1
|
Lu S, Chen X, Chen Y, Zhang Y, Luo J, Jiang H, Fang L, Zhou H. Downregulation of PDZK1 by TGF-β1 promotes renal fibrosis via inducing epithelial-mesenchymal transition of renal tubular cells. Biochem Pharmacol 2024; 220:116015. [PMID: 38158021 DOI: 10.1016/j.bcp.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of renal tubular cells promotes renal fibrosis and the progression of chronic kidney disease (CKD). PDZ domain-containing 1 (PDZK1) is highly expressed in renal tubular epithelial cells; however, its role in TGF-β1-induced EMT remains poorly understood. The present study showed that PDZK1 expression was extremely downregulated in fibrotic mouse kidneys and its negative correlation with TGF-β1 expression and the degree of renal fibrosis. In addition, TGF-β1 downregulated the mRNA expression of PDZK1 in a time- and concentration-dependent manner in vitro. The downregulation of PDZK1 exacerbated TGF-β1-induced EMT upon oxidative stress, while the overexpression of PDZK1 had the converse effect. Subsequent investigations demonstrated that TGF-β1 downregulated PDZK1 expression via p38 MAPK or PI3K/AKT signaling in vitro, but independently of ERK/JNK MAPK signaling. Meanwhile, inhibition of the p38/JNK MAPK or PI3K/AKT signaling using chemical inhibitors restored the PDZK1 expression, mitigated renal fibrosis, and elevated renal levels of endogenous antioxidants carnitine and ergothioneine in adenine-induced CKD mice. These findings provide the first evidence suggesting a negative correlation between PDZK1 and renal fibrosis, and identifying PDZK1 as a novel suppressor of renal fibrosis in CKD through ameliorating oxidant stress.
Collapse
Affiliation(s)
- Shuanghui Lu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujia Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqiong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China.
| |
Collapse
|
2
|
Suzuki T, Iyoda M, Kanazawa N, Tachibana S, Honda H. Effect of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition on Podocytes in Mouse Nephrotic Syndrome. J Transl Med 2023; 103:100199. [PMID: 37331628 DOI: 10.1016/j.labinv.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is known to play a crucial role in dyslipidemia, and an increase in serum PCSK9 levels has also been reported in patients with nephrotic syndrome (NS). However, the specific effects of PCSK9 in kidney disease and the therapeutic potential of targeting PCSK9 in NS remain elusive. We thus investigated the effects of evolocumab (EVO) in mice with adriamycin (ADR)-induced NS. Male BALB/c mice were divided into the following 4 groups: Control, N = 11; EVO (monoclonal antibody for PCSK9), N = 11; ADR, N = 11; and ADR+EVO, N = 11. We also performed in vitro experiments using immortalized murine podocyte cells to validate the direct effects of PCSK9 on podocytes. EVO decreased urinary albumin levels and ameliorated podocytopathy in mice with ADR nephropathy. Further, EVO suppressed the Nod-like receptor protein 3 (NLRP3) inflammasome pathway in podocytes. PCSK9 expression upregulated CD36, a scavenger receptor of oxidized low-density lipoprotein (Ox-LDL), which in turn stimulated the absorption of Ox-LDL in vitro. EVO downregulated CD36 expression in podocytes both in vitro and in vivo. Immunofluorescence staining analysis reveals that CD36 and PCSK9 colocalized in the glomerular tufts of mice with ADR nephropathy. In the patients with focal segmental glomerulosclerosