1
|
Alarfaj SJ, Bahaa MM, Elmasry TA, Elberri EI, El-Khateeb E, Hamouda AO, Salahuddin MM, Kamal M, Gadallah ANAA, Eltantawy N, Yasser M, Negm WA, Hamouda MA, Alsegiani AS, Alrubia S, Eldesoqui M, Abdallah MS. Fenofibrate as an Adjunct Therapy for Ulcerative Colitis: Targeting Inflammation via SIRT1, NLRP3, and AMPK Pathways: A Randomized Controlled Pilot Study. Drug Des Devel Ther 2024; 18:5239-5253. [PMID: 39575188 PMCID: PMC11578921 DOI: 10.2147/dddt.s490772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Background Ulcerative colitis (UC) is an idiopathic chronic inflammation of colonic and rectal mucosa. The peroxisome proliferator-activated receptor α (PPARα) has been identified as having protective effects in UC. Aim The study aimed to investigate the efficacy of fenofibrate, a PPARα agonist, in UC. Methods A total of 70 patients with mild to moderate UC were allocated randomly and assigned to two groups (n = 35 each) from Gastroenterology Department, Faculty of Medicine, Menoufia University. The mesalamine group received a placebo along with 1 g of mesalamine three times daily, while the fenofibrate group received 1 g of mesalamine three times and fenofibrate 160 mg once daily. The study duration was for six months. A gastroenterologist assessed patients by non-invasive Partial Mayo Score (PMS) and the Inflammatory Bowel Disease Questionnaire (IBDQ) to evaluate clinical response and remission. The serum levels of silent information regulator 1 (SIRT1), NOD-like receptor protein 3 (NLRP3), and adenosine monophosphate activated protein kinase (AMPK), as well as fecal calprotectin levels were examined to determine the biological effect of fenofibrate. Results After treatment, the fenofibrate group showed statistically significant reductions in PMS (p = 0.044) and improved digestive domain of IBDQ (p = 0.023). Additionally, there were significant decreases in serum NLRP3 (p = 0.041) and fecal calprotectin (p = 0.035), along with significant increases in SIRT1 (p = 0.002) and AMPK (p = 0.0003). The fenofibrate group also had higher response and remission rates compared to the mesalamine group. Conclusion Fenofibrate may be a promising adjunct for improving clinical outcomes, quality of life, and modulating inflammation in mild to moderate patients with UC. Trial Registration Identifier NCT05781698.
Collapse
Affiliation(s)
- Sumaiah J Alarfaj
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Thanaa A Elmasry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman I Elberri
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman El-Khateeb
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amir O Hamouda
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Muhammed M Salahuddin
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Marwa Kamal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Nashwa Eltantawy
- Department of Pharmacy Practice, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, East Port Said National University, Port Said, Egypt
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Manal A Hamouda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Menofia University, Menofia, Egypt
| | - Amsha S Alsegiani
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Alrubia
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud S Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Menoufia, Egypt
- Department of PharmD, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| |
Collapse
|
2
|
Masenga SK, Desta S, Hatcher M, Kirabo A, Lee DL. How PPAR-alpha mediated inflammation may affect the pathophysiology of chronic kidney disease. Curr Res Physiol 2024; 8:100133. [PMID: 39665027 PMCID: PMC11629568 DOI: 10.1016/j.crphys.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for death in adults. Inflammation plays a role in the pathogenesis of CKD, but the mechanisms are poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor and one of the three members (PPARα, PPARβ/δ, and PPARγ) of the PPARs that plays an important role in ameliorating pathological processes that accelerate acute and chronic kidney disease. Although other PPARs members are well studied, the role of PPAR-α is not well described and its role in inflammation-mediated chronic disease is not clear. Herein, we review the role of PPAR-α in chronic kidney disease with implications for the immune system.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Mark Hatcher
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dexter L. Lee
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
3
|
Marghani BH, Ateya AI, Othman BH, Rizk MA, El-Adl M. UGT1A1 morpholino antisense oligonucleotides produce mild unconjugated hyperbilirubinemia in cyclosporine A-induced cardiovascular disorders in BLC57 mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104321. [PMID: 37984676 DOI: 10.1016/j.etap.2023.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to investigate the induction of mild unconjugated hyperbilirubinemia in hepatic UGT1A1 inhibition by Morpholinos antisense in CsA-treated BLC57 mice in comparison with the efficacy of chitosan (CH) as an anti-hypolipidemic natural product. Antisense morpholino oligonucleotides were injected intravenously into CsA-treated mice for 14 days thrice a week. Serum biochemical parameters, antioxidant status, and gene expression analysis of eNOS, PPAR-α, NF-kB, cFn, AT1-R, and ETA-R were determined in cardiac tissues with confirmation by histopathology. Inhibition of UGT1A1 significantly elevated serum unconjugated bilirubin within a physiological range. Furthermore, induced mild hyperbilirubinemia reduces hyperlipidemia, improves antioxidant status, and significantly increases the expression of the cardiac PPAR-α gene while decreasing, ETA-R, iNOS, NF-kB, cFn and AT1-R gene expression in CsA-treated mice. Importantly, mild unconjugated hyperbilirubinemia within physiological ranges may be used as a novel therapeutic strategy to lower hyperlipidemia, atherosclerosis, hypertension, and the CVD outcomes in CsA- treated transplant recipients.
Collapse
Affiliation(s)
- Basma H Marghani
- Department of Biochemistry, Physiology, and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, South of Sinai 46612, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Ateya
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Basma H Othman
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
4
|
Rayego-Mateos S, Marquez-Exposito L, Basantes P, Tejedor-Santamaria L, Sanz AB, Nguyen TQ, Goldschmeding R, Ortiz A, Ruiz-Ortega M. CCN2 Activates RIPK3, NLRP3 Inflammasome, and NRF2/Oxidative Pathways Linked to Kidney Inflammation. Antioxidants (Basel) 2023; 12:1541. [PMID: 37627536 PMCID: PMC10451214 DOI: 10.3390/antiox12081541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation is a key characteristic of both acute and chronic kidney diseases. Preclinical data suggest the involvement of the NLRP3/Inflammasome, receptor-interacting protein kinase-3 (RIPK3), and NRF2/oxidative pathways in the regulation of kidney inflammation. Cellular communication network factor 2 (CCN2, also called CTGF in the past) is an established fibrotic biomarker and a well-known mediator of kidney damage. CCN2 was shown to be involved in kidney damage through the regulation of proinflammatory and profibrotic responses. However, to date, the potential role of the NLRP3/RIPK3/NRF2 pathways in CCN2 actions has not been evaluated. In experimental acute kidney injury induced with folic acid in mice, CCN2 deficiency diminished renal inflammatory cell infiltration (monocytes/macrophages and T lymphocytes) as well as the upregulation of proinflammatory genes and the activation of NLRP3/Inflammasome-related components and specific cytokine products, such as IL-1β. Moreover, the NRF2/oxidative pathway was deregulated. Systemic administration of CCN2 to C57BL/6 mice induced kidney immune cell infiltration and activated the NLRP3 pathway. RIPK3 deficiency diminished the CCN2-induced renal upregulation of proinflammatory mediators and prevented NLRP3 modulation. These data suggest that CCN2 plays a fundamental role in sterile inflammation and acute kidney injury by modulating the RIKP3/NLRP3/NRF2 inflammatory pathways.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Ana B. Sanz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Tri Q. Nguyen
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Alberto Ortiz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| |
Collapse
|
5
|
Chen L, Sha ML, Chen FT, Jiang CY, Li D, Xu CL, Pan DS, Xu ZJ, Tang QL, Xia SJ, Sun LH, Fan GJ, Shao Y. Upregulation of KLF14 expression attenuates kidney fibrosis by inducing PPARα-mediated fatty acid oxidation. Free Radic Biol Med 2023; 195:132-144. [PMID: 36584797 DOI: 10.1016/j.freeradbiomed.2022.12.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is essential during the development of end-stage kidney disease (ESKD) and is associated with the impairment of fatty acid oxidation (FAO). Kruppel-like factor 14 (KLF14) is an important gene in lipid metabolism, but its role in TIF remains unknown. TGF-β-stimulated HK-2 cells and mouse unilateral ureteral obstruction (UUO) were used as renal fibrosis models. The role of KLF14 in the process of renal fibrosis was verified by gene knockout mice, genetic or pharmacological interference in animal model and cell model respectively. In the current study, we found that KLF14 expression increased after activation of the TGF-β signaling pathway during TIF. In KLF14-/- mice, more severe fibrosis was observed after unilateral ureteral obstruction (UUO) was induced. In human HK2 cells, knockdown of KLF14 led to more severe fibrosis induced by TGF-β1, while overexpression of KLF14 partially attenuated this process. Specifically, KLF14 deficiency decreased mitochondrial FAO activity, resulting in lipid accumulation. Thus, the energy supply to the cells was insufficient, finally resulting in TIF. We further proved that KLF14 could target peroxisome proliferator activated receptor alpha (PPARα) as a transcriptional activator. This study identified the upregulation of KLF14 expression in response to kidney stress during the process of fibrosis. Upon TIF, the activated TGF-β signaling pathway can enhance KLF14 expression, while the upregulation of KLF14 expression can decrease the degree of TIF by improving FAO activity in tubular epithelial cells and recovering the energy supply mediated by PPARα.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Lei Sha
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei-Teng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao-Liang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - De-Shen Pan
