1
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
3
|
Lo CC, Coschigano KT. ApoB48 as an Efficient Regulator of Intestinal Lipid Transport. Front Physiol 2020; 11:796. [PMID: 32733283 PMCID: PMC7360825 DOI: 10.3389/fphys.2020.00796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Fatty meals induce intestinal secretion of chylomicrons (CMs) containing apolipoprotein (Apo) B48. These CMs travel via the lymphatic system before entering the circulation. ApoB48 is produced after post-transcriptional RNA modification by Apobec-1 editing enzyme, exclusively in the small intestine of humans and most other mammals. In contrast, in the liver where Apobec-1 editing enzyme is not expressed (except in rats and mice), the unedited transcript encodes a larger protein, ApoB100, which is used in the formation of very low-density lipoproteins (VLDL) to transport liver-synthesized fat to peripheral tissues. Apobec-1 knockout (KO) mice lack the ability to perform ApoB RNA editing, and thus, express ApoB100 in the intestine. These mice, maintained on either a chow diet or high fat diet, have body weight gain and food intake comparable to their wildtype (WT) counterparts on the respective diet; however, they secrete larger triglyceride (TG)-rich lipoprotein particles and at a slower rate than the WT mice. Using a lymph fistula model, we demonstrated that Apobec-1 KO mice also produced fewer CMs and exhibited reduced lymphatic transport of TG in response to duodenal infusion of TG at a moderate dose; in contrast, the Apobec-1 KO and WT mice had similar lymphatic transport of TG when they received a high dose of TG. Thus, the smaller, energy-saving ApoB48 appears to play a superior role in comparison with ApoB100 in the control of intestinal lipid transport in response to dietary lipid intake, at least at low to moderate lipid levels.
Collapse
Affiliation(s)
- Chunmin C Lo
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Karen T Coschigano
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
4
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
5
|
Abstract
This review discusses the regulation of the intestinal and hypothalamic apolipoprotein A-IV (apo A-IV) gene and protein expression. Apo A-IV is a glycoprotein secreted together with triglyceride-rich lipoproteins by the small intestine. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. This stimulation of intestinal apo A-IV synthesis is attenuated by intravenous leptin infusion. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV in response to dietary lipid. Intestinal apo A-IV synthesis is also stimulated by members of the pancreatic polypeptide family, including peptide YY (PYY), neuropeptide Y (NPY), and pancreatic polypeptide (PP). Recently, apo A-IV was demonstrated to be present in the hypothalamus as well. Hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is intimately regulated by endogenous hypothalamic apo A-IV. Central administration of NPY significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical College, Cincinnati, Ohio 45267-0529, USA
| | | | | |
Collapse
|
6
|
Shu S, Bai Y, Wang G, Xiao X, Fan Z, Zhang J, Zhao C, Zhao Y, Xia C, Zhang H. Differentially expressed serum proteins associated with calcium regulation and hypocalcemia in dairy cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:893-901. [PMID: 27809461 PMCID: PMC5411855 DOI: 10.5713/ajas.16.0615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/22/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
Objective Hypocalcemia is an important metabolic disease of dairy cows during the transition period, although the effect of hypocalcemia on biological function in dairy cows remains unknown. Methods In this study, proteomic, mass spectrum, bioinformatics and western blotting were employed to identify differentially expressed proteins related to serum Ca concentration. Serum samples from dairy cows were collected at three time points: 3rd days before calving (day −3), the day of calving (day 0), and 3rd days after calving (day +3). According to the Ca concentration on day 0, a total of 27 dairy cows were assigned to one of three groups (clinical, subclinical, and healthy). Samples collected on day −3 were used for discovery of differentially expressed proteins, which were separated and identified via proteomic analysis and mass spectrometry. Bioinformatics analysis was performed to determine the function of the identified proteins (gene ontology and pathway analysis). The differentially expressed proteins were verified by western blot analysis. Results There were 57 differential spots separated and eight different proteins were identified. Vitamin D-binding protein precursor (group-specific component, GC), alpha-2-macroglobulin (A2M) protein, and apolipoprotein A-IV were related to hypocalcemia by bioinformatics analysis. Due to its specific expression (up-regulated in clinical hypocalcemia and down-regulated in subclinical hypocalcemia), A2M was selected for validation. The results were consistent with those of proteomic analysis. Conclusion A2M was as an early detection index for distinguishing clinical and subclinical hypocalcemia. The possible pathogenesis of clinical hypocalcemia caused by GC and apolipoprotein A-IV was speculated. The down-regulated expression of GC was a probable cause of the decrease in calcium concentration.
Collapse
Affiliation(s)
- Shi Shu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Gang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xinhuan Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ziling Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiang Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chang Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yang Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hongyou Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
7
|
Rao R, Roche A, Febres G, Bessler M, Tso P, Korner J. Circulating Apolipoprotein A-IV presurgical levels are associated with improvement in insulin sensitivity after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 2016; 13:468-473. [PMID: 27986588 DOI: 10.1016/j.soard.2016.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/08/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Apolipoprotein A-IV (ApoA-IV) has been shown to be involved in obesity and diabetes pathogenesis in animal studies, but its role in humans is uncertain. OBJECTIVES The objective of this study was to determine the relation of ApoA-IV with changes in glucose metabolism and weight after bariatric surgery. SETTING University Hospital. METHODS The patients (n = 49) included lean controls (n = 8) and patients before and after a mean of 7 months after laparoscopic adjustable gastric banding (LAGB, n = 12), laparoscopic Roux-en-Y gastric bypass (RYGB, n = 22), or laparoscopic sleeve gastrectomy (SG, n = 11). ApoA-IV and other hormone assays were performed in the fasting and the postprandial state. Pearson's correlation analyses controlled for baseline BMI and percent excess weight loss (EWL) were used to determine relationships between ApoA-IV levels and insulin resistance (HOMA-IR). RESULTS With all bariatric procedures combined, the change in ApoA-IV [533 versus 518 microg/L, P = .813] or ApoA-IV area under the curve (AUC - 1072 versus 1042, P = .939) was not significant. None of the surgeries individually affected levels of fasting or ApoA-IV AUC. Bariatric surgery resulted in a decrease in HOMA-IR (5.3 versus 2.0, P<.001). In the RYGB group, higher baseline ApoA-IV levels correlated with decrease in HOMA-IR [r = -.6, P = .008]. This relationship was independent of EWL and was not observed in the LAGB or SG group. There was no association of ApoA-IV levels with EWL, insulin secretion, Peptide-YY, or leptin levels. CONCLUSION Preoperative ApoA-IV levels, rather than changes in levels, positively correlate with improvements in insulin sensitivity independent of weight loss after RYGB.
