1
|
Yang T, Gao ZX, Mao ZH, Wu P. Soluble (pro)renin receptor as a novel regulator of renal medullary Na + reabsorption. Am J Physiol Renal Physiol 2025; 328:F239-F247. [PMID: 39508841 DOI: 10.1152/ajprenal.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
Epithelial sodium channel (ENaC) represents a major route of Na+ reabsorption in the aldosterone-sensitive distal nephron where the bulk of ENaC activity is considered to occur in the cortical collecting duct (CCD). Relatively, ENaC activity in the medulla, especially the inner medulla, is often neglected. (Pro)renin receptor (PRR), also termed ATP6ap2, a newly characterized member of the renin-angiotensin system, has emerged as an important regulator of ENaC in the distal nephron. The ENaC regulatory action of PRR is largely mediated by the 28 kDa soluble PRR (sPRR). Although all three subunits of ENaC are under the control of aldosterone, sPRR only mediates the upregulation of α-ENaC but not the other two subunits. Furthermore, sPRR-dependent regulation of α-ENaC only occurs in the renal inner medulla but not in the cortex. sPRR also rapidly upregulates ENaC activity via Nox4-derived H2O2. Overall, sPRR has emerged as an important regulator of renal medullary Na+ reabsorption in the context of overactivation of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Zhong-Xiuzi Gao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zi-Hui Mao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Zhu M, Yi X, Song S, Yang H, Yu J, Xu C. Principle role of the (pro)renin receptor system in cardiovascular and metabolic diseases: An update. Cell Signal 2024; 124:111417. [PMID: 39321906 DOI: 10.1016/j.cellsig.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
(Pro)renin receptor (PRR), along with its soluble form, sPRR, functions not only as a crucial activator of the local renin-angiotensin system but also engages with and activates various angiotensin II-independent signaling pathways, thus playing complex and significant roles in numerous physiological and pathophysiological processes, including cardiovascular and metabolic disorders. This article reviews current knowledge on the intracellular partners of the PRR system and explores its physiological and pathophysiological impacts on cardiovascular diseases as well as conditions related to glucose and lipid metabolism, such as hypertension, heart disease, liver disease, diabetes, and diabetic complications. Targeting the PRR system could emerge as a promising therapeutic strategy for treating these conditions. Elevated levels of circulating sPRR might indicate the severity of these diseases, potentially serving as a biomarker for diagnosis and prognosis in clinical settings. A comprehensive understanding of the functions and regulatory mechanisms of the PRR system could facilitate the development of novel therapeutic approaches for the prevention and management of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Mengzhi Zhu
- College of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
3
|
Luo R, Yang KT, Wang F, Zheng H, Yang T. Collecting Duct Pro(Renin) Receptor Contributes to Unilateral Ureteral Obstruction-Induced Kidney Injury via Activation of the Intrarenal RAS. Hypertension 2024; 81:2152-2161. [PMID: 39171392 PMCID: PMC11410543 DOI: 10.1161/hypertensionaha.123.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Although the concept of the intrarenal renin-angiotensin system (RAS) in renal disease is well-described in the literature, the precise pathogenic role and mechanism of this local system have not been directly assessed in the absence of confounding influence from the systemic RAS. The present study used novel mouse models of collecting duct (CD)-specific deletion of (pro)renin receptor (PRR) or renin together with pharmacological inhibition of soluble PRR production to unravel the precise contribution of the intrarenal RAS to renal injury induced by unilateral ureteral obstruction. METHODS We examined the impact of CD-specific deletion of PRR, CD-specific deletion of renin, and S1P (site-1 protease) inhibitor PF429242 treatment on renal fibrosis and inflammation and the indices of the intrarenal RAS in a mouse model of unilateral ureteral obstruction. RESULTS After 3 days of unilateral ureteral obstruction, the indices of the intrarenal RAS including the renal medullary renin content, activity and mRNA expression, and Ang (angiotensin) II content in obstructed kidneys of floxed mice were all increased. That effect was reversed with CD-specific deletion of PRR, CD-specific deletion of renin, and PF429242 treatment, accompanied by consistent improvement in renal fibrosis and inflammation. On the other hand, renal cortical renin levels were unaffected by unilateral ureteral obstruction, irrespective of the genotype. Similar results were obtained via pharmacological inhibition of S1P, the key protease for the generation of soluble PRR. CONCLUSIONS Our results reveal that PRR-dependent/soluble PRR-dependent activation of CD renin represents a key determinant of the intrarenal RAS and, thus, obstruction-induced renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Huaqing Zheng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Yan Z, Yang T, Li X, Jiang Z, Jia W, Zhou J, Fang H. Apelin-13: a novel approach to suppressing renin production in RVHT. Am J Physiol Cell Physiol 2024; 326:C1683-C1696. [PMID: 38646785 DOI: 10.1152/ajpcell.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Renovascular hypertension (RVHT) is characterized by renal artery stenosis and overactivated renin-angiotensin system (RAS). Apelin, known for its negative modulation of RAS, has protective effects against cardiovascular diseases. The role and mechanisms of the primary active form of apelin, apelin-13, in RVHT are unclear. In this study, male Sprague-Dawley rats were divided into control, two-kidney one-clip (2K1C) model, and 2K1C with apelin-13 treatment groups. Renin expression was analyzed using immunohistochemistry and molecular techniques. Full-length (pro)renin receptor (fPRR) and soluble PRR (sPRR) levels were assessed via Western blotting, and cAMP levels were measured using ELISA. Plasma renin content, plasma renin activity (PRA), angiotensin II (ANG II), and sPRR levels were determined by ELISA. Human Calu-6 and mouse As4.1 cells were used to investigate renin production mechanisms. The 2K1C model exhibited increased systolic blood pressure, plasma renin content, PRA, sPRR, and ANG II levels, while apelin-13 treatment reduced these elevations. Apelin-13 inhibited cAMP production, renin mRNA expression, protein synthesis, and PRR/sPRR protein expression in renal tissue. In Calu-6 cells, cAMP-induced fPRR and site-1 protease (S1P)-derived sPRR expression, which was blocked by cAMP-responsive element-binding protein (CREB) inhibition. Apelin-13 suppressed cAMP elevation, CREB phosphorylation, fPRR/sPRR protein expression, and renin production. Recombinant sPRR (sPRR-His) stimulated renin production, which was inhibited by the PRR decoy peptide PRO20 and S1P inhibitor PF429242. These findings suggest that apelin-13 inhibits plasma renin expression through the cAMP/PKA/sPRR pathway, providing a potential therapeutic approach for RVHT. Understanding the regulation of renin production is crucial for developing effective treatments.NEW & NOTEWORTHY Our research elucidated that apelin-13 inhibits renin production through the cAMP/PKA/soluble (pro)renin receptor pathway, presenting a promising therapeutic approach for renovascular hypertension (RVHT) by targeting renin expression mechanisms. These findings underscore the potential of apelin-13 as a novel strategy to address RVHT.
