1
|
Bonet J, Yadav Y, Miles J, Basu A, Cobelli C, Basu R, Dalla Man C. A new oral model of free fatty acid kinetics to assess lipolysis in subjects with and without type 2 diabetes. Am J Physiol Endocrinol Metab 2023; 325:E163-E170. [PMID: 37378622 PMCID: PMC10393336 DOI: 10.1152/ajpendo.00091.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Assessing free fatty acids (FFAs) kinetics and the role of insulin and glucose on FFA lipolysis and disposal may improve our understanding of the pathogenesis of type 2 diabetes (T2D). Some models have been proposed to describe FFA kinetics during an intravenous glucose tolerance test and only one during an oral glucose tolerance test. Here, we propose a model of FFA kinetics during a meal tolerance test and use it to assess possible differences in postprandial lipolysis in individuals with type 2 diabetes (T2D) and individuals with obesity without type 2 diabetes (ND). We studied 18 obese ND and 16 T2D undergoing three meal tolerance tests (MTT) on three occasions (breakfast, lunch, and dinner). We used plasma glucose, insulin, and FFA concentrations collected at breakfast to test a battery of models and selected the best one based on physiological plausibility, ability to fit the data, precision of parameter estimates, and the Akaike parsimony criterion. The best model assumes that the postprandial suppression of FFA lipolysis is proportional to the above basal insulin, while FFA disposal is proportional to FFA concentration. It was used to compare FFA kinetics in ND and T2D along the day. The maximum lipolysis suppression occurred significantly earlier in ND than T2D (39 ± 6 min vs. 102 ± 13 min, 36 ± 4 min vs. 78 ± 11 min, and 38 ± 6 min vs. 84 ± 13 min, P < 0.01, at breakfast, lunch, and dinner, respectively), making lipolysis significantly lower in ND than T2D. This is mainly attributable to the lower insulin concentration in the second group. This novel FFA model allows to assess lipolysis and insulin antilipolytic effect in postprandial conditions.NEW & NOTEWORTHY In this study, we propose a new mathematical model able to quantify postprandial FFA kinetics and adipose tissue insulin sensitivity in both subjects with obesity without type 2 diabetes (ND) and subjects with type 2 diabetes (T2D). Results show that the slower postprandial suppression of lipolysis in T2D contributes to the higher free fatty acid (FFA) concentration that, in turn, may contribute to hyperglycemia.
Collapse
Affiliation(s)
- J. Bonet
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Y. Yadav
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - J. Miles
- University of Kansas Medical Center, Kansas City, Kansas, United States
| | - A. Basu
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - C. Cobelli
- Department of Woman and Child’s Health, University of Padova, Padova, Italy
| | - R. Basu
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - C. Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Oesterle A, Buzkova P, Pellegrini CN, Hirsch C, Tracy R, Siscovick D, Djousse L, Mukamal K, Kizer J. Fasting and Post-Load Glucose and Non-Esterified Fatty Acids and Risk of Heart Failure and Its Subtypes in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1164-1171. [PMID: 36373954 PMCID: PMC10329227 DOI: 10.1093/gerona/glac229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Glucose and non-esterified fatty acids (NEFA) are myocardial fuels whose fasting and post-prandial levels are under different homeostatic regulation. The relationships of fasting and post-load glucose and NEFA with incident heart failure (HF) remain incompletely defined. METHODS Serum glucose and NEFA were measured during fasting and 2 hours post-oral glucose tolerance test, performed in Cardiovascular Health Study participants not receiving hypoglycemic medication. Participants with prevalent HF or lacking relevant data were excluded. Outcomes were incident HF (primary), and HF with preserved (HFpEF) and reduced (HFrEF) ejection fraction (secondary). RESULTS Among 2 238 participants (age 78 ± 4) with a median follow-up of 9.9 years, there were 737 HF events. After adjustment for demographic and lifestyle factors, both fasting (hazard ratio [HR] = 1.11 per SD [95% confidence interval {CI} = 1.01-1.23], p = .040) and post-load (HR = 1.14 per SD [1.05-1.24], p = 0.002) glucose were significantly associated with incident HF. No association was seen for fasting or post-load NEFA. Upon mutual adjustment, only post-load glucose (HR = 1.11 [1.003-1.22], p = .044), but not fasting glucose (HR = 1.06 [0.94-1.20], p = .340), remained associated with HF. Further adjustment for cardiovascular disease and other risk factors in the causal pathway did not affect the association for post-load glucose, but eliminated that for fasting glucose. Associations for fasting and post-load glucose appeared stronger with higher adiposity and were observed specifically for HFrEF but not HFpEF. CONCLUSIONS Fasting and post-load glucose, but not NEFA, were associated with incident HF. The association was especially robust for post-load glucose, suggesting that pathways involved in post-prandial dysglycemia could offer new targets for HF prevention late in life.