Collapse
Affiliation(s)
- Raghavendra Rao
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Gerardo Febres
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Marc Bessler
- Department of Surgery , Columbia University Medical Center, New York, NY
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Judith Korner
- Department of Medicine, Columbia University Medical Center, New York, NY.
| |
Collapse
|
8
|
Lin W, Feng R, Li H. Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics. J Am Stat Assoc 2015; 110:270-288. [PMID: 26392642 DOI: 10.1080/01621459.2014.908125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In genetical genomics studies, it is important to jointly analyze gene expression data and genetic variants in exploring their associations with complex traits, where the dimensionality of gene expressions and genetic variants can both be much larger than the sample size. Motivated by such modern applications, we consider the problem of variable selection and estimation in high-dimensional sparse instrumental variables models. To overcome the difficulty of high dimensionality and unknown optimal instruments, we propose a two-stage regularization framework for identifying and estimating important covariate effects while selecting and estimating optimal instruments. The methodology extends the classical two-stage least squares estimator to high dimensions by exploiting sparsity using sparsity-inducing penalty functions in both stages. The resulting procedure is efficiently implemented by coordinate descent optimization. For the representative L1 regularization and a class of concave regularization methods, we establish estimation, prediction, and model selection properties of the two-stage regularized estimators in the high-dimensional setting where the dimensionality of co-variates and instruments are both allowed to grow exponentially with the sample size. The practical performance of the proposed method is evaluated by simulation studies and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary materials for this article are available online.
Collapse
Affiliation(s)
- Wei Lin
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rui Feng
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol 2015; 308:G472-81. [PMID: 25591862 PMCID: PMC4360046 DOI: 10.1152/ajpgi.00098.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.
Collapse
Affiliation(s)
- Alison B. Kohan
- 2Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Chun-Min Lo
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Liu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
10
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
11
|
Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 2015; 64:35-46. [PMID: 25497342 DOI: 10.1016/j.metabol.2014.10.015] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic disease that represents one of the most serious global health burdens associated to an excess of body fat resulting from an imbalance between energy intake and expenditure, which is regulated by environmental and genetic interactions. The adipose-derived hormone leptin acts via a specific receptor in the brain to regulate energy balance and body weight, although this protein can also elicit a myriad of actions in peripheral tissues. Obese individuals, rather than be leptin deficient, have in most cases, high levels of circulating leptin. The failure of these high levels to control body weight suggests the presence of a resistance process to the hormone that could be partly responsible of disturbances on body weight regulation. Furthermore, leptin resistance can impair physiological peripheral functions of leptin such as lipid and carbohydrate metabolism and nutrient intestinal utilization. The present document summarizes those findings regarding leptin resistance development and the role of this hormone in the development and maintenance of an obese state. Thus, we focused on the effect of the impaired leptin action on adipose tissue, liver, skeletal muscle and intestinal function and the accompanying relationships with diet-induced obesity. The involvement of some inflammatory mediators implicated in the development of obesity and their roles in leptin resistance development are also discussed.
Collapse
Affiliation(s)
- Neira Sáinz
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jaione Barrenetxe
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Tokuhara D, Nochi T, Matsumura A, Mejima M, Takahashi Y, Kurokawa S, Kiyono H, Yuki Y. Specific expression of apolipoprotein A-IV in the follicle-associated epithelium of the small intestine. Dig Dis Sci 2014; 59:2682-92. [PMID: 24838500 DOI: 10.1007/s10620-014-3203-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/02/2014] [Indexed: 12/09/2022]
Abstract
BACKGROUND Peyer's patches (PPs), which are covered by specialized follicle-associated epithelium (FAE) including M cells, play a central role in immune induction in the gastrointestinal tract. This study is to investigate a new molecule to characterize PPs. METHODS We generated a monoclonal antibody (mAb 10-15-3-3) that specifically reacts to the epithelium of PPs and isolated lymphoid follicles. Target antigen was analyzed by immunoprecipitation and mass spectrometry. Localization and expression of target antigen were evaluated by immunofluorescence, in situ hybridization and real-time PCR. RESULTS Immunoprecipitation and mass spectrometry revealed that mAb 10-15-3-3 recognized apolipoprotein A-IV (ApoA-IV), a well-known lipid transporter; this finding was confirmed by the specific reactivity of mAb 10-15-3-3 to cells transfected with the murine ApoA-IV gene. Immunofluorescence using mAb 10-15-3-3 showed intestinal localization of ApoA-IV, in which strong expression of the ApoA-IV protein occurred throughout the entire intestinal epithelium during developing period before weaning but was restricted to the FAE in adult mice. In support of these findings, in situ hybridization showed strong expression of the ApoA-IV gene throughout the entire intestinal epithelium during developing period before weaning, but this expression was restricted to the FAE predominantly and the tips of villi to a lesser extent in adult mice. Deficiency of ApoA-IV had no effect on the organogenesis of PP in mice. CONCLUSIONS Our current results reveal ApoA-IV as a novel FAE-specific marker especially in the upper small intestine of adult mice.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guardiola M, Oliva I, Guillaumet A, Martín-Trujillo Á, Rosales R, Vallvé JC, Sabench F, Del Castillo D, Zaina S, Monk D, Ribalta J. Tissue-specific DNA methylation profiles regulate liver-specific expression of the APOA1/C3/A4/A5 cluster and can be manipulated with demethylating agents on intestinal cells. Atherosclerosis 2014; 237:528-35. [PMID: 25463085 DOI: 10.1016/j.atherosclerosis.2014.