1
|
Gómez Del Val A, Sánchez A, Freire-Agulleiro Ó, Martínez MP, Muñoz M, Olmos L, Medina JS, Comerma-Steffensen SG, Simonsen U, Rivera L, López M, Contreras C, Prieto D. Penile endothelial dysfunction, impaired redox metabolism and blunted mitochondrial bioenergetics in diet-induced obesity: Compensatory role of H 2O 2. Free Radic Biol Med 2025; 230:222-233. [PMID: 39929293 DOI: 10.1016/j.freeradbiomed.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Erectile dysfunction (ED) is considered an early manifestation of cardiovascular disease (CVD), endothelial dysfunction being the link between CVD and vasculogenic ED. Mitochondrial reactive oxygen species (mtROS) have been involved in the vascular complications of metabolic disorders. The aim of this study was to assess the impact of obesity on endothelial function, redox metabolism and mitochondrial bioenergetics of penile erectile tissue. METHODS Wistar rats were fed a high-fat diet (HFD) or standard diet (STD), and penile vascular function was assessed in microvascular myographs. mtROS levels were measured by mitoSOX (O2.-) and Amplex Red (H2O2) fluorimetry, and the effect of the mitochondrial antioxidant mitoTempo on endothelium-dependent relaxations was tested. Mitochondrial respiration of intact microarteries was assessed with an Agilent Seahorse XF Pro analyzer, and the expression of mitochondria redox regulators was analysed by Western blot. RESULTS Endothelium-dependent relaxations to acetylcholine (ACh) and to the mitoKATP channel activator BMS191095 were reduced in penile arteries from HFD. mtROS levels were significantly increased and associated with upregulation of the endothelial NADPH oxidase 4 (Nox4) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in HFD erectile tissue. MitoTempo inhibited endothelial relaxations in control and HFD penile arteries. The bioenergetic profile was significantly reduced in HFD penile arteries compared to STD rats. CONCLUSIONS Mitochondrial dysfunction with impaired bioenergetics and reduced mitoKATP channel-mediated relaxation underlie endothelial and vascular dysfunction of erectile tissue in obesity, despite a compensatory mechanism that enhances Nox4-derived endothelial vasodilator mtROS. Therapeutic strategies aimed to stabilize mitochondria could restore redox balance and improve mitochondrial bioenergetics thus preventing oxidative stress and vascular dysfunction underlying metabolic disease associated ED.
Collapse
Affiliation(s)
| | - Ana Sánchez
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Óscar Freire-Agulleiro
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pilar Martínez
- Department of Anatomy and Embriology, Madrid Complutense University, Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Lucia Olmos
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Luis Rivera
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dolores Prieto
- Department of Physiology, Madrid Complutense University, Madrid, Spain.
| |
Collapse
|
2
|
Gómez Del Val A, Contreras C, Muñoz M, Sáenz-Medina J, Mohamed M, Rivera L, Sánchez A, Prieto D. Activation of mitoK ATP channels induces penile vasodilation and inhibits mitochondrial respiration and ROS production: Role of NO. Free Radic Biol Med 2024; 217:15-28. [PMID: 38522485 DOI: 10.1016/j.freeradbiomed.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Mitochondrial ATP-sensitive K+ (mitoKATP) channels are involved in neuronal and cardiac protection from ischemia and oxidative stress. Penile erection is a neurovascular event mediated by relaxation of the erectile tissue via nitric oxide (NO) released from nerves and endothelium. In the present study, we investigated whether mitoKATP channels play a role in the control of penile vascular tone and mitochondrial dynamics, and the involvement of NO. METHODS The effect of the selective mitoKATP activator BMS191095 was examined on vascular tone, on mitochondrial bioenergetics by real-time measurements with Agilent Seahorse and on ROS production by MitoSOX fluorescence in freshly isolated microarteries. RESULTS BMS191095 and diazoxide relaxed penile arteries, BMS191095 being one order of magnitude more potent. BMS191095-induced relaxations were reduced by mechanical endothelium removal and by inhibitors of the nitric oxide synthase (NOS) and PI3K enzymes. The NO-dependent component of the relaxation to BMS191095 was impaired in penile arteries from insulin resistant obese rats. The blockers of mitoKATP channel 5-HD, sarcolemma KATP (sarcKATP) channel glibenclamide, and large conductance Ca2+-activated K+ (BKCa) channel iberiotoxin, inhibited relaxations to BMS191095 and to the NO donor SNAP. BMS191095 reduced the mitochondrial bioenergetic profile of penile arteries and attenuated mitochondrial ROS production. Blockade of endogenous NO impaired and exogenous NO mimicked, respectively, the inhibitory effects of BMS191095 on basal respiration and oxygen consumed for ATP synthesis. Exogenous NO exhibited dual inhibitory/stimulatory effects on mitochondrial respiration. CONCLUSIONS These results demonstrate that selective activation of mitoKATP channels causes penile vasodilation, attenuates ROS production and inhibits mitochondrial respiration in part by releasing endothelial NO. These mechanisms couple blood flow and metabolism in penile arterial wall and suggest that activation of vascular mitoKATP channels may protect erectile tissue against ischemic injury.
Collapse
Affiliation(s)
- Alfonso Gómez Del Val
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222, Majadahonda, Spain
| | - Mariam Mohamed
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
3
|
Jahan J, Joshi S, Oca IMD, Toelle A, Lopez-Yang C, Chacon CV, Beyer AM, Garcia CA, Jarajapu YP. The role of telomerase reverse transcriptase in the mitochondrial protective functions of Angiotensin-(1-7) in diabetic CD34 + cells. Biochem Pharmacol 2024; 222:116109. [PMID: 38458330 PMCID: PMC11007670 DOI: 10.1016/j.bcp.2024.116109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Angiotensin (Ang)-(1-7) stimulates vasoprotective functions of diabetic (DB) CD34+ hematopoietic stem/progenitor cells partly by decreasing reactive oxygen species (ROS), increasing nitric oxide (NO) levels and decreasing TGFβ1 secretion. Telomerase reverse transcriptase (TERT) translocates to mitochondria and regulates ROS generation. Alternative splicing of TERT results in variants α-, β- and α-β-TERT, which may oppose functions of full-length (FL) TERT. This study tested if the protective functions of Ang-(1-7) or TGFβ1-silencing are mediated by mitoTERT and that diabetes decreases FL-TERT expression by inducing splicing. CD34+ cells were isolated from the peripheral blood mononuclear cells of nondiabetic (ND, n = 68) or DB (n = 74) subjects. NO and mitoROS levels were evaluated by flow cytometry. TERT splice variants and mitoDNA-lesions were characterized by qPCR. TRAP assay was used for telomerase activity. Decoy peptide was used to block mitochondrial translocation (mitoXTERT). TERT inhibitor or mitoXTERT prevented the effects of Ang-(1-7) on NO or mitoROS levels in DB-CD34+ cells. FL-TERT expression and telomerase activity were lower and mitoDNA-lesions were higher in DB cells compared to ND and were reversed by Ang-(1-7) or TGFβ1-silencing. The prevalence of TERT splice variants, with predominant β-TERT expression, was higher and the expression of FL-TERT was lower in DB cells (n = 25) compared to ND (n = 30). Ang-(1-7) or TGFβ1-silencing decreased TERT-splicing and increased FL-TERT. Blocking of β-splicing increased FL-TERT and protected mitoDNA in DB-cells. The findings suggest that diabetes induces TERT-splicing in CD34+ cells and that β-TERT splice variant largely contributes to the mitoDNA oxidative damage.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Andrew Toelle
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | | | - Andreas M Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
4
|
Bordet S, Luaces JP, Herrera MI, Gonzalez LM, Kobiec T, Perez-Lloret S, Otero-Losada M, Capani F. Neuroprotection from protein misfolding in cerebral hypoperfusion concurrent with metabolic syndrome. A translational perspective. Front Neurosci 2023; 17:1215041. [PMID: 37650104 PMCID: PMC10463751 DOI: 10.3389/fnins.2023.1215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Based on clinical and experimental evidence, metabolic syndrome (MetS) and type 2 diabetes (T2D) are considered risk factors for chronic cerebral hypoperfusion (CCH) and neurodegeneration. Scientific evidence suggests that protein misfolding is a potential mechanism that explains how CCH can lead to either Alzheimer's disease (AD) or vascular cognitive impairment and dementia (VCID). Over the last decade, there has been a significant increase in the number of experimental studies regarding this issue. Using several animal paradigms and different markers of CCH, scientists have discussed the extent to which MetSor T2D causes a decrease in cerebral blood flow (CBF). In addition, different models of CCH have explored how long-term reductions in oxygen and energy supply can trigger AD or VCID via protein misfolding and aggregation. Research that combines two or three animal models could broaden knowledge of the links between these pathological conditions. Recent experimental studies suggest novel neuroprotective properties of protein-remodeling factors. In this review, we present a summarized updated revision of preclinical findings, discussing clinical implications and proposing new experimental approaches from a translational perspective. We are confident that research studies, both clinical and experimental, may find new diagnostic and therapeutic tools to prevent neurodegeneration associated with MetS, diabetes, and any other chronic non-communicable disease (NCD) associated with diet and lifestyle risk factors.