- Laboratory of Cancer Genomics and Biology, Department of Urology, And Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zi-Jie Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi-Lin Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Hui Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Guang-Jian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Fenofibrate reduces cisplatin-induced apoptosis by inhibiting the p53/Puma/Caspase-9 pathway and the MAPK/Caspase-8 pathway rather than by promoting autophagy in murine renal proximal tubular cells. Biochem Biophys Rep 2022; 30:101237. [PMID: 35252595 PMCID: PMC8889369 DOI: 10.1016/j.bbrep.2022.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022] Open
Abstract
The main lesion of cisplatin nephrotoxicity is damage to proximal tubular cells due to increased apoptosis via the mitochondrial and death receptor pathways, which may be alleviated by appropriate promotion of autophagy. Fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-α) activator, is recently reported to promote autophagy as well as protect against cisplatin nephrotoxicity, although the mechanisms were only partially analyzed. Here, the detailed mechanisms of these putative protective effects were investigated in a murine renal proximal tubular (mProx) cell line. Fenofibrate attenuated cisplatin-induced apoptosis of mProx cells based on flow cytometry. As for the mitochondrial apoptotic pathway, the reagent reduced cisplatin-stimulated caspase-3 activation by decreasing the phosphorylation of p53, JNK, and 14-3-3, cytosolic and mitochondrial Puma accumulation, cytochrome C release to the cytosol, and resulting cytosolic caspase-9 activation. Fenofibrate also decreased cisplatin-stimulated activation of caspases-8 by suppressing MAPK and NFkB pathways and reducing the gene expression of TNF-α, TL1A, and Fas, main mediators of the death receptor apoptotic pathway. Autophagy defined by p62 reduction and an increase in LC3 II/I was promoted by fenofibrate in mProx cells under starvation. Autophagy inhibition using 3-MA further increased basal and cisplatin-induced caspase-3 and -8 activation, but had no influence on the inhibitory effects of fenofibrate on caspase activation. In conclusion, our study suggests fenofibrate to be a candidate agent to mitigate cisplatin nephrotoxicity by inhibiting the mitochondrial and death apoptotic pathways rather than by promoting autophagy. Fenofibrate reduced cisplatin-induced apoptosis in mProx cells. Fenofibrate reduced caspase-3 activation by inhibiting p53/Puma/caspase-9 pathways. Fenofibrate reduced caspase-8 activation by inhibiting MAPK/death receptor pathways. Fenofibrate promoted autophagy in mProx cells under starvation conditions. Autophagy inhibition, however, did not affect the protective effects.
Collapse
|
7
|
Kanda M, Goda M, Maegawa A, Yoshioka T, Yoshida A, Miyata K, Aizawa F, Niimura T, Hamano H, Okada N, Sakurada T, Chuma M, Yagi K, Izawa-Ishizawa Y, Yanagawa H, Zamami Y, Ishizawa K. Discovery of preventive drugs for cisplatin-induced acute kidney injury using big data analysis. Clin Transl Sci 2022; 15:1664-1675. [PMID: 35445533 PMCID: PMC9283743 DOI: 10.1111/cts.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cisplatin is effective against many types of carcinoma. However, a high rate of renal damage is a clinical problem. Thus, there is a need to establish a method to prevent it. Although various compounds have been reported to be effective against cisplatin-induced renal injury, there are no examples of their clinical application. Therefore, we attempted to search for prophylactic agents with a high potential for clinical application. We used Cascade Eye to identify genes that are altered during cisplatin-induced renal injury, Library of Integrated Network-based Cellular Signatures (LINCS) to identify drugs that inhibit changes in gene expression, and a large database of spontaneous adverse drug reaction reports to identify drugs that could prevent cisplatin-induced kidney injury in clinical practice. In total, 10 candidate drugs were identified. Using the US FDA Adverse Event Reporting System (FAERS), we identified drugs that reduce cisplatin-induced kidney injury. Fenofibrate was selected as a candidate drug to prevent cisplatin-induced kidney injury based on the FAERS analysis. A model was used to evaluate the efficacy of fenofibrate against cisplatin-induced renal injury. Studies using HK2 cells and mouse models showed that fenofibrate significantly inhibited cisplatin-induced renal injury but did not inhibit the antitumor effect of cisplatin. Fenofibrate is a candidate prophylactic drug with high clinical applicability for cisplatin-induced renal injury. Analysis of data from multiple big databases will improve the search for novel prophylactic drugs with high clinical applicability. For the practical application of these findings, evaluation in prospective controlled trials is necessary.
Collapse
Affiliation(s)
- Masaya Kanda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Akiko Maegawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshihiko Yoshioka
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Ami Yoshida
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Koji Miyata
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Naoto Okada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Takumi Sakurada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Masayuki Chuma
- Department of Pharmacy, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kenta Yagi
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroaki Yanagawa
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
8
|
Gao J, Gu Z. The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases. Front Pharmacol 2022; 13:832732. [PMID: 35308207 PMCID: PMC8931476 DOI: 10.3389/fphar.2022.832732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Accumulating evidence suggests that PPARs may play an important role in the pathogenesis of kidney disease. All three members of the PPAR subfamily, PPARα, PPARβ/δ, and PPARγ, have been implicated in many renal pathophysiological conditions, including acute kidney injury, diabetic nephropathy, and chronic kidney disease, among others. Emerging data suggest that PPARs may be potential therapeutic targets for renal disease. This article reviews the physiological roles of PPARs in the kidney and discusses the therapeutic utility of PPAR agonists in the treatment of kidney disease.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Zhaoyan Gu
- Department of Endocrinology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaoyan Gu,
| |
Collapse
|
9
|
Yan J, Xu W, Lenahan C, Huang L, Ocak U, Wen J, Li G, He W, Le C, Zhang JH, Mo L, Tang J. Met-RANTES preserves the blood–brain barrier through inhibiting CCR1/SRC/Rac1 pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2022; 19:7. [PMID: 35062973 PMCID: PMC8781527 DOI: 10.1186/s12987-022-00305-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background C–C chemokine receptor type 1 (CCR1) and its endogenous ligand, CCL5, participate in the pathogenesis of neuroinflammatory diseases. However, much remains unknown regarding CCL5/CCR1 signaling in blood–brain barrier (BBB) permeability after intracerebral hemorrhage (ICH). Methods A total of 250 CD1 male mice were used and ICH was induced via autologous whole blood injection. Either Met-RANTES, a selective CCR1 antagonist, or Met-RANTES combined with a Rac1 CRISPR activator was administered to the mice 1 h after ICH. Post-ICH assessments included neurobehavioral tests, brain water content, BBB integrity, hematoma volume, Western blot, and immunofluorescence staining. The CCR1 ligand, rCCL5, and SRC CRISPR knockout in naïve mice were used to further elucidate detrimental CCL5/CCR1/SRC signaling. Results Brain endogenous CCR1 and CCL5 were upregulated after ICH in mice with a peak at 24 h, and CCR1 was expressed in endothelial cells, astrocytes, and neurons. Met-R treatment reduced brain edema and neurobehavioral impairment, as well as preserved BBB integrity and tight junction protein expression in ICH mice. Met-R treatment decreased expression of p-SRC, Rac1, albumin, and MMP9, but increased claudin-5, occludin, and ZO-1 tight junction proteins after ICH. These effects were regressed using the Rac1 CRISPR activator. Administration of rCCL5 in naïve mice increased expression of p-SRC, Rac1, albumin, and MMP9, but decreased levels of claudin-5, occludin, and ZO-1 tight junction proteins. These effects in naïve mice were reversed with SRC CRISPR (KO). Conclusions Our findings demonstrate that CCR5 inhibition by Met-R improves neurological deficits after ICH by preserving BBB integrity through inhibiting CCR1/SRC/Rac1 signaling pathway in mice. Thus, Met-R has therapeutic potential in the management of ICH patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00305-3.
Collapse
|
10
|
Li W, Duan A, Xing Y, Xu L, Yang J. Transcription-Based Multidimensional Regulation of Fatty Acid Metabolism by HIF1α in Renal Tubules. Front Cell Dev Biol 2021; 9:690079. [PMID: 34277635 PMCID: PMC8283824 DOI: 10.3389/fcell.2021.690079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolism plays a basic role in renal physiology, especially in tubules. Hypoxia and hypoxia-induced factor (HIF) activation are common in renal diseases; however, the relationship between HIF and tubular lipid metabolism is poorly understood. Using prolyl hydroxylase inhibitor roxadustat (FG-4592), we verified and further explored the relationship between sustained HIF1α activation and lipid accumulation in cultured tubular cells. A transcriptome and chromatin immunoprecipitation sequencing analysis revealed that HIF1α directly regulates the expression of a number of genes possibly affecting lipid metabolism, including those associated with mitochondrial function. HIF1α activation suppressed fatty acid (FA) mobilization from lipid droplets (LDs) and extracellular FA uptake. Moreover, HIF1α decreased FA oxidation and ATP production. A lipidomics analysis showed that FG-4592 caused strong triglyceride (TG) accumulation and increased some types of phospholipids with polyunsaturated fatty acyl (PUFA) chains, as well as several proinflammatory lipids. Nevertheless, the overall FA level was maintained. Thus, our study indicated that HIF1α reduced the FA supply and utilization and reconstructed the composition of lipids in tubules, which is likely a part of hypoxic adaptation but could also be involved in pathological processes in the kidney.