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The tissue-specific expression profiles of genes within the APOA1/C3/A4/A5 cluster play an important role in lipid metabolism regulation. We hypothesize that the tissue-specific expression of the APOA1/C3/A4/A5 gene cluster will show an inverse pattern with DNA methylation, and that repression in non- or low-expressing tissue, such as the intestine, can be reversed using epigenetic drugs. METHODS AND RESULTS We analyzed DNA samples from different human adult tissues (liver, intestine, leukocytes, brain, kidney, pancreas, muscle and sperm) using the Infinium HumanMethyation450 BeadChip array. DNA methylation profiles in APOA1/C3/A4/A5 gene cluster were confirmed by bisulfite PCR and pyrosequencing. To determine whether the observed tissue-specific methylation was associated with the expression profile we exposed intestinal TC7/Caco-2 cells to the demethylating agent 5-Aza-2'-deoxycytidine and monitored intestinal APOA1/C3/A4/A5 transcript re-expression by RT-qPCR. The promoters of APOA1, APOC3 and APOA5 genes were less methylated in liver compared to other tissues, and APOA4 gene was highly methylated in most tissues and partially methylated in liver and intestine. In TC7/Caco-2 cells, 5-Aza-2'-deoxycytidine treatment induced a decrease between 37 and 24% in the methylation levels of APOA1/C3/A4/A5 genes and a concomitant re-expression mainly in APOA1, APOA4 and APOA5 genes ranging from 22 to 600%. CONCLUSIONS We have determined the methylation patterns of the APOA1/C3/A4/A5 cluster that may be directly involved in the transcriptional regulation of this cluster. DNA demethylation of intestinal cells increases the RNA levels especially of APOA1, APOA4 and APOA5 genes.
Collapse
Affiliation(s)
- Montse Guardiola
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Iris Oliva
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Amy Guillaumet
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Álex Martín-Trujillo
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Roser Rosales
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Joan Carles Vallvé
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Fàtima Sabench
- Unitat de Recerca en Cirurgia, Universitat Rovira i Virgili, IISPV, Spain.
| | | | - Silvio Zaina
- Cancer Epigenetics Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico.
| | - David Monk
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| |
Collapse
|
14
|
|
15
|
Dallongeville J, Delcroix AG, Wagner A, Ducimetière P, Ruidavets JB, Arveiler D, Bingham A, Ferrières J, Amouyel P, Meirhaeghe A. TheAPOA4Thr347→Ser347Polymorphism Is Not a Major Risk Factor of Obesity. ACTA ACUST UNITED AC 2012; 13:2132-8. [PMID: 16421347 DOI: 10.1038/oby.2005.264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The goal of this study was to assess the association between the APOA4 Thr(347)-->Ser(347) polymorphism and BMI and obesity. RESEARCH METHODS AND PROCEDURES Men and women (n = 3320), randomly recruited in three independent population surveys from the north, east, and south of France, were genotyped for the APOA4 Thr(347)-->Ser(347) polymorphism. RESULTS There were 1327 overweight (825 men, 502 women) and 611 obese (313 men, 298 women) subjects. The prevalences of subjects carrying at least one Ser(347) allele (*/Ser(347)) were 36.5%, 33.8%, and 34.3% in controls, overweight, and obese subjects, respectively (not significant), and those of the Ser(347)/Ser(347) genotype were 4.5%, 3.0%, and 2.2%, respectively (not significant). In both men and women, mean BMI and body weight were not significantly different among APOA4 genotypes. There was no evidence of heterogeneity among centers, smoking status, alcohol intake, physical activity, and educational level categories. In men, mean waist girth was lower in Ser(347)/Ser(347) (92.2 +/- 9.4 cm) than in Thr(347) carriers (95.9 +/- 10.9 cm; p = 0.01), and plasma triglycerides levels were lower in Ser(347) (1.41 +/- 1.04 mM) than in Thr(347)/Thr(347) carriers (1.55 +/- 1.23 mM; p = 0.01). DISCUSSION These results suggest that the APOA4 347Ser allele is not a major risk factor for obesity or overweight.
Collapse
|
16
|
Yoshimichi G, Lo CC, Tamashiro KLK, Ma L, Lee DM, Begg DP, Liu M, Sakai RR, Woods SC, Yoshimatsu H, Tso P. Effect of peripheral administration of cholecystokinin on food intake in apolipoprotein AIV knockout mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1336-42. [PMID: 22461023 PMCID: PMC3378168 DOI: 10.1152/ajpgi.00325.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 03/20/2012] [Indexed: 01/31/2023]
Abstract
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.
Collapse
Affiliation(s)
- Go Yoshimichi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pan X, Hussain MM. Gut triglyceride production. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:727-35. [PMID: 21989069 DOI: 10.1016/j.bbalip.2011.09.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side. In this review, we mainly focus on the roles of key proteins involved in uptake and intracellular transport of fatty acids, their conversion to TAG and packaging into CM. We will also discuss intracellular transport and secretion of CM. Moreover, we will bring to light few factors that regulate gut triglyceride production. Furthermore, we briefly summarize pathways involved in cholesterol absorption. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
18
|
Simon T, Cook VR, Rao A, Weinberg RB. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. J Lipid Res 2011; 52:1984-94. [PMID: 21840868 DOI: 10.1194/jlr.m017418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is synthesized by intestinal enterocytes during lipid absorption and secreted into lymph on the surface of nascent chylomicrons. A compelling body of evidence supports a central role of apoA-IV in facilitating intestinal lipid absorption and in regulating satiety, yet a longstanding conundrum is that no abnormalities in fat absorption, feeding behavior, or weight gain were observed in chow-fed apoA-IV knockout (A4KO) mice. Herein we reevaluated the impact of apoA-IV expression in C57BL6 and A4KO mice fed a high-fat diet. Fat balance and lymph cannulation studies found no effect of intestinal apoA-IV gene expression on the efficiency of fatty acid absorption, but gut sac transport studies revealed that apoA-IV differentially modulates lipid transport and the number and size of secreted triglyceride-rich lipoproteins in different anatomic regions of the small bowel. ApoA-IV gene deletion increased expression of other genes involved in chylomicron assembly, impaired the ability of A4KO mice to gain weight and increase adipose tissue mass, and increased the distal gut hormone response to a high-fat diet. Together these findings suggest that apoA-IV may play a unique role in integrating feeding behavior, intestinal lipid absorption, and energy storage.
