1
|
A Robust Bioassay of the Human Bradykinin B 2 Receptor that Extends Molecular and Cellular Studies: The Isolated Umbilical Vein. Pharmaceuticals (Basel) 2021; 14:ph14030177. [PMID: 33668382 PMCID: PMC7996148 DOI: 10.3390/ph14030177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Bradykinin (BK) has various physiological and pathological roles. Medicinal chemistry efforts targeted toward the widely expressed BK B2 receptor (B2R), a G-protein-coupled receptor, were primarily aimed at developing antagonists. The only B2R antagonist in clinical use is the peptide icatibant, approved to abort attacks of hereditary angioedema. However, the anti-inflammatory applications of B2R antagonists are potentially wider. Furthermore, the B2R antagonists notoriously exhibit species-specific pharmacological profiles. Classical smooth muscle contractility assays are exploited over a time scale of several hours and support determining potency, competitiveness, residual agonist activity, specificity, and reversibility of pharmacological agents. The contractility assay based on the isolated human umbilical vein, expressing B2R at physiological density, was introduced when investigating the first non-peptide B2R antagonist (WIN 64338). Small ligand molecules characterized using the assay include the exquisitely potent competitive antagonist, Pharvaris Compound 3 or the partial agonist Fujisawa Compound 47a. The umbilical vein assay is also useful to verify pharmacologic properties of special peptide B2R ligands, such as the carboxypeptidase-activated latent agonists and fluorescent probes. Furthermore, the proposed agonist effect of tissue kallikrein on the B2R has been disproved using the vein. This assay stands in between cellular and molecular pharmacology and in vivo studies.
Collapse
|
2
|
Lesage A, Gibson C, Marceau F, Ambrosi HD, Saupe J, Katzer W, Loenders B, Charest-Morin X, Knolle J. In Vitro Pharmacological Profile of a New Small Molecule Bradykinin B 2 Receptor Antagonist. Front Pharmacol 2020; 11:916. [PMID: 32636746 PMCID: PMC7316994 DOI: 10.3389/fphar.2020.00916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
We here report the discovery and early characterization of Compound 3, a representative of a novel class of small molecule bradykinin (BK) B2 receptor antagonists, and its superior profile to the prior art B2 receptor antagonists Compound 1 and Compound 2. Compound 3, Compound 2, and Compound 1 are highly potent antagonists of the human recombinant B2 receptor (Kb values 0.24, 0.95, and 1.24 nM, respectively, calcium mobilization assay). Compound 3 is more potent than the prior art compounds and icatibant in this assay (Kb icatibant 2.81 nM). The compounds also potently inhibit BK-induced contraction of endogenous B2 receptors in a human isolated umbilical vein bioassay. The potencies of Compound 3, Compound 2, Compound 1, and icatibant are (pA2 values) 9.67, 9.02, 8.58, and 8.06 (i.e. 0.21, 0.95, 2.63, and 8.71 nM), respectively. Compound 3 and Compound 2 were further characterized. They inhibit BK-induced c-Fos signaling and internalization of recombinant human B2 receptors in HEK293 cells, and do not antagonize the venous effects mediated by other G protein-coupled receptors in the umbilical vein model, including the bradykinin B1 receptor. Antagonist potency of Compound 3 at cloned cynomolgus monkey, dog, rat, and mouse B2 receptors revealed species selectivity, with a high antagonist potency for human and monkey B2 receptors, but several hundred-fold lower potency for the other B2 receptors. The in vitro off-target profile of Compound 3 demonstrates a high degree of selectivity over a wide range of molecular targets, including the bradykinin B1 receptor. Compound 3 showed a lower intrinsic clearance in the microsomal stability assay than the prior art compounds. With an efflux ratio of 1.0 in the Caco-2 permeability assay Compound 3 is predicted to be not a substrate of efflux pumps. In conclusion, we discovered a novel chemical class of highly selective and very potent B2 receptor antagonists, as exemplified by Compound 3. The compound showed excellent absorption in the Caco-2 assay, predictive of good oral bioavailability, and favourable metabolic stability in liver microsomes. Compound 3 has provided a significant stepping stone towards the discovery of the orally bioavailable B2 antagonist PHA-022121, currently in phase 1 clinical development.
