
Tate KB, Rhen T, Eme J, Kohl ZF, Crossley J, Elsey RM, Crossley DA. Periods of cardiovascular susceptibility to hypoxia in embryonic american alligators (Alligator mississippiensis). Am J Physiol Regul Integr Comp Physiol 2016; 310:R1267-78. [PMID: 27101296 DOI: 10.1152/ajpregu.00320.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/11/2016] [Indexed: 01/30/2023]
Abstract
During embryonic development, environmental perturbations can affect organisms' developing phenotype, a process known as developmental plasticity. Resulting phenotypic changes can occur during discrete, critical windows of development. Critical windows are periods when developing embryos are most susceptible to these perturbations. We have previously documented that hypoxia reduces embryo size and increases relative heart mass in American alligator, and this study identified critical windows when hypoxia altered morphological, cardiovascular function and cardiac gene expression of alligator embryos. We hypothesized that incubation in hypoxia (10% O2) would increase relative cardiac size due to cardiac enlargement rather than suppression of somatic growth. We exposed alligator embryos to hypoxia during discrete incubation periods to target windows where the embryonic phenotype is altered. Hypoxia affected heart growth between 20 and 40% of embryonic incubation, whereas somatic growth was affected between 70 and 90% of incubation. Arterial pressure was depressed by hypoxic exposure during 50-70% of incubation, whereas heart rate was depressed in embryos exposed to hypoxia during a period spanning 70-90% of incubation. Expression of Vegf and PdgfB was increased in certain hypoxia-exposed embryo treatment groups, and hypoxia toward the end of incubation altered β-adrenergic tone for arterial pressure and heart rate. It is well known that hypoxia exposure can alter embryonic development, and in the present study, we have identified brief, discrete windows that alter the morphology, cardiovascular physiology, and gene expression in embryonic American alligator.
Collapse
Affiliation(s)
- Kevin B Tate
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota
| | - John Eme
- Department of Biological Sciences, California State University San Marcos, San Marcos, California
| | - Zachary F Kohl
- Department of Biological Sciences, University of North Texas, Denton, Texas; and
| | - Janna Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas; and
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas; and
| |
Collapse
|
39
|
Krause BJ, Del Rio R, Moya EA, Marquez-Gutierrez M, Casanello P, Iturriaga R. Arginase-endothelial nitric oxide synthase imbalance contributes to endothelial dysfunction during chronic intermittent hypoxia. J Hypertens 2016; 33:515-24; discussion 524. [PMID: 25629363 DOI: 10.1097/hjh.0000000000000453] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnoea, is associated with impaired vascular function despite unaltered response to nitric oxide donors. This study addressed whether arginase contributes to the endothelial dysfunction in CIH rats. METHODS Adult male Sprague-Dawley rats were exposed for 21 days to CIH (5% oxygen, 12 times/h, 8 h/day). The internal carotid arteries were isolated to study endothelial nitric oxide synthase (eNOS) and arginase-1 levels by western blot and immunohistochemistry, and their vasoactive responses using wire myography. Relaxation to sodium nitroprusside (SNP; nitric oxide donor) in the presence or absence of soluble guanylyl cyclase inhibitor, and acetylcholine with and without a NOS inhibitor [N(G)-nitro-L-arginine (L-NA)] and the arginase inhibitor BEC were determined. RESULTS Arteries from the CIH rats presented higher active contraction induced by KCl (3.5 ± 0.4 vs. 2.3 ± 0.2 N/m2), augmented media-to-lumen ratio (∼40%), decreased relaxation to acetylcholine (12.8 ± 1.5 vs. 30.5 ± 4.6%) and increased sensitivity to SNP (pD2 7.3 ± 0.1 vs. 6.7 ± 0.1). Arginase inhibition reversed the impaired acetylcholine-induced relaxation in CIH arteries (49.5 ± 7.4%), an effect completely blocked by L-NA. In the carotid arteries, arginase-1 protein level was increased, whereas eNOS levels decreased in the CIH arteries. CONCLUSION The current results suggest that endothelial dysfunction in CIH-induced hypertension may result from imbalanced arginase-1 to eNOS expression, vascular remodelling and increased contractile capacity, rather than decreased vascular response to nitric oxide.