Collapse
Affiliation(s)
- Trang Simon
- Departments of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
19
|
Yarandi SS, Hebbar G, Sauer CG, Cole CR, Ziegler TR. Diverse roles of leptin in the gastrointestinal tract: modulation of motility, absorption, growth, and inflammation. Nutrition 2010; 27:269-75. [PMID: 20947298 DOI: 10.1016/j.nut.2010.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Leptin was discovered in 1994 as a hormone produced by adipose tissue with a modulatory effect on feeding behavior and weight control. Recently, the stomach has been identified as an important source of leptin and growing evidence has shown diverse functions for leptin in the gastrointestinal tract. METHODS Using leptin as a keyword in PubMed, more than 17 000 articles were identified, of which more than 500 articles were related to the role of leptin in the gastrointestinal tract. Available abstracts were reviewed and more than 200 original articles were reviewed in detail. RESULTS The available literature demonstrated that leptin can modulate several important functions of the gastrointestinal tract. Leptin interacts with the vagus nerve and cholecystokinin to delay gastric emptying and has a complex effect on motility of the small bowel. Leptin modulates absorption of macronutrients in the gastrointestinal tract differentially in physiologic and pathologic states. In physiologic states, exogenous leptin has been shown to decrease carbohydrate absorption and to increase the absorption of small peptides by the PepT1 di-/tripeptide transporter. In certain pathologic states, leptin has been shown to increase absorption of carbohydrates, proteins, and fat. Leptin has been shown to be upregulated in the colonic mucosa in patients with inflammatory bowel disease. Leptin stimulates gut mucosal cell proliferation and inhibits apoptosis. These functions have led to speculation about the role of leptin in tumorigenesis in the gastrointestinal tract, which is complicated by the multiple immunoregulatory effects of leptin. CONCLUSION Leptin is an important modulator of major aspects of gastrointestinal tract functions, independent of its more well-described roles in appetite regulation and obesity.
Collapse
Affiliation(s)
- Shadi S Yarandi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
20
|
Cammisotto PG, Levy E, Bukowiecki LJ, Bendayan M. Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism. ACTA ACUST UNITED AC 2010; 45:143-200. [PMID: 20621336 DOI: 10.1016/j.proghi.2010.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2010] [Indexed: 12/25/2022]
Abstract
The understanding of the regulation of food intake has become increasingly complex. More than 20 hormones, both orexigenic and anorexigenic, have been identified. After crossing the blood-brain barrier, they reach their main site of action located in several hypothalamic areas and interact to balance satiety and hunger. One of the most significant advances in this matter has been the discovery of leptin. This hormone plays fundamental roles in the control of appetite and in regulating energy expenditure. In accordance with the lipostatic theory stated by Kennedy in 1953, leptin was originally discovered in white adipose tissue. Its expression by other tissues was later established. Among them, the gastric mucosa has been shown to secrete large amounts of leptin. Both the adipose and the gastric tissues share similar characteristics in the synthesis and storage of leptin in granules, in the formation of a complex with the soluble receptor and a secretion modulated by hormones and energy substrates. However while adipose tissue secretes leptin in a slow constitutive endocrine way, the gastric mucosa releases leptin in a rapid regulated exocrine fashion into the gastric juice. Exocrine-secreted leptin survives the extreme hydrolytic conditions of the gastric juice and reach the duodenal lumen in an intact active form. Scrutiny into transport mechanisms revealed that a significant amount of the exocrine leptin crosses the intestinal wall by active transcytosis. Leptin receptors, expressed on the luminal and basal membrane of intestinal epithelial cells, are involved in the control of nutrient absorption by enterocytes, mucus secretion by goblet cells and motility, among other processes, and this control is indeed different depending upon luminal or basal stimulus. Gastric leptin after transcytosis reaches the central nervous system, to control food intake. Studies using the Caco-2, the human intestinal cell line, in vitro allowed analysis of the mechanisms of leptin actions on the intestinal mucosa, identification of the mechanisms of leptin transcytosis and understanding the modulation of leptin receptors by nutrients and hormones. Exocrine-secreted gastric leptin thus participates in a physiological axis independent in terms of time and regulation from that of adipose tissue to rapidly control food intake and nutrient absorption. Adipocytes and gastric epithelial cells are two cell types the metabolism of which is closely linked to food intake and energy storage. The coordinated secretion of adipose and gastric leptins ensures proper management of food processing and energy storage.