Collapse
Affiliation(s)
- Ziqing Yan
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Teng Yang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Xinxuan Li
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Zipeng Jiang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Wankun Jia
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Jin Zhou
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Hui Fang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| |
Collapse
|
5
|
Xie S, Song S, Liu S, Li Q, Zou W, Ke J, Wang C. (Pro)renin receptor mediates tubular epithelial cell pyroptosis in diabetic kidney disease via DPP4-JNK pathway. J Transl Med 2024; 22:26. [PMID: 38183100 PMCID: PMC10768114 DOI: 10.1186/s12967-023-04846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND (Pro)renin receptor (PRR) is highly expressed in renal tubules, which is involved in physiological and pathological processes. However, the role of PRR, expressed in renal tubular epithelial cells, in diabetic kidney disease (DKD) remain largely unknown. METHODS In this study, kidney biopsies, urine samples, and public RNA-seq data from DKD patients were used to assess PRR expression and cell pyroptosis in tubular epithelial cells. The regulation of tubular epithelial cell pyroptosis by PRR was investigated by in situ renal injection of adeno-associated virus9 (AAV9)-shRNA into db/db mice, and knockdown or overexpression of PRR in HK-2 cells. To reveal the underlined mechanism, the interaction of PRR with potential binding proteins was explored by using BioGrid database. Furthermore, the direct binding of PRR to dipeptidyl peptidase 4 (DPP4), a pleiotropic serine peptidase which increases blood glucose by degrading incretins under diabetic conditions, was confirmed by co-immunoprecipitation assay and immunostaining. RESULTS Higher expression of PRR was found in renal tubules and positively correlated with kidney injuries of DKD patients, in parallel with tubular epithelial cells pyroptosis. Knockdown of PRR in kidneys significantly blunted db/db mice to kidney injury by alleviating renal tubular epithelial cells pyroptosis and the resultant interstitial inflammation. Moreover, silencing of PRR blocked high glucose-induced HK-2 pyroptosis, whereas overexpression of PRR enhanced pyroptotic cell death of HK-2 cells. Mechanistically, PRR selectively bound to cysteine-enrich region of C-terminal of DPP4 and augmented the protein abundance of DPP4, leading to the downstream activation of JNK signaling and suppression of SIRT3 signaling and FGFR1 signaling, and then subsequently mediated pyroptotic cell death. CONCLUSIONS This study identified the significant role of PRR in the pathogenesis of DKD; specifically, PRR promoted tubular epithelial cell pyroptosis via DPP4 mediated signaling, highlighting that PRR could be a promising therapeutic target in DKD.
Collapse
Affiliation(s)
- Shiying Xie
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Qiong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jianting Ke
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
6
|
Fang H, Li X, Lin D, Wang L, Yang T, Yang B. Inhibition of intrarenal PRR-RAS pathway by Ganoderma lucidum polysaccharide peptides in proteinuric nephropathy. Int J Biol Macromol 2023; 253:127336. [PMID: 37852403 DOI: 10.1016/j.ijbiomac.2023.127336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Excessive proteinuria leads to renal dysfunction and damage. Ganoderma lucidum polysaccharide peptide (GL-PP) and Ganoderma lucidum polysaccharide peptide 2 (GL-PP2) are biologically active compounds extracted from Ganoderma lucidum. GL-PP has a relative molecular weight of 37,121 with 76.39 % polysaccharides and 16.35 % polypeptides, while GL-PP2 has a relative molecular weight of 31,130, composed of 64.14 % polysaccharides and 17.73 % polypeptides. The xylose: mannose: glucose monosaccharide ratios in GL-PP and GL-PP2 were 4.83:1:7.03 and 2.35:1:9.38, respectively. In this study, we investigated the protective effects of GL-PP and GL-PP2 on proteinuria-induced renal dysfunction and damage using rat and cell models. Both compounds reduced kidney injury, proteinuria, and inhibited the (pro)renin receptor (PRR)-renin-angiotensin system (RAS) pathway, inflammatory cell infiltration, oxidative stress, and fibrosis. GL-PP2 showed stronger inhibition of cyclooxygenase-2 and inducible nitric oxide synthase proteins compared to GL-PP. In cell models, both compounds displayed anti-inflammatory properties and improved cellular viability by inhibiting the PRR-RAS pathway. GL-PP2 has higher feasibility and productivity than GL-PP in pharmacology and industrial production. It shows promise in treating proteinuria-induced renal disease with superior anti-inflammatory effects and economic, safe industrial application prospects. Further research is needed to compare efficacy, mechanisms, clinical applications, and commercial feasibility of GL-PP and GL-PP2.