Collapse
Affiliation(s)
- Wenju Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuexian Xing
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingping Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Schaub JA, Venkatachalam MA, Weinberg JM. Proximal Tubular Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD. KIDNEY360 2020; 2:355-364. [PMID: 35373028 PMCID: PMC8740982 DOI: 10.34067/kid.0004772020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
The proximal tubule relies on oxidative mitochondrial metabolism to meet its energy needs and has limited capacity for glycolysis, which makes it uniquely susceptible to damage during AKI, especially after ischemia and anoxia. Under these conditions, mitochondrial ATP production is initially decreased by several mechanisms, including fatty acid-induced uncoupling and inhibition of respiration related to changes in the shape and volume of mitochondria. Glycolysis is initially insufficient as a source of ATP to protect the cells and mitochondrial function, but supplementation of tricarboxylic acid cycle intermediates augments anaerobic ATP production, and improves recovery of mitochondrial oxidative metabolism. Incomplete recovery is characterized by defects of respiratory enzymes and lipid metabolism. During the transition to CKD, tubular cells atrophy but maintain high expression of glycolytic enzymes, and there is decreased fatty acid oxidation. These metabolic changes may be amenable to a number of therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer A. Schaub
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Joel M. Weinberg
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
PPAR-α Deletion Attenuates Cisplatin Nephrotoxicity by Modulating Renal Organic Transporters MATE-1 and OCT-2. Int J Mol Sci 2020; 21:ijms21197416. [PMID: 33049997 PMCID: PMC7582648 DOI: 10.3390/ijms21197416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is a chemotherapy drug widely used in the treatment of solid tumors. However, nephrotoxicity has been reported in about one-third of patients undergoing cisplatin therapy. Proximal tubules are the main target of cisplatin toxicity and cellular uptake; elimination of this drug can modulate renal damage. Organic transporters play an important role in the transport of cisplatin into the kidney and organic cations transporter 2 (OCT-2) has been shown to be one of the most important transporters to play this role. On the other hand, multidrug and toxin extrusion 1 (MATE-1) transporter is the main protein that mediates the extrusion of cisplatin into the urine. Cisplatin nephrotoxicity has been shown to be enhanced by increased OCT-2 and/or reduced MATE-1 activity. Peroxisome proliferator-activated receptor alpha (PPAR-α) is the transcription factor which controls lipid metabolism and glucose homeostasis; it is highly expressed in the kidneys and interacts with both MATE-1 and OCT-2. Considering the above, we treated wild-type and PPAR-α knockout mice with cisplatin in order to evaluate the severity of nephrotoxicity. Cisplatin induced renal dysfunction, renal inflammation, apoptosis and tubular injury in wild-type mice, whereas PPAR-α deletion protected against these alterations. Moreover, we observed that cisplatin induced down-regulation of organic transporters MATE-1 and OCT-2 and that PPAR-α deletion restored the expression of these transporters. In addition, PPAR-α knockout mice at basal state showed increased MATE-1 expression and reduced OCT-2 levels. Here, we show for the first time that PPAR-α deletion protects against cisplatin nephrotoxicity and that this protection is via modulation of the organic transporters MATE-1 and OCT-2.
Collapse
|
13
|
Nicolaou O, Kousios A, Sokratous K, Potamiti L, Koniali L, Neophytou G, Papacharalampous R, Zanti M, Ioannou K, Hadjisavvas A, Stingl C, Luider TM, Kyriacou K. Alport syndrome: Proteomic analysis identifies early molecular pathway alterations in Col4a3 knock out mice. Nephrology (Carlton) 2020; 25:937-949. [PMID: 32743880 PMCID: PMC7754404 DOI: 10.1111/nep.13764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 01/02/2023]
Abstract
AIM Alport syndrome (AS) is the second most common hereditary kidney disease caused by mutations in collagen IV genes. Patients present with microhaematuria that progressively leads to proteinuria and end stage renal disease. Currently, no specific treatment exists for AS. Using mass spectrometry based proteomics, we aimed to detect early alterations in molecular pathways implicated in AS before the stage of overt proteinuria, which could be amenable to therapeutic intervention. METHODS Kidneys were harvested from male Col4a3-/- knock out and sex and age-matched Col4a3+/+ wild-type mice at 4 weeks of age. Purified peptides were separated by liquid chromatography and analysed by high resolution mass spectrometry. The Cytoscape bioinformatics tool was used for function enrichment and pathway analysis. PPARα expression levels were evaluated by immunofluorescence and immunoblotting. RESULTS Proteomic analysis identified 415 significantly differentially expressed proteins, which were mainly involved in metabolic and cellular processes, the extracellular matrix, binding and catalytic activity. Pathway enrichment analysis revealed among others, downregulation of the proteasome and PPAR pathways. PPARα protein expression levels were observed to be downregulated in Alport mice, supporting further the results of the discovery proteomics. CONCLUSION This study provides additional evidence that alterations in proteins which participate in cellular metabolism and mitochondrial homeostasis in kidney cells are early events in the development of chronic kidney disease in AS. Of note is the dysregulation of the PPAR pathway, which is amenable to therapeutic intervention and provides a new potential target for therapy in AS.
Collapse
Affiliation(s)
- Orthodoxia Nicolaou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Kousios
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Kleitos Sokratous
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Neophytou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Revekka Papacharalampous
- Department of Neurology Clinic A, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Zanti
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriakos Ioannou
- Department of Nephrology, Apollonion Private Hospital, Nicosia, Cyprus.,School of Medicine, European University, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christoph Stingl
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, CN, The Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, CN, The Netherlands
| | - Kyriacos Kyriacou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
14
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Fujikura T, Yasuda H, Iwakura T, Tsuji T, Anders H. MDM2 inhibitor ameliorates cisplatin-induced nephropathy via NFκΒ signal inhibition. Pharmacol Res Perspect 2019; 7:e00450. [PMID: 30564368 PMCID: PMC6293176 DOI: 10.1002/prp2.450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/28/2022] Open
Abstract
Cisplatin is a platinum-containing chemotherapeutic drug, which is widely used and highly effective. While effective against tumors, its use is limited by severe side effects such as nephrotoxicity and bone marrow suppression. Murine double minute 2 (MDM2) is the E3 ubiquitin ligase of the tumor suppressor gene, p53, and inhibition of MDM2 can suppress tumor cell growth. However, independent of p53, MDM2 acts as a co-transcription factor for nuclear factor-κB (NFκB), whose signaling can be involved in cisplatin-induced tubular injury. We therefore examined the effects of MDM2 inhibitor on cisplatin cytotoxicity. In order to induce acute kidney injury and to investigate MDM2 inhibitory effects, we injected cisplatin into rats with or without the MDM2 inhibitor, DS-5272, and analyzed kidney physiology/histology and NFκB signaling. Serum creatinine was significantly lower in the DS-5272 group than in the vehicle group on day 3 (0.55 ± 0.069 vs 0.70 ± 0.072 mg/dL, P < 0.05). DS-5272 also significantly decreased kidney injury molecule-1 (KIM-1) expression, improved tubular injury, and decreased apoptotic cells. Western blotting showed that cisplatin increased NFκB phosphorylation in kidneys, which was significantly suppressed by DS-5272. In vitro, we treated HEK 293 cells with cisplatin, in the absence or presence of DS-5272, and examined cytotoxicity and NFκB transcriptional activity. DS-5272 co-treatment reduced both cisplatin-induced cell death and NFκB transcriptional activity. Collectively, these findings suggest that DS-5272 can ameliorate cisplatin nephrotoxicity via NFκB signal inhibition.