Collapse
Affiliation(s)
- Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Juan Pablo Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Maria Ines Herrera
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Liliana Mirta Gonzalez
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Santiago Perez-Lloret
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Observatorio de Salud Pública, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
5
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
6
|
Merdzo I, Rutkai I, Sure VNLR, Katakam PVG, Busija DW. Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. Am J Physiol Heart Circ Physiol 2019; 317:H1086-H1092. [PMID: 31490734 DOI: 10.1152/ajpheart.00341.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the major characteristics of hyperglycemic states such as type 2 diabetes is increased reactive oxygen species (ROS) generation. Since mitochondria are a major source of ROS, it is vital to understand the involvement of these organelles in the pathogenesis of ROS-mediated conditions. Therefore, we investigated mitochondrial function and ROS production in cerebral blood vessels of 21-wk-old Zucker diabetic fatty obese rats and their lean controls. We have previously shown that in the early stages of insulin resistance, and short periods of type 2 diabetes mellitus, only mild differences exist in mitochondrial function. In the present study, we examined mitochondrial respiration, mitochondrial protein expression, and ROS production in large-surface cerebral arteries. We used 21-wk-old animals exposed to peak glucose levels for 7 wk and compared them with our previous studies on younger diabetic animals. We found that the same segments of mitochondrial respiration (basal respiration and proton leak) were diminished in diabetic groups as they were in younger diabetic animals. Levels of rattin, a rat humanin analog, tended to decrease in the diabetic group but did not reach statistical significance (P = 0.08). Other mitochondrial proteins were unaffected, which might indicate the existence of compensatory mechanisms with extension of this relatively mild form of diabetes. Superoxide levels were significantly higher in large cerebral vessels of diabetic animals compared with the control group. In conclusion, prolonged dietary diabetes leads to stabilization, rather than deterioration, of metabolic status in the cerebral circulation, despite continued overproduction of ROS.NEW & NOTEWORTHY We have characterized for the first time the dynamics of mitochondrial function during the progression of type 2 diabetes mellitus with regard to mitochondrial respiration, protein expression, and reactive oxygen species production. In addition, this is the first measurement of rattin levels in the cerebral vasculature, which could potentially lead to novel treatment options.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, University of Mostar, School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N L R Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Bukiya AN. Fetal Cerebral Artery Mitochondrion as Target of Prenatal Alcohol Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091586. [PMID: 31067632 PMCID: PMC6539770 DOI: 10.3390/ijerph16091586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure results in an array of developmental abnormalities known as fetal alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, therapeutic interventions against accidental or intended exposure of developing fetuses to alcohol are limited. This review outlines current knowledge about mitochondria in cerebral blood vessels as a potential target for anti-FASDs intervention. First, it describes the multifaceted role of mitochondria in maintaining the cerebral artery diameter as shown in adult tissue. Second, current literature on alcohol-driven damage of mitochondrial morphology and function in several fetal tissues, including liver, heart, and brain is summarized. The functional consequences of alcohol exposure in these organs include morphological enlargement of mitochondria, increased oxidative stress, and alteration of cellular respiration. These studies point to a tissue-specific effect of alcohol on mitochondrial function and a particular vulnerability of fetal mitochondria to alcohol exposure when compared to adult counterparts. Third, recent work from our group describing persistent changes in fetal baboon cerebral artery proteome following three episodes of prenatal alcohol exposure is reviewed. In conclusion, the consequences of prenatal alcohol exposure on cerebral artery mitochondria constitute an open field of investigation and, eventually, a point of therapeutic intervention against FASDs.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
8
|
Joshi S, Jarajapu YPR. Mitochondrial depolarization stimulates vascular repair-relevant functions of CD34 + cells via reactive oxygen species-induced nitric oxide generation. Br J Pharmacol 2018; 176:4373-4387. [PMID: 30367728 DOI: 10.1111/bph.14529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CD34+ haematopoietic stem/progenitor cells have revascularization potential and are now being tested for the treatment of ischaemic vascular diseases in clinical trials. We tested the hypothesis that mitochondrial depolarization stimulates the reparative functions of CD34+ cells. EXPERIMENTAL APPROACH Peripheral blood was obtained from healthy individuals (n = 63), and mononuclear cells (MNCs) were separated. MNCs were enriched for lineage negative cells, followed by isolation of CD34+ cells. Vascular repair-relevant functions of CD34+ cells, proliferation and migration, were evaluated in the presence and absence of diazoxide. Mitochondrial membrane potential, ROS and NO levels were evaluated by flow cytometry by using JC-1, mitoSOX and DAF-FM respectively. KEY RESULTS Diazoxide stimulated the proliferation and migration of CD34+ cells that were comparable to the responses induced by stromal-derived factor-1α (SDF) or VEGF. Effects of diazoxide were blocked by either 5-hydroxydecanoate (5HD), a selective mitochondrial ATP-sensitive potassium channel (mitoKATP ) inhibitor, or by L-NAME. Diazoxide induced mitochondrial depolarization, and NO and cGMP generation that were 5HD-sensitive. The generation of NO and cGMP by diazoxide was blocked by an endothelial NOS (eNOS)-selective inhibitor, NIO, but not by a neuronal (n)NOS-selective inhibitor, Nω -propyl-L-arginine (NPA). A Ca2+ chelator, BAPTA, Akt inhibitor, triciribine, or PI3K inhibitor, LY294002, inhibited the NO release induced by diazoxide. Phosphorylation of eNOS at Ser1177 and dephosphorylation at Thr495 were increased. Diazoxide-induced ROS generation and phosphorylation of eNOS at Ser1177 were reduced by NPA. CONCLUSION AND IMPLICATIONS Diazoxide stimulates vascular repair-relevant functions of CD34+ cells via the mitoKATP -dependent release of NO and ROS. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
9
|
Xue W, Li Y, Li J, Yan L, Yang F. Endothelium-dependent relaxation induced by etomidate in the aortas of insulin-resistant rats. Arch Med Sci 2018; 14:1155-1162. [PMID: 30154900 PMCID: PMC6111356 DOI: 10.5114/aoms.2018.77256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Few reports have mentioned the effect of etomidate on the aortas of insulin-resistant (IR) rats. In this study, we investigated the effect of etomidate on isolated IR aortas of rats, and explored its underlying mechanism. MATERIAL AND METHODS The IR rat model was established through feeding with a high-fructose diet. The systolic blood pressure (SBP) was measured by the tail-cuff method before grouping and at the end of the 8-week feeding; blood samples were also obtained for analysis. Thoracic aorta rings of IR rats were isolated and suspended in a tissue bath. The tensile force was recorded isometrically. The effect of etomidate on provoked contraction of the rings was assessed with or without a potassium channel blocker or NO synthase inhibitor. RESULTS Etomidate-induced relaxation in IR rings was greater than normal control (NC) rings (all p < 0.001 with etomidate log M of -4 to -6). NG-nitro-L-arginine methyl ester (L-NAME, an NO synthase inhibitors) inhibited etomidate-induced relaxation in NC rings, but had no effect on the IR rings (all p < 0.001 with etomidate log M of -4 to -6). Pre-incubation with glibenclamide (Gli, a potassium channel blocker) significantly inhibited etomidate-induced relaxation in NC and IR rings (all p < 0.001 with etomidate log M of -4 to -6), and had no inhibited effect on endothelial denuded aortic rings. CONCLUSIONS Insulin resistance increased etomidate-induced relaxation in rat aortas. Etomidate causes vasodilation in IR rat aortas via both endothelium-dependent and independent ways; impaired NO-mediated relaxation was disrupted and ATP-sensitive potassium (KATP) channel-mediated relaxation may be involved in the endothelium-dependent relaxation of etomidate in IR rats.