Collapse
Affiliation(s)
- Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Xinxuan Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Teng Yang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
7
|
Funke-Kaiser H, Unger T. The (pro)renin receptor as a pharmacological target in cardiorenal diseaes. Hypertens Res 2023; 46:2527-2534. [PMID: 37667044 DOI: 10.1038/s41440-023-01424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
The (pro)renin receptor ((P)RR) is not only a member of the renin-angiotensin system (RAS) but also exerts several RAS-independent functions due to its multiple signal transductions pathways. In this mini-review, we shortly discuss the molecular functions of this receptor and its pathophysiological significance with a focus on cardiorenal diseases. Finally, we provide a short summary regarding a drug discovery and drug development program on small molecule-based renin/ prorenin receptor blockers (RERBs).
Collapse
Affiliation(s)
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Fang H, Lin D, Li X, Wang L, Yang T. Therapeutic potential of Ganoderma lucidum polysaccharide peptide in Doxorubicin-induced nephropathy: modulation of renin-angiotensin system and proteinuria. Front Pharmacol 2023; 14:1287908. [PMID: 37841924 PMCID: PMC10570435 DOI: 10.3389/fphar.2023.1287908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: In the Doxorubicin (DOX)-induced nephropathy model, proteinuria is a manifestation of progressive kidney injury. The pathophysiology of renal illness is heavily influenced by the renin-angiotensin system (RAS). To reduce renal RAS activation and proteinuria caused by DOX, this study evaluated the effectiveness of Ganoderma lucidum polysaccharide peptide (GL-PP), a new glycopeptide produced from Ganoderma lucidum grown on grass. Methods: Three groups of BALB/c male mice were created: control, DOX, and DOX + GL-PP. GL-PP (100 mg/kg) was administered to mice by intraperitoneal injection for 4 weeks following a single intravenous injection of DOX (10 mg/kg via the tail vein). Results: After 4 weeks, full-length and soluble pro(renin) receptor (fPRR/sPRR) overexpression in DOX mouse kidneys, which is crucial for the RAS pathway, was dramatically inhibited by GL-PP therapy. Additionally, GL-PP successfully reduced elevation of urinary renin activity and angiotensin II levels, supporting the idea that GL-PP inhibits RAS activation. Moreover, GL-PP showed a considerable downregulation of nicotinamide adenine nucleotide phosphate oxidase 4 (NOX4) expression and a decrease in hydrogen peroxide (H2O2) levels. GL-PP treatment effectively reduced glomerular and tubular injury induced by DOX, as evidenced by decreased proteinuria, podocyte damage, inflammation, oxidative stress, apoptosis, and fibrosis. Discussion: GL-PP inhibits intrarenal PRR/sPRR-RAS activation and upregulation of NOX4 and H2O2, suggesting potential therapeutic approaches against DOX-induced nephropathy.
Collapse
Affiliation(s)
- Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxuan Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Teng Yang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
9
|
Fang H, Yang T, Zhou B, Li X. (Pro)Renin Receptor Decoy Peptide PRO20 Protects against Oxidative Renal Damage Induced by Advanced Oxidation Protein Products. Molecules 2023; 28:molecules28073017. [PMID: 37049779 PMCID: PMC10096258 DOI: 10.3390/molecules28073017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with advanced oxidation protein products (AOPPs). A recent study has shown that AOPP-induced renal tubular injury is mediated by the (pro)renin receptor (PRR). However, it is unclear whether the PRR decoy inhibitor PRO20 can protect against renal damage related to AOPPs in vivo. In this study, we examined the role of the PRR in rats with AOPP-induced renal oxidative damage. Male SD rats were subjected to unilateral nephrectomy, and after a four-day recuperation period, they were randomly divided into four groups (n = 6/group) for four weeks: control (CTR), unmodified rat serum albumin (RSA, 50 mg/kg/day via tail-vein injection), AOPPs-RSA (50 mg/kg/day via tail-vein injection), and AOPPs-RSA + PRO20 (50 mg/kg/day via tail-vein injection + 500 μg/kg/day via subcutaneous injection) groups. PRO20 was administered 3 days before AOPPs-RSA injection. Renal histopathology evaluation was performed by periodic acid–Schiff (PAS) staining, and biochemical parameters related to renal injury and oxidative stress biomarkers were evaluated. The expression of related indicators was quantified by RT-qPCR and immunoblotting analysis. In the results, rats in the AOPPs-RSA group exhibited higher levels of albuminuria, inflammatory cell infiltration, and tubular dilation, along with upregulation of oxidative stress, profibrotic and proinflammatory factors, and elevation of AOPP levels. Meanwhile, in the PRO20 group, these were significantly reduced. Moreover, the levels of almost all components of the renin-angiotensin system (RAS) and Nox4-dependent H2O2 production in urine and the kidneys were elevated by AOPPs-RSA, while they were suppressed by PRO20. Furthermore, AOPPs-RSA rats showed elevated kidney expression of the PRR and soluble PRR (sPRR) and increased renal excretion of sPRR. In summary, these findings suggest that PRR inhibition may serve as a protective mechanism against AOPP-induced nephropathy by inhibiting the intrarenal RAS and Nox4-derived H2O2 mechanisms.
Collapse
|
10
|
Funke-Kaiser H, Unger T. The (Pro)renin Receptor - A Regulatory Nodal Point in Disease Networks. Curr Drug Targets 2023; 24:1093-1098. [PMID: 37885110 DOI: 10.2174/0113894501250617231016052930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Experimental inhibition of the (pro)renin receptor [(P)RR] is a promising therapeutic strategy in different disease models ranging from cardiorenal to oncological entities. Here, we briefly review the direct protein-protein interaction partners of the (P)RR and the plethora of distinct diseases in which the (P)RR is involved. The first structural work on the (P)RR using AlphaFold, which was recently published by Ebihara et al., is the center of this mini-review since it can mechanistically link the protein-protein interaction level with the pathophysiological level. More detailed insights into the 3D structure of the (P)RR and its interaction domains might guide drug discovery on this novel target. Finally, antibody- and small molecule-based approaches to inhibit the (P)RR are shortly discussed.