Collapse
Affiliation(s)
- Tomoyuki Fujikura
- First Department of MedicineHamamatsu University School of MedicineHamamatsu, ShizuokaJapan
- Renal DivisionMedizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLMU MünchenMunichGermany
| | - Hideo Yasuda
- First Department of MedicineHamamatsu University School of MedicineHamamatsu, ShizuokaJapan
| | - Takamasa Iwakura
- First Department of MedicineHamamatsu University School of MedicineHamamatsu, ShizuokaJapan
- Renal DivisionMedizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLMU MünchenMunichGermany
| | - Takayuki Tsuji
- First Department of MedicineHamamatsu University School of MedicineHamamatsu, ShizuokaJapan
| | - Hans‐J. Anders
- Renal DivisionMedizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLMU MünchenMunichGermany
| |
Collapse
|
16
|
Jao TM, Nangaku M, Wu CH, Sugahara M, Saito H, Maekawa H, Ishimoto Y, Aoe M, Inoue T, Tanaka T, Staels B, Mori K, Inagi R. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney Int 2019; 95:577-589. [PMID: 30639234 DOI: 10.1016/j.kint.2018.09.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023]
Abstract
Tubulointerstitial fibrosis is a strong predictor of progression in patients with chronic kidney disease, and is often accompanied by lipid accumulation in renal tubules. However, the molecular mechanisms modulating the relationship between lipotoxicity and tubulointerstitial fibrosis remain obscure. ATF6α, a transcription factor of the unfolded protein response, is reported to be an upstream regulator of fatty acid metabolism. Owing to their high energy demand, proximal tubular cells (PTCs) use fatty acids as their main energy source. We therefore hypothesized that ATF6α regulates PTC fatty acid metabolism, contributing to lipotoxicity-induced tubulointerstitial fibrosis. Overexpression of activated ATF6α transcriptionally downregulated peroxisome proliferator-activated receptor-α (PPARα), the master regulator of lipid metabolism, leading to reduced activity of fatty acid β-oxidation and cytosolic accumulation of lipid droplets in a human PTC line (HK-2). ATF6α-induced lipid accumulation caused mitochondrial dysfunction, enhanced apoptosis, and increased expression of connective tissue growth factor (CTGF), as well as reduced cell viability. Atf6α-/- mice had sustained expression of PPARα and less tubular lipid accumulation following unilateral ischemia-reperfusion injury (uIRI), resulting in the amelioration of apoptosis; reduced expression of CTGF, α-smooth muscle actin, and collagen I; and less tubulointerstitial fibrosis. Administration of fenofibrate, a PPARα agonist, reduced lipid accumulation and tubulointerstitial fibrosis in the uIRI model. Taken together, these findings suggest that ATF6α deranges fatty acid metabolism in PTCs, which leads to lipotoxicity-mediated apoptosis and CTGF upregulation, both of which promote tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Chia-Hsien Wu
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mai Sugahara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hisako Saito
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Maekawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mari Aoe
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Bart Staels
- Evaluation et Gestion Informatique de la Diversité Génétique, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1011, Lille, France
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Kim SJ, Park C, Lee JN, Park R. Protective roles of fenofibrate against cisplatin-induced ototoxicity by the rescue of peroxisomal and mitochondrial dysfunction. Toxicol Appl Pharmacol 2018; 353:43-54. [PMID: 29908243 DOI: 10.1016/j.taap.2018.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
Cisplatin is an alkylating agent that interferes with DNA replication and kills proliferating carcinogenic cells. Several studies have been conducted to attenuate the side effects of cisplatin; one such side effect in cancer patients undergoing cisplatin chemotherapy is ototoxicity. However, owing to a lack of understanding of the precise mechanism underlying cisplatin-induced side effects, management of cisplatin-induced ototoxicity remains unsolved. We investigated the protective effects of fenofibrate, a PPAR-α activator, on cisplatin-induced ototoxicity. Fenofibrate prevented cisplatin-induced loss of hair cells and improved cell viability; moreover, fenofibrate significantly attenuated the threshold of auditory brainstem responses (ABR) in cisplatin-injected mice. Fenofibrate significantly increased PPAR-α, PPAR-γ, and PGC-1α expression, which consequently resulted in increased number and functional enzyme levels of peroxisomes and mitochondria, and markedly decreased phospho-p53 (S15), activated caspase-3, cleaved-PARP, and NF-κB p65 nuclear translocation, which reduced NADPH oxidase isoform (NOX3 and NOX4) expression, thereby decreasing reactive oxygen species (ROS) production in cisplatin-treated tissues ex vivo. Taken together, these results indicate that fenofibrate rescues cisplatin-induced ototoxicity by maintaining peroxisome and mitochondria number and function, reducing inflammation, and decreasing ROS levels. Our findings suggest that fenofibrate administration might serve as an effective therapeutic agent against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Se-Jin Kim
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Channy Park
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Joon No Lee
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Raekil Park
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
19
|
Gabano E, Ravera M, Trivero F, Tinello S, Gallina A, Zanellato I, Gariboldi MB, Monti E, Osella D. The cisplatin-based Pt(iv)-diclorofibrato multi-action anticancer prodrug exhibits excellent performances also under hypoxic conditions. Dalton Trans 2018; 47:8268-8282. [DOI: 10.1039/c7dt04614f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cisplatin/clofibrato combos are multi-action Pt(iv) complexes active on a panel of human tumor cell lines, also under hypoxic conditions.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Francesca Trivero
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Stefano Tinello
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Andrea Gallina
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Marzia B. Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita
- Università dell'Insubria
- 21052 Busto Arsizio
- Italy
| | - Elena Monti
- Dipartimento di Biotecnologie e Scienze della Vita
- Università dell'Insubria
- 21052 Busto Arsizio
- Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| |
Collapse
|
20
|
Mehr AP, Parikh SM. PPARγ-Coactivator-1α, Nicotinamide Adenine Dinucleotide and Renal Stress Resistance. Nephron Clin Pract 2017; 137:253-255. [PMID: 28591759 PMCID: PMC5722711 DOI: 10.1159/000471895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
With one of the highest mitochondrial densities in the body, the kidneys consume approximately 10% of total oxygen while constituting 0.5% of body mass. Renal respiration is linear to solute extraction, linking oxidative metabolism directly to tubular function. This fundamental role of mitochondria in renal health may become an "Achilles heel" under duress. Acute kidney injury (AKI) related to each major class of stressor - inflammation, ischemia, and toxins - exhibits early and prominent mitochondrial injury. The mitochondrial biogenesis regulator, PPARγ-coactivator-1α (PGC1α), may confer tubular protection against these stressors. Recent work proposes that renal PGC1α directly increases levels of nicotinamide adenine dinucleotide (NAD+), an essential co-factor for energy metabolism that has lately been proposed as an anti-aging factor. This mini-review summarizes recent studies on AKI, PGC1α, and NAD+ that identify a direct mechanism between the regulation of metabolic health and the ability to resist renal stressors.
Collapse
Affiliation(s)
- Ali Poyan Mehr
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Samir M. Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Molinaro R, Boada C, Del Rosal GM, Hartman KA, Corbo C, Andrews ED, Toledano-Furman NE, Cooke JP, Tasciotti E. Vascular Inflammation: A Novel Access Route for Nanomedicine. Methodist Debakey Cardiovasc J 2017; 12:169-174. [PMID: 27826372 DOI: 10.14797/mdcj-12-3-169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite an improved understanding of its pathophysiology and a wide range of new treatments, cardiovascular disease (CVD) remains a serious public health issue and the number one cause of mortality in the United States. Conditions that promote chronic systemic inflammation, such as obesity, cancer, and autoimmune and infectious diseases, are now known to play an important role in promoting CVD by inducing the expression of endothelial adhesion molecules and chemokines; these in turn promote leukocyte adherence and infiltration, which initiates and spurs the progression of CVD. In response to this new understanding, researchers are evaluating the potential cardiovascular benefits of new-generation therapies based on endogenous molecules with anti-inflammatory properties. Similarly, targeted approaches that leverage the phenotypic differences between non-inflamed and inflamed endothelia have the potential to selectively deliver therapeutics and decrease the morbidity and mortality of CVD patients. In this review, we discuss the role of inflammation in CVD and explore the therapeutic potential of targeting inflamed vasculature through conventional and biomimetic approaches.
Collapse
Affiliation(s)
| | - Christian Boada
- Houston Methodist Research Institute, Houston, Texas; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | | - Claudia Corbo
- Houston Methodist Research Institute, Houston, Texas; CEINGE, Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| | | | | | - John P Cooke
- Houston Methodist Research Institute, Houston, Texas
| | - Ennio Tasciotti
- Houston Methodist Research Institute, Houston, Texas; Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
22
|
Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2017; 31:15-25. [DOI: 10.1007/s40620-017-0392-z] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/11/2017] [Indexed: 12/22/2022]
|
23
|
Feng X, Gao X, Jia Y, Zhang H, Xu Y. Atorvastatin Decreased Circulating RANTES Levels in Impaired Glucose Tolerance Patients with Hypercholesterolemia: An Interventional Study. Diabetes Ther 2017; 8:309-319. [PMID: 28120261 PMCID: PMC5380490 DOI: 10.1007/s13300-017-0227-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Impaired glucose tolerance (IGT) is the major cause of the development of both type 2 diabetes and atherosclerosis. Regulated upon activation, normal T cells expressed and secreted (RANTES), a proinflammatory chemokine, is associated with atherosclerosis. We investigated the effect of atorvastatin on circulating RANTES in IGT patients with hypercholesterolemia. METHODS This study evaluated cross-sectional and interventional studies of 32 IGT patients with hypercholesterolemia (group A) and 32 controls (group B). Group A was treated with atorvastatin (20 mg/day) for 8 weeks. Platelet-free plasma (PFP) RANTES and clinical characteristics were examined. RESULTS PFP RANTES was significantly higher in group A compared with group B (9.76 ± 3.10 vs 6.43 ± 2.16 ng/ml, P < 0.001). PFP RANTES was positively correlated with total cholesterol (TC) (r = 0.589, P < 0.001), low-density lipoprotein cholesterol (LDL-C) (r = 0.583, P < 0.001), triglycerides (TG) (r = 0.450, P < 0.001), fasting blood glucose (FBG) (r = 0.469, P < 0.001), 2-hour postchallenge glucose (2hPG) (r = 0.397, P = 0.001), glycosylated hemoglobin (HbA1c) (r = 0.353, P = 0.004), and high sensitivity C-reactive protein (hsCRP) (r = 0.616, P < 0.001), and negatively related to high-density lipoprotein cholesterol (HDL-C) (r = -0.272, P = 0.029). After controlling for confounders, LDL-C (β = 2.109, P < 0.001) and hsCRP (β = 0.272, P = 0.029) were independently related to RANTES. After atorvastatin treatment, PFP RANTES significantly decreased in group A compared with baseline (from 9.76 ± 3.10 to 7.48 ± 2.78 ng/ml, P < 0.001). CONCLUSIONS Atorvastatin decreased circulating RANTES in IGT patients with hypercholesterolemia, indicating that statins may play an important role in inhibiting inflammatory responses in patients with IGT.