Collapse
Affiliation(s)
- Philippe G Cammisotto
- Department of Pathology and Cell Biology, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
21
|
Shen L, Wang DQH, Lo CM, Tso P, Davidson WS, Woods SC, Liu M. Estradiol increases the anorectic effect of central apolipoprotein A-IV. Endocrinology 2010; 151:3163-8. [PMID: 20484461 PMCID: PMC2903939 DOI: 10.1210/en.2010-0203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens have potent suppressive effects on food intake and body weight in many species, including humans. Compelling evidence suggests estrogen's anorectic action is through an indirect mechanism by enhancing the strength of other physiological signals that reduce meal size such as apolipoprotein A-IV (apo A-IV), a satiation factor from the gut and brain. We determined whether estradiol, the primary form of estrogen, modulates the anorectic effect of apo A-IV. Intrafourth ventricular administration of low doses of apo A-IV reduced food intake to a greater extent in ovariectomized (OVX) rats cyclically treated with estradiol than in vehicle-treated OVX controls, implying that cyclic estradiol replacement increases the satiating potency of apo A-IV. OVX significantly increased food intake and body weight but decreased apo A-IV gene expression in the nucleus tractus solitarius (NTS). All of these alterations were reversed by cyclic regimen of estradiol treatment. The finding of colocalization of apo A-IV with estrogen receptor-alpha in the NTS suggests that estradiol might act locally in the NTS to up-regulate apo A-IV gene expression. Finally, OVX apo A-IV knockout mice had a smaller feeding response to estradiol because they ate significantly more food and gained more body weight than OVX wild-type controls during the period of cyclic estradiol replacement. These data indicate that an increased signaling of endogenous apo A-IV may partially mediate estradiol-induced inhibitory effect on feeding.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237-0507, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Leptin is associated with the size of the apolipoprotein(a) particle in African tribal populations living on fish or vegetarian diet. Atherosclerosis 2010; 211:303-7. [DOI: 10.1016/j.atherosclerosis.2010.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 01/18/2010] [Accepted: 01/27/2010] [Indexed: 11/18/2022]
|
23
|
Ghrelin and apolipoprotein AIV levels show opposite trends to leptin levels during weight loss in morbidly obese patients. Obes Surg 2009; 19:1414-23. [PMID: 19172368 DOI: 10.1007/s11695-008-9793-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 12/02/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although bariatric surgery is the most common procedure used to induce weight loss in morbidly obese patients, its effect on plasma satiety factors (leptin, ghrelin, and apolipoprotein (apo)-AIV) is controversial. The aim of this work was to analyze these parameters before and at different times after surgery. METHODS Plasma was obtained from 34 patients before undergoing Roux-en-Y gastric bypass and during weight loss in the 12 months following surgery. RESULTS Morbidly obese patients had significantly higher values (147%) of leptin than normal-weight (NW) persons, while their ghrelin levels were 46% less than NW. Apo-AIV levels had approximately the same value in both groups (obese and NW). During weight loss, leptin decreased by 75% and ghrelin increased by 78%. Both parameters reached values less than or near NW, respectively, at 1 year after surgery. During the first month after surgery, apo-AIV plasma levels decreased (47%) but later increased and finally returned to preoperative values. Apo-AIV levels were correlated negatively with leptin and positively with ghrelin. High-density lipoprotein (HDL) levels were positively correlated with those of ghrelin and apo-AIV. CONCLUSIONS During weight loss, plasma leptin and ghrelin could be good markers of total fat decrease. Ghrelin could also indicate gastric mucous improvement, whereas apo-AIV could indicate the recovery of intestinal function. Changes produced in the HDL levels of morbidly obese patients during weight loss suggest a decreased risk of coronary disease.
Collapse
|
24
|
Gaillard D, Passilly-Degrace P, Besnard P. Molecular mechanisms of fat preference and overeating. Ann N Y Acad Sci 2008; 1141:163-75. [PMID: 18991957 DOI: 10.1196/annals.1441.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is recognized as a worldwide health problem. Overconsumption of fatty foods contributes significantly to this phenomenon. Rodents, like humans, display preferences for lipid-rich foods. Rodents thus provide useful models to explore the mechanisms responsible for this complex feeding behavior resulting from the integration of multiple oral and postoral signals. Over the last decades, the lipid-mediated regulation of food intake has received considerable attention. By contrast, orosensory lipid perception was long thought to involve only textural and olfactory cues. Recent findings have challenged this limited viewpoint. These recent data strongly suggest that the sense of taste also plays significant roles in the spontaneous preference for fatty foods. This paper provides a brief overview of postoral regulation of food intake by lipids and then highlights recent data suggesting the existence of a "fatty taste" which might contribute to lipid overeating and hence to the risk of obesity.
Collapse
Affiliation(s)
- Dany Gaillard
- Physiologie de la Nutrition, UMR INSERM U866, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation (ENSBANA), Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|
25
|
Lo CM, Xu M, Yang Q, Zheng S, Carey KM, Tubb MR, Davidson WS, Liu M, Woods SC, Tso P. Effect of intraperitoneal and intravenous administration of cholecystokinin-8 and apolipoprotein AIV on intestinal lymphatic CCK-8 and apo AIV concentration. Am J Physiol Regul Integr Comp Physiol 2008; 296:R43-50. [PMID: 19020287 DOI: 10.1152/ajpregu.90410.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CCK and apolipoprotein AIV (apo AIV) are gastrointestinal satiety signals whose synthesis and secretion by the gut are stimulated by fat absorption. Intraperitoneally administered CCK-8 is more potent in suppressing food intake than a similar dose administered intravenously, but the reason for this disparity is unclear. In contrast, both intravenous and intraperitoneally administered apo AIV are equally as potent in inhibiting food intake. When we compared the lymphatic concentration of CCK-8 and apo AIV, we found that neither intraperitoneally nor intravenously administered CCK-8 or apo AIV altered lymphatic flow rate. Interestingly, intraperitoneal administration of CCK-8 produced a significantly higher lymphatic concentration at 15 min than did intravenous administration. Intraperitoneal injection of apo AIV also yielded a higher lymphatic concentration at 30 min than did intravenous administration. Intraperitoneal administration of CCK-8 and apo AIV also resulted in a much longer period of elevated CCK-8 and apo AIV peptide concentration in lymph than intravenous administration. Furthermore, enzymatic activity of dipeptidyl peptidase IV (DPPIV) and aminopeptidase was higher in plasma than in lymph during fasting, and so, satiation peptides, such as CCK-8 and apo AIV in the lymph, are protected from degradation by the significantly lower DPPIV and aminopeptidase activity levels in lymph than in plasma. Therefore, the higher potency of intraperitoneally administered CCK-8 compared with intravenously administered CCK-8 in inhibiting food intake may be explained by both its higher concentration in lymph and the prolonged duration of its presence in the lamina propria.