Collapse
Affiliation(s)
- Adam Oesterle
- Department of Medicine, Division of Cardiology San Francisco VA & University of California San Francisco, San Francisco, California, USA
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Cara N Pellegrini
- Department of Medicine, Division of Cardiology San Francisco VA & University of California San Francisco, San Francisco, California, USA
| | - Calvin Hirsch
- Department of Medicine, University of California Davis, Davis, California, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Luc Djousse
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ken J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jorge R Kizer
- Department of Medicine, Division of Cardiology San Francisco VA & University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Pellegrini CN, Buzkova P, Oesterle A, Heckbert SR, Tracy RP, Siscovick DS, Mukamal KJ, Djoussé L, Kizer JR. Dysregulated carbohydrate and lipid metabolism and risk of atrial fibrillation in advanced old age. Heart 2023; 109:606-611. [PMID: 36549682 PMCID: PMC10285028 DOI: 10.1136/heartjnl-2022-321633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Obesity and dysmetabolism are major risk factors for atrial fibrillation (AF). Fasting and postload levels of glucose and non-esterified fatty acids (NEFAs) reflect different facets of metabolic regulation. We sought to study their respective contributions to AF risk concurrently. METHODS We assessed levels of fasting and postload glucose and NEFA in the Cardiovascular Health Study to identify associations with AF incidence and, secondarily, with ECG parameters of AF risk available at baseline. Linear and Cox regressions were performed. RESULTS The study included 1876 participants (age 77.7±4.4). During the median follow-up of 11.4 years, 717 cases of incident AF occurred. After adjustment for potential confounders, postload glucose showed an association with incident AF (HR per SD increment of postload glucose=1.11, 95% CI 1.02 to 1.21, p=0.017). Both glucose measures, but not NEFA, were positively associated with higher P wave terminal force in V1 (PTFV1); the association remained significant only for postload glucose when the two measures were entered together (β per SD increment=138 μV·ms, 95% CI 15 to 260, p=0.028). Exploratory analyses showed significant interaction by sex for fasting NEFA (pinteraction=0.044) and postload glucose (pinteraction=0.015) relative to AF, with relationships stronger in women. For postload glucose, the association with incident AF was observed among women but not among men. CONCLUSIONS Among older adults, postload glucose was positively associated with incident AF, with consistent findings for PTFV1. In exploratory analyses, the relationship with AF appeared specific to women. These findings require further study but suggest that interventions to address postprandial dysglycaemia late in life might reduce AF.
Collapse
Affiliation(s)
- Cara N Pellegrini
- Medical Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Petra Buzkova
- Biostatics, University of Washington, Seattle, Washington, USA
| | - Adam Oesterle
- Medical Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Russell P Tracy
- Pathology and Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - David S Siscovick
- Medicine and Epidemiology, New York Academy of Medicine, New York, New York, USA
| | - Kenneth J Mukamal
- Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Luc Djoussé
- Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jorge R Kizer
- Medical Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Shitole SG, Biggs ML, Ix JH, Fretts AM, Tracy RP, Siscovick DS, Djoussé L, Mukamal KJ, Kizer JR. Fasting and Postload Nonesterified Fatty Acids and Glucose Dysregulation in Older Adults. Am J Epidemiol 2022; 191:1235-1247. [PMID: 35247051 PMCID: PMC9989335 DOI: 10.1093/aje/kwac044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
To evaluate the association of nonesterified fatty acids (NEFA) with dysglycemia in older adults, NEFA levels were measured among participants in the Cardiovascular Health Study (United States; enrolled 1989-1993). Associations with insulin sensitivity and pancreatic β-cell function, and with incident type 2 diabetes mellitus (DM), were examined. The sample comprised 2,144 participants (aged 77.9 (standard deviation, 4.5) years). Participant data from the Cardiovascular Health Study visit in 1996-1997 was used with prospective follow-up through 2010. Fasting and postload NEFA showed significant associations with lower insulin sensitivity and pancreatic β-cell function, individually and on concurrent adjustment. Over median follow-up of 9.7 years, 236 cases of DM occurred. Postload NEFA were associated with risk of DM (per standard deviation, hazard ratio = 1.18, 95% confidence interval: 1.08, 1.29), but fasting NEFA were not (hazard ratio = 1.12, 95% confidence interval: 0.97, 1.29). The association for postload NEFA persisted after adjustment for putative intermediates, and after adjustment for fasting NEFA. Sex and body mass index modified these associations, which were stronger for fasting NEFA with DM in men but were accentuated for postload NEFA in women and among leaner individuals. Fasting and postload NEFA were related to lower insulin sensitivity and pancreatic β-cell function, but only postload NEFA were associated with increased DM. Additional study into NEFA metabolism could uncover novel potential targets for diabetes prevention in elders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jorge R Kizer
- Correspondence to Dr. Jorge R. Kizer, 4150 Clement Street, San Francisco, CA 94121 (e-mail: )
| |
Collapse
|
5
|
Wolf RM, Nagpal M, Magge SN. Diabetes and cardiometabolic risk in South Asian youth: A review. Pediatr Diabetes 2021; 22:52-66. [PMID: 32666595 PMCID: PMC8191592 DOI: 10.1111/pedi.13078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
South Asians are at increased risk for developing type 2 diabetes and cardiovascular disease at lower body mass index compared to other ancestral groups. Many factors contribute to this increased risk, including genetics, maternal-fetal factors, diet, fitness, body composition, and unique pathophysiology. Increased cardiometabolic risk is also seen at younger ages in South Asian individuals as compared to their White counterparts. This risk persists in migrant communities outside of South Asia. With the growing prevalence of obesity, diabetes, and cardiovascular disease in the South Asian population, it is imperative that we had better understand the mechanisms underlying this increased risk and implement strategies to address this growing public health problem during childhood and adolescence.