Collapse
Affiliation(s)
- Bernardo J Krause
- aDivision of Obstetrics and Gynaecology bDivision of Paediatrics, Faculty of Medicine, School of Medicine cLaboratory of Neurobiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile dLaboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
40
|
Lopez NC, Ebensperger G, Herrera EA, Reyes RV, Calaf G, Cabello G, Moraga FA, Beñaldo FA, Diaz M, Parer JT, Llanos AJ. Role of the RhoA/ROCK pathway in high-altitude associated neonatal pulmonary hypertension in lambs. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1053-63. [PMID: 26911462 DOI: 10.1152/ajpregu.00177.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022]
Abstract
Exposure to high-altitude chronic hypoxia during pregnancy may cause pulmonary hypertension in neonates, as a result of vasoconstriction and vascular remodeling. We hypothesized that susceptibility to pulmonary hypertension, due to an augmented expression and activity of the RhoA/Rho-kinase (ROCK) pathway in these neonates, can be reduced by daily administration of fasudil, a ROCK inhibitor. We studied 10 highland newborn lambs with conception, gestation, and birth at 3,600 m in Putre, Chile. Five highland controls (HLC) were compared with 5 highland lambs treated with fasudil (HL-FAS; 3 mg·kg(-1)·day(-1) iv for 10 days). Ten lowland controls were studied in Lluta (50 m; LLC). During the 10 days of fasudil daily administration, the drug decreased pulmonary arterial pressure (PAP) and resistance (PVR), basally and during a superimposed episode of acute hypoxia. HL-FAS small pulmonary arteries showed diminished muscular area and a reduced contractile response to the thromboxane analog U46619 compared with HLC. Hypoxia, but not fasudil, changed the protein expression pattern of the RhoA/ROCKII pathway. Moreover, HL-FAS lungs expressed less pMYPT1(T850) and pMYPT1T(696) than HLC, with a potential increase of the myosin light chain phosphatase activity. Finally, hypoxia induced RhoA, ROCKII, and PKG mRNA expression in PASMCs of HLC, but fasudil reduced them (HL-FAS) similarly to LLC. We conclude that fasudil decreases the function of the RhoA/ROCK pathway, reducing the PAP and PVR in chronically hypoxic highland neonatal lambs. The inhibition of ROCKs by fasudil may offer a possible therapeutic tool for the pulmonary hypertension of the neonates.
Collapse
Affiliation(s)
- Nandy C Lopez
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - German Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Gloria Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Gertrudis Cabello
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Fernando A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Felipe A Beñaldo
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcela Diaz
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Julian T Parer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Anibal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile;
| |
Collapse
|
41
|
Blum-Johnston C, Thorpe RB, Wee C, Romero M, Brunelle A, Blood Q, Wilson R, Blood AB, Francis M, Taylor MS, Longo LD, Pearce WJ, Wilson SM. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. Am J Physiol Lung Cell Mol Physiol 2015; 310:L271-86. [PMID: 26637638 DOI: 10.1152/ajplung.00340.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Richard B Thorpe
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Chelsea Wee
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Monica Romero
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| | - Alexander Brunelle
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Quintin Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Rachael Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California;
| | - Arlin B Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Lawrence D Longo
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
42
|
Farías JG, Herrera EA, Carrasco-Pozo C, Sotomayor-Zárate R, Cruz G, Morales P, Castillo RL. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 2015; 158:1-23. [PMID: 26617218 DOI: 10.1016/j.pharmthera.2015.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxia is the failure of oxygenation at the tissue level, where the reduced oxygen delivered is not enough to satisfy tissue demands. Metabolic depression is the physiological adaptation associated with reduced oxygen consumption, which evidently does not cause any harm to organs that are exposed to acute and short hypoxic insults. Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability of endogenous antioxidant systems to scavenge ROS, where ROS overwhelms the antioxidant capacity. Oxidative stress plays a crucial role in the pathogenesis of diseases related to hypoxia during intrauterine development and postnatal life. Thus, excessive ROS are implicated in the irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Here, we describe several pathophysiological conditions and in vivo and ex vivo models developed for the study of hypoxic and oxidative stress injury. We reviewed existing literature on the responses to hypoxia and oxidative stress of the cardiovascular, renal, reproductive, and central nervous systems, and discussed paradigms of chronic and intermittent hypobaric hypoxia. This systematic review is a critical analysis of the advantages in the application of some experimental strategies and their contributions leading to novel pharmacological therapies.