Collapse
Affiliation(s)
- Anne Lesage
- Pharvaris Netherlands B.V., Leiden, Netherlands
| | | | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - Jörn Saupe
- AnalytiCon Discovery GmbH, Potsdam, Germany
| | | | | | - Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, Research Center, CHU de Québec-Université Laval, Québec, QC, Canada
| | | |
Collapse
|
3
|
Bawolak MT, Touzin K, Moreau ME, Désormeaux A, Adam A, Marceau F. Cardiovascular expression of inflammatory signaling molecules, the kinin B1 receptor and COX2, in the rabbit: Effects of LPS, anti-inflammatory and anti-hypertensive drugs. ACTA ACUST UNITED AC 2008; 146:157-68. [DOI: 10.1016/j.regpep.2007.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/06/2007] [Accepted: 09/02/2007] [Indexed: 11/17/2022]
|
4
|
Pawluczyk IZA, Patel SR, Harris KPG. Pharmacological enhancement of the kallikrein-kinin system promotes anti-fibrotic responses in human mesangial cells. Cell Physiol Biochem 2007; 18:327-36. [PMID: 17170519 DOI: 10.1159/000097610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2006] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to investigate whether pharmacological enhancement of the renal kallikrein-kinin system using the vasopeptidase inhibitor omapatrilat plays a direct role in modulating the fibrotic responses of human mesangial cells to injury. Treatment with 40 micromol/L omapatrilat was able to reduce macrophage-conditioned medium (MPCM)-induced fibronectin levels without affecting mRNA expression. MPCM injury also suppressed kallikrein and low molecular weight kininogen mRNA. Omapatrilat was able to attenuate this suppression. Bradykinin levels in contrast were increased by MPCM and treatment with omapatrilat further augmented levels. Co-incubation with the bradykinin B2 receptor antagonist HOE 140 attenuated the omapatrilat-induced lowering of fibronectin. Moreover, inhibition of cGMP release had a similar effect. Paradoxically, RT-PCR and Southern blotting demonstrated that bradykinin B2 receptor mRNA levels were down regulated in response to omapatrilat. Western blotting supported this data. Supernatant levels of tissue plasminogen activator (tPA), a product of bradykinin stimulation, were decreased by omapatrilat while cell associated tPA levels were increased. Matrix metalloproteinase-9 (MMP-9) mRNA expression was up regulated by omapatrilat treatment, although no difference in active zymogen levels was observed. In conclusion enhancement of kallikrein-kinin system appears to play a direct role in promoting anti-fibrotic responses in MPCM-injured human mesangial cells.
Collapse
|
5
|
Lang F, Böhmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86:1151-78. [PMID: 17015487 DOI: 10.1152/physrev.00050.2005] [Citation(s) in RCA: 521] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress (including cell shrinkage) and hormones (including gluco- and mineralocorticoids). Similar to its isoforms SGK2 and SGK3, SGK1 is activated by insulin and growth factors via phosphatidylinositol 3-kinase and the 3-phosphoinositide-dependent kinase PDK1. SGKs activate ion channels (e.g., ENaC, TRPV5, ROMK, Kv1.3, KCNE1/KCNQ1, GluR1, GluR6), carriers (e.g., NHE3, GLUT1, SGLT1, EAAT1-5), and the Na+-K+-ATPase. They regulate the activity of enzymes (e.g., glycogen synthase kinase-3, ubiquitin ligase Nedd4-2, phosphomannose mutase-2) and transcription factors (e.g., forkhead transcription factor FKHRL1, beta-catenin, nuclear factor kappaB). SGKs participate in the regulation of transport, hormone release, neuroexcitability, cell proliferation, and apoptosis. SGK1 contributes to Na+ retention and K+ elimination of the kidney, mineralocorticoid stimulation of salt appetite, glucocorticoid stimulation of intestinal Na+/H+ exchanger and nutrient transport, insulin-dependent salt sensitivity of blood pressure and salt sensitivity of peripheral glucose uptake, memory consolidation, and cardiac repolarization. A common ( approximately 5% prevalence) SGK1 gene variant is associated with increased blood pressure and body weight. SGK1 may thus contribute to metabolic syndrome. SGK1 may further participate in tumor growth, neurodegeneration, fibrosing disease, and the sequelae of ischemia. SGK3 is required for adequate hair growth and maintenance of intestinal nutrient transport and influences locomotive behavior. In conclusion, the SGKs cover a wide variety of physiological functions and may play an active role in a multitude of pathophysiological conditions. There is little doubt that further targets will be identified that are modulated by the SGK isoforms and that further SGK-dependent in vivo physiological functions and pathophysiological conditions will be defined.