Collapse
Affiliation(s)
- Risa M Wolf
- Department of Pediatrics, Division of Endocrinology and Diabetes, Johns Hopkins University School of Medicine
| | - Mohika Nagpal
- Department of Pediatrics, Division of Endocrinology and Diabetes, Johns Hopkins University School of Medicine
| | - Sheela N. Magge
- Department of Pediatrics, Division of Endocrinology and Diabetes, Johns Hopkins University School of Medicine
| |
Collapse
|
6
|
Kilberg MJ, Harris C, Sheikh S, Stefanovski D, Cuchel M, Kubrak C, Hadjiliadis D, Rubenstein RC, Rickels MR, Kelly A. Hypoglycemia and Islet Dysfunction Following Oral Glucose Tolerance Testing in Pancreatic-Insufficient Cystic Fibrosis. J Clin Endocrinol Metab 2020; 105:5872086. [PMID: 32668452 PMCID: PMC7755140 DOI: 10.1210/clinem/dgaa448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
CONTEXT Oral glucose tolerance test (OGTT)-related hypoglycemia is common in pancreatic-insufficient cystic fibrosis (PI-CF), but its mechanistic underpinnings are yet to be established. OBJECTIVE To delineate the mechanism(s) underlying OGTT-related hypoglycemia. DESIGN AND SETTING We performed 180-minute OGTTs with frequent blood sampling in adolescents and young adults with PI-CF and compared results with those from a historical healthy control group. Hypoglycemia (Hypo[+]) was defined as plasma glucose <65 mg/dL. We hypothesized that CF-Hypo[+] would demonstrate impaired early phase insulin secretion and persistent late insulin effect compared with control-Hypo[+], and explored the contextual counterregulatory response. MAIN OUTCOME MEASURE OGTT 1-hour and nadir glucose, insulin, C-peptide, and insulin secretory rate (ISR) incremental areas under the curve (AUC) between 0 and 30 minutes (early) and between 120 and 180 minutes (late), and Δglucagon120-180min and Δfree fatty acids (FFAs)120-180min were compared between individuals with CF and control participants with Hypo[+]. RESULTS Hypoglycemia occurred in 15/23 (65%) patients with CF (43% female, aged 24.8 [14.6-30.6] years) and 8/15 (55%) control participants (33% female, aged 26 [21-38] years). The CF-Hypo[+] group versus the control-Hypo[+] group had higher 1-hour glucose (197 ± 49 vs 139 ± 53 mg/dL; P = 0.05) and lower nadir glucose levels (48 ± 7 vs 59 ± 4 mg/dL; P < 0.01), while insulin, C-peptide, and ISR-AUC0-30 min results were lower and insulin and C-peptide, and AUC120-180min results were higher (P < 0.05). Individuals with CF-Hypo[+] had lower Δglucagon120-180min and ΔFFA120-180min compared with the control-Hypo[+] group (P < 0.01). CONCLUSIONS OGTT-related hypoglycemia in PI-CF is associated with elevated 1-hour glucose, impaired early phase insulin secretion, higher late insulin exposure, and less increase in glucagon and FFAs. These data suggest that hypoglycemia in CF is a manifestation of islet dysfunction including an impaired counterregulatory response.
Collapse
Affiliation(s)
- Marissa J Kilberg
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Correspondence and Reprint Requests: Marissa Kilberg, MD, Division of Endocrinology and Diabetes, 3500 Civic Center Blvd, Philadelphia, PA 19104, USA. E-mail:
| | - Clea Harris
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saba Sheikh
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Darko Stefanovski
- Department of Clinical Studies—New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina Kubrak
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania PA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Ezeh U, Arzumanyan Z, Lizneva D, Mathur R, Chen YH, Boston RC, Chen YDI, Azziz R. Alterations in plasma non-esterified fatty acid (NEFA) kinetics and relationship with insulin resistance in polycystic ovary syndrome. Hum Reprod 2020; 34:335-344. [PMID: 30576500 DOI: 10.1093/humrep/dey356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Are non-esterified fatty acid (NEFA) kinetics altered in women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Women with PCOS, particularly obese subjects, have dysregulated plasma NEFA kinetics in response to changes in plasma insulin and glucose levels, which are associated with insulin resistance (IR) independently of the fasting plasma NEFA levels. WHAT IS KNOWN ALREADY Elevated plasma NEFA levels are associated with IR in many disorders, although the homeostasis of NEFA kinetics and its relationship to IR in women with PCOS is unknown. STUDY DESIGN, SIZE, DURATION We prospectively compared insulin sensitivity and NEFA kinetics in 29 PCOS and 29 healthy controls women matched for BMI. PARTICIPANTS/MATERIALS, SETTING, METHODS This study was conducted in a tertiary institution. Plasma NEFA, glucose and insulin levels were assessed during a modified frequently sampled intravenous glucose tolerance test (mFSIVGTT). Minimal models were used to assess insulin sensitivity (Si) and NEFA kinetics (i.e. model-derived initial plasma NEFA level [NEFA0], phi constant [Φ], reflecting glucose-mediated inhibition of lipolysis and measures of maximum rate of lipolysis [SFFA] and NEFA uptake from plasma [KFFA]). MAIN RESULTS AND THE ROLE OF CHANCE The study provides new evidence that women with PCOS have defective NEFA kinetics characterized by: (i) lower basal plasma NEFA levels, measured directly and modeled (NEFA0), and (ii) a greater glucose-mediated inhibition of lipolysis in the remote or interstitial space (reflected by a lower affinity constant [Φ]). There were no differences, however, in the maximal rates of adipose tissue lipolysis (SFFA) and the rate at which NEFA leaves the plasma pool (KFFA). The differences observed in NEFA kinetics were exacerbated, and almost exclusively observed, in the obese PCOS subjects. LIMITATIONS, REASONS FOR CAUTION Our study did not study NEFA subtypes. It was also cross-sectional and based on women affected by PCOS as defined by the 1990 National Institutes of Health (NIH) criteria (i.e. Phenotypes A and B) and identified in the clinical setting. Consequently, extrapolation of the present data to other phenotypes of PCOS should be made with caution. Furthermore, our data is exploratory and therefore requires validation with a larger sample size. WIDER IMPLICATIONS OF THE FINDINGS Dysfunction in NEFA kinetics may be a marker of metabolic dysfunction in nondiabetic obese women with PCOS and may be more important than simply assessing circulating NEFA levels at a single point in time for understanding the mechanism(s) underlying the IR of PCOS. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by NIH grants R01-DK073632 and R01-HD29364 to R.A.; a Career Development Award from MD Medical Group, Moscow, RF, to D.L. and Augusta University funds to Y.-H.C. RA serves as consultant to Ansh Labs, Medtronics, Spruce Biosciences and Latitude Capital. U.E., Z.A., D.L., R.M., Y.-H.C., R.C.B. and Y.D.I.C. have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Uche Ezeh