Collapse
Affiliation(s)
- Wenxin Xue
- Department of Pharmacy, Meitan General Hospital, Beijing, China
| | - Yiwen Li
- Department of Pharmacy, Meitan General Hospital, Beijing, China
| | - Jing Li
- Department of Pharmacy, Meitan General Hospital, Beijing, China
| | - Li Yan
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Yang
- Department of Neurology, Meitan General Hospital, Beijing, China
| |
Collapse
|
10
|
Delic V, Kurien C, Cruz J, Zivkovic S, Barretta J, Thomson A, Hennessey D, Joseph J, Ehrhart J, Willing AE, Bradshaw P, Garbuzova-Davis S. Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients. J Neurosci Res 2018; 96:1353-1366. [PMID: 29732581 DOI: 10.1002/jnr.24249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients. However, molecular mechanisms leading to mitochondrial dysfunction in sporadic ALS (sALS) patients remain unclear. Also, segmental or regional variation in mitochondrial activity in the spinal cord has not been extensively examined in ALS. In our study, the activity of mitochondrial electron transport chain complex IV was examined in post-mortem gray and white matter of the cervical and lumbar spinal cords from male and female sALS patients and controls. Mitochondrial distribution and density in spinal cord motor neurons, lateral funiculus, and capillaries in gray and white matter were analyzed by immunohistochemistry. Results showed that complex IV activity was significantly decreased only in gray matter in both cervical and lumbar spinal cords from ALS patients. In ALS cervical and lumbar spinal cords, significantly increased mitochondrial density and altered distribution were observed in motor neurons, lateral funiculus, and cervical white matter capillaries. Discrete decreased complex IV activity in addition to changes in mitochondria distribution and density determined in the spinal cord in sALS patients are novel findings. These explicit mitochondrial defects in the spinal cord may contribute to ALS pathogenesis and should be considered in development of therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Vedad Delic
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Crupa Kurien
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA
| | - Josean Cruz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Sandra Zivkovic
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Jennifer Barretta
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA
| | - Avery Thomson
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA
| | - Daniel Hennessey
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA
| | - Jaheem Joseph
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA
| | - Jared Ehrhart
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA
| | - Alison E Willing
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Patrick Bradshaw
- Department of Biomedical Sciences, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Svitlana Garbuzova-Davis
- Morsani College of Medicine, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, Florida, USA.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
11
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
12
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Lemaster K, Jackson D, Goldman D, Frisbee JC. Insidious incrementalism: The silent failure of the microcirculation with increasing peripheral vascular disease risk. Microcirculation 2017; 24. [DOI: 10.1111/micc.12332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Kent Lemaster
- Department of Physiology and Pharmacology; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Dwayne Jackson
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Daniel Goldman
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| |
Collapse
|
14
|
Merdzo I, Rutkai I, Sure VNLR, McNulty CA, Katakam PVG, Busija DW. Impaired Mitochondrial Respiration in Large Cerebral Arteries of Rats with Type 2 Diabetes. J Vasc Res 2017; 54:1-12. [PMID: 28095372 DOI: 10.1159/000454812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/27/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction has been suggested as a potential underlying cause of pathological conditions associated with type 2 diabetes (T2DM). We have previously shown that mitochondrial respiration and mitochondrial protein levels were similar in the large cerebral arteries of insulin-resistant Zucker obese rats and their lean controls. In this study, we extend our investigations into the mitochondrial dynamics of the cerebral vasculature of 14-week-old Zucker diabetic fatty obese (ZDFO) rats with early T2DM. Body weight and blood glucose levels were significantly higher in the ZDFO group, and basal mitochondrial respiration and proton leak were significantly decreased in the large cerebral arteries of the ZDFO rats compared with the lean controls (ZDFL). The expression of the mitochondrial proteins total manganese superoxide dismutase (MnSOD) and voltage-dependent anion channel (VDAC) were significantly lower in the cerebral microvessels, and acetylated MnSOD levels were significantly reduced in the large arteries of the ZDFO group. Additionally, superoxide production was significantly increased in the microvessels of the ZDFO group. Despite evidence of increased oxidative stress in ZDFO, exogenous SOD was not able to restore mitochondrial respiration in the ZDFO rats. Our results show, for the first time, that mitochondrial respiration and protein levels are compromised during the early stages of T2DM.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Busija DW, Rutkai I, Dutta S, Katakam PV. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. Compr Physiol 2016; 6:1529-48. [PMID: 27347901 DOI: 10.1002/cphy.c150051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
16
|
Katakam PVG, Dutta S, Sure VN, Grovenburg SM, Gordon AO, Peterson NR, Rutkai I, Busija DW. Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide. Am J Physiol Heart Circ Physiol 2016; 310:H1097-106. [PMID: 26945078 DOI: 10.1152/ajpheart.00759.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/07/2016] [Indexed: 11/22/2022]
Abstract
The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7-10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo. Diazoxide and BMS-191095 (BMS), activators of mitochondrial KATP channels, depolarized mitochondria in cultured neurons and increased cytosolic calcium levels. However, the mitochondrial oxygen consumption rate was unaffected by mitochondrial depolarization. In addition, diazoxide and BMS not only increased the nNOS phosphorylation at positive regulatory serine 1417 but also decreased nNOS phosphorylation at negative regulatory serine 847. Furthermore, diazoxide and BMS increased NO production in cultured neurons measured with both fluorescence microscopy and electron spin resonance spectroscopy, which was sensitive to inhibition by the selective nNOS inhibitor 7-nitroindazole (7-NI). Diazoxide also protected cultured neurons against oxygen-glucose deprivation, which was blocked by NOS inhibition and rescued by NO donors. Finally, BMS induced vasodilation of endothelium denuded, freshly isolated cerebral arteries that was diminished by 7-NI and tetrodotoxin. Thus pharmacological depolarization of mitochondria promotes activation of nNOS leading to generation of NO in cultured neurons and endothelium-denuded arteries. Mitochondrial-induced NO production leads to increased cellular resistance to lethal stress by cultured neurons and to vasodilation of denuded cerebral arteries.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Samuel M Grovenburg
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Angellica O Gordon
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Nicholas R Peterson
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
17
|
Li C, Jiang Z, Lu W, Arrick D, McCarter K, Sun H. Effect of obesity on early blood–brain barrier disruption following transient focal cerebral ischemia. Obes Sci Pract 2016. [DOI: 10.1002/osp4.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- C. Li
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - Z. Jiang
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - W. Lu
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - D. Arrick
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - K. McCarter
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| | - H. Sun
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences Center‐Shreveport Shreveport LA USA
| |
Collapse
|
18
|
Merdzo I, Rutkai I, Tokes T, Sure VNLR, Katakam PVG, Busija DW. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol 2016; 310:H830-8. [PMID: 26873973 DOI: 10.1152/ajpheart.00964.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/03/2016] [Indexed: 12/24/2022]
Abstract
Little is known about mitochondrial functioning in the cerebral vasculature during insulin resistance (IR). We examined mitochondrial respiration in isolated cerebral arteries of male Zucker obese (ZO) rats and phenotypically normal Zucker lean (ZL) rats using the Seahorse XFe24 analyzer. We investigated mitochondrial morphology in cerebral blood vessels as well as mitochondrial and nonmitochondrial protein expression levels in cerebral arteries and microvessels. We also measured reactive oxygen species (ROS) levels in cerebral microvessels. Under basal conditions, the mitochondrial respiration components (nonmitochondrial respiration, basal respiration, ATP production, proton leak, and spare respiratory capacity) showed similar levels among the ZL and ZO groups with the exception of maximal respiration, which was higher in the ZO group. We examined the role of nitric oxide by measuring mitochondrial respiration following inhibition of nitric oxide synthase with N(ω)-nitro-l-arginine methyl ester (l-NAME) and mitochondrial activation after administration of diazoxide (DZ). Both ZL and ZO groups showed similar responses to these stimuli with minor variations.l-NAME significantly increased the proton leak, and DZ decreased nonmitochondrial respiration in the ZL group. Other components were not affected. Mitochondrial morphology and distribution within vascular smooth muscle and endothelium as well as mitochondrial protein levels were similar in the arteries and microvessels of both groups. Endothelial nitric oxide synthase (eNOS) and ROS levels were increased in cerebral microvessels of the ZO. Our study suggests that mitochondrial function is not significantly altered in the cerebral vasculature of young ZO rats, but increased ROS production might be due to increased eNOS in the cerebral microcirculation during IR.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tunde Tokes
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N L R Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
19
|
Salmina AB, Komleva YK, Szijártó IA, Gorina YV, Lopatina OL, Gertsog GE, Filipovic MR, Gollasch M. H2S- and NO-Signaling Pathways in Alzheimer's Amyloid Vasculopathy: Synergism or Antagonism? Front Physiol 2015; 6:361. [PMID: 26696896 PMCID: PMC4675996 DOI: 10.3389/fphys.2015.00361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's type of neurodegeneration dramatically affects H2S and NO synthesis and interactions in the brain, which results in dysregulated vasomotor function, brain tissue hypoperfusion and hypoxia, development of perivascular inflammation, promotion of Aβ deposition, and impairment of neurogenesis/angiogenesis. H2S- and NO-signaling pathways have been described to offer protection against Alzheimer's amyloid vasculopathy and neurodegeneration. This review describes recent developments of the increasing relevance of H2S and NO in Alzheimer's disease (AD). More studies are however needed to fully determine their potential use as therapeutic targets in Alzheimer's and other forms of vascular dementia.