Collapse
Affiliation(s)
- Jorge G Farías
- Facultad de Ingeniería y Ciencias, Departamento de Ingeniería Química, Universidad de la Frontera, Casilla 54-D, Temuco, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Chile
| | | | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Paola Morales
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Rodrigo L Castillo
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
43
|
Herrera EA, Rojas RT, Krause BJ, Ebensperger G, Reyes RV, Giussani DA, Parer JT, Llanos AJ. Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean altiplano. J Physiol 2015; 594:1231-45. [PMID: 26339865 DOI: 10.1113/jp271110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Rodrigo T Rojas
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bernardo J Krause
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Julian T Parer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, CA, USA
| | - Aníbal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
44
|
Abstract
Hypoxia induces several responses at cardiovascular, pulmonary and reproductive levels, which may lead to chronic diseases. This is relevant in human populations exposed to high altitude (HA), in either chronic continuous (permanent inhabitants) or intermittent fashion (HA workers, tourists and mountaineers). In Chile, it is estimated that 1.000.000 people live at highlands and more than 55.000 work in HA shifts. Initial responses to hypoxia are compensatory and induce activation of cardioprotective mechanisms, such as those seen under intermittent hypobaric (IH) hypoxia, events that could mediate preconditioning. However, whenever hypoxia is prolonged, the chronic activation of cellular responses induces long-lasting modifications that may result in acclimatization or produce maladaptive changes with increase in cardiovascular risk. HA exposure during pregnancy induces hypoxia and oxidative stress, which in turn may promote cellular responses and epigenetic modifications resulting in severe impairment in growth and development. Sadly, this condition is accompanied with an increased fetal and neonatal morbi-mortality. Further, developmental hypoxia may program cardio-pulmonary circulations later in postnatal life, ending in vascular structural and functional alterations with augmented risk on pulmonary and cardiovascular failure. Additionally, permanent HA inhabitants have augmented risk and prevalence of chronic hypoxic pulmonary hypertension, right ventricular hypertrophy and cardiopulmonary remodeling. Similar responses are seen in adults that are intermittently exposed to chronic hypoxia (CH) such as shift workers in HA areas. The mechanisms involved determining the immediate, short and long-lasting effects are still unclear. For several years, the study of the responses to hypoxic insults and pharmacological targets has been the motivation of our group. This review describes some of the mechanisms underlying hypoxic responses and potential therapeutic approaches with antioxidants such as melatonin, ascorbate, omega 3 (Ω3) or compounds that increase the nitric oxide (NO) bioavailability.
Collapse
|
45
|
Julian CG, Gonzales M, Rodriguez A, Bellido D, Salmon CS, Ladenburger A, Reardon L, Vargas E, Moore LG. Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction. Am J Physiol Heart Circ Physiol 2015; 309:H565-73. [PMID: 26092986 DOI: 10.1152/ajpheart.00296.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
Abstract
Perinatal exposures exert a profound influence on physiological function, including developmental processes vital for efficient pulmonary gas transfer throughout the lifespan. We extend the concept of developmental programming to chronic mountain sickness (CMS), a debilitating syndrome marked by polycythemia, ventilatory impairment, and pulmonary hypertension that affects ∼10% of male high-altitude residents. We hypothesized that adverse perinatal oxygenation caused abnormalities of ventilatory and/or pulmonary vascular function that increased susceptibility to CMS in adulthood. Subjects were 67 male high-altitude (3,600-4,100 m) residents aged 18-25 yr with excessive erythrocytosis (EE, Hb concentration ≥18.3 g/dl), a preclinical form of CMS, and 66 controls identified from a community-based survey (n = 981). EE subjects not only had higher Hb concentrations and erythrocyte counts, but also lower alveolar ventilation, impaired pulmonary diffusion capacity, higher systolic pulmonary artery pressure, lower pulmonary artery acceleration time, and more frequent right ventricular hypertrophy, than controls. Compared with controls, EE subjects were more often born to mothers experiencing hypertensive complications of pregnancy and hypoxia during the perinatal period, with each increasing the risk of developing EE (odds ratio = 5.25, P = 0.05 and odds ratio = 6.44, P = 0.04, respectively) after other factors known to influence EE status were taken into account. Adverse perinatal oxygenation is associated with increased susceptibility to EE accompanied by modest abnormalities of the pulmonary circulation that are independent of increased blood viscosity. The association between perinatal hypoxia and EE may be due to disrupted alveolarization and microvascular development, leading to impaired gas exchange and/or pulmonary hypertension.