- Department of Obstetrics and Gynecology, Stanford Health Care-ValleyCare Hospital, 5555 W. Las Positas Blvd, Pleasanton, CA, USA.,Department of Obstetrics and Gynecology, Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zorayr Arzumanyan
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Daria Lizneva
- Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruchi Mathur
- Department of Obstetrics and Gynecology, Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yen-Hao Chen
- Department of Obstetrics and Gynecology, Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raymond C Boston
- New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Y-D Ida Chen
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ricardo Azziz
- Department of Obstetrics and Gynecology, Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Department of Obstetrics & Gynecology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Department of Obstetrics & Gynecology, Albany Medical College, Albany, NY, USA.,Department of Health Policy, Management & Behavior, School of Public Health, University at Albany, SUNY, Albany, NY, USA
| |
Collapse
|
8
|
Walker RE, Ford JL, Boston RC, Savinova OV, Harris WS, Green MH, Shearer GC. Trafficking of nonesterified fatty acids in insulin resistance and relationship to dysglycemia. Am J Physiol Endocrinol Metab 2020; 318:E392-E404. [PMID: 31910030 PMCID: PMC7099405 DOI: 10.1152/ajpendo.00331.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In adipose, insulin functions to suppress intracellular lipolysis and secretion of nonesterified fatty acid (NEFA) into plasma. We applied glucose and NEFA minimal models (MM) following a frequently sampled intravenous glucose tolerance test (FSIVGTT) to assess glucose-specific and NEFA-specific insulin resistance. We used total NEFA and individual fatty acids in the NEFA MM, comparing the model parameters in metabolic syndrome (MetSyn) subjects (n = 52) with optimally healthy controls (OptHC; n = 14). Results are reported as mean difference (95% confidence interval). Using the glucose MM, MetSyn subjects had lower [-73% (-82, -57)] sensitivity to insulin (Si) and higher [138% (44, 293)] acute insulin response to glucose (AIRg). Using the NEFA MM, MetSyn subjects had lower [-24% (-35, -13)] percent suppression, higher [32% (15, 52)] threshold glucose (gs), and a higher [81% (12, 192)] affinity constant altering NEFA secretion (ϕ). Comparing fatty acids, percent suppression was lower in myristic acid (MA) than in all other fatty acids, and the stearic acid (SA) response was so unique that it did not fit the NEFA MM. MA and SA percent of total were increased at 50 min after glucose injection, whereas oleic acid (OA) and palmitic acid (PA) were decreased (P < 0.05). We conclude that the NEFA MM, as well as the response of individual NEFA fatty acids after a FSIVGTT, differ between OptHC and MetSyn subjects and that the NEFA MM parameters differ between individual fatty acids.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
| | - Jennifer L Ford
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
| | - Raymond C Boston
- Department of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Olga V Savinova
- Sanford Research/University of South Dakota, Sioux Falls, South Dakota
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - William S Harris
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Michael H Green
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
| | - Gregory C Shearer
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
- Sanford Research/University of South Dakota, Sioux Falls, South Dakota
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Dementia is rapidly growing as sources of morbidity and mortality as the US population ages, but its pathophysiology remains poorly understood. As a result, no disease-modifying treatments currently exist. We review the evidence that nonesterified fatty acids may play a key role in this condition. RECENT FINDINGS Nonesterified fatty acids appear to influence several pathways leading to dementia. In addition to their vascular effects, these moieties cross the blood-brain barrier, where they are toxic to several cell types. They may also influence insulin metabolism in the brain directly and indirectly, and some drugs that lower circulating levels appear to slow cognitive decline and brain atrophy in diabetes. SUMMARY Nonesterified fatty acids may contribute to dementia, much as they do to diabetes and cardiovascular disease. Several therapeutic agents lower circulating levels of nonesterified fatty acids and should be tested for their potential preventive effects on cognitive decline in healthy populations before irreversible neuronal attrition occurs.
Collapse
Affiliation(s)
- Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, General Medicine, Brookline, Massachusetts, USA
| |
Collapse
|
10
|
Behn CD, Bubar K, Jin ES, Malloy CR, Parks EJ, Cree-Green M. Advances in stable isotope tracer methodology part 1: hepatic metabolism via isotopomer analysis and postprandial lipolysis modeling. J Investig Med 2020; 68:3-10. [PMID: 31554675 PMCID: PMC7372575 DOI: 10.1136/jim-2019-001109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 01/02/2023]
Abstract
Stable isotope tracers have been used to gain an understanding of integrative animal and human physiology. More commonly studied organ systems include hepatic glucose metabolism, lipolysis from adipose tissue, and whole body protein metabolism. Recent improvements in isotope methodology have included the use of novel physiologic methods/models and mathematical modeling of data during different physiologic states. Here we review some of the latest advancements in this field and highlight future research needs. First we discuss the use of an oral [U-13C3]-glycerol tracer to determine the relative contribution of glycerol carbons to hepatic glucose production after first cycling through the tricarboxylic acid cycle, entry of glycerol into the pentose phosphate pathway or direct conversion of glycerol into the glucose. Second, we describe an adaptation of the established oral minimal model used to define postprandial glucose dynamics to include glycerol dynamics in an oral glucose tolerance test with a [2H5]-glycerol tracer to determine dynamic changes in lipolysis. Simulation results were optimized when parameters describing glycerol flux were determined with a hybrid approach using both tracer-based calculations and constrained parameter optimization. Both of these methodologies can be used to expand our knowledge of not only human physiology, but also the effects of various nutritional strategies and medications on metabolism.