Collapse
Affiliation(s)
- Alla B. Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Yulia K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - István A. Szijártó
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular MedicineBerlin, Germany
| | - Yana V. Gorina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Olga L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E. Gertsog
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Milos R. Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-NürnbergErlangen, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular MedicineBerlin, Germany
| |
Collapse
|
20
|
Xing SS, Yang XY, Zheng T, Li WJ, Wu D, Chi JY, Bian F, Bai XL, Wu GJ, Zhang YZ, Zhang CT, Zhang YH, Li YS, Jin S. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vascul Pharmacol 2015; 72:141-52. [PMID: 26187353 DOI: 10.1016/j.vph.2015.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/17/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Salidroside (SAL) is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea. A recent study has reported that SAL can efficiently decrease atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice. This study was to investigate the molecular mechanism of antiatherogenic effects of SAL. Given the importance of endothelial nitric oxide synthase (eNOS) in atherosclerosis, we sought to elucidate whether SAL could stimulate eNOS activation and also to explore its upstream signaling pathway. Six-week old apoE(-/-) male mice were fed a high-fat diet for 8weeks and then were administered with SAL for another 8weeks. SAL significantly improved endothelial function associated with increasing eNOS activation, thus reduced the atherosclerotic lesion area. SAL increased eNOS-Ser1177 phosphorylation and decreased eNOS-Thr495 phosphorylation, indicative of eNOS activation in endothelium. The aortic sinus lesions in SAL treated mice displayed reduced inflammation. SAL significantly activated AMP-activated protein kinase (AMPK). Both AMPK inhibitor and AMPK small interfering RNA (siRNA) abolished SAL-induced Akt-Ser473 and eNOS-Ser1177 phosphorylation. In contrast, LY294002, the PI3k/Akt pathway inhibitor, abolished SAL-induced phosphorylation and expression of eNOS. High performance liquid chromatography (HPLC) analysis revealed that SAL decreased cellular ATP content and increased the cellular AMP/ATP ratio, which was associated with the activation of AMPK. SAL was found to decrease the mitochondrial membrane potential (ΔΨm), which is a likely consequence of reduced ATP production. The action of SAL to reduce atherosclerotic lesion formation may at least be attributed to its effect on improving endothelial function by promoting nitric oxide (NO) production, which was associated with mitochondrial depolarization and subsequent activation of the AMPK/PI3K/Akt/eNOS pathway. Taken together, our data described the effects of SAL on mitochondria, which played critical roles in improving endothelial function in atherosclerosis.
Collapse
Affiliation(s)
- Sha-Sha Xing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Xiao-Yan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Tao Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Wen-Jing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Dan Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Jiang-Yang Chi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Xiang-Li Bai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Guang-Jie Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - You-Zhi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Cun-Tai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Yong-Hui Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Yong-Sheng Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| |
Collapse
|
21
|
Katakam PVG, Gordon AO, Sure VNLR, Rutkai I, Busija DW. Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats. Am J Physiol Heart Circ Physiol 2015; 307:H493-503. [PMID: 24929852 DOI: 10.1152/ajpheart.00091.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial depolarization following ATP-sensitive potassium (mitoKATP) channel activation has been shown to induce cerebral vasodilation by generation of mitochondrial reactive oxygen species (ROS), which sequentially promotes frequency of calcium sparks and activation of large conductance calcium-activated potassium channels (BKCa) in vascular smooth muscle (VSM). We previously demonstrated that cerebrovascular insulin resistance accompanies aging and obesity. It is unclear whether mitochondrial depolarization without the ROS generation enhances calcium sparks and vasodilation in phenotypically normal [Sprague Dawley (SD); Zucker lean (ZL)] and insulin-resistant [Zucker obese (ZO)] rats. We compared the mechanisms underlying the vasodilation to ROS-dependent (diazoxide) and ROS-independent [BMS-191095 (BMS)] mitoKATP channel activators in normal and ZO rats. Arterial diameter studies from SD, ZL, and ZO rats showed that BMS as well as diazoxide induced vasodilation in endothelium-denuded cerebral arteries. In normal rats, BMS-induced vasodilation was mediated by mitochondrial depolarization and calcium sparks generation in VSM and was reduced by inhibition of BKCa channels. However, unlike diazoxide-induced vasodilation, scavenging of ROS had no effect on BMS-induced vasodilation. Electron spin resonance spectroscopy confirmed that diazoxide but not BMS promoted vascular ROS generation. BMS- as well as diazoxide-induced vasodilation, mitochondrial depolarization, and calcium spark generation were diminished in cerebral arteries from ZO rats. Thus pharmacological depolarization of VSM mitochondria by BMS promotes ROS-independent vasodilation via generation of calcium sparks and activation of BKCa channels. Diminished generation of calcium sparks and reduced vasodilation in ZO arteries in response to BMS and diazoxide provide new insights into mechanisms of cerebrovascular dysfunction in insulin resistance.
Collapse
|
22
|
Dorrance AM, Matin N, Pires PW. The effects of obesity on the cerebral vasculature. Curr Vasc Pharmacol 2015; 12:462-72. [PMID: 24846235 DOI: 10.2174/1570161112666140423222411] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/08/2013] [Accepted: 05/01/2013] [Indexed: 12/18/2022]
Abstract
The incidence of obesity in the population is increasing at an alarming rate, with this comes an increased risk of insulin resistance (IR). Obesity and IR increase an individual's risk of having a stroke and they have been linked to several forms of dementia. Stroke and dementia are associated with, or exacerbated by, reduced cerebral blood flow, which has recently been described in obese patients. In this review we will discuss the effects of obesity on cerebral artery function and structure. Regarding their function, we will focus on the endothelium and nitric oxide (NO) dependent dilation. NO dependent dilation is impaired in cerebral arteries from obese rats, and the majority of evidence suggests this is a result of increased oxidative stress. We will also describe the limited studies showing that inward cerebral artery remodeling occurs in models of obesity, and that the remodeling is associated with an increase in the damage caused by cerebral ischemia. We will also discuss some of the more paradoxical findings associated with stroke and obesity, including the evidence that obesity is a positive factor for stroke survival. Finally we will discuss the evidence that links these changes in vascular structure and function to cognitive decline and dementia.