Collapse
Affiliation(s)
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Yang T. Potential of soluble (pro)renin receptor in kidney disease: can it go beyond a biomarker? Am J Physiol Renal Physiol 2022; 323:F507-F514. [PMID: 36074917 PMCID: PMC9602801 DOI: 10.1152/ajprenal.00202.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022] Open
Abstract
(Pro)renin receptor (PRR), also termed ATPase H+-transporting accessory protein 2 (ATP6AP2), is a type I transmembrane receptor and is capable of binding and activating prorenin and renin. Apart from its association with the renin-angiotensin system, PRR has been implicated in diverse developmental, physiological, and pathophysiological processes. Within the kidney, PRR is predominantly expressed in the distal nephron, particularly the intercalated cells, and activation of renal PRR contributes to renal injury in various rodent models of chronic kidney disease. Moreover, recent evidence demonstrates that PRR is primarily cleaved by site-1 protease to produce 28-kDa soluble PRR (sPRR). sPRR seems to mediate most of the known pathophysiological functions of renal PRR through modulating the activity of the intrarenal renin-angiotensin system and provoking proinflammatory and profibrotic responses. Not only does sPRR activate renin, but it also directly binds and activates the angiotensin II type 1 receptor. This review summarizes recent advances in understanding the roles and mechanisms of sPRR in the context of renal pathophysiology.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
12
|
Zhang J, Cheng YJ, Luo CJ, Yu J. Inhibitory effect of (pro)renin receptor decoy inhibitor PRO20 on endoplasmic reticulum stress during cardiac remodeling. Front Pharmacol 2022; 13:940365. [PMID: 36034809 PMCID: PMC9411812 DOI: 10.3389/fphar.2022.940365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Ectopic activation of renin-angiotensin-system contributes to cardiovascular and renal diseases. (Pro)renin receptor (PRR) binds to renin and prorenin, participating in the progression of nephrology. However, whether PRR could be considered as a therapeutic target for cardiac remodeling and heart failure remains unknown. Materials and methods: Transverse aortic constriction (TAC) surgery was performed to establish a mouse model of chronic pressure overload-induced cardiac remodeling. Neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) were isolated and stimulated by Angiotensin II (Ang II). PRR decoy inhibitor PRO20 was synthesized and used to evaluate its effect on cardiac remodeling. Results: Soluble PRR and PRR were significantly upregulated in TAC-induced cardiac remodeling and Ang II-treated CMs and CFs. Results of In vivo experiments showed that suppression of PRR by PRO20 significantly retarded cardiac remodeling and heart failure indicated by morphological and echocardiographic analyses. In vitro experiments, PRO20 inhibited CM hypertrophy, and also alleviated CF activation, proliferation and extracellular matrix synthesis. Mechanically, PRO20 enhanced intracellular cAMP levels, but not affected cGMP levels in CMs and CFs. Moreover, treatment of PRO20 in CFs markedly attenuated the production of reactive oxygen species and phosphorylation of IRE1 and PERK, two well-identified markers of endoplasmic reticulum (ER) stress. Accordingly, administration of PRO20 reversed ER stressor thapsigargin-induced CM hypertrophy and CF activation/migration. Conclusion: Taken together, these findings suggest that inhibition of PRR by PRO20 attenuates cardiac remodeling through increasing cAMP levels and reducing ER stress in both CMs and CFs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang-Jun Luo
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Jia Yu
- Department of General Practice School, Guangxi Medical University, Nanning, China
- *Correspondence: Jia Yu,
| |
Collapse
|
13
|
Yang T. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Curr Opin Nephrol Hypertens 2022; 31:351-357. [PMID: 35703290 PMCID: PMC9286065 DOI: 10.1097/mnh.0000000000000806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The (pro)renin receptor (PRR), also termed as ATPase H+ transporting accessory protein 2 (ATP6AP2), was originally cloned as a specific receptor for prorenin and renin [together called (pro)renin]. Given the wide tissue distribution of PRR, PRR was further postulated to act as a regulator of tissue renin. However, assigning a physiological role of PRR within the renin-angiotensin system (RAS) has been challenging largely due to its pleotropic functions in regulation of embryogenesis, autophagy, and H+ transport. The current review will summarize recent advances in understanding the roles of sPPR within the intrarenal RAS as well as those outside this local system. RECENT FINDINGS Site-1 protease (S1P) is a predominant source of sPPR at least in the kidney. So far most of the known physiological functions of PRR including renal handling of electrolytes and fluid and blood pressure are mediated by sPRR. In particular, sPRR serves as a positive regulator of collecting duct renin to activate the intrarenal RAS during water deprivation or angiotensin-II (AngII) infusion. However, PRR/sPRR can act in renin-independent manner under other circumstances. SUMMARY S1P-derived sPRR has emerged as a key regulator of kidney function and blood pressure and its relationship with the intrarenal RAS depends on the physiological context.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
15
|
Lu A, Pu M, Mo S, Su J, Hu J, Li C, Wang W, Yang T. (Pro)renin Receptor Regulates Phosphate Homeostasis in Rats via Releasing Fibroblast Growth Factor-23. Front Physiol 2022; 13:784521. [PMID: 35222071 PMCID: PMC8874195 DOI: 10.3389/fphys.2022.784521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphate (Pi) is one of the basic necessities required for sustenance of life and its metabolism largely relies on excretory function of the kidney, a process chiefly under the endocrine control of bone-derived fibroblast growth factor 23 (FGF23). However, knowledge gap exists in understanding the regulatory loop responsible for eliciting phophaturic response to Pi treatment. Here, we reported a novel role of (pro)renin receptor (PRR) in mediating phosphaturic response to Pi treatment via upregulation of FGF23 production. Male Sprague-Dawley rats were pretreated for 5 days via osmotic pump-driven infusion of a PRR antagonist PRO20 or vehicle, and then treated with high Pi (HP) solution as drinking fluid for the last 24 h. PRO20 reduced HP-induced Pi excretion by 42%, accompanied by blunted upregulation of circulating FGF23 and parathyroid hormone (PTH) and downregulation of renal Na/Pi-IIa expression. In cultured osteoblast cells, exposure to HP induced a 1.56-fold increase in FGF23 expression, which was blunted by PRO20 or siRNA against PRR. Together, these results suggest that activation of PRR promotes phosphaturic response through stimulation of FGF23 production and subsequent downregulation of renal Na/Pi-IIa expression.