Collapse
Affiliation(s)
- Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate Bubar
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | - Eunsook S. Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth J. Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Melanie Cree-Green
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Morentin Gutierrez P, Yates J, Nilsson C, Birtles S. Evolving data analysis of an Oral Lipid Tolerance Test toward the standard for the Oral Glucose Tolerance Test: Cross species modeling effects of AZD7687 on plasma triacylglycerol. Pharmacol Res Perspect 2019; 7:e00465. [PMID: 30899516 PMCID: PMC6408865 DOI: 10.1002/prp2.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 12/28/2022] Open
Abstract
We have developed a novel mechanistic pharmacokinetic-pharmacodynamic (PK/PD) model to describe the time course of plasma triglyceride (TAG) after Oral Lipid Tolerance Test (OLTT) and the effects of AZD7687, an inhibitor of diacylglycerol acyltransferase 1 (DGAT1), in humans, rats, and mice. Pharmacokinetic and plasma TAG data were obtained both in animals and in two phase I OLTT studies. In the PK/PD model, the introduction of exogenous TAG is represented by a first order process. The endogenous production and removal of TAG from plasma are described with a turnover model. AZD7687 inhibits the contribution of exogenous TAG into circulation. One or two compartment models with first order absorption was used to describe the PK of AZD7687 for the different species. Nonlinear mixed effect modeling was used to fit the model to the data. The effects of AZD7687 on the plasma TAG time course during an OLTT as well as interindividual variability were well described by the model in all three species. Meal fat content or data from single vs repeated dosing did not affect model parameter estimates. Body mass index was found to be a significant covariate on the plasma TAG baseline. The system parameters of the model will facilitate analysis for other compounds and provide tools to bring the standard of OLTT data analysis closer to the analyses of Oral Glucose Tolerance Test data maximizing knowledge gain.
Collapse
Affiliation(s)
| | - James Yates
- AstraZeneca R&DIMEDDMPKChesterford Science ParkUK
| | | | | |
Collapse
|
12
|
Anholm C, Kumarathurai P, Jürs A, Pedersen LR, Nielsen OW, Kristiansen OP, Fenger M, Holst JJ, Madsbad S, Sajadieh A, Haugaard SB. Liraglutide improves the beta-cell function without increasing insulin secretion during a mixed meal in patients, who exhibit well-controlled type 2 diabetes and coronary artery disease. Diabetol Metab Syndr 2019; 11:42. [PMID: 31164926 PMCID: PMC6543623 DOI: 10.1186/s13098-019-0438-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hyperinsulinemia aggravates insulin resistance and cardio-vascular disease. How the insulinotropic glucagon-like peptide-1 receptor agonist liraglutide in a physiologic post-prandial setting may act on pancreatic alpha and beta-cell function in patients with coronary artery disease (CAD) and type 2 diabetes (T2DM) is less clear. METHODS Insulin resistant patients with established CAD and newly diagnosed well-controlled T2DM were recruited to a placebo-controlled, cross-over trial with two treatment periods of 12 weeks and a 2 weeks wash-out period before and in-between. Treatment was liraglutide or placebo titrated from 0.6 mg q.d. to 1.8 mg q.d. within 4 weeks and metformin titrated from 500 mg b.i.d to 1000 mg b.i.d. within 4 weeks. Before and after intervention in both 12 weeks periods insulin, C-peptide, glucose, and glucagon were measured during a meal test. Beta-cell function derived from the oral glucose tolerance setting was calculated as changes in insulin secretion per unit changes in glucose concentration (Btotal) and whole-body insulin resistance using ISIcomposite. RESULTS Liraglutide increased the disposition index [Btotal × ISIcomposite, by 40% (n = 24, p < 0.001)] compared to placebo. Post-prandial insulin and glucose was reduced by metformin in combination with liraglutide and differed, but not significantly different from placebo, moreover, glucagon concentration was unaffected. Additionally, insulin clearance tended to increase during liraglutide therapy (n = 26, p = 0.06). CONCLUSIONS The insulinotropic drug liraglutide may without increasing the insulin concentration reduce postprandial glucose but not glucagon excursions and improve beta-cell function in newly diagnosed and well-controlled T2DM.Trial registration Clinicaltrials.gov ID: NCT01595789.
Collapse
Affiliation(s)
- Christian Anholm
- Department of Internal Medicine, Copenhagen University Hospital Glostrup, Nordre Ringvej 57, 2600 Glostrup, Denmark
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Preman Kumarathurai
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anders Jürs
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lene Rørholm Pedersen
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Olav Wendelboe Nielsen
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ole Peter Kristiansen
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Jens Juul Holst
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Steen Bendix Haugaard
- Department of Internal Medicine, Copenhagen University Hospital Glostrup, Nordre Ringvej 57, 2600 Glostrup, Denmark
- Department of Endocrinology I, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
13
|
Shearer GC, Walker RE. An overview of the biologic effects of omega-6 oxylipins in humans. Prostaglandins Leukot Essent Fatty Acids 2018; 137:26-38. [PMID: 30293594 DOI: 10.1016/j.plefa.2018.06.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Oxylipins are lipid mediators produced from polyunsaturated fatty acid (PUFA) metabolism, and are thought to be a molecular explanation for the diverse biological effects of PUFAs. Like PUFAs, oxylipins are distinguished by their omega-6 (n6) or omega-3 (n3) chemistry. We review the use of n6 oxylipins as biomarkers of disease and their use in diagnosis and risk assessment. We show cases where oxylipins derived from linoleate (LA) or arachidonate (AA) produced by the activities of lipoxygenase, cyclooxygenase, epoxygenase, ω/ω-1 hydroxylase, and autooxidation are useful as biomarkers or risk markers. HODEs, KODEs, EpOMEs, DiHOMEs, and other metabolites of LA as well as prostanoids, HETEs, KETEs, EpETrEs, and DiHETrEs, and other metabolites of AA were useful for understanding the different signaling environments in conditions from traumatic brain injury, to major coronary events, dyslipidemia, sepsis, and more. We next evaluate interventions that alter the concentrations of n6 oxylipins in plasma. We note the utility and response of each plasma fraction, and the generally increasing utility from the non-esterified, to the esterified, to the lipoprotein fractions. Finally, we review the effects which are specifically related to n6 oxylipins and most likely to be beneficial. Both n6 and n3 oxylipins work together in an exceedingly complex matrix to produce physiological effects. This overview should provide future investigators with important perspectives for the emerging utility of n6 oxylipins as products of n6 PUFAs in human health.