Collapse
Affiliation(s)
- Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yumei Jia
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Xu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
24
|
Radwan RR, Abdel Fattah SM. Mechanisms involved in the possible nephroprotective effect of rutin and low dose γ irradiation against cisplatin-induced nephropathy in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 169:56-62. [DOI: 10.1016/j.jphotobiol.2017.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
|
25
|
Park JH, Jang HR, Kim DH, Kwon GY, Lee JE, Huh W, Choi SJ, Oh W, Oh HY, Kim YG. Early, but not late, treatment with human umbilical cord blood-derived mesenchymal stem cells attenuates cisplatin nephrotoxicity through immunomodulation. Am J Physiol Renal Physiol 2017; 313:F984-F996. [PMID: 28356286 DOI: 10.1152/ajprenal.00097.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 11/22/2022] Open
Abstract
Preemptive treatment with mesenchymal stem cells (MSCs) can attenuate cisplatin-induced acute kidney injury (AKI). However, it is uncertain whether MSC treatment after the development of renal dysfunction prevents AKI progression or if MSC immunomodulatory properties contribute to MSC therapy. In this study, human umbilical cord blood (hUCB)-derived MSCs were used to compare the effects and mechanisms of early and late MSC therapy in a murine model. After cisplatin injection into C57BL/6 mice, hUCB-MSCs were administered on day 1 (early treatment) or day 3 (late treatment). With early treatment, cisplatin nephrotoxicity was attenuated as evidenced by decreased blood urea nitrogen (BUN) and reduced apoptosis and tubular injury scores on day 3 Early treatment resulted in downregulation of intrarenal monocyte chemotactic protein-1 and IL-6 expression and upregulation of IL-10 and VEGF expression. Flow cytometric analysis showed similar populations of infiltrated immune cells in both groups; however, regulatory T-cell (Treg) infiltration was 2.5-fold higher in the early treatment group. The role of Tregs was confirmed by the blunted effect of early treatment on renal injury after Treg depletion. In contrast, late treatment (at a time when BUN levels were 2-fold higher than baseline levels) showed no renoprotective effects on day 6 Neither the populations of intrarenal infiltrating immune cells (including Tregs) nor cytokine expression levels were affected by late treatment. Our results suggest that early MSC treatment attenuates renal injury by Treg induction and immunomodulation, whereas a late treatment (i.e., after the development of renal dysfunction) does not prevent AKI progression or alter the intrarenal inflammatory micromilieu.
Collapse
Affiliation(s)
- Ji Hyeon Park
- Division of Nephrology, Department of Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medicine, National Police Hospital, Seoul, Korea; and
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hee Kim
- Division of Nephrology, Department of Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, R&D Center, Medipost Company, Gyeonggi-do, Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, Medipost Company, Gyeonggi-do, Korea
| | - Ha Young Oh
- Division of Nephrology, Department of Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-Goo Kim
- Division of Nephrology, Department of Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea;
| |
Collapse
|
26
|
Estrela GR, Wasinski F, Batista RO, Hiyane MI, Felizardo RJF, Cunha F, de Almeida DC, Malheiros DMAC, Câmara NOS, Barros CC, Bader M, Araujo RC. Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation. Front Physiol 2017; 8:116. [PMID: 28303105 PMCID: PMC5332405 DOI: 10.3389/fphys.2017.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1β and TNF-α levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-α was activated in mice after CR. An antagonist of PPAR-α blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-α activation.
Collapse
Affiliation(s)
- Gabriel R Estrela
- Departamento de Biofísica, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Frederick Wasinski
- Departamento de Biofísica, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Rogério O Batista
- Departamento de Biofísica, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Meire I Hiyane
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Raphael J F Felizardo
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Flavia Cunha
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Danilo C de Almeida
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Niels O S Câmara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Carlos C Barros
- Departamento de Nutrição, Escola de Nutrição, Universidade Federal de Pelotas Pelotas, Brazil
| | - Michael Bader
- Max-Delbruck Center for Molecular Medicine Berlin, Germany
| | - Ronaldo C Araujo
- Departamento de Biofísica, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
27
|
Bodiga VL, Inapurapu SP, Vemuri PK, Kudle MR, Bodiga S. Intracellular zinc status influences cisplatin-induced endothelial permeability through modulation of PKCα, NF-κB and ICAM-1 expression. Eur J Pharmacol 2016; 791:355-368. [DOI: 10.1016/j.ejphar.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
28
|
Badr A, Fouad D. Anti-apoptotic and Anti-inflammatory Effects of Olive Leaf Extract Against Cisplatin-induced Nephrotoxicity in Male Rats. INT J PHARMACOL 2016; 12:675-688. [DOI: 10.3923/ijp.2016.675.688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
A H 2 S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice. Mediators Inflamm 2016; 2016:8145785. [PMID: 27340345 PMCID: PMC4906217 DOI: 10.1155/2016/8145785] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/01/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence demonstrated that hydrogen sulfide (H2S) is highly involved in inflammation, oxidative stress, and apoptosis and contributes to the pathogenesis of kidney diseases. However, the role of H2S in cisplatin nephrotoxicity is still debatable. Here we investigated the effect of GYY4137, a novel slow-releasing H2S donor, on cisplatin nephrotoxicity in mice. Male C57BL/6 mice were pretreated with GYY4137 for 72 h prior to cisplatin injection. After cisplatin treatment for 72 h, mice developed obvious renal dysfunction and kidney injury as evidenced by elevated blood urea nitrogen (BUN) and histological damage. Consistently, these mice also showed increased proinflammatory cytokines such as TNF-α, IL-6, and IL-1β in circulation and/or kidney tissues. Meanwhile, circulating thiobarbituric aid-reactive substances (TBARS) and renal apoptotic indices including caspase-3, Bak, and Bax were all elevated. However, application of GYY4137 further aggravated renal dysfunction and kidney structural injury in line with promoted inflammation, oxidative stress, and apoptotic response following cisplatin treatment. Taken together, our results suggested that GYY4137 exacerbated cisplatin-induced nephrotoxicity in mice possibly through promoting inflammation, oxidative stress, and apoptotic response.