Collapse
Affiliation(s)
- Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States
- *Correspondence: Tianxin Yang,
| |
Collapse
|
16
|
Hu J, Tan Y, Chen Y, Mo S, Hekking B, Su J, Pu M, Lu A, Symons JD, Yang T. Role of (Pro)Renin Receptor in Cyclosporin A-Induced Nephropathy. Am J Physiol Renal Physiol 2022; 322:F437-F448. [PMID: 35073210 PMCID: PMC9662808 DOI: 10.1152/ajprenal.00332.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcineurin inhibitors (CNIs) such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and BUN levels, decreased creatinine clearance and induced renal inflammation, apoptosis as well as interstitial fibrosis, elevated urinary N-acetyl-β-D-glucosaminidase activity and urinary kidney injury molecular 1 content. Each index of renal injury was attenuated following a 2-wk treatment with a PRR decoy inhibitor PRO20. While CsA rats with kidney injury displayed increased renal sPRR abundance, plasma sPRR, renin activity, Ang II, and heightened urinary total prorenin/renin content; RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephotoxic effects of immunosuppressant drugs.
Collapse
Affiliation(s)
- Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanting Chen
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Brittin Hekking
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
17
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
18
|
Advanced Oxidation Protein Product Promotes Oxidative Accentuation in Renal Epithelial Cells via the Soluble (Pro)renin Receptor-Mediated Intrarenal Renin-Angiotensin System and Nox4-H 2O 2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5710440. [PMID: 34873430 PMCID: PMC8642821 DOI: 10.1155/2021/5710440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022]
Abstract
Full-length (pro)renin receptor (fPRR), a research hotspot of the renin-angiotensin system (RAS), plays a serious role in kidney injury. However, the relationship between fPRR and advanced oxidation protein product (AOPP) remains largely unexplored. This study was aimed at exploring the effect of fPRR, especially its 28 kDa soluble form called soluble PRR (sPRR), in AOPP-induced oxidative stress in HK-2 cells, a renal proximal tubular epithelial cell line. Incubation of HK-2 cells with 100 μg/ml AOPP resulted in significant upregulation of fPRR expression and caused an approximately fourfold increase in medium sPRR secretion. However, unmodified albumin did not demonstrate the same effects under the same concentration. Treatment of HK-2 cells with the site-1 protease (S1P) inhibitor PF429242 (40 μM) or S1P siRNA significantly inhibited AOPP-induced sPRR generation. fPRR decoy inhibitor PRO20 and PF429242 treatment for 24 h remarkably attenuated the AOPP-induced upregulation of RAS components. Furthermore, PF429242 significantly reduced the AOPP-stimulated expression of NADPH oxidase 4 (Nox4) and H2O2 expression. The use of a small recombinant protein, named sPRR-His, reversed these alterations. In conclusion, these results provided the first demonstration of AOPP-promoted activation of sPRR. Increased renal proximal tubule Nox4-derived H2O2 contributed to the aggravation of oxidative stress. Targeting S1P-derived sPRR is a promising intervention strategy for chronic kidney disease.
Collapse
|
19
|
Qin M, Xu C, Yu J. The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend? J Pharmacol Exp Ther 2021; 378:251-261. [PMID: 34158404 DOI: 10.1124/jpet.121.000576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor (PRR) is a single-transmembrane protein that regulates the local renin-angiotensin system and participates in various intracellular signaling pathways, thus exhibiting a significant physiopathologic relevance in cellular homeostasis. A soluble form of PRR (sPRR) is generated through protease-mediated cleavage of the full-length PRR and secreted into extracellular spaces. Accumulating evidence indicates pivotal biologic functions of sPRR in various physiopathological processes. sPRR may be a novel biomarker for multiple diseases. SIGNIFICANCE STATEMENT: Circulating sPRR concentrations are elevated in patients and animals under various physiopathological conditions. This minireview highlights recent advances in sPRR functions in health and pathophysiological conditions. Results suggest that sPRR may be a novel biomarker for multiple diseases, but further studies are needed to determine the diagnostic value of sPRR.