Collapse
Affiliation(s)
- Colleen Glyde Julian
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado;
| | | | | | - Diva Bellido
- Bolivian Institute of High Altitude Biology, La Paz, Bolivia
| | | | - Anne Ladenburger
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah
| | - Lindsay Reardon
- Department of Emergency Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; and
| | - Enrique Vargas
- Bolivian Institute of High Altitude Biology, La Paz, Bolivia
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
46
|
Torres F, González-Candia A, Montt C, Ebensperger G, Chubretovic M, Serón-Ferré M, Reyes RV, Llanos AJ, Herrera EA. Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J Pineal Res 2015; 58:362-73. [PMID: 25736256 DOI: 10.1111/jpi.12222] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension of the newborn (PHN) constitutes a critical condition with severe cardiovascular and neurological consequences. One of its main causes is hypoxia during gestation, and thus, it is a public health concern in populations living above 2500 m. Although some mechanisms are recognized, the pathophysiological facts that lead to PHN are not fully understood, which explains the lack of an effective treatment. Oxidative stress is one of the proposed mechanisms inducing pulmonary vascular dysfunction and PHN. Therefore, we assessed whether melatonin, a potent antioxidant, improves pulmonary vascular function. Twelve newborn sheep were gestated, born, and raised at 3600 meters. At 3 days old, lambs were catheterized and daily cardiovascular measurements were recorded. Lambs were divided into two groups, one received daily vehicle as control and another received daily melatonin (1 mg/kg/d), for 8 days. At 11 days old, lung tissue and small pulmonary arteries (SPA) were collected. Melatonin decreased pulmonary pressure and resistance for the first 3 days of treatment. Further, melatonin significantly improved the vasodilator function of SPA, enhancing the endothelial- and muscular-dependent pathways. This was associated with an enhanced nitric oxide-dependent and nitric oxide independent vasodilator components and with increased nitric oxide bioavailability in lung tissue. Further, melatonin reduced the pulmonary oxidative stress markers and increased enzymatic and nonenzymatic antioxidant capacity. Finally, these effects were associated with an increase of lumen diameter and a mild decrease in the wall of the pulmonary arteries. These outcomes support the use of melatonin as an adjuvant in the treatment for PHN.
Collapse
Affiliation(s)
- Flavio Torres
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Providencia, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Titaouine M, Meziane T. The influence of altitude and landforms on some biochemical and hematological parameters in Ouled Djellal ewes from arid area of South East Algeria. Vet World 2015; 8:130-4. [PMID: 27047010 PMCID: PMC4777802 DOI: 10.14202/vetworld.2015.130-134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/19/2014] [Accepted: 12/30/2014] [Indexed: 11/17/2022] Open
Abstract
Aim: This study was conducted on Ouled Djellal ewes in arid area of south-east Algeria in order to reveal the influence of altitude and landforms on some hematological and biochemical parameters. Materials and Methods: A total of 160 ewes having 3-5 years of age, multiparous, non-pregnant, non-lactating and reared in arid areas of South East Algeria were included. Blood samples were divided according to factors of altitude and landform (plain region at 150 m above sea level, tableland region at 600 m above sea level and mountain region at 1000 m above sea level). The whole blood was analyzed for hematology, and plasma samples for biochemical analysis. Results: The study found lowest glucose concentrations were detected in tableland region at 600 m. In plain region at 150 m, ewes had a higher (p<0.01) concentration of cholesterol and triglyceride. Furthermore, a higher concentration of total proteins (p<0.01) and urea (p<0.05) were detected in plain region at 150 m. The average blood creatinine concentration in mountain ewes at 1000 m and tableland ewes at 600 m were higher (p<0.05) that in plain ewes at 150 m. The highest calcium concentration was found at the altitude of 150 m and the lowest at the altitude of 1000 m (1.12±0.35 mmol/L vs. 0.52±0.03 mmol/L). Phosphorus levels were higher at altitudes of 150 m than at the altitude of 600 m and 1000 m (0.93±0.42 mmol/L vs. 0.68±0.54 mmol/L, 0.23±0.01 mmol/L). The highest hemoglobin concentration and value of hematocrit were detected in mountain ewes at the altitude of 1000 m (120.61 g/L, 40%) and the lowest at the altitude of 150 m (73.2 g/L, 31%) (p<0.001). Conclusion: We concluded that hematological and biochemical parameters in Ouled Djellel ewes reared in arid area may be affected by altitude and landforms.