Collapse
Affiliation(s)
| | | | - Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Kleinschmidt TL, Oltman CL. Progression and reversal of coronary and mesenteric vascular dysfunction associated with obesity. Obesity (Silver Spring) 2014; 22:2193-200. [PMID: 25044654 DOI: 10.1002/oby.20837] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/28/2014] [Accepted: 06/22/2014] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The purpose of this study was to examine progression and reversal of microvascular complications when rats were fed a high fat diet. METHODS Sprague-Dawley rats 10 weeks of age were fed a diet containing 45% kcal fat for up to 32 weeks. Blood pressure and heart rate was measured by telemetry. Vascular reactivity of aorta and small coronary and mesenteric vessels was determined after 8, 16, 24, and 32 weeks on diet. RESULTS There was a modest increase in weight and blood pressure in high fat fed rats. Sodium nitroprusside (SNP)-induced relaxation of coronary arteries was potentiated after 8 weeks on high fat diet, however, this enhanced response was not observed after 16, 24, or 32 weeks of diet. Acetylcholine (Ach) mediated relaxation was attenuated after 16, 24, and 32 weeks of high fat diet in coronary arteries; however, in aorta and mesenteric arteries, Ach-mediated response was not altered until 32 weeks on high fat diet. Reversing the high fat diet for 8 weeks resulted in partial recovery of metabolic parameters; however endothelial function in coronary arteries remained impaired. CONCLUSIONS These studies indicate that high fat diet promotes progressive impairment of coronary vascular function that is difficult to reverse.
Collapse
Affiliation(s)
- Travis L Kleinschmidt
- Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | | |
Collapse
|
24
|
Rutkai I, Katakam PVG, Dutta S, Busija DW. Sustained mitochondrial functioning in cerebral arteries after transient ischemic stress in the rat: a potential target for therapies. Am J Physiol Heart Circ Physiol 2014; 307:H958-66. [PMID: 25063798 DOI: 10.1152/ajpheart.00405.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The objective of the present study was to determine whether mitochondrial function in the cerebral vasculature is maintained after transient middle cerebral artery (MCA) occlusion (tMCAO) in rats. Sprague-Dawley rats were exposed to 90 min of tMCAO followed by 4 or 48 h of reperfusion. MCAs from ischemic (ipsilateral) and nonischemic (contralateral) sides were compared with control MCAs from sham-operated rats. We determined 1) vasoreactivity to diazoxide (DZ; a mitochondrial ATP-activated K(+) channel opener), ACh, bradykinin (BK), serotonin, and sodium nitroprusside; 2) levels of mitochondrial and nonmitochondrial proteins and mitochondrial DNA; and 3) vascular levels of tetramethylrhodamine ethyl ester (an indicator of mitochondrial membrane potential). All dilator responses, including those with DZ, were intact 4 h post-tMCAO. Dilator responses to ACh, BK, and sodium nitroprusside were reduced in ipsilateral MCAs at 48 h compared with contralateral MCAs, but DZ responses were comparable with control MCAs. Surprisingly, contralateral responses to ACh, BK, and serotonin were reduced compared with control MCAs at 48 h. Ipsilateral vasodilation to DZ at 48 h was eliminated by endothelial denudation and endothelial nitric oxide synthase (eNOS) inhibition but was only reduced in control MCAs. Mitochondrial proteins, phosphorylated eNOS, mitochondrial DNA, and mitochondrial membrane potential were higher in ipsilateral compared with contralateral MCAs. In conclusion, contrary to conventional wisdom, mitochondria remain functional for at least 48 h after severe ischemic stress in MCAs, and DZ-induced dilation is preserved due to maintained mitochondrial mass, probably in the endothelium, and eNOS signaling. Our findings support the concept that functioning vascular mitochondria are an unexpected target for novel stroke therapies.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
25
|
Busija DW, Katakam PV. Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res 2014; 51:175-89. [PMID: 24862206 PMCID: PMC4149841 DOI: 10.1159/000360765] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial-initiated events protect the neurovascular unit against lethal stress via a process called preconditioning, which independently promotes changes in cerebrovascular tone through shared signaling pathways. Activation of adenosine triphosphate (ATP)-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels) is a specific and dependable way to induce protection of neurons, astroglia, and cerebral vascular endothelium. Through the opening of mitoKATP channels, mitochondrial depolarization leads to activation of protein kinases and transient increases in cytosolic calcium (Ca(2+)) levels that activate terminal mechanisms that protect the neurovascular unit against lethal stress. The release of reactive oxygen species from mitochondria has similar protective effects. Signaling elements of the preconditioning pathways also are involved in the regulation of vascular tone. Activation of mitoKATP channels in cerebral arteries causes vasodilation, with cell-specific contributions from the endothelium, vascular smooth muscles, and nerves. Preexisting chronic conditions, such as insulin resistance and/or diabetes, prevent preconditioning and impair relaxation to mitochondrial-centered responses in cerebral arteries. Surprisingly, mitochondrial activation after anoxic or ischemic stress appears to protect cerebral vascular endothelium and promotes the restoration of blood flow; therefore, mitochondria may represent an important, but underutilized target in attenuating vascular dysfunction and brain injury in stroke patients.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, La., USA
| | | |
Collapse
|
26
|
Jarajapu YPR, Hazra S, Segal M, LiCalzi S, Jhadao C, Qian K, Mitter SK, Raizada MK, Boulton ME, Grant MB. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One 2014; 9:e93965. [PMID: 24713821 PMCID: PMC3979711 DOI: 10.1371/journal.pone.0093965] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/11/2014] [Indexed: 01/26/2023] Open
Abstract
We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.
Collapse
Affiliation(s)
- Yagna P. R. Jarajapu
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, North Dakota, United States of America
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sugata Hazra
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mark Segal
- Department of Nephrology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sergio LiCalzi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chandra Jhadao
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kevin Qian
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sayak K. Mitter
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Michael E. Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Maria B. Grant
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Effect of diet-induced obesity on BKCa function in contraction and dilation of rat isolated middle cerebral artery. Vascul Pharmacol 2014; 61:10-5. [DOI: 10.1016/j.vph.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/09/2023]
|
28
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
29
|
Harrell JW, Schrage WG. Cyclooxygenase-derived vasoconstriction restrains hypoxia-mediated cerebral vasodilation in young adults with metabolic syndrome. Am J Physiol Heart Circ Physiol 2013; 306:H261-9. [PMID: 24213610 DOI: 10.1152/ajpheart.00709.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poor cerebrovascular function in metabolic syndrome (MetSyn) likely contributes to elevated risk of cerebrovascular disease in this growing clinical population. Younger MetSyn adults without clinical evidence of cerebrovascular disease exhibit preserved hypercapnic vasodilation yet markedly impaired hypoxic vasodilation, but the mechanisms behind reduced hypoxic vasodilation are unknown. Based on data from rats, we tested the hypothesis that younger adults with MetSyn exhibit reduced cerebral hypoxic vasodilation due to loss of vasodilating prostaglandins. Middle cerebral artery velocity (MCAv) was measured with transcranial Doppler ultrasound in adults with MetSyn (n = 13, 33 ± 3 yr) and healthy controls (n = 15, 31 ± 2 yr). Isocapnic hypoxia was induced by titrating inspired oxygen to lower arterial saturation to 90% and 80% for 5 min each. Separately, hypercapnia was induced by increasing end-tidal CO2 10 mmHg above baseline levels. Cyclooxygenase inhibition (100 mg indomethacin) was conducted in a randomized double-blind, placebo controlled design. MCAv was normalized for group differences in blood pressure (healthy: 89 ± 2 mmHg vs. MetSyn: 102 ± 2 mmHg) as cerebrovascular conductance index (CVCi), and used to assess cerebral vasodilation. Hypoxia increased CVCi in both groups; however, vasodilation was ∼55% lower in MetSyn at SpO2 = 80% (P < 0.05). Indomethacin tended to decrease hypoxic vasodilation in healthy controls, and unexpectedly increased dilation in MetSyn (P < 0.05). In contrast to hypoxia, hypercapnia-mediated vasodilation was similar between groups, as was the decrease in vasodilation with indomethacin. These data indicate increased production of vasoconstrictor prostaglandins restrains hypoxic cerebral vasodilation in MetSyn, preventing them from responding appropriately to this important physiological stressor.