Collapse
Affiliation(s)
- Manman Qin
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Jun Yu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| |
Collapse
|
20
|
Wang Y, Wang Y, Xue K, Wang H, Zhou J, Gao F, Li C, Yang T, Fang H. (Pro)renin receptor antagonist PRO20 attenuates nephrectomy-induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/β-catenin signaling. Physiol Rep 2021; 9:e14881. [PMID: 34057312 PMCID: PMC8165733 DOI: 10.14814/phy2.14881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction (Pro)renin receptor has emerged as a new member of the renin‐angiotensin system implicated in the pathogenesis of chronic kidney disease (CKD). Herein we report characterization of the therapeutic potential of (pro)renin receptor (PRR) antagonist PRO20 in 5/6 nephrectomy (5/6Nx) rats. Methods Male Wistar rats underwent 5/6Nx followed by treatment with vehicle or received daily injections of a PRR inhibitor PRO20 (700 μg/kg) via the 3 s.c. Sham group served as a control. Results As compared with the sham control, the 5/6Nx rats exhibited significant increases in proteinuria, glomerulosclerosis, tubular injury, and interstitial inflammation in the remnant kidneys. Treatment with PRO20 significantly attenuated these abnormalities, as evidenced by reduced expression of fibronectin, α‐SMA, collagen 1, TGF‐β1, IL‐6, IL‐8, IL‐1β, MCP‐1 and increased expression of E‐cadherin. Increased urinary/renal levels of renin activity, angiotensinogen (AGT), and Angiotensin II (Ang II) by 5/6Nx, which were all ameliorated by PRO20. Renal PRR, the secreted proteolytic fragment of PRR (sPRR) in renal and urinary, were all elevated in 5/6Nx rats. Moreover, our results revealed that renal Wnt3A and β‐catenin expression were upregulated during 5/6Nx, which were all attenuated by PRO20. Conclusions Overall we conclude that in vivo antagonism of PRR with PRO20 will improve 5/6Nx‐induced CKD mainly through inhibition of intrarenal RAS and Wnt/β‐catenin signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yurong Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Kai Xue
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Huaijie Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingjing Zhou
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chengde Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
21
|
Fu Z, Wang F, Liu X, Hu J, Su J, Lu X, Lu A, Cho JM, Symons JD, Zou CJ, Yang T. Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin Sci (Lond) 2021; 135:793-810. [PMID: 33625485 PMCID: PMC9215112 DOI: 10.1042/cs20201047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Until now, renin-angiotensin system (RAS) hyperactivity was largely thought to result from angiotensin II (Ang II)-dependent stimulation of the Ang II type 1 receptor (AT1R). Here we assessed the role of soluble (pro)renin receptor (sPRR), a product of site-1 protease-mediated cleavage of (pro)renin receptor (PRR), as a possible ligand of the AT1R in mediating: (i) endothelial cell dysfunction in vitro and (ii) arterial dysfunction in mice with diet-induced obesity. Primary human umbilical vein endothelial cells (HUVECs) treated with a recombinant histidine-tagged sPRR (sPRR-His) exhibited IκBα degradation concurrent with NF-κB p65 activation. These responses were secondary to sPRR-His evoked elevations in Nox4-derived H2O2 production that resulted in inflammation, apoptosis and reduced NO production. Each of these sPRR-His-evoked responses was attenuated by AT1R inhibition using Losartan (Los) but not ACE inhibition using captopril (Cap). Further mechanistic exploration revealed that sPRR-His activated AT1R downstream Gq signaling pathway. Immunoprecipitation coupled with autoradiography experiments and radioactive ligand competitive binding assays indicate sPRR directly interacts with AT1R via Lysine199 and Asparagine295. Important translational relevance was provided by findings from obese C57/BL6 mice that sPRR-His evoked endothelial dysfunction was sensitive to Los. Besides, sPRR-His elevated blood pressure in obese C57/BL6 mice, an effect that was reversed by concurrent treatment with Los but not Cap. Collectively, we provide solid evidence that the AT1R mediates the functions of sPRR during obesity-related hypertension. Inhibiting sPRR signaling should be considered further as a potential therapeutic intervention in the treatment and prevention of cardiovascular disorders involving elevated blood pressure.
Collapse
Affiliation(s)
- Ziwei Fu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jae Min Cho
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program; University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program; University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Arthur G, Osborn JL, Yiannikouris FB. (Pro)renin receptor in the kidney: function and significance. Am J Physiol Regul Integr Comp Physiol 2021; 320:R377-R383. [PMID: 33470188 DOI: 10.1152/ajpregu.00259.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
(Pro)renin receptor (PRR), a 350-amino acid receptor initially thought of as a receptor for the binding of renin and prorenin, is multifunctional. In addition to its role in the renin-angiotensin system (RAS), PRR transduces several intracellular signaling molecules and is a component of the vacuolar H+-ATPase that participates in autophagy. PRR is found in the kidney and particularly in great abundance in the cortical collecting duct. In the kidney, PRR participates in water and salt balance, acid-base balance, and autophagy and plays a role in development and progression of hypertension, diabetic retinopathy, and kidney fibrosis. This review highlights the role of PRR in the development and function of the kidney, namely, the macula densa, podocyte, proximal and distal convoluted tubule, and the principal cells of the collecting duct, and focuses on PRR function in body fluid volume homeostasis, blood pressure regulation, and acid-base balance. This review also explores new advances in the molecular mechanism involving PRR in normal renal health and pathophysiological states.