Collapse
Affiliation(s)
- Chun-Min Lo
- Cincinnati Obesity Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shen L, Pearson KJ, Xiong Y, Lo CM, Tso P, Woods SC, Davidson WS, Liu M. Characterization of apolipoprotein A-IV in brain areas involved in energy homeostasis. Physiol Behav 2008; 95:161-7. [PMID: 18577393 DOI: 10.1016/j.physbeh.2008.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/10/2008] [Accepted: 05/21/2008] [Indexed: 11/12/2022]
Abstract
Apolipoprotein A-IV (apo A-IV) is a satiation protein synthesized in the small intestine and hypothalamus. To further understand its anorectic mechanisms, we used immunohistochemical techniques to characterize the distribution of apo A-IV in brain areas involved in energy homeostasis. Dense apo A-IV staining was detected in the arcuate (ARC) and ventromedial hypothalamic nuclei with less staining in cells in the paraventricular and dorsomedial nuclei. In the brainstem, apo A-IV staining was found in the nucleus of the solitary tract. Double-staining immunohistochemistry revealed co-existence of apo A-IV with neuronal nuclei (a neuronal marker), but less with glial fibrillary acidic protein (a glial marker), in ARC, suggesting that apo A-IV is largely present in neurons. In the ARC, apo A-IV was co-localized with pro-opiomelanocortin (POMC), and apo A-IV administration stimulated hypothalamic POMC gene expression, suggesting that the brain apo A-IV system suppresses food intake by stimulating the ARC POMC system. To ascertain whether the apo A-IV detected in the brain is derived from the circulation, (125)I-labeled recombinant rat apo A-IV was intravenously injected into mice. No increase of radioactive apo A-IV was found in the brain, consistent with a lack of uptake of co-injected (99m)Tc-labeled albumin, indicating that circulating apo A-IV is unable to cross the blood brain barrier. These data collectively support the hypothesis that apo A-IV, produced by neuronal cells, may exert its anorectic action by interacting with catabolic regulatory neuropeptides.
Collapse
Affiliation(s)
- Ling Shen
- Obesity Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hansen GH, Niels-Christiansen LL, Danielsen EM. Leptin and the obesity receptor (OB-R) in the small intestine and colon: a colocalization study. J Histochem Cytochem 2008; 56:677-85. [PMID: 18413648 DOI: 10.1369/jhc.2008.950782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leptin is a hormone that plays an important role in overall body energy homeostasis, and the obesity receptor, OB-R, is widely distributed in the organism. In the intestine, a multitude of leptin actions have been reported, but it is currently unclear to what extent the hormone affects the intestinal epithelial cells by an endocrine or exocrine signaling pathway. To elucidate this, the localization of endogenous porcine leptin and OB-R in enterocytes and colonocytes was studied. By immunofluorescence microscopy, both leptin and OB-R were mainly observed in the basolateral membrane of enterocytes and colonocytes but also in the apical microvillar membrane of the cells. By electron microscopy, coclustering of hormone and receptor in the plasma membrane and localization in endosomes was frequently detected at the basolateral surface of the epithelial cells, indicative of leptin signaling activity. In contrast, coclustering occurred less frequently at the apical cell surface, and subapical endosomal localization was hardly detectable. We conclude that leptin action in intestinal epithelial cells takes place at the basolateral plasma membrane, indicating that the hormone uses an endocrine pathway both in the jejunum and colon. In contrast, the data obtained did not provide evidence for an exocrine, lumenal action of the hormone in the intestine.
Collapse
Affiliation(s)
- Gert H Hansen
- Department of Cellular and Molecular Medicine, Building 6.4, the Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
28
|
Lo CM, Zhang DM, Pearson K, Ma L, Sun W, Sakai RR, Davidson WS, Liu M, Raybould HE, Woods SC, Tso P. Interaction of apolipoprotein AIV with cholecystokinin on the control of food intake. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1490-4. [PMID: 17634201 DOI: 10.1152/ajpregu.00329.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are peptides that act both peripherally and centrally to reduce food intake by decreasing meal size. The present study examined the effects of intraperitoneally administered bolus doses of recombinant apo AIV, CCK-8, and a combination of subthreshold doses of apo AIV and CCK on 4-h food intake in rats that were fasted overnight. Apo AIV at 100 μg/kg reduced food intake significantly relative to the saline control for 1 h, as did doses of CCK-8 at or above 0.125 μg/kg. Doses of apo AIV (50 μg/kg) or CCK (0.06 μg/kg) alone had no effect on food intake. However, when these subthreshold doses of apo AIV and CCK were administered together, the combination produced a significant inhibition of food intake relative to saline controls ( P < 0.001), and the duration of the effect was longer than that caused by the administration of either apo AIV or CCK alone. The satiation effect produced by CCK-8 + apo AIV was attenuated by lorglumide, a CCK1 receptor antagonist. We conclude that, whereas the intraperitoneal administration of doses of either recombinant apo AIV or CCK at or above threshold levels reduces food intake, the coadministration of subthreshold doses of the two peptides is highly satiating and works via CCK1 receptor.