Collapse
Affiliation(s)
- Gregory C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16801, USA.
| | - Rachel E Walker
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
14
|
Fiamoncini J, Rundle M, Gibbons H, Thomas EL, Geillinger-Kästle K, Bunzel D, Trezzi JP, Kiselova-Kaneva Y, Wopereis S, Wahrheit J, Kulling SE, Hiller K, Sonntag D, Ivanova D, van Ommen B, Frost G, Brennan L, Bell J, Daniel H. Plasma metabolome analysis identifies distinct human metabotypes in the postprandial state with different susceptibility to weight loss-mediated metabolic improvements. FASEB J 2018; 32:5447-5458. [PMID: 29718708 DOI: 10.1096/fj.201800330r] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Health has been defined as the capability of the organism to adapt to challenges. In this study, we tested to what extent comprehensively phenotyped individuals reveal differences in metabolic responses to a standardized mixed meal tolerance test (MMTT) and how these responses change when individuals experience moderate weight loss. Metabolome analysis was used in 70 healthy individuals. with profiling of ∼300 plasma metabolites during an MMTT over 8 h. Multivariate analysis of plasma markers of fatty acid catabolism identified 2 distinct metabotype clusters (A and B). Individuals from metabotype B showed slower glucose clearance, had increased intra-abdominal adipose tissue mass and higher hepatic lipid levels when compared with individuals from metabotype A. An NMR-based urine analysis revealed that these individuals also to have a less healthy dietary pattern. After a weight loss of ∼5.6 kg over 12 wk, only the subjects from metabotype B showed positive changes in the glycemic response during the MMTT and in markers of metabolic diseases. Our study in healthy individuals demonstrates that more comprehensive phenotyping can reveal discrete metabotypes with different outcomes in a dietary intervention and that markers of lipid catabolism in plasma could allow early detection of the metabolic syndrome.-Fiamoncini, J., Rundle, M., Gibbons, H., Thomas, E. L., Geillinger-Kästle, K., Bunzel, D., Trezzi, J.-P., Kiselova-Kaneva, Y., Wopereis, S., Wahrheit, J., Kulling, S. E., Hiller, K., Sonntag, D., Ivanova, D., van Ommen, B., Frost, G., Brennan, L., Bell, J. Daniel, H. Plasma metabolome analysis identifies distinct human metabotypes in the postprandial state with different susceptibility to weight loss-mediated metabolic improvements.
Collapse
Affiliation(s)
- Jarlei Fiamoncini
- Department of Food and Nutrition, Technische Universität München, Freising-Weihenstephan, Germany
| | - Milena Rundle
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Helena Gibbons
- University College Dublin (UCD) School of Agriculture and Food Science, Institute of Food and Health, Dublin, Ireland
| | - E Louise Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | | | - Diana Bunzel
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Jean-Pierre Trezzi
- Integrated Biobank of Luxembourg, Dudelange, Luxembourg.,Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine, and Nutrigenomics, Medical University-Varna, Varna, Bulgaria
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | | | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology, University of Braunschweig, Braunschweig, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Denise Sonntag
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Diana Ivanova
- Department of Biochemistry, Molecular Medicine, and Nutrigenomics, Medical University-Varna, Varna, Bulgaria
| | - Ben van Ommen
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Gary Frost
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Lorraine Brennan
- University College Dublin (UCD) School of Agriculture and Food Science, Institute of Food and Health, Dublin, Ireland
| | - Jimmy Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Hannelore Daniel
- Department of Food and Nutrition, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
15
|
Individualized Hydrocodone Therapy Based on Phenotype, Pharmacogenetics, and Pharmacokinetic Dosing. Clin J Pain 2016; 31:1026-35. [PMID: 25621429 DOI: 10.1097/ajp.0000000000000214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES (1) To quantify hydrocodone (HC) and hydromorphone (HM) metabolite pharmacokinetics with pharmacogenetics in CYP2D6 ultra-rapid metabolizer (UM), extensive metabolizer (EM), and poor metabolizer (PM) metabolizer phenotypes. (2) To develop an HC phenotype-specific dosing strategy for HC that accounts for HM production using clinical pharmacokinetics integrated with pharmacogenetics for patient safety. SETTING In silico clinical trial simulation. PARTICIPANTS Healthy white men and women without comorbidities or history of opioid, or any other drug or nutraceutical use, age 26.3±5.7 years (mean±SD; range, 19 to 36 y) and weight 71.9±16.8 kg (range, 50 to 108 kg). MAIN OUTCOME MEASURES CYP2D6 phenotype-specific HC clinical pharmacokinetic parameter estimates and phenotype-specific percentages of HM formed from HC. RESULTS PMs had lower indices of HC disposition compared with UMs and EMs. Clearance was reduced by nearly 60% and the t1/2 was increased by about 68% compared with EMs. The canonical order for HC clearance was UM>EM>PM. HC elimination mainly by the liver, represented by ke, was reduced about 70% in PM. However, HC's apparent Vd was not significantly different among UMs, EMs, and PM. The canonical order of predicted plasma HM concentrations was UM>EM>PM. For each of the CYP2D6 phenotypes, the mean predicted HM levels were within HM's therapeutic range, which indicates HC has significant phenotype-dependent pro-drug effects. CONCLUSIONS Our results demonstrate that pharmacogenetics afford clinicians an opportunity to individualize HC dosing, while adding enhanced opportunity to account for its conversion to HM in the body.