Collapse
|
30
|
Feng X, Gao X, Jia Y, Zhang H, Xu Y, Wang G. PPAR-α Agonist Fenofibrate Decreased RANTES Levels in Type 2 Diabetes Patients with Hypertriglyceridemia. Med Sci Monit 2016; 22:743-51. [PMID: 26944934 PMCID: PMC4784549 DOI: 10.12659/msm.897307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Regulated upon activation, normal T cells expressed and secreted (RANTES) is associated with inflammation and atherosclerosis. We investigated the effect of fenofibrate, a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, on RANTES in type 2 diabetes mellitus (T2DM) patients with hypertriglyceridemia. Material/Methods This study evaluated cross-sectional and interventional studies of 25 T2DM patients with hypertriglyceridemia (group A) and 32 controls (group B). Group A was treated with fenofibrate (200 mg/day) for 8 weeks. Serum RANTES and clinical characteristics were examined. Results Serum RANTES was significantly higher in group A compared with group B (59.04±16.74 vs. 38.57±12.98 ng/ml, P<0.001) and correlated with triglycerides (TG) (r=0.535, P<0.001), fasting blood glucose (FBG) (r=0.485, P<0.001), glycosylated hemoglobin (HbA1c) (r=0.485, P<0.001), homocysteine (Hcy) (r=0.520, P<0.001), and high-sensitivity C-reactive protein (hsCRP) (r=0.701, P<0.001). In multiple regression analysis after controlling for confounders, increased hsCRP levels (β=7.430, P<0.001) and T2DM with hypertriglyceridemia (β=11.496, P=0.002) were independently related to high serum RANTES levels. After 8 weeks of fenofibrate treatment, serum RANTES significantly decreased in group A compared with baseline (52.75±17.41 vs. 59.04±16.74 ng/ml, P=0.018). Conclusions Fenofibrate decreased serum RANTES levels in T2DM patients with hypertriglyceridemia, indicating that PPAR-α agonists may play an important role in inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yumei Jia
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Heng Zhang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yuan Xu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
31
|
Ozkok A, Ravichandran K, Wang Q, Ljubanovic D, Edelstein CL. NF-κB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI). Toxicol Lett 2016; 240:105-13. [DOI: 10.1016/j.toxlet.2015.10.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/29/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
|
32
|
Qi S, Wang C, Zhang Y, Cheng Y, Wang S, Zhao Y. The association of peroxisome proliferator-activated receptor α with diabetic retinopathy, and additional gene-obesity interaction in Chinese type 2 diabetes mellitus patients. Obes Res Clin Pract 2015; 10 Suppl 1:S103-S109. [PMID: 26671228 DOI: 10.1016/j.orcp.2015.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/01/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
AIMS To investigate the impact of peroxisome proliferator-activated receptor α (PPAR α) SNPs and gene-obesity interaction on diabetic retinopathy (DR) susceptibility in a Chinese Han population. METHODS A total of 812 patients (373men, 439 women) with type 2 diabetes mellitus (T2DM), with a mean age of 53.3±14.0 years old, were selected, including 402 diabetic retinopathy patients and 410 controls. Three single nucleotide polymorphisms (SNPs) were selected for genotyping in the case-control study: rs4253778, rs135539 and rs1800206. Generalised multifactor dimensionality reduction (GMDR) and logistic regression model was used to examine the association and interaction between SNP and obesity on DR, odds ratio (OR) and 95% confident interval (95%CI) were calculated. RESULTS The carriers of homozygous mutant of rs1800206 SNP revealed decreased DR risk than those with wild-type homozygotes, OR (95%CI) was 0.78 (0.66-0.94). GMDR analysis indicated a significant two-locus model (p=0.0107) involving rs1800206 and abdominal obesity, indicating a potential interaction among rs1800206 and abdominal obesity. Overall, the two-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72%. We also found that subjects with abdominal obesity and LV or VV genotype have lowest DR risk, compared to subjects with normal WC and LL genotype, OR (95%CI) was 0.39 (0.30-0.74), after covariates adjustment. CONCLUSIONS Our results support an important association between rs1800206 minor allele of PPAR α and DR, and the interaction analysis also shown a combined effect of Leu162 allele-abdominal obesity interaction on DR.
Collapse
Affiliation(s)
- Shounan Qi
- Eye Hospital, The second Hospital of Jilin University, Changchun 130041, China
| | - Chenguang Wang
- Eye Hospital, The second Hospital of Jilin University, Changchun 130041, China
| | - Yan Zhang
- Eye Hospital, The second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Eye Hospital, The second Hospital of Jilin University, Changchun 130041, China
| | - Shurong Wang
- Eye Hospital, The second Hospital of Jilin University, Changchun 130041, China.
| | - Yixuan Zhao
- Eye Hospital, The second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
33
|
Swaminathan S, Rosner MH, Okusa MD. Emerging therapeutic targets of sepsis-associated acute kidney injury. Semin Nephrol 2015; 35:38-54. [PMID: 25795498 DOI: 10.1016/j.semnephrol.2015.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is linked to high morbidity and mortality. To date, singular approaches to target specific pathways known to contribute to the pathogenesis of SA-AKI have failed. Because of the complexity of the pathogenesis of SA-AKI, a reassessment necessitates integrative approaches to therapeutics of SA-AKI that include general supportive therapies such as the use of vasopressors, fluids, antimicrobials, and target-specific and time-dependent therapeutics. There has been recent progress in our understanding of the pathogenesis and treatment of SA-AKI including the temporal nature of proinflammatory and anti-inflammatory processes. In this review, we discuss the clinical and experimental basis of emerging therapeutic approaches that focus on targeting early proinflammatory and late anti-inflammatory processes, as well as therapeutics that may enhance cellular survival and recovery. Finally, we include ongoing clinical trials in sepsis.
Collapse
Affiliation(s)
- Sundararaman Swaminathan
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA.
| |
Collapse
|
34
|
Bodiga VL, Kudle MR, Bodiga S. Silencing of PKC-α, TRPC1 or NF-κB expression attenuates cisplatin-induced ICAM-1 expression and endothelial dysfunction. Biochem Pharmacol 2015; 98:78-91. [PMID: 26300057 DOI: 10.1016/j.bcp.2015.08.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023]
Abstract
Platinum-based chemotherapy has been associated with increased long-term cardiovascular events. Also noteworthy is the accumulating awareness of early vascular toxicity occurring at the time of chemotherapy or immediately thereafter. The objective of the study was to delineate the molecular mechanisms associated with the early vascular toxicity and test the molecular silencing approach towards attenuating the endothelial dysfunction during platinum-based chemotherapy. Human umbilical vein endothelial cells (HUVECs) were treated with varying concentrations of cisplatin (1.0-10.0μg/ml) or vehicle control (0.1% dimethyl sulfoxide) for monitoring the changes in Intercellular adhesion molecule-1 (ICAM-1) mRNA and protein expression viz. a viz. altered activation of protein kinase C (PKC) isoforms, transient receptor potential channel (TRPC) 1 expression, Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB), Store Operated Ca(2+) Entry (SOCE) in cisplatin-induced endothelial permeability and adherence of the activated endothelial cells to human monocyte-like U937 cells. Silencing of either PKC-α, TRPC1 or p65 subunit of NF-κB, all resulted in significant alleviation of cisplatin-induced endothelial dysfunction. At concentrations ≥8μg/ml, cisplatin induced a significant increase in the expression of ICAM-1 mRNA as well as protein. This was mediated by changes in PKC-α membrane translocation, NF-κB activation, increased expression as well as phosphorylation of TRPC1 and enhanced SOCE, leading to hyperpermeability and leakage of albumin. Increased adherence of U937 monocytes to cisplatin-activated endothelial cells was evident. Cisplatin challenge activates PKC-α, which in turn phosphorylated TRPC1 resulting in enhanced Ca(2+) entry. Increased Ca(2+) flux is required for activation of NF-κB and ICAM-1 expression. Enhanced ICAM-1 expression promotes monocyte binding to endothelial cells and increased endothelial hyperpermeability.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Department of Molecular Biology, Institute of Genetics & Hospital for Genetic Diseases, Begumpet, Osmania University, Hyderabad 500016, Telangana, India
| | - Madhukar Rao Kudle
- Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal 506009, Telangana, India
| | - Sreedhar Bodiga
- Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal 506009, Telangana, India
| |
Collapse
|
35
|
Yousef MI, Hussien HM. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: Protective effect of ginseng. Food Chem Toxicol 2015; 78:17-25. [DOI: 10.1016/j.fct.2015.01.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 12/27/2022]
|
36
|
Fibrates protect against vascular endothelial dysfunction induced by paclitaxel and carboplatin chemotherapy for cancer patients: a pilot study. Int J Clin Oncol 2014; 20:829-38. [PMID: 25539886 DOI: 10.1007/s10147-014-0779-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although we previously demonstrated that paclitaxel and carboplatin chemotherapy (TCchem) is associated with vascular toxicities, the underlying mechanisms remain unclear. Cisplatin is known to inhibit PPARα following microvascular damage to the kidneys. The primary aim of this study was to evaluate whether TCchem induces vascular endothelial dysfunction via systemic PPARα deficiency. In addition, human umbilical vein endothelial cells (HUVECs) were used to elucidate the mechanisms responsible for TCchem-induced vascular toxicities. METHODS This study enrolled 45 gynecological cancer patients with normal lipid profiles who underwent surgical treatment followed by TCchem. The elevated triglyceride (TG) group included patients (n = 19) who exhibited hypertriglyceridemia during TCchem, and the stable TG group (n = 15) included patients with a normal TG level. Eleven patients exhibiting hypertriglyceridemia during TCchem were administered bezafibrate (fibrate group). Endothelial dysfunction was evaluated based on flow-mediated dilation (FMD) values and serum pentraxin-3 levels measured before TCchem and immediately after the final TCchem. HUVECs were used to elucidate the biological mechanisms underlying the endothelial dysfunction induced by TCchem. RESULTS The administration of TCchem induced hypertriglyceridemia in 66 percent of the participants, and bezafibrate reduced the serum TG levels. Meanwhile, the decrease in flow-mediated dilatation (%FMD) induced by TCchem improved following treatment with bezafibrate. The serum pentraxin-3 level increased rapidly after TCchem and decreased following bezafibrate treatment. An in vitro examination demonstrated TCchem attenuated nitric oxide production and PPARα activity in HUVECs, which was partially improved by treatment with bezafibrate. CONCLUSION Bezafibrate prevents endothelial dysfunction induced by TCchem via TG-dependent and TG-independent mechanisms.