Collapse
Affiliation(s)
- John W Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | |
Collapse
|
30
|
Tajbakhsh N, Sokoya EM. Sirtuin 1 is upregulated in young obese Zucker rat cerebral arteries. Eur J Pharmacol 2013; 721:43-8. [PMID: 24113524 DOI: 10.1016/j.ejphar.2013.09.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022]
Abstract
Many diseases, including metabolic syndrome, are characterised by endothelial dysfunction mediated by reduced nitric oxide bioavailability and oxidative stress. Sirtuin 1 is a protein deacetylase that targets endothelial nitric oxide synthase resulting in enhanced nitric oxide bioavailability. Although it has been highlighted as a potential therapeutic target, we still have no understanding of vascular SIRT1 changes during obesity. Therefore, the aim of the present study was to measure vascular function, SIRT1 protein levels of expression and markers of oxidative stress in obese Zucker rats. Middle cerebral arteries from nondiabetic obese and lean Zucker rats were mounted in a pressure myograph to assess nitric oxide-dependent dilations. Western blotting was used to measure protein levels of SIRT1, p53, acetylated p53, eNOS, phosphorylated eNOS and markers of oxidative stress (nitrotyrosine, Nox4 and SOD2) in cerebral vascular tissue. SIRT1 expression was two-fold greater in both cerebral arteries and aorta from obese compared to lean Zucker rats. Acetylation of p53 at the SIRT1-specific lysine 379 site was markedly decreased. At the same time, there was noted cerebral vascular impairment however markers of oxidative stress were not increased. In fact, Nox4 appeared to be downregulated in obesity. Thus, SIRT1 protein levels within the vasculature are greater in obese compared to lean Zucker rats and are associated with higher SIRT1 activity and lower Nox4 expression. We propose that the increased expression and activity of SIRT1 may be a vascular adaptive mechanism in obesity, aiming to prevent oxidative stress.
Collapse
Affiliation(s)
- Negara Tajbakhsh
- Disciplines of Medical Biotechnology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | | |
Collapse
|
31
|
Lynch CM, Kinzenbaw DA, Chen X, Zhan S, Mezzetti E, Filosa J, Ergul A, Faulkner JL, Faraci FM, Didion SP. Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke 2013; 44:3195-201. [PMID: 24072007 DOI: 10.1161/strokeaha.113.001366] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Obesity is an increasing epidemic worldwide; however, little is known about effects of obesity produced by high-fat diet (HFD) on the cerebral circulation. The purpose of this study was to examine the functional and temporal effects of a HFD on carotid and cerebral vascular function and to identify mechanisms that contribute to such functional alterations. METHODS Responses of cerebral arterioles (in vivo) and carotid arteries (in vitro) were examined in C57Bl/6 (wild-type) and Nox2-deficient (Nox2(-/-)) mice fed a control (10%) or a HFD (45% or 60% kcal of fat) for 8, 12, 30, or 36 weeks. RESULTS In wild-type mice, a HFD produced obesity and endothelial dysfunction by 12 and 36 weeks in cerebral arterioles and carotid arteries, respectively. Endothelial function could be significantly improved with Tempol (a superoxide scavenger) treatment in wild-type mice fed a HFD. Despite producing a similar degree of obesity in both wild-type and Nox2(-/-) mice, endothelial dysfunction was observed only in wild-type, but not in Nox2(-/-), mice fed a HFD. CONCLUSIONS Endothelial dysfunction produced by a HFD occurs in a temporal manner and appears much earlier in cerebral arterioles than in carotid arteries. Genetic studies revealed that Nox2-derived superoxide plays a major role in endothelial dysfunction produced by a HFD. Such functional changes may serve to predispose blood vessels to reduced vasodilator responses and thus may contribute to alterations in cerebral blood flow associated with obesity.
Collapse
Affiliation(s)
- Cynthia M Lynch
- From the Departments of Internal Medicine (C.M.L., D.A.K., F.M.F.) and Pharmacology (F.M.F.), The University of Iowa Carver College of Medicine, Iowa City, IA; Vascular Biology Center (X.C., E.M.) and Department of Physiology, Medical College of Georgia (J.F., A.E.), Georgia Regents University, Augusta, GA; Departments of Pharmacology (S.Z., J.L.F., S.P.D.) and Neurology (S.P.D.), The University of Mississippi Medical Center, Jackson, MS; and Charlie Norwood VA Medical Center, Augusta, GA (A.E.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hasseldam H, Hansen-Schwartz J, Munkholm N, Hou J, Johansen FF. Remote post-conditioning reduces hypoxic damage early after experimental stroke. Neurol Res 2013; 35:336-43. [PMID: 23540402 DOI: 10.1179/1743132812y.0000000130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Given that reliable markers for early ischemic brain damage are lacking, we set out to test whether pimonidazole can be used as a reliable tool in the quantification of hypoxic insults, at early time points following experimental stroke. METHODS We have used semi-quantitative Western blotting detection of pimonidazole adducts in a rat model of reversible middle cerebral artery occlusion (MCAO), treated with remote post-conditioning. RESULTS First, we demonstrated that a linear relationship exist between pimonidazole binding in the ischemic hemisphere and duration of ischemia, in animals subjected to 5, 15, 30, or 60 minutes of occlusion followed by 120 minutes of reflow. Then we showed a significant reduction in pimonidazole binding in the infarcted hemisphere, when rats with 60 minutes of MCAO, immediately after establishment of cerebral reflow, had 3×15 minutes intermittent hind limb ischemia followed by 24-hour survival. We analysed the middle cerebral arteries from animals with 60 minutes of MCAO and early remote post-conditioning, followed by 30 minutes, 24, or 48 hours of reflow. At 24 hours of reflow increases in phosphorylated protein kinase C-alpha with concomitantly increased levels of p38 phosphorylation were observed. CONCLUSIONS Our investigation demonstrates that pimonidazole can be used for quantifying ischemic impact in stroke, even after very short survival times. It furthermore shows that early remote post-conditioning reduces ischemic damage, probably through hyperpolarization and reduced reflow vasospasm in the conduit middle cerebral arteries.
Collapse
|
33
|
Namura S, Ooboshi H, Liu J, Yenari MA. Neuroprotection after cerebral ischemia. Ann N Y Acad Sci 2013; 1278:25-32. [PMID: 23488559 DOI: 10.1111/nyas.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebral ischemia, a focal or global insufficiency of blood flow to the brain, can arise through multiple mechanisms, including thrombosis and arterial hemorrhage. Ischemia is a major driver of stroke, one of the leading causes of morbidity and mortality worldwide. While the general etiology of cerebral ischemia and stroke has been known for some time, the conditions have only recently been considered treatable. This report describes current research in this field seeking to fully understand the pathomechanisms underlying stroke; to characterize the brain's intrinsic injury, survival, and repair mechanisms; to identify putative drug targets as well as cell-based therapies; and to optimize the delivery of therapeutic agents to the damaged cerebral tissue.
Collapse
Affiliation(s)
- Shobu Namura
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
34
|
Knaub LA, McCune S, Chicco AJ, Miller M, Moore RL, Birdsey N, Lloyd MI, Villarreal J, Keller AC, Watson PA, Reusch JEB. Impaired response to exercise intervention in the vasculature in metabolic syndrome. Diab Vasc Dis Res 2013; 10:222-38. [PMID: 23162060 PMCID: PMC4139293 DOI: 10.1177/1479164112459664] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Physical activity decreases risk for diabetes and cardiovascular disease morbidity and mortality; however, the specific impact of exercise on the diabetic vasculature is unexamined. We hypothesized that an acute, moderate exercise intervention in diabetic and hypertensive rats would induce mitochondrial biogenesis and mitochondrial antioxidant defence to improve vascular resilience. SHHF/Mcc-fa(cp) lean (hypertensive) and obese (hypertensive, insulin resistant), as well as Sprague Dawley (SD) control rats were run on a treadmill for 8 days. In aortic lysates from SD rats, we observed a significant increase in subunit proteins from oxidative phosphorylation (OxPhos) complexes I-III, with no changes in the lean or obese SHHF rats. Exercise also increased the expression of mitochondrial antioxidant defence uncoupling protein 3 (UCP3) (p < 0.05) in SHHF lean rats, whereas no changes were observed in the SD or SHHF obese rats with exercise. We evaluated upstream signalling pathways for mitochondrial biogenesis, and only peroxisome proliferators-activated receptor gamma coactivator 1α (PGC-1α) significantly decreased in SHHF lean rats (p < 0.05) with exercise. In these experiments, we demonstrate absent mitochondrial induction with exercise exposure in models of chronic vascular disease. These findings suggest that chronic vascular stress results in decreased sensitivity of vasculature to the adaptive mitochondrial responses normally induced by exercise.