Collapse
|
16
|
Søndergaard E, Jensen MD. Quantification of adipose tissue insulin sensitivity. J Investig Med 2016; 64:989-91. [PMID: 27073214 DOI: 10.1136/jim-2016-000098] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 11/04/2022]
Abstract
In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Esben Søndergaard
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark The Danish Diabetes Academy
| | | |
Collapse
|
17
|
Yamamoto Noguchi CC, Kunikane N, Hashimoto S, Furutani E. Mixed model of dietary fat effect on postprandial glucose-insulin metabolism from carbohydrates in type 1 diabetes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:8058-8061. [PMID: 26738163 DOI: 10.1109/embc.2015.7320263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study we introduce an extension of a previously developed model of glucose-insulin metabolism in type 1 diabetes (T1D) from carbohydrates that includes the effect of dietary fat on postprandial glycemia. We include two compartments that represent plasma triglyceride and nonesterified fatty acid (NEFA) concentration, in addition to a mathematical representation of delayed gastric emptying and insulin resistance, which are the most well-known effects of dietary fat metabolism. Simulation results show that postprandial glucose as well as lipid levels in our model approximates clinical data from T1D patients.
Collapse
|
18
|
Linares OA, Schiesser WE, Fudin J, Pham TC, Bettinger JJ, Mathew RO, Daly AL. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis. J Pain Res 2015; 8:417-29. [PMID: 26229501 PMCID: PMC4516209 DOI: 10.2147/jpr.s84615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background There is a need to have a model to study methadone’s losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. Aim To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). Methodology We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone’s overall intradialytic mass transfer rate coefficient, km; and, methadone’s removal rate, jME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. Results The ODE/PDE model revealed a significant increase in the change of methadone’s mass transfer with increased dialysate flow rate, %Δkm=18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone’s mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone’s removal during dialysis. The absolute value of the prediction errors for methadone’s extraction and throughput were less than 2%. Conclusion ODE/PDE modeling of methadone’s hemodialysis is a new approach to study methadone’s removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone’s mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model predictive control during dialysis in humans.
Collapse
Affiliation(s)
- Oscar A Linares
- Translational Genomic Medicine Lab, Plymouth Pharmacokinetic Modeling Study Group, Plymouth, MI, USA
| | - William E Schiesser
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Jeffrey Fudin
- University of Connecticut School of Pharmacy, Storrs, CT, USA ; Western New England College of Pharmacy, Springfield, MA, USA ; Albany College of Pharmacy and Health Sciences, Albany, NY, USA ; Stratton VA Medical Center, Albany, NY, USA
| | | | | | | | | |
Collapse
|
19
|
Thomaseth K, Brehm A, Pavan A, Pacini G, Roden M. Modeling glucose and free fatty acid kinetics during insulin-modified intravenous glucose tolerance test in healthy humans: role of counterregulatory response. Am J Physiol Regul Integr Comp Physiol 2014; 307:R321-31. [DOI: 10.1152/ajpregu.00314.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin administration during insulin-modified intravenous glucose tolerance test (IM-IVGTT) can induce transient hypoglycemia in healthy insulin-sensitive subjects. This triggers counterregulatory reflex (CRR) responses, which influence the kinetics of glucose and nonesterified fatty acids (NEFA), and undermines the accuracy of mathematical modeling methods that do not explicitly account for CRR. The aim of this study is to evaluate mathematical models of glucose and NEFA kinetics against experimental data in the presence or absence of CRR. Thirteen healthy nondiabetic subjects underwent a standard IM-IVGTT and a modified test (GC-IM-IVGTT) with a variable glucose infusion preventing hypoglycemia. While model predictions fit very well with glucose and NEFA data from GC-IM-IVGTT, they lagged behind observations from IM-IVGTT during recovery from hypoglycemia, independently of insulinemia, which did not differ significantly between protocols. A modification to the glucose minimal model, using the glucose concentration below a threshold as a signal for CRR, improves model predictions for both glucose and NEFA. The associated increase in endogenous glucose production correlates, among various CRR hormones, mainly with the dynamics of glucagon concentration. The modified minimal models introduce new parameters that quantify strength and duration of CRR following hypoglycemia. Although CRR represents an unwanted side-effect in IM-IVGTT occurring only in insulin-sensitive subjects, this study provides new insights leading to improved procedures for estimating insulin sensitivity from IM-IVGTT, which may also allow for assessing the individual capacity of recovery from hypoglycemic events in patients treated with insulin or insulin-releasing drugs.