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Liang YC, Liu HJ, Chen SH, Chen CC, Chou LS, Tsai LH. Effect of lipopolysaccharide on diarrhea and gastrointestinal transit in mice: Roles of nitric oxide and prostaglandin E 2. World J Gastroenterol 2005; 11:357-61. [PMID: 15637744 PMCID: PMC4205337 DOI: 10.3748/wjg.v11.i3.357] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of lipopolysaccharide (LPS) on the diarrheogenic activity, gastrointestinal transit (GIT), and intestinal fluid content and the possible role of nitric oxide (NO) and prostaglandin E2 (PGE2) in gastrointestinal functions of endotoxin-treated mice.
METHODS: Diarrheogic activity, GIT, and intestinal fluid content as well as nitric oxide and PGE2 products were measured after intraperitoneal administration of LPS in mice.
RESULTS: LPS dose-dependently accumulated abundant fluid into the small intestine, induced diarrhea, but decreased the GIT. Both nitric oxide and PGE2 were found to increase in LPS-treated mice. Western blot analysis indicated that LPS significantly induced the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 in mice intestines. Pretreatment with NG-nitro-L-arginine-methyl ester (L-NAME, a non-selective NOS inhibitor) or indomethacin (an inhibitor of prostaglandin synthesis) significantly attenuated the effects of LPS on the diarrheogenic activity and intestine content, but reversed the GIT.
CONCLUSION: The present study suggests that the pathogenesis of LPS treatment may mediate the stimulatory effect of LPS on nitric oxide and PGE2 production and NO/prostaglandin pathway may play an important role on gastrointestinal function.
Collapse
Affiliation(s)
- Yu-Chih Liang
- Graduate Institute of Biomedical Technology, Taipei Medical University, Taipei, Taiwan, China
| | | | | | | | | | | |
Collapse
|
7
|
Duguay D, Sarkissian SD, Kouz R, Ongali B, Couture R, deBlois D. Kinin B2 receptor is not involved in enalapril-induced apoptosis and regression of hypertrophy in spontaneously hypertensive rat aorta: possible role of B1 receptor. Br J Pharmacol 2004; 141:728-36. [PMID: 14744816 PMCID: PMC1574228 DOI: 10.1038/sj.bjp.0705642] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Treatment with enalapril induces smooth muscle cell apoptosis and regression of aortic hypertrophy in spontaneously hypertensive rats (SHRs), whereas combined blockade of angiotensin II AT(1) and AT(2) receptors does not. We postulated that vascular apoptosis with enalapril involves enhanced half-life of bradykinin (BK) and kinin B(2) receptor stimulation. 2. SHR, 11-weeks old, were treated for 4 weeks with enalapril (30 mg kg(-1) day(-1)), Hoe 140 (500 microg kg(-1) day(-1); B(2) receptor antagonist), alone or in combination. Controls received vehicle. 3. The half-life of hypotensive responses to intra-arterial bolus injections of BK were significantly increased in SHR anesthetized after 4 weeks of enalapril, an effect prevented by Hoe 140. The magnitude of BK-induced hypotension was significantly attenuated in all rats treated with Hoe 140. 4. As compared to placebo, enalapril treatment significantly reduced blood pressure (-34+/-2%), aortic hypertrophy (-20+/-3%), hyperplasia (-37+/-5%) and DNA synthesis (-61+/-8%), while it increased aortic DNA fragmentation by two-fold. Hoe 140 given alone or in combination with enalapril affected none of these parameters. 5. As a possible alternative mechanism, aortae isolated during the second week of enalapril treatment showed a transient upregulation of contractile responses to des-Arg(9)BK (EC(50)<1 nM), which were significantly reduced by [Leu(8)]des-Arg(9)BK (10 microM). Moreover, in vitro receptor autoradiography revealed an increase in expression of B(1) and B(2) receptor binding sites by 8-11 days of enalapril treatment. 6. Aortic apoptosis induction and hypertrophy regression with enalapril do not involve kinin B(2) receptors in SHR. Kinins acting via B(1) receptors remains a candidate mechanism.