Collapse
Affiliation(s)
- Leslie A Knaub
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Denver VA Medical Center, Denver, CO, USA
| | - Sylvia McCune
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Adam J Chicco
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Matthew Miller
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Denver VA Medical Center, Denver, CO, USA
| | - Russell L Moore
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Nicholas Birdsey
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Denver VA Medical Center, Denver, CO, USA
| | - Monique I Lloyd
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Denver VA Medical Center, Denver, CO, USA
| | - Juan Villarreal
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Amy C Keller
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Denver VA Medical Center, Denver, CO, USA
| | - Peter A Watson
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Denver VA Medical Center, Denver, CO, USA
| | - Jane EB Reusch
- Division of Endocrinology, Diabetes and Metabolism, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
- Department of Medicine, Denver VA Medical Center, Denver, CO, USA
| |
Collapse
|
35
|
Katakam PVG, Wappler EA, Katz PS, Rutkai I, Institoris A, Domoki F, Gáspár T, Grovenburg SM, Snipes JA, Busija DW. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase. Arterioscler Thromb Vasc Biol 2013; 33:752-9. [PMID: 23329133 DOI: 10.1161/atvbaha.112.300560] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mitochondrial depolarization after ATP-sensitive potassium channel activation has been shown to induce cerebral vasodilation by the generation of calcium sparks in smooth muscle. It is unclear, however, whether mitochondrial depolarization in endothelial cells is capable of promoting vasodilation by releasing vasoactive factors. Therefore, we studied the effect of endothelial mitochondrial depolarization by mitochondrial ATP-sensitive potassium channel activators, BMS-191095 (BMS) and diazoxide, on endothelium-dependent vasodilation. APPROACH AND RESULTS Diameter studies in isolated rat cerebral arteries showed BMS- and diazoxide-induced vasodilations that were diminished by endothelial denudation. Mitochondrial depolarization-induced vasodilation was reduced by inhibition of mitochondrial ATP-sensitive potassium channels, phosphoinositide-3 kinase, or nitric oxide synthase. Scavenging of reactive oxygen species, however, diminished vasodilation induced by diazoxide, but not by BMS. Fluorescence studies in cultured rat brain microvascular endothelial cells showed that BMS elicited mitochondrial depolarization and enhanced nitric oxide production; diazoxide exhibited largely similar effects, but unlike BMS, increased mitochondrial reactive oxygen species production. Measurements of intracellular calcium ([Ca(2+)]i) in cultured rat brain microvascular endothelial cells and arteries showed that both diazoxide and BMS increased endothelial [Ca(2+)]i. Western blot analyses revealed increased phosphorylation of protein kinase B and endothelial nitric oxide synthase (eNOS) by BMS and diazoxide. Increased phosphorylation of eNOS by diazoxide was abolished by phosphoinositide-3 kinase inhibition. Electron spin resonance spectroscopy confirmed vascular nitric oxide generation in response to diazoxide and BMS. CONCLUSIONS Pharmacological depolarization of endothelial mitochondria promotes activation of eNOS by dual pathways involving increased [Ca(2+)]i as well as by phosphoinositide-3 kinase-protein kinase B-induced eNOS phosphorylation. Both mitochondrial reactive oxygen species-dependent and -independent mechanisms mediate activation of eNOS by endothelial mitochondrial depolarization.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Howitt L, Grayson TH, Morris MJ, Sandow SL, Murphy TV. Dietary obesity increases NO and inhibits BKCa-mediated, endothelium-dependent dilation in rat cremaster muscle artery: association with caveolins and caveolae. Am J Physiol Heart Circ Physiol 2012; 302:H2464-76. [DOI: 10.1152/ajpheart.00965.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16–20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g ( n = 52–56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the KCa blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors Nω-nitro-l-arginine methyl ester (l-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. l-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca2+-activated K+ channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.
Collapse
Affiliation(s)
- Lauren Howitt
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| | - T. Hilton Grayson
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Margaret J. Morris
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Shaun L. Sandow
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Timothy V. Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| |
Collapse
|
37
|
Katakam PVG, Snipes JA, Steed MM, Busija DW. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats. J Cereb Blood Flow Metab 2012; 32:792-804. [PMID: 22234336 PMCID: PMC3345912 DOI: 10.1038/jcbfm.2011.181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/30/2011] [Accepted: 11/03/2011] [Indexed: 02/07/2023]
Abstract
Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH(4)) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH(4) supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH(4) by GTP-CH induced by insulin promoted NOS uncoupling.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
38
|
Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA. Insulin-resistant brain state: the culprit in sporadic Alzheimer's disease? Ageing Res Rev 2011; 10:264-73. [PMID: 21262392 DOI: 10.1016/j.arr.2011.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 01/03/2023]
Abstract
Severe abnormalities in brain glucose/energy metabolism and insulin signaling have been documented to take a pivotal role in early sporadic Alzheimer's disease (sAD) pathology. Indeed, the "insulin-resistant brain state" has been hypothesized to form the core of the neurodegenerative events that occur in sAD. In this vein, intracerebroventricular administration of subdiabetogenic doses of streptozotocin (STZ) in rats can induce an insulin-resistant brain state, which is proposed as a suitable experimental model of sAD. This review highlights the involvement of disturbed brain insulin metabolism in sAD etiopathogenesis. Furthermore, current knowledge demonstrates that central STZ administration produces brain pathology and behavioral changes that resemble changes found in sAD patients. The STZ-intracerebroventricularly treated rat represents a promising experimental tool in this field by providing new insights concerning early brain alterations in sAD, which can be translated in novel etiopathogenic and therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Sónia C Correia
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
39
|
Frisbee JC, Goodwill AG, Butcher JT, Olfert IM. Divergence between arterial perfusion and fatigue resistance in skeletal muscle in the metabolic syndrome. Exp Physiol 2010; 96:369-83. [PMID: 21123363 DOI: 10.1113/expphysiol.2010.055418] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The metabolic syndrome is associated with elevated peripheral vascular disease risk, characterized by mismatched blood flow delivery/distribution and local metabolism. The obese Zucker rat (OZR) model of the metabolic syndrome exhibits myriad vascular impairments, although their integrated impact on functional hyperaemia remains unclear. In this study, arterial pressor responses and skeletal muscle perfusion were assessed in lean Zucker rats (LZRs) and OZRs during adrenergic stimulation (phenylephrine), challenge with thromboxane (U46619) and endothelium-dependent dilatation (methacholine). The OZRs were hypertensive compared with the LZRs, but this was abolished by adrenoreceptor blockade (phentolamine); pressor responses to U46619 were similar between strains and were abolished by blockade with the prostaglandin H(2)/thromboxane A(2) receptor antagonist, SQ-29548. Depressor reactivity to methacholine was impaired in OZRs, but was improved by antioxidant treatment (TEMPOL). Across levels of metabolic demand, blood flow to in situ gastrocnemius muscle was restrained by adrenergic constriction in OZRs, although this diminished with increased demand. Oxygen extraction, reduced in OZRs compared with LZRs across levels of metabolic demand, was improved by TEMPOL or SQ-29548; treatment with phentolamine did not impact extraction, and neither TEMPOL nor SQ-29548 improved muscle blood flow in OZRs. While oxygen uptake and muscle performance were consistently reduced in OZRs versus LZRs, treatment with all three agents improved outcomes, while treatment with individual agents was less effective. These results suggest that contributions of vascular dysfunction to perfusion, oxygen uptake and muscle performance are spatially distinct, with adrenergic constriction impacting proximal resistance and endothelial dysfunction impacting distal microvessel-tissue exchange. Further, these data suggest that increasing skeletal muscle blood flow in OZRs is not sufficient to improve performance, unless distal perfusion inhomogeneities are rectified.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Center for Cardiovascular and Respiratory Sciences, Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 3152 HSN, 1 Medical Center Drive, Morgantown, WV 26506, USA.