Collapse
Affiliation(s)
- Gertrude Arthur
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
23
|
Zhang X, Trebak F, Souza LAC, Shi J, Zhou T, Kehoe PG, Chen Q, Feng Earley Y. Small RNA modifications in Alzheimer's disease. Neurobiol Dis 2020; 145:105058. [PMID: 32835860 PMCID: PMC7572745 DOI: 10.1016/j.nbd.2020.105058] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background While significant advances have been made in uncovering the aetiology of Alzheimer's disease and related dementias at the genetic level, molecular events at the epigenetic level remain largely undefined. Emerging evidence indicates that small non-coding RNAs (sncRNAs) and their associated RNA modifications are important regulators of complex physiological and pathological processes, including aging, stress responses, and epigenetic inheritance. However, whether small RNAs and their modifications are altered in dementia is not known. Methods We performed LC-MS/MS-based, high-throughput assays of small RNA modifications in post-mortem samples of the prefrontal lobe cortices of Alzheimer's disease (AD) and control individuals. We noted that some of the AD patients has co-occurring vascular cognitive impairment-related pathology (VaD). Findings We report altered small RNA modifications in AD samples compared with normal controls. The 15-25-nucleotide (nt) RNA fraction of these samples was enriched for microRNAs, whereas the 30-40-nt RNA fraction was enriched for tRNA-derived small RNAs (tsRNAs), rRNA-derived small RNAs (rsRNAs), and YRNA-derived small RNAs (ysRNAs). Interestingly, most of these altered RNA modifications were detected both in the AD and AD with co-occurring vascular dementia subjects. In addition, sequencing of small RNA in the 30-40-nt fraction from AD cortices revealed reductions in rsRNA-5S, tsRNA-Tyr, and tsRNA-Arg. Interpretation These data suggest that sncRNAs and their associated modifications are novel signals that may be linked to the pathogenesis and development of Alzheimer's disease. Fund NIH grants (R01HL122770, R01HL091905, 1P20GM130459, R01HD092431, P50HD098593, GM103440), AHA grant (17IRG33370128), Sigmund Gestetner Foundation Fellowship to P Kehoe.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Fatima Trebak
- Departments of Pharmacology, Physiology & Cell Biology, Center for Molecular & Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Lucas A C Souza
- Departments of Pharmacology, Physiology & Cell Biology, Center for Molecular & Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Tong Zhou
- Departments of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Patrick G Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA.
| | - Yumei Feng Earley
- Departments of Pharmacology, Physiology & Cell Biology, Center for Molecular & Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| |
Collapse
|
24
|
Luo R, Yang K, Wang F, Xu C, Yang T. (Pro)renin receptor decoy peptide PRO20 protects against adriamycin-induced nephropathy by targeting the intrarenal renin-angiotensin system. Am J Physiol Renal Physiol 2020; 319:F930-F940. [PMID: 32865014 PMCID: PMC7701266 DOI: 10.1152/ajprenal.00279.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
Abstract
Adriamycin (ADR) administration in susceptible rodents such as the BALB/c mouse strain produces injury to the glomerulus mimicking human chronic kidney disease due to primary focal segmental glomerulosclerosis. The goal of the present study was to use this model to investigate antiproteinuric actions of the (pro)renin receptor decoy inhibitor PRO20. BALB/c mice were pretreated for 1 day with PRO20 at 500 μg·kg-1·day-1 via an osmotic minipump followed by a single injection of vehicle or ADR (10 mg/kg) via the tail vein. Albuminuria and renal function were analyzed at the fourth week post-ADR administration. ADR-treated mice exhibited severe proteinuria, hypoalbuminemia and hyperlipidemia, glomerulosclerosis, podocyte loss, tubulointerstitial fibrosis, and oxidative stress, accompanied by elevated urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, all of which were significantly attenuated by PRO20. Urinary and renal renin activity and angiotensin II were elevated by ADR and suppressed by PRO20. In parallel, urinary and renal H2O2 levels and renal NADPH oxidase 4 (Nox4) and transient receptor potential channel C6 (TRPC6) expression in response to ADR were all similarly suppressed. Taken together, the results of the present study provide the first evidence that PRO20 can protect against podocyte damage and interstitial fibrosis in ADR nephropathy by preventing activation of the intrarenal renin-angiotensin system and upregulation of Nox4 and TRPC6 expression. PRO20 may have a potential application in the treatment of ADR nephropathy.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kevin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
25
|
Cho HM, Kim I. Maternal high-fructose intake induces hypertension through activating histone codes on the (pro)renin receptor promoter. Biochem Biophys Res Commun 2020; 527:596-602. [PMID: 32423811 DOI: 10.1016/j.bbrc.2020.04.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022]
Abstract
High-fructose intake induces hypertension via the renal expression of (pro)renin receptor (PRR) that stimulates the expression of sodium/hydrogen exchanger 3, Na/K/2Cl cotransporter 2, and genes of the intrarenal renin-angiotensin system. We hypothesize that maternal high-fructose intake induces hypertension in subsequent generation offspring through activating histone codes on the PRR promoter. Mice dams were offered 20% fructose solution during pregnancy and lactation, while the subsequent 1st to 4th generation offspring were raised without fructose. Blood pressure was measured via tail-cuff method. The mRNA and protein expression were determined using quantitative real-time polymerase chain reaction and western blotting, respectively. Histone modification was evaluated using a chromatin immunoprecipitation assay. Maternal high-fructose intake statistically significantly increased blood pressure in the 1st and 2nd generations of offspring compared to the control group. Expression levels of sodium transporters and PRR were increased in the kidneys of the 1st to 3rd generation offspring. Increased enrichment of active histone codes such as H3Ac and H3K4me2 but decreased enrichment of repressive histone codes such as H3K9me3 and H3K27me3 on the PRR promoter were observed in the 1st to 3rd not the 4th generation. Moreover, there was increased the mRNA expression for histone acetyltransferase and methyl transferases for H3K4 in the 1st and 2nd generation offspring compared to the control group. This study implicates that maternal high-fructose intake induces hypertension in multigenerational offspring through activating histone codes on the PRR promoter.
Collapse
Affiliation(s)
- Hyun Min Cho
- Department of Pharmacology, Daegu, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - InKyeom Kim
- Department of Pharmacology, Daegu, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
26
|
Abstract
The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.