Collapse
Affiliation(s)
- David Duguay
- Department of Pharmacology, Université de Montreal Hospital (CHUM) Research Center 3840, St-Urbain St., Room 7-132B, Montréal, PQ, Canada, H2W 1T8
| | - Shant Der Sarkissian
- Department of Pharmacology, Université de Montreal Hospital (CHUM) Research Center 3840, St-Urbain St., Room 7-132B, Montréal, PQ, Canada, H2W 1T8
| | - Rémi Kouz
- Collége Jean-Brébeu F, Montréal, PQ, Canada, H3T
| | - Brice Ongali
- Department of Physiology, Université de Montréal, Montréal, PQ, Canada, H3C 3J7
| | - Réjean Couture
- Department of Physiology, Université de Montréal, Montréal, PQ, Canada, H3C 3J7
| | - Denis deBlois
- Department of Pharmacology, Université de Montreal Hospital (CHUM) Research Center 3840, St-Urbain St., Room 7-132B, Montréal, PQ, Canada, H2W 1T8
- Author for correspondence:
| |
Collapse
|
8
|
Ongali B, Buck HDS, Cloutier F, Legault F, Regoli D, Lambert C, Thibault G, Couture R. Chronic effects of angiotensin-converting enzyme inhibition on kinin receptor binding sites in the rat spinal cord. Am J Physiol Heart Circ Physiol 2003; 284:H1949-58. [PMID: 12586640 DOI: 10.1152/ajpheart.01113.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the use of in vitro receptor autoradiography, this study aims at determining whether the higher level of kinin B(2) receptor density in the spinal cord of the spontaneously hypertensive rat (SHR) is secondary to arterial hypertension and whether chronic treatment with angiotensin I-converting enzyme inhibitors (ACEI) can regulate neuronal B(1) and B(2) receptors. SHR received, from the age of 4 wk, one of the two ACEI (lisinopril or zofenopril, 10 mg x kg(-1) x day(-1)) or for comparison, the selective AT(1) antagonist (losartan, 20 mg x kg(-1) x day(-1)) in their drinking water for a period of 4, 12, and 20 wk. Age-matched untreated SHR and Wistar-Kyoto rats (WKY) were used as controls. B(2) receptor binding sites in most laminae were higher in SHR than in WKY from the age of 8 to 24 wk. Whereas B(1) receptor binding sites were significantly present in young SHR and WKY, they were barely detectable in adult rats. ACEI (16 and 24 wk) and AT(1) antagonist (24 wk) enhanced the number of B(2) without changing B(1) receptor binding sites. However, at 8 wk the three treatments significantly increased B(1) and decreased B(2) receptors in lamina I. It is concluded that 1) the higher density of B(2) receptors in the spinal cord of SHR is not due to hypertension, 2) kinin receptors are regulated differently by ACEI in neuronal and vascular tissues, and 3) aging may have a profound impact on levels of B(1) and B(2) receptors in the rat spinal cord.