Collapse
Affiliation(s)
- Karl Thomaseth
- Institute of Biomedical Engineering, National Research Council, Padua, Italy
| | - Attila Brehm
- Karl-Landsteiner Institute for Endocrinology and Metabolism at 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Alessandra Pavan
- Institute of Biomedical Engineering, National Research Council, Padua, Italy
| | - Giovanni Pacini
- Institute of Biomedical Engineering, National Research Council, Padua, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, University Hospital, Düsseldorf, Germany; and
- German Center for Diabetes Research, Düsseldorf, Germany
| |
Collapse
|
20
|
Anholm C, Kumarathurai P, Klit MS, Kristiansen OP, Nielsen OW, Ladelund S, Madsbad S, Sajadieh A, Haugaard SB. Adding liraglutide to the backbone therapy of biguanide in patients with coronary artery disease and newly diagnosed type-2 diabetes (the AddHope2 study): a randomised controlled study protocol. BMJ Open 2014; 4:e005942. [PMID: 25031198 PMCID: PMC4401817 DOI: 10.1136/bmjopen-2014-005942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Newly diagnosed type 2 diabetes mellitus (T2DM) in patients with coronary artery disease (CAD) more than doubles the risk of death compared with otherwise matched glucose tolerant patients. The biguanide metformin is the drug of choice in treatment of T2DM and has shown to ameliorate cardiovascular morbidity in patients with T2DM and myocardial infarction (MI). The incretin hormone, glucagon-like peptide-1 (GLP-1) improves β-cell function, insulin sensitivity and causes weight loss and has been suggested to have beneficial effects on cardiac function. The GLP-1 receptor agonist (GLP-1RA), liraglutide, is currently used for treatment of T2DM but its potential effect on cardiac function has not been investigated in detail. We hypothesised that liraglutide added to metformin backbone therapy in patients with CAD and newly diagnosed T2DM will improve β-cell function and left ventricular systolic function during dobutamine stress. METHODS AND ANALYSES 40 patients with CAD and newly diagnosed T2DM will receive the intervention liraglutide+metformin and placebo+metformin in this investigator-initiated, double blind, randomised, placebo-controlled, cross-over 12 plus 12 weeks intervention study with a 2-week washout period. The primary cardiovascular end point is changes in left ventricular ejection fraction during stress echocardiography. The primary endocrine end point is β-cell function evaluated during a frequently sampled intravenous glucose tolerance test. Secondary end points include heart rate variability, diurnal blood pressure, glucagon suppression and inflammatory response (urine, blood and adipose tissue). ETHICS AND DISSEMINATION This study is approved by the Danish Medicines Agency, the Danish Dataprotection Agency and the Regional Committee on Biomedical Research Ethics of the Capital Region of Denmark. The trial will be carried out under the guidance from the GCP unit at Copenhagen University Hospital of Bispebjerg and in accordance with the ICH-GCP guidelines and the Helsinki Declaration. TRIAL REGISTRATIONS NUMBER Clinicaltrials.gov ID: NCT01595789, EudraCT: 2011-005405-78.
Collapse
Affiliation(s)
- Christian Anholm
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
- Department of Internal Medicine, Copenhagen University Hospital, Amager, Denmark
| | - Preman Kumarathurai
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Malene S Klit
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Ole P Kristiansen
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Olav W Nielsen
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Steen Ladelund
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Steen B Haugaard
- Department of Internal Medicine, Copenhagen University Hospital, Amager, Denmark
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
21
|
Mathew S, Krug S, Skurk T, Halama A, Stank A, Artati A, Prehn C, Malek JA, Kastenmüller G, Römisch-Margl W, Adamski J, Hauner H, Suhre K. Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake. J Transl Med 2014; 12:161. [PMID: 24906381 PMCID: PMC4063233 DOI: 10.1186/1479-5876-12-161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient groups such as individuals with type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College - Qatar, Doha, Qatar.
| |
Collapse
|
22
|
Linares OA, Daly D, Linares AD, Stefanovski D, Boston RC. Personalized Oxycodone Dosing: Using Pharmacogenetic Testing and Clinical Pharmacokinetics to Reduce Toxicity Risk and Increase Effectiveness. PAIN MEDICINE 2014; 15:791-806. [DOI: 10.1111/pme.12380] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Ramos-Roman MA, Lapidot SA, Phair RD, Parks EJ. Insulin activation of plasma nonesterified fatty acid uptake in metabolic syndrome. Arterioscler Thromb Vasc Biol 2012; 32:1799-808. [PMID: 22723441 DOI: 10.1161/atvbaha.112.250019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Insulin control of fatty acid metabolism has long been deemed dominated by suppression of adipose lipolysis. The goal of the present study was to test the hypothesis that this single role of insulin is insufficient to explain observed fatty acid dynamics. METHODS AND RESULTS Fatty acid kinetics were measured during a meal tolerance test and insulin sensitivity assessed by intravenous glucose tolerance test in overweight human subjects (n=15; body mass index, 35.8 ± 7.1 kg/m(2)). Non-steady state tracer kinetic models were formulated and tested using ProcessDB software. Suppression of adipose fatty acid release, by itself, could not account for postprandial nonesterified fatty acid concentration changes, but adipose suppression combined with insulin activation of fatty acid uptake was consistent with the measured data. The observed insulin K(m) for nonesterified fatty acid uptake was inversely correlated with both insulin sensitivity of glucose uptake (intravenous glucose tolerance test insulin sensitivity; r=-0.626; P=0.01) and whole body fat oxidation after the meal (r=-0.538; P=0.05). CONCLUSIONS These results support insulin regulation of fatty acid turnover by both release and uptake mechanisms. Activation of fatty acid uptake is consistent with the human data, has mechanistic precedent in cell culture, and highlights a new potential target for therapies aimed at improving the control of fatty acid metabolism in insulin-resistant disease states.
Collapse
Affiliation(s)
- Maria A Ramos-Roman
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9052, USA
| | | | | | | |
Collapse
|
24
|
Morbiducci U, Di Benedetto G, Kautzky-Willer A, Deriu MA, Pacini G, Tura A. Identification of a model of non-esterified fatty acids dynamics through genetic algorithms: the case of women with a history of gestational diabetes. Comput Biol Med 2011; 41:146-53. [PMID: 21333978 DOI: 10.1016/j.compbiomed.2011.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/24/2010] [Accepted: 01/10/2011] [Indexed: 01/10/2023]
Abstract
Elevation in non-esterified fatty acids (NEFA) has been shown to modulate insulin secretion and it is considered as a risk factor for the development of type 2 diabetes. Here we present a method that complements a mathematical model of NEFA kinetics with genetic algorithms for model identification. The complemented strategy allowed to assess parameters of NEFA kinetics and to get insight into their relationship with insulin during oral glucose tolerance tests in women with former gestational diabetes: (i) providing a reliable estimation of the model parameters, (ii) assuring the usability of the model, and (iii) promoting and facilitating its application in a clinical context.
Collapse
|