Collapse
Affiliation(s)
- Chun Min Lo
- Dept. of Pathology and Laboratory Medicine, Univ. of Cincinnati, 2120 E. Galbraith Rd., Cincinnati, OH 45237-0507, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kiely JM, Noh JH, Svatek CL, Pitt HA, Swartz-Basile DA. Altered small intestinal absorptive enzyme activities in leptin-deficient obese mice: influence of bowel resection. J Pediatr Surg 2006; 41:1243-9. [PMID: 16818056 DOI: 10.1016/j.jpedsurg.2006.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Residual bowel increases absorption after massive small bowel resection. Leptin affects intestinal adaptation, carbohydrate, peptide, and lipid handling. Sucrase, peptidase, and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) are involved in carbohydrate, protein, and lipid absorption. We hypothesized that leptin-deficient obese mice would have altered absorptive enzymes compared with controls before and after small bowel resection. METHODS Sucrase, peptidase (aminopeptidase N [ApN], dipeptidyl peptidase IV [DPPIV]), and MGAT activities were determined from lean control (C57BL/6J, n = 16) and leptin-deficient (Lep(ob), n = 16) mice small bowel before and after 50% resection. RESULTS Ileal sucrase activity was greater in obese mice before and after resection. Jejunal ApN and DPPIV activities were lower for obese mice before resection; ileal ApN activity was unaltered after resection for both strains. Resection increased DPPIV activity in both strains. Jejunal MGAT in obese mice decreased postresection. In both strains, ileal MGAT activity decreased after resection, and obese mice had greater activity in remnant ileum. CONCLUSIONS After small bowel resection, leptin-deficient mice have increased sucrase activity and diminished ileal ApN, DPPIV, and MGAT activity compared with controls. Therefore, we conclude that leptin deficiency alters intestinal enzyme activity in unresected animals and after small bowel resection. Altered handling of carbohydrate, protein, and lipid may contribute to obesity and diabetes in leptin-deficient mice.
Collapse
Affiliation(s)
- James M Kiely
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
30
|
Dolnikowski GG, Marsh JB, Das SK, Welty FK. Stable isotopes in obesity research. MASS SPECTROMETRY REVIEWS 2005; 24:311-327. [PMID: 15389849 DOI: 10.1002/mas.20021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Obesity is recognized as a major public health problem. Obesity is a multifactorial disease and is often associated with a wide range of comorbidities including hypertension, non-insulin dependent (Type II) diabetes mellitus, and cardiovascular disease, all of which contribute to morbidity and mortality. This review deals with stable isotope mass spectrometric methods and the application of stable isotopes to metabolic studies of obesity. Body composition and total energy expenditure (TEE) can be measured by mass spectrometry using stable isotope labeled water, and the metabolism of protein, lipid, and carbohydrate can be measured using appropriate labeled tracer molecules.
Collapse
Affiliation(s)
- Gregory G Dolnikowski
- Jean Mayer USDA Human Nutrition Center on Aging at Tufts University, 711 Washington Street, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|
31
|
Tso P, Liu M. Apolipoprotein A-IV, food intake, and obesity. Physiol Behav 2005; 83:631-43. [PMID: 15621069 DOI: 10.1016/j.physbeh.2004.07.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 07/27/2004] [Indexed: 11/17/2022]
Abstract
Apolipoprotein A-IV (apo A-IV) is secreted by the intestine associated with chylomicron. Intestinal apo A-IV synthesis is stimulated by fat absorption, which is probably mediated by chylomicron formation. The stimulation of apo A-IV synthesis in the jejunum and ileum is attenuated by intravenous leptin infusion. Intestinal apo A-IV synthesis is also stimulated by a factor from the ileum, probably peptide tyrosine-tyrosine (PYY), which has been demonstrated to affect satiety. Apo A-IV has been proposed to physiologically control food intake, a function not shared by apo A-I, and this inhibitory effect is centrally mediated. Recently, apo A-IV was demonstrated in the hypothalamus. The hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum increased feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is normally limited by endogenous apo A-IV. Central administration of neuropeptide Y (NPY) significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner. The stimulation of intestinal synthesis and secretion of apo A-IV by lipid absorption are rapid; thus, apo A-IV is capable of short-term regulation of food intake. Evidence also suggests apo A-IV's involvement in the long-term regulation of food intake and body weight. Chronic ingestion of high fat blunts the hypothalamic apo A-IV response to lipid feeding and may therefore explain why chronic intake of high fat predisposes animals and humans to obesity.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
32
|
Abstract
Apolipoprotein A-IV (apo A-IV) is secreted by the intestine associated with chylomicron. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. The stimulation of apo A-IV synthesis in the jejunum and ileum is attenuated by intravenous leptin infusion. Intestinal apo A-IV synthesis is also stimulated by a factor from the ileum, probably peptide tyrosine-tyrosine (PYY), which has been demonstrated to affect satiety. Apo A-IV has been proposed to physiologically control food intake, and this inhibitory effect is centrally mediated. Recently, apo A-IV was demonstrated in the hypothalamus. The hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is normally limited by endogenous apo A-IV. Central administration of neuropeptide Y (NPY) significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner. The stimulation of intestinal synthesis and secretion of apo A-IV by lipid absorption are rapid; thus, apo A-IV is capable of short-term regulation of food intake. Evidence also suggests apo A-IV's involvement in long-term regulation of food intake and bodyweight. The chronic ingestion of high fat blunts the intestinal apo A-IV response to lipid feeding and may therefore explain why chronic intake of high fat predisposes animals and humans to obesity.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology, University of Cincinnati Medical Center, 231 Albert Sabin Way (ML 0529), Cincinnati, OH 45267-0529, USA.