Collapse
Affiliation(s)
- Mohammed Titaouine
- Department of Veterinary Medicine, Laboratory of Environment, Animal Health and Production, University of El-Hadj Lakhdar, Batna 05000, Algeria; Department of Nature and Life Science, University of Mohamed Kheider, Biskra 07000, Algeria
| | - Toufik Meziane
- Department of Veterinary Medicine, Laboratory of Environment, Animal Health and Production, University of El-Hadj Lakhdar, Batna 05000, Algeria
| |
Collapse
|
48
|
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014; 21:1926-42. [PMID: 24350610 PMCID: PMC4202910 DOI: 10.1089/ars.2013.5785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. RECENT ADVANCES PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. CRITICAL ISSUES General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. FUTURE DIRECTIONS Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center , Sacramento, California
| | | |
Collapse
|
49
|
Ivy CM, Scott GR. Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:66-74. [PMID: 25446936 DOI: 10.1016/j.cbpa.2014.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 01/07/2023]
Abstract
Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
Herrera EA, Macchiavello R, Montt C, Ebensperger G, Díaz M, Ramírez S, Parer JT, Serón-Ferré M, Reyes RV, Llanos AJ. Melatonin improves cerebrovascular function and decreases oxidative stress in chronically hypoxic lambs. J Pineal Res 2014; 57:33-42. [PMID: 24811332 DOI: 10.1111/jpi.12141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
Chronic hypoxia during gestation and delivery results in oxidative stress and cerebrovascular dysfunction in the neonate. We assessed whether melatonin, a potent antioxidant and potential vasodilator, improves the cerebral vascular function in chronically hypoxic neonatal lambs gestated and born in the highlands (3600 m). Six lambs received melatonin (1 mg/kg per day oral) and six received vehicle, once a day for 8 days. During treatment, biometry and hemodynamic variables were recorded. After treatment, lambs were submitted to a graded FiO2 protocol to assess cardiovascular responses to oxygenation changes. At 12 days old, middle cerebral arteries (MCA) were collected for vascular reactivity, morphostructural, and immunostaining evaluation. Melatonin increased fractional growth at the beginning and improved carotid blood flow at all arterial PO2 levels by the end of the treatment (P < 0.05). Further, melatonin treatment improved vascular responses to potassium, serotonin, methacholine, and melatonin itself (P < 0.05). In addition, melatonin enhanced the endothelial response via nitric oxide-independent mechanisms in isolated arteries (162 ± 26 versus 266 ± 34 AUC, P < 0.05). Finally, nitrotyrosine staining as an oxidative stress marker decreased in the MCA media layer of melatonin-treated animals (0.01357 ± 0.00089 versus 0.00837 ± 0.00164 pixels/μm2 , P < 0.05). All the melatonin-induced changes were associated with no systemic cardiovascular alterations in vivo. In conclusion, oral treatment with melatonin modulates cerebral vascular function, resulting in a better cerebral perfusion and reduced oxidative stress in the neonatal period in chronically hypoxic lambs. Melatonin is a potential therapeutic agent for treating cerebrovascular dysfunction associated with oxidative stress and developmental hypoxia in neonates.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|