Collapse
Affiliation(s)
- Brice Ongali
- Department of Physiology, Université de Montréal, Québec H3C 3J7, Canada J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sabourin T, Morissette G, Bouthillier J, Levesque L, Marceau F. Expression of kinin B(1) receptor in fresh or cultured rabbit aortic smooth muscle: role of NF-kappa B. Am J Physiol Heart Circ Physiol 2002; 283:H227-37. [PMID: 12063295 DOI: 10.1152/ajpheart.00978.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinin B(1) receptor (B(1)R) expression and the importance of the transcription factor nuclear factor (NF)-kappa B in this process were evaluated in models based on the rabbit aorta: freshly isolated tissue (postisolation induction) and cultured smooth muscle cells (SMCs). A 3-h incubation of freshly isolated tissues determined a sharp B(1)R mRNA increase (RT-PCR). Coincubation of tissues with a stimulus (interleukin-1 beta, fetal bovine serum, epidermal growth factor, or cycloheximide) further increased mRNA levels. Cultured SMCs possessed a basal population of surface B(1)Rs ([(3)H]Lys-des-Arg(9)-bradykinin binding) that was upregulated by treatments with the same set of stimuli (binding, mRNA, nuclear runon). Pharmacological inhibitors of NF-kappa B (MG-132, BAY 11-7082, dexamethasone) or actinomycin D reduced the postisolation induction of B(1)Rs in fresh aortic tissue (contractility or mRNA) and the cytokine effect on cells (mRNA, binding). NF-kappa B may be a common mediator of various stimuli that increase B(1)R gene transcription in the rabbit aorta, including tissue isolation, but cycloheximide also stabilizes B(1)R mRNA. The SMC models faithfully mimic the in vivo situation with regard to B(1)R regulation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blood Proteins/pharmacology
- Cells, Cultured
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Epidermal Growth Factor/pharmacology
- Interleukin-1/pharmacology
- Leupeptins/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
- Nitriles
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Organic Chemicals
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Rabbits
- Receptor, Bradykinin B1
- Receptors, Bradykinin/biosynthesis
- Receptors, Bradykinin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfones
- Up-Regulation/drug effects
- Up-Regulation/physiology
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Thierry Sabourin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Pavillon l'Hôtel-Dieu de Québec, Québec Canada G1R 2J6
| | | | | | | | | |
Collapse
|
10
|
Sabourin T, Guay K, Houle S, Bouthillier J, Bachvarov DR, Adam A, Marceau F. Absence of ligand-induced regulation of kinin receptor expression in the rabbit. Br J Pharmacol 2001; 133:1154-62. [PMID: 11487527 PMCID: PMC1572864 DOI: 10.1038/sj.bjp.0704158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2001] [Revised: 04/23/2001] [Accepted: 05/10/2001] [Indexed: 11/09/2022] Open
Abstract
The induction of B(1) receptors (B(1)Rs) and desensitization or down-regulation of B(2) receptors (B(2)Rs) as a consequence of the production of endogenous kinins has been termed the autoregulation hypothesis. The latter was investigated using two models based on the rabbit: kinin stimulation of cultured vascular smooth muscle cells (SMCs) and in vivo contact system activation (dextran sulphate intravenous injection, 2 mg kg(-1), 5 h). Rabbit aortic SMCs express a baseline population of B(1)Rs that was up-regulated upon interleukin-1beta treatment ([(3)H]-Lys-des-Arg(9)-BK binding or mRNA concentration evaluated by RT - PCR; 4 or 3 h, respectively). Treatment with B(1)R or B(2)R agonists failed to alter B(1)R expression under the same conditions. Despite consuming endogenous kininogen (assessed using the kinetics of immunoreactive kinin formation in the plasma exposed to glass beads ex vivo) and producing hypotension mediated by B(2)Rs in anaesthetized rabbits, dextran sulphate treatment failed to induce B(1)Rs in conscious animals (RT - PCR in several organs, aortic contractility). By contrast, lipopolysaccharide (LPS, 50 microg kg(-1), 5 h) was an effective B(1)R inducer (kidney, duodenum, aorta) but did not reduce kininogen reserve. We tested the alternate hypothesis that endogenous kinin participate in LPS induction of B(1)Rs. Kinin receptor antagonists (icatibant combined to B-9858, 50 microg kg(-1) of each) failed to prevent or reduce the effect of LPS on B(1)R expression. Dextran sulphate or LPS treatments did not persistently down-regulate vascular B(2)Rs (jugular vein contractility assessed ex vivo). The kinin receptor autoregulation hypothesis is not applicable to primary cell cultures derived from a tissue known to express B(1)Rs in a regulated manner (aorta). The activation of the endogenous kallikrein-kinin system is ineffective to induce B(1)Rs in vivo in an experimental time frame sufficient for B(1)R induction by LPS.