Collapse
|
37
|
Freitag CM, Miller RJ. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines? Front Cell Neurosci 2014; 8:238. [PMID: 25191225 PMCID: PMC4138931 DOI: 10.3389/fncel.2014.00238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022] Open
Abstract
Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.
Collapse
Affiliation(s)
- Caroline M Freitag
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| |
Collapse
|
38
|
Ding L, Cheng R, Hu Y, Takahashi Y, Jenkins AJ, Keech AC, Humphries KM, Gu X, Elliott MH, Xia X, Ma JX. Peroxisome proliferator-activated receptor α protects capillary pericytes in the retina. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2709-20. [PMID: 25108226 DOI: 10.1016/j.ajpath.2014.06.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 12/25/2022]
Abstract
Pericyte degeneration is an early event in diabetic retinopathy and plays an important role in progression of diabetic retinopathy. Clinical studies have shown that fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, has robust therapeutic effects on diabetic retinopathy in type 2 diabetic patients. We evaluated the protective effect of PPARα against pericyte loss in diabetic retinopathy. In streptozotocin-induced diabetic mice, fenofibrate treatment significantly ameliorated retinal acellular capillary formation and pericyte loss. In contrast, PPARα(-/-) mice with diabetes developed more severe retinal acellular capillary formation and pericyte dropout, compared with diabetic wild-type mice. Furthermore, PPARα knockout abolished the protective effect of fenofibrate against diabetes-induced retinal pericyte loss. In cultured primary human retinal capillary pericytes, activation and expression of PPARα both significantly reduced oxidative stress-induced apoptosis, decreased reactive oxygen species production, and down-regulated NAD(P)H oxidase 4 expression through blockade of NF-κB activation. Furthermore, activation and expression of PPARα both attenuated the oxidant-induced suppression of mitochondrial O2 consumption in human retinal capillary pericytes. Primary retinal pericytes from PPARα(-/-) mice displayed more apoptosis, compared with those from wild-type mice under the same oxidative stress. These findings identified a protective effect of PPARα on retinal pericytes, a novel function of endogenous PPARα in the retina.
Collapse
Affiliation(s)
- Lexi Ding
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rui Cheng
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yang Hu
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yusuke Takahashi
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Alicia J Jenkins
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Anthony C Keech
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Kenneth M Humphries
- Free Radical Biology and Aging Research Program, Medical Research Foundation, Oklahoma City, Oklahoma
| | - Xiaowu Gu
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael H Elliott
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
39
|
Pathophysiology of cisplatin-induced acute kidney injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:967826. [PMID: 25165721 PMCID: PMC4140112 DOI: 10.1155/2014/967826] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 02/06/2023]
Abstract
Cisplatin and other platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors. A known complication of cisplatin administration is acute kidney injury (AKI). The nephrotoxic effect of cisplatin is cumulative and dose-dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI may result in chronic kidney disease. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, oxidative stress, inflammation, and vascular injury in the kidney. There is predominantly acute tubular necrosis and also apoptosis in the proximal tubules. There is activation of multiple proinflammatory cytokines and infiltration of inflammatory cells in the kidney. Inhibition of the proinflammatory cytokines TNF-α or IL-33 or depletion of CD4+ T cells or mast cells protects against cisplatin-induced AKI. Cisplatin also causes endothelial cell injury. An understanding of the pathogenesis of cisplatin-induced AKI is important for the development of adjunctive therapies to prevent AKI, to lessen the need for dose decrease or drug withdrawal, and to lessen patient morbidity and mortality.
Collapse
|
40
|
Ma SK, Joo SY, Choi HI, Bae EH, Nam KI, Lee J, Kim SW. Activation of G-protein-coupled receptor 40 attenuates the cisplatin-induced apoptosis of human renal proximal tubule epithelial cells. Int J Mol Med 2014; 34:1117-23. [PMID: 25092426 DOI: 10.3892/ijmm.2014.1874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor 40 (GPR40) is known to play a role in the regulation of fatty acids, insulin secretion and inflammation. However, the pathophysiological roles of GPR40 in kidney disease have not yet been identified. In the present study, we investigated the expression of GPR40 during cisplatin-induced kidney injury using male Sprague-Dawley rats that were treated with 8 mg/kg cisplatin. Control rats were treated with saline. Following treatment with cisplatin, the protein expression of GPR40 in the kidneys was decreased in association with an increase in serum creatinine levels and the Bax/Bcl-2 expression ratio. To further investigate the function of GPR40, the human renal proximal tubule epithelial cell line (HK-2) was cultured with cisplatin in the absence or presence of GW9508, a selective GPR40 agonist. Pre-treatment of the HK-2 cells with GW9508 attenuated the decrease in cell viability induced by treatment with cisplatin. Treatment with cisplatin increased the number of cells with condensed nuclei, which was ameliorated by GW9508 pre-treatment. TUNEL assay also revealed that pre-treatment with GW9508 ameliorated cisplatin-induced apoptosis. Treatment with cisplatin increased the Bax/Bcl-2 expression ratio and cleaved caspase-3 expression, and promoted the activation of nuclear factor-κB (NF-κB). These changes were attenuated by pre-treatment with GW9508. The cisplatin-induced generation of reactive oxygen species (ROS) and the activation of the Src/epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) pathway were also counteracted by pre-treatment with GW9508. Thus, the activation of GPR40 attenuates cisplatin-induced apoptosis by inhibiting the generation of ROS, the activation of the Src/EGFR/ERK signaling pathway and the nuclear activation of NF-κB and pro-apoptotic factors.
Collapse
Affiliation(s)
- Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Soo Yeon Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Kwang Il Nam
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Jongun Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| |
Collapse
|
41
|
Oda M, Koyanagi S, Tsurudome Y, Kanemitsu T, Matsunaga N, Ohdo S. Renal circadian clock regulates the dosing-time dependency of cisplatin-induced nephrotoxicity in mice. Mol Pharmacol 2014; 85:715-22. [PMID: 24567546 DOI: 10.1124/mol.113.089805] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cisplatin, cis-diamminedichloro-platinum (CDDP), is a widely used anticancer agent, the clinical applications of which have been limited by severe nephrotoxicity. Although dosing time-dependent differences in CDDP-induced nephrotoxicity have been reported in both humans and laboratory animals, the underlying mechanism remains unknown. In the present study, we investigated the molecular mechanism for the dosing-time dependency of the nephrotoxic effect of CDDP in mice. CDDP-induced nephrotoxicity was significantly attenuated by injecting CDDP at times of the day when its renal clearance was enhanced. The dosing-time dependency of the nephrotoxic effect was parallel to that of CDDP incorporation into renal DNA. Two types of transporters, organic cation transporter 2 (OCT2, encoded by Slc22a2) and multidrug and toxin extrusion 1 (MATE1, encoded by Slc47a1), are responsible for the renal excretion of CDDP. The expression of OCT2, but not MATE1, exhibited a significant time-dependent oscillation in the kidneys of mice. The circadian expression of OCT2 was closely related to the dosing-time dependency of CDDP incorporation into renal DNA. Molecular components of the circadian clock regulated the renal expression of Slc22a2 mRNA by mediating peroxisome proliferator-activated receptor-α, which resulted in rhythmic oscillations in OCT2 protein levels. These findings indicate a clock-regulated mechanism of dosing time-dependent changes in CDDP-induced nephrotoxicity and also suggest a molecular link between the circadian clock and renal xenobiotic excretion.
Collapse
Affiliation(s)
- Masayuki Oda
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Renoprotective effect of Pulsatillae Radix on cisplatin-induced nephrotoxicity in mice. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Cisplatin inhibits hippocampal cell proliferation and alters the expression of apoptotic genes. Neurotox Res 2013; 25:369-80. [PMID: 24277158 DOI: 10.1007/s12640-013-9443-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
The hippocampus, which is critical for memory and spatial navigation, contains a proliferating stem cell niche that is especially vulnerable to antineoplastic drugs such as cisplatin. Although the damaging effects of cisplatin have recently been recognized, the molecular mechanisms underlying its toxic effects on this vital region are largely unknown. Using a focused apoptosis gene array, we analyzed the early cisplatin-induced changes in gene expression in the hippocampus of adult Sprague-Dawley rats and compared the results to those from the inferior colliculus, a non-mitotic auditory region resistant to cisplatin-induced cell death. Two days after a 12 mg/kg dose of cisplatin, significant increases were observed in five proapoptotic genes: Bik, Bid, Bok, Trp53p2, and Card6 and a significant decrease in one antiapoptotic gene Bcl2a1. In contrast, Nol3, an antiapoptotic gene, showed a significant increase in expression. The cisplatin-induced increase in Bid mRNA and decrease in Bcl2a1 mRNA were accompanied by a corresponding increase and decrease of their respective proteins in the hippocampus. In contrast, the cisplatin-induced changes in Bcl2a1, Bid, Bik, and Bok gene expression in the inferior colliculus were strikingly different from those in the hippocampus consistent with the greater susceptibility of the hippocampus to cisplatin toxicity. Cisplatin also significantly reduced immunolabeling of the cell proliferation marker Ki67 in the subgranular zone of the hippocampus 2 days post-treatment. These results indicate that cisplatin-induced hippocampal cell death is mediated by increased expression of proapoptotic and decreased antiapoptotic genes and proteins that likely inhibit hippocampal cell proliferation.