| | | |
Collapse
|
33
|
Glatzle J, Darcel N, Rechs AJ, Kalogeris TJ, Tso P, Raybould HE. Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway. Am J Physiol Regul Integr Comp Physiol 2004; 287:R354-9. [PMID: 15117731 DOI: 10.1152/ajpregu.00705.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein A-IV (apo A-IV), a peptide expressed by enterocytes in the mammalian small intestine and released in response to long-chain triglyceride absorption, may be involved in the regulation of gastric acid secretion and gastric motility. The specific aim of the present study was to determine the pathway involved in mediating inhibition of gastric motility produced by apo A-IV. Gastric motility was measured manometrically in response to injections of either recombinant purified apo A-IV (200 μg) or apo A-I, the structurally similar intestinal apolipoprotein not regulated by triglyceride absorption, close to the upper gastrointestinal tract in urethane-anesthetized rats. Injection of apo A-IV significantly inhibited gastric motility compared with apo A-I or vehicle injections. The response to exogenous apo A-IV injections was significantly reduced by 77 and 55%, respectively, in rats treated with the CCK1 receptor blocker devazepide or after functional vagal deafferentation by perineural capsaicin treatment. In electrophysiological experiments, isolated proximal duodenal vagal afferent fibers were recorded in vitro in response to close-arterial injection of vehicle, apo A-IV (200 μg), or CCK (10 pmol). Apo A-IV stimulated the discharge of duodenal vagal afferent fibers, significantly increasing the discharge in 4/7 CCK-responsive units, and the response was abolished by CCK1 receptor blockade with devazepide. These data suggest that apo A-IV released from the intestinal mucosa during lipid absorption stimulates the release of endogenous CCK that activates CCK1 receptors on vagal afferent nerve terminals initiating feedback inhibition of gastric motility.
Collapse
Affiliation(s)
- J Glatzle
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The focus of this article is to review evidence that apolipoprotein A-IV (apo A-IV) acts as a satiety factor. Additionally, information regarding the general involvement of apo A-IV in the regulation of food intake and body weight is stated. Apo A-IV is a glycoprotein synthesized by the human intestine. In rodents, both the small intestine and liver secrete apo A-IV, but the small intestine is the major organ responsible for circulating apo A-IV. There is now solid evidence that the hypothalamus, especially the arcuate nucleus, is another active site of apo A-IV expression. Intestinal apo A-IV synthesis is markedly stimulated by fat absorption and does not appear to be mediated by the uptake or reesterification of fatty acids to form triglycerides. Rather, the local formation of chylomicrons acts as a signal for the induction of intestinal apo A-IV synthesis. Intestinal apo A-IV synthesis is also enhanced by a factor from the ileum, probably peptide tyrosine-tyrosine (PYY). The inhibition of food intake by apo A-IV is mediated centrally. The stimulation of intestinal synthesis and secretion of apo A-IV by lipid absorption are rapid; thus apo A-IV likely plays a role in the short-term regulation of food intake. Other evidence suggests that apo A-IV may also be involved in the long-term regulation of food intake and body weight, as it is regulated by both leptin and insulin. Chronic ingestion of a high-fat diet blunts the intestinal as well as the hypothalamic apo A-IV response to lipid feeding. It also suppresses apo A-IV gene expression in the hypothalamus. Whereas it is tempting to speculate that apo A-IV may play a role in diet-induced obesity, we believe the confirmation of such a proposal awaits further experimental evidence.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology, University of Cincinnati Medical Center, OH 45267, USA.
| | | | | |
Collapse
|
35
|
Sitaraman S, Liu X, Charrier L, Gu LH, Ziegler TR, Gewirtz A, Merlin D. Colonic leptin: source of a novel proinflammatory cytokine involved in IBD. FASEB J 2004; 18:696-8. [PMID: 14977884 DOI: 10.1096/fj.03-0422fje] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Leptin, a peptide encoded by the obese (ob) gene, is primarily secreted by adipocytes and is a critical hormone that controls body weight due to its central effects. Recently, additional roles for leptin in the gastrointestinal tract have been suggested because gastric lining cells also produce and release leptin in response to meal-related stimuli. While gastric epithelia might thus directly contribute to circulating leptin following a meal, here we show that inflamed colonic epithelial cells express and release leptin apically into the intestinal lumen. In addition, we demonstrate leptin expression and secretion in vitro in epithelial cells. In response to luminal leptin, model intestinal epithelia critically activate the NF-kappaB, a key signaling system to pro-inflammatory stimuli. The inflammatory effect of luminal leptin was characterized in vivo in mice administered intrarectal leptin. Leptin induced epithelial wall damage and neutrophil infiltration that represent characteristic histological findings in acute intestinal inflammation. These observations provide evidence for an intraluminal biological signaling of leptin and a new pathophysiological role for intraluminal leptin during states of intestinal inflammation such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Shanthi Sitaraman
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Fiegenbaum M, Hutz MH. Further evidence for the association between obesity-related traits and the apolipoprotein A-IV gene. Int J Obes (Lond) 2003; 27:484-90. [PMID: 12664082 DOI: 10.1038/sj.ijo.0802256] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To investigate associations and gene-environment interactions of APOA-IV gene polymorphisms with obesity-related phenotypes in a Brazilian population. METHODS A total of 391 individuals (171 men and 220 women) were genotyped for Xbal, Thr347Ser and Gln360His polymorphisms by PCR-RFLP methods. Adjusted body mass index (BMI) and waist circumference (WC) were compared among genotypes/haplotypes by unpaired t-test or analysis of variance. Gene-environment interactions were tested by analysis of variance using a general linear model. RESULTS Analysis of the APOA-IV gene variants separately showed that X*2 and 347Ser alleles were associated with higher BMI (P=0.02 for both polymorphisms). Haplotype analysis confirmed this association. For these polymorphisms, the effect on BMI appeared to depend on smoking status (test for interaction, P=0.007 and 0.02, respectively), the Thr347Ser variant was associated with a BMI increase in smokers only (P=0.002). At the single-locus level no association was observed between 360His allele and BMI; however, haplotype analyses showed an association of this gene variant and higher BMI. A trend for association with WC (P=0.05) was observed in male carriers of the 360His allele. The effect of this polymorphism also depended on smoking status (test for interaction, P=0.018). Nonsmoker male carriers of the 360His allele had a larger waist circumference than homozygotes for the Gln allele (P=0.003). CONCLUSION Our data suggest that the APOA-IV gene polymorphisms investigated are associated with obesity-related traits. The effects of X*2 and 347Ser variants on BMI and the 360His variant on waist circumference depended on smoking status.
Collapse
Affiliation(s)
- M Fiegenbaum
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|