Collapse
MESH Headings
- Anesthesia
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Bradykinin/analogs & derivatives
- Bradykinin/pharmacology
- Bradykinin Receptor Antagonists
- Captopril/pharmacology
- Cells, Cultured
- Dextran Sulfate/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Hypotension/chemically induced
- Interleukin-1/pharmacology
- Kininogens/blood
- Kininogens/drug effects
- Ligands
- Lipopolysaccharides/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rabbits
- Receptor, Bradykinin B1
- Receptor, Bradykinin B2
- Receptors, Bradykinin/genetics
- Receptors, Bradykinin/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Thierry Sabourin
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Katline Guay
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Steeve Houle
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Johanne Bouthillier
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Dimcho R Bachvarov
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Albert Adam
- Faculté de Pharmacie, Université de Montréal, Montréal (Québec), Canada H3C 3J7
| | - François Marceau
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| |
Collapse
|
11
|
deBlois D, Horlick RA. Endotoxin sensitization to kinin B(1) receptor agonist in a non-human primate model: haemodynamic and pro-inflammatory effects. Br J Pharmacol 2001; 132:327-35. [PMID: 11156593 PMCID: PMC1572522 DOI: 10.1038/sj.bjp.0703748] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Revised: 09/25/2000] [Accepted: 10/02/2000] [Indexed: 11/08/2022] Open
Abstract
1. Although endotoxaemia induces kinin B(1) receptors in several animal models, this condition is not documented in primates. This study examined the up-regulation of haemodynamic and pro-inflammatory responses to the B(1) agonist des-Arg(10)-kallidin (dKD) in a non-human primate model. 2. Green monkeys (Cercopithecus aethiops St Kitts) received lipopolysaccharide (LPS; 90 microg kg(-1)) or saline intravenously. After 4 h, anaesthetized monkeys were cannulated via the carotid artery to monitor blood pressure changes following intra-arterial injections of dKD or the B(2) agonist bradykinin (BK). Oedema induced by subcutaneous kinin administration was evaluated as the increase in ventral skin folds in anaesthetized monkeys injected with captopril at 4 h to 56 days post-LPS. 3. LPS increased rectal temperature but did not affect blood pressure after 4 h. dKD reduced blood pressure (E(max): 27+/-4 mmHg; EC(50): 130 pmol kg(-1)) and increased heart rate (E(max): 33 b.p.m.) only after LPS. In contrast, the dose-dependent fall in blood pressure with BK was comparable in all groups. The selective B(1) antagonist [Leu(9)]dKD (75 ng kg(-1) min(-1), intravenously) abolished responses to dKD but not BK. 4. dKD injection induced oedema dose-dependently (2.4+/-0.1 mm at 150 nmol) only following LPS (at 4 h to 12 days but not 56 days). In contrast, BK-induced oedema was present and stable in all monkeys. Co-administration of [Leu(9)]dKD (150 nmol) significantly reduced oedema induced by dKD (50 nmol). 5. These results suggest LPS up-regulation of B(1) receptor effects in green monkeys. This non-human primate model may be suitable for testing new, selective B(1) antagonists with therapeutic potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- D deBlois
- University of Montreal Hospital (CHUM) Research Center, 3840 St. Urbain St., room 7-132B, Montreal, Quebec H2W 1T8, Canada.
| | | |
Collapse
|