Collapse
|
44
|
Kumar P, Prashanth KS, Gaikwad AB, Vij M, Barua CC, Bezbaruah B. Disparity in actions of rosiglitazone against cisplatin-induced nephrotoxicity in female Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:883-890. [PMID: 24001946 DOI: 10.1016/j.etap.2013.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Cisplatin is one of the most common chemotherapeutic drugs used against various solid, tumours. Despite of its therapeutic benefits, its use in clinical practice is often limited because of dose, related toxicity. The nephrotoxic potential of cisplatin has been ascribed to its accumulation in the, renal tubular cells generating reactive oxygen species (ROS), activation of Bax, increased secretion of, TNFα and activation of certain inflammatory mediators like cytokines. The present investigation was, undertaken with an objective to study the effect of rosiglitazone against cisplatin induced, nephrotoxicity. Pretreatment of rosiglitazone prevents cisplatin induced nephrotoxicity which was, clearly evident from the renal biochemical parameters like reduced BUN, creatinine and TNFα levels, and increased albumin levels, which was also supported by histopathological studies of the kidneys. In contrast, posttreatment of rosiglitazone was not able to protect the renal damage in cisplatin induced, renal toxicity. These results showed the variation of pre & posttreatment effects of rosiglitazone, against the cisplatin induced nephrotoxicity.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, GMCH, Bhangagarh, Guwahati, Assam, India.
| | | | | | | | | | | |
Collapse
|
45
|
Li S, Mariappan N, Megyesi J, Shank B, Kannan K, Theus S, Price PM, Duffield JS, Portilla D. Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction. Am J Physiol Renal Physiol 2013; 305:F618-27. [PMID: 23804447 DOI: 10.1152/ajprenal.00309.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined the effects of increased expression of proximal tubule peroxisome proliferator-activated receptor (PPAR)α in a mouse model of renal fibrosis. After 5 days of unilateral ureteral obstruction (UUO), PPARα expression was significantly reduced in kidney tissue of wild-type mice but this downregulation was attenuated in proximal tubules of PPARα transgenic (Tg) mice. When compared with wild-type mice subjected to UUO, PPARα Tg mice had reduced mRNA and protein expression of proximal tubule transforming growth factor (TGF)-β1, with reduced production of extracellular matrix proteins including collagen 1, fibronectin, α-smooth muscle actin, and reduced tubulointerstitial fibrosis. UUO-mediated increased expression of microRNA 21 in kidney tissue was also reduced in PPARα Tg mice. Overexpression of PPARα in cultured proximal tubular cells by adenoviral transduction reduced aristolochic acid-mediated increased production of TGF-β, demonstrating PPARα signaling reduces epithelial TGF-β production. Flow cytometry studies of dissociated whole kidneys demonstrated reduced macrophage infiltration to kidney tissue in PPARα Tg mice after UUO. Increased expression of proinflammatory cytokines including IL-1β, IL-6, and TNF-α in wild-type mice was also significantly reduced in kidney tissue of PPARα Tg mice. In contrast, the expression of anti-inflammatory cytokines IL-10 and arginase-1 was significantly increased in kidney tissue of PPARα Tg mice when compared with wild-type mice subjected to UUO. Our studies demonstrate several mechanisms by which preserved expression of proximal tubule PPARα reduces tubulointerstitial fibrosis and inflammation associated with obstructive uropathy.
Collapse
Affiliation(s)
- Shenyang Li
- Division of Nephrology, Univ. of Arkansas for Medical Sciences, 4301 West Markham St., Slot 501, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT, Kaimal V, Huang X, Chang AN, Li S, Kalra A, Grafals M, Portilla D, MacKenna DA, Orkin SH, Duffield JS. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 2012; 4:121ra18. [PMID: 22344686 DOI: 10.1126/scitranslmed.3003205] [Citation(s) in RCA: 427] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scarring of the kidney is a major public health concern, directly promoting loss of kidney function. To understand the role of microRNA (miRNA) in the progression of kidney scarring in response to injury, we investigated changes in miRNA expression in two kidney fibrosis models and identified 24 commonly up-regulated miRNAs. Among them, miR-21 was highly elevated in both animal models and in human transplanted kidneys with nephropathy. Deletion of miR-21 in mice resulted in no overt abnormality. However, miR-21(-/-) mice suffered far less interstitial fibrosis in response to kidney injury, a phenotype duplicated in wild-type mice treated with anti-miR-21 oligonucleotides. Global derepression of miR-21 target mRNAs was readily detectable in miR-21(-/-) kidneys after injury. Analysis of gene expression profiles up-regulated in the absence of miR-21 identified groups of genes involved in metabolic pathways, including the lipid metabolism pathway regulated by peroxisome proliferator-activated receptor-α (Pparα), a direct miR-21 target. Overexpression of Pparα prevented ureteral obstruction-induced injury and fibrosis. Pparα deficiency abrogated the antifibrotic effect of anti-miR-21 oligonucleotides. miR-21 also regulated the redox metabolic pathway. The mitochondrial inhibitor of reactive oxygen species generation Mpv17l was repressed by miR-21, correlating closely with enhanced oxidative kidney damage. These studies demonstrate that miR-21 contributes to fibrogenesis and epithelial injury in the kidney in two mouse models and is a candidate target for antifibrotic therapies.
Collapse
|
47
|
Liu Y, Webb HK, Fukushima H, Micheli J, Markova S, Olson JL, Kroetz DL. Attenuation of cisplatin-induced renal injury by inhibition of soluble epoxide hydrolase involves nuclear factor κB signaling. J Pharmacol Exp Ther 2012; 341:725-34. [PMID: 22414856 PMCID: PMC3362876 DOI: 10.1124/jpet.111.191247] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/12/2012] [Indexed: 01/14/2023] Open
Abstract
Acute kidney injury is associated with a significant inflammatory response that has been the target of renoprotection strategies. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory cytochrome P450-derived eicosanoids that are abundantly produced in the kidney and metabolized by soluble epoxide hydrolase (sEH; Ephx2) to less active dihydroxyeicosatrienoic acids. Genetic disruption of Ephx2 and chemical inhibition of sEH were used to test whether the anti-inflammatory effects of EETs, and other lipid epoxide substrates of sEH, afford protection against cisplatin-induced nephrotoxicity. EET hydrolysis was significantly reduced in Ephx2(-/-) mice and was associated with an attenuation of cisplatin-induced increases in serum urea nitrogen and creatinine levels. Histological evidence of renal tubular damage and neutrophil infiltration was also reduced in the Ephx2(-/-) mice. Likewise, cisplatin had no effect on renal function, neutrophil infiltration, or tubular structure and integrity in mice treated with the potent sEH inhibitor 1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea) (AR9273). Consistent with the ability of EETs to interfere with nuclear factor-κB (NF-κB) signaling, the observed renoprotection was associated with attenuation of renal NF-κB activity and corresponding decreases in the expression of tumor necrosis factor (TNF) α, TNF receptor (TNFR) 1, TNFR2, and intercellular adhesive molecule-1 before the detection of tubular injury. These data suggest that EETs or other fatty acid epoxides can attenuate cisplatin-induced kidney injury and sEH inhibition is a novel renoprotective strategy.
Collapse
Affiliation(s)
- Yingmei Liu
- Department of Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Li S, Nagothu K, Ranganathan G, Ali SM, Shank B, Gokden N, Ayyadevara S, Megyesi J, Olivecrona G, Chugh SS, Kersten S, Portilla D. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury. Am J Physiol Renal Physiol 2012; 303:F437-48. [PMID: 22622461 DOI: 10.1152/ajprenal.00111.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARα and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPARα ligand. In summary, a PPARα ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.
Collapse
Affiliation(s)
- Shenyang Li
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mukhopadhyay P, Horváth B, Zsengellér Z, Zielonka J, Tanchian G, Holovac E, Kechrid M, Patel V, Stillman IE, Parikh SM, Joseph J, Kalyanaraman B, Pacher P. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med 2012; 52:497-506. [PMID: 22120494 PMCID: PMC3253235 DOI: 10.1016/j.freeradbiomed.2011.11.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/23/2011] [Accepted: 11/03/2011] [Indexed: 02/04/2023]
Abstract
Cisplatin is a widely used antineoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show not only that mitochondrial dysfunction is a feature of cisplatin nephrotoxicity, but also that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin's antineoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Because similar compounds seem to be safe in humans, mitochondrially targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Béla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zsuzsanna Zsengellér
- Department of Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jacek Zielonka
- Free Radical Research Center, Biophysics Department, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Galin Tanchian
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eileen Holovac
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malek Kechrid
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Patel
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isaac E. Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Samir M. Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215 USA
| | - Joy Joseph
- Free Radical Research Center, Biophysics Department, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Balaraman Kalyanaraman
- Free Radical Research Center, Biophysics Department, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
|