| | | | | | | |
Collapse
|
40
|
Singh PP, Chandra A, Mahdi F, Roy A, Sharma P. Reconvene and reconnect the antioxidant hypothesis in human health and disease. Indian J Clin Biochem 2010; 25:225-43. [PMID: 21731194 PMCID: PMC3001844 DOI: 10.1007/s12291-010-0078-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023]
Abstract
The antioxidants are essential molecules in human system but are not miracle molecules. They are neither performance enhancers nor can prevent or cure diseases when taken in excess. Their supplemental value is debateable. In fact, many high quality clinical trials on antioxidant supplement have shown no effect or adverse outcomes ranging from morbidity to all cause mortality. Several Chochrane Meta-analysis and Markov Model techniques, which are presently best available statistical models to derive conclusive answers for comparing large number of trials, support these claims. Nevertheless none of these statistical techniques are flawless. Hence, more efforts are needed to develop perfect statistical model to analyze the pooled data and further double blind, placebo controlled interventional clinical trials, which are gold standard, should be implicitly conducted to get explicit answers. Superoxide dismutase (SOD), glutathione peroxidase and catalase are termed as primary antioxidants as these scavenge superoxide anion and hydrogen peroxide. All these three enzymes are inducible enzymes, thereby inherently meaning that body increases or decreases their activity as per requirement. Hence there is no need to attempt to manipulate their activity nor have such efforts been clinically useful. SOD administration has been tried in some conditions especially in cancer and myocardial infarction but has largely failed, probably because SOD is a large molecule and can not cross cell membrane. The dietary antioxidants, including nutrient antioxidants are chain breaking antioxidants and in tandem with enzyme antioxidants temper the reactive oxygen species (ROS) and reactive nitrogen species (RNS) within physiological limits. Since body is able to regulate its own requirements of enzyme antioxidants, the diet must provide adequate quantity of non-enzymic antioxidants to meet the normal requirements and provide protection in exigent condition. So far, there is no evidence that human tissues ever experience the torrent of reactive species and that in chronic conditions with mildly enhanced generation of reactive species, the body can meet them squarely if antioxidants defense system in tissues is biochemically optimized. We are not yet certain about optimal levels of antioxidants in tissues. Two ways have been used to assess them: first by dietary intake and second by measuring plasma levels. Lately determination of plasma/serum level of antioxidants is considered better index for diagnostic and prognostic purposes. The recommended levels for vitamin A, E and C and beta carotene are 2.2-2.8 μmol/l; 27.5-30 μmol/l; 40-50 μmol/l and 0.4-0.5 μmol/l, respectively. The requirement and recommended blood levels of other dietary antioxidants are not established. The resolved issues are (1) essential to scavenge excess of radical species (2) participants in redox homeostasis (3) selective antioxidants activity against radical species (4) there is no universal antioxidant and 5) therapeutic value in case of deficiency. The overarching issues are (1) therapeutic value as adjuvant therapy in management of diseases (2) supplemental value in developing population (3) selective interactivity of antioxidant in different tissues and on different substrates (4) quantitative contribution in redox balance (5) mechanisms of adverse action on excess supplementation (6) advantages and disadvantages of prooxidant behavior of antioxidants (7) behavior in cohorts with polymorphic differences (8) interaction and intervention in radiotherapy, diabetes and diabetic complications and cardiovascular diseases (9) preventive behavior in neurological disorders (10) benefits of non-nutrient dietary antioxidants (11) markers to assess optimized antioxidants status (12) assessment of benefits of supplementation in alcoholics and heavy smokers. The unresolved and intriguing issues are (1) many compounds such as vitamin A and many others possessing both antioxidant and non-antioxidant properties contribute to both the activities in vivo or exclusively only to non-antioxidant activity and (2) since human tissues do not experience the surge of FR, whether there is any need to develop stronger synthetic antioxidants. Theoretically such antioxidants may do more harm than good.
Collapse
Affiliation(s)
- P. P. Singh
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Sarfarazganj, Lucknow, UP India
| | - Anu Chandra
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Sarfarazganj, Lucknow, UP India
| | - Farzana Mahdi
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Sarfarazganj, Lucknow, UP India
| | - Ajanta Roy
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Sarfarazganj, Lucknow, UP India
| | - Praveen Sharma
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Sarfarazganj, Lucknow, UP India
- Department of Biochemistry, SMS Medical College, Jaipur, India
| |
Collapse
|
41
|
Katakam PVG, Domoki F, Lenti L, Gáspár T, Institoris A, Snipes JA, Busija DW. Cerebrovascular responses to insulin in rats. J Cereb Blood Flow Metab 2009; 29:1955-67. [PMID: 19724283 PMCID: PMC2814524 DOI: 10.1038/jcbfm.2009.177] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Effects of insulin on cerebral arteries have never been examined. Therefore, we determined cerebrovascular actions of insulin in rats. Both PCR and immunoblot studies identified insulin receptor expression in cerebral arteries and in cultured cerebral microvascular endothelial cells (CMVECs). Diameter measurements (% change) of isolated rat cerebral arteries showed a biphasic dose response to insulin with an initial vasoconstriction at 0.1 ng/mL (-9.7%+/-1.6%), followed by vasodilation at 1 to 100 ng/mL (31.9%+/-1.4%). Insulin also increased cortical blood flow in vivo (30%+/-8% at 120 ng/mL) when applied topically. Removal of reactive oxygen species (ROS) abolished the vasoconstriction to insulin. Endothelial denudation, inhibition of K(+) channels, and nitric oxide (NO) synthase, all diminished insulin-induced vasodilation. Inhibition of cytochrome P450 enhanced vasodilation in endothelium-intact arteries, but promoted vasoconstriction after endothelial denudation. Inhibition of cyclooxygenase abolished vasoconstriction and enhanced vasodilation to insulin in all arteries. Inhibition of endothelin type A receptors enhanced vasodilation, whereas endothelin type B receptor blockade diminished vasodilation. Insulin treatment in vitro increased Akt phosphorylation in cerebral arteries and CMVECs. Fluorescence studies of CMVECs showed that insulin increased intracellular calcium and enhanced the generation of NO and ROS. Thus, cerebrovascular responses to insulin were mediated by complex mechanisms originating in both the endothelium and smooth muscle.
Collapse
|
42
|
Singh PP, Mahadi F, Roy A, Sharma P. Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian J Clin Biochem 2009; 24:324-42. [PMID: 23105858 PMCID: PMC3453064 DOI: 10.1007/s12291-009-0062-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type-2 (DMT-2) is a hyperglycemic syndrome with several characteristic features. It continues to rise unabatedly in all pockets of the world, parallels with affluence and can be controlled but not cured. It has a definite involvement of genetic component but environmental factors play overwhelmingly dominant role in etiopathogenesis. Insulin resistance (IR) and obesity are singular instigators of DMT-2. The various events cause critical defects in insulin signaling cascade followed by beta-cell dysfunction. Over a period of time, numerous other metabolic aberrations develop, resulting in diabetic complications which could be both vascular (cardiovascular complications, nephropathy, neuropathy, retinopathy and embryopathy) or a-vascular (cataract and glaucoma etc). It has been proposed that all these abnormal events are initiated or activated by a common mechanism of superoxide anion, which is accompanied with generation of a variety of reactive oxygen species (ROS), reactive nitrogen specie (RNS) and resultant heightened oxidative stress (OS). Provoked OS causes IR and altered gene expressions. Hyperglycemia induces OS through multiple routes: a)stimulated polyol pathway where in ≤ 30% glucose can be diverted to sorbitol and fructose, b)increased transcription of genes for proinflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1) c) activation of protein kinase-C (PKC) leading to several molecular changes d)increased synthesis of Advanced Glycation End Products (AGEs) e)changes in a receptor far AGEs and f) autooxidation of glucose with formation of ketoimines and AGEs. All these processes are accompanied with alteration in redox status, ROS, RNS and OS which trigger DMT-2 and its complications. Initial hurriedly planned and executed experimental and clinical studies showed promising results of antioxidant therapies, but recent studies indicate that excess intake/supplement may have adverse outcomes including increased mortality. It is advocated that antioxidants should be given only if preexisting deficiency is present. Selection of antioxidant is another important aspect. Lastly but most importantly the impact of OS is not obligatory but facultative. As such only those diabetic patients will be benefited by antioxidant therapies that have impelling punch of prooxidants.
Collapse
Affiliation(s)
- P. P. Singh
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, Uttar Pradesh India
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, 226003 India
| | - Farzana Mahadi
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, Uttar Pradesh India
| | - Ajanta Roy
- Department of Biochemistry, Era’s Lucknow Medical College, Sarfarazganj, Lucknow, Uttar Pradesh India
| | - Praveen Sharma
- Department of Biochemistry, SMS Medical College Jaipur, Rajasthan, India
| |
Collapse
|