Collapse
|
27
|
Figueroa SM, Lozano M, Lobos C, Hennrikus MT, Gonzalez AA, Amador CA. Upregulation of Cortical Renin and Downregulation of Medullary (Pro)Renin Receptor in Unilateral Ureteral Obstruction. Front Pharmacol 2019; 10:1314. [PMID: 31803050 PMCID: PMC6868519 DOI: 10.3389/fphar.2019.01314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal dysfunction, which is a common feature of other major diseases, such as hypertension and diabetes. Unilateral ureteral obstruction (UUO) has been used as a model of CKD in experimental animals and consists of total obstruction of one kidney ureter. The UUO decreases renal blood flow, which promotes the synthesis of renin in the juxtaglomerular apparatus, the first step in renin–angiotensin system (RAS) cascade. RAS induces inflammation and remodeling, along with reduced renal function. However, it remains unknown whether intrarenal RAS (iRAS) is activated in early stages of CKD. Our objective was to characterize different iRAS components in the renal cortex and in the medulla in an early phase of UUO. Male C57BL/6 mice (8–12 weeks old) were subjected to UUO in the left kidney, or to sham surgery, and were euthanized after 7 days (n = 5/group). Renal function, renal inflammatory/remodeling processes, and iRAS expression were evaluated. UUO increased plasma creatinine, right renal hypertrophy (9.08 ± 0.31, P < 0.05 vs. Sham), and tubular dilatation in the left kidney cortex (42.42 ± 8.19µm, P < 0.05 vs. Sham). This correlated with the increased mRNA of IL-1β (1.73 ± 0.14, P < 0.01 vs. Sham, a pro-inflammatory cytokine) and TGF-β1 (1.76 ± 0.10, P < 0.001 vs. Sham, a pro-fibrotic marker). In the renal cortex of the left kidney, UUO increased the mRNA and protein levels of renin (in 35% and 28%, respectively, P < 0.05 vs. Sham). UUO decreased mRNA and protein levels for the (pro)renin receptor in the renal medulla (0.67 ± 0.036 and 0.88 ± 0.028, respectively, P < 0.05 vs. Sham). Our results suggest that modulation of iRAS components depends on renal localization and occurs in parallel with remodeling and pro-inflammatory/pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Stefanny M Figueroa
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Mauricio Lozano
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carolina Lobos
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristián A Amador
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
28
|
Fu Z, Hu J, Zhou L, Chen Y, Deng M, Liu X, Su J, Lu A, Fu X, Yang T. (Pro)renin receptor contributes to pregnancy-induced sodium-water retention in rats via activation of intrarenal RAAS and α-ENaC. Am J Physiol Renal Physiol 2019; 316:F530-F538. [PMID: 30379098 PMCID: PMC6459302 DOI: 10.1152/ajprenal.00411.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The (pro)renin receptor (PRR) is a new component of the renin-angiotensin-aldosterone system (RAAS) and regulates renin activity. The objective of the present study was to test potential roles of the renal PRR and intrarenal RAAS in the physiological status of late pregnancy. Late pregnant Sprague-Dawley rats were studied 19-21 days after sperm was observed in vaginal smears. Experiments were performed using age-matched virgin rats and late pregnant rats treated with the specific PRR inhibitor PRO20 (700 μg·kg-1·day-1 sc for 14 days, 3 times/day for every 8 h) or vehicle. The indices of RAAS, including PRR, renin, angiotensin II, and aldosterone levels, were examined by immunoblotting, qRT-PCR, or ELISA. Further analyses of renal epithelial sodium channel (ENaC) expression, sodium-water retention, and plasma volume were performed. We first present evidence for the activation of intrarenal RAAS in late pregnant rats, including increases in urinary renin activity, active and total renin content, and prorenin content, angiotensin II and aldosterone excretion, in parallel with increased renal PRR expression and urinary soluble PRR excretion. Functional evidence demonstrated that PRR antagonism with PRO20 effectively suppressed the indices of intrarenal RAAS in late pregnant rats. In addition, our results revealed that renal α-ENaC expression, sodium-water retention, and plasma volume were elevated during late pregnancy, which were all attenuated by PRO20. In summary, the present study examined the renal mechanism of sodium-water retention and plasma volume expansion in late pregnant rats and identified a novel role of PRR in regulation of intrarenal RAAS and α-ENaC and thus sodium and fluid retention associated with pregnancy.
Collapse
Affiliation(s)
- Ziwei Fu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Li Zhou
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Yanting Chen
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Mokan Deng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
29
|
Yang KT, Yang T, Symons JD. Soluble (pro)renin receptor as a potential therapy for diabetes insipidus. Am J Physiol Renal Physiol 2018; 315:F1416-F1421. [PMID: 30019932 DOI: 10.1152/ajprenal.00266.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antidiuretic hormone vasopressin (VP) is produced by the hypothalamus and is stored and secreted from the posterior pituitary. VP acts via VP type 2 receptors (V2Rs) on the basolateral membrane of principal cells of the collecting duct (CD) to regulate fluid permeability. The VP-evoked endocrine pathway is essential in determining urine concentrating capability. For example, a defect in any component of the VP signaling pathway can result in polyuria, polydipsia, and hypotonic urine, collectively termed diabetes insipidus (DI). A lack of VP production precipitates central diabetes insipidus (CDI), which can be managed effectively by VP supplementation. A majority of cases of nephrogenic diabetes insipidus (NDI) result from V2R mutations that impair receptor sensitivity. No specific therapy is currently available for management of NDI. Evidence is evolving that (pro)renin receptor (PRR), a newly identified member of the renin-angiotensin system, is capable of regulating VP production and action. As such, PRR should be considered strongly as a therapeutic target for treating CDI and NDI. The current review will summarize recent advances in understanding the physiology of renal and central PRR as it relates to the two types of DI.
Collapse
Affiliation(s)
- Kevin T Yang
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,College of Health, University of Utah , Salt Lake City, Utah.,Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Research Service, Veterans Affairs Medical Center , Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine , Guangzhou , China
| | - J David Symons
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,College of Health, University of Utah , Salt Lake City, Utah.,Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| |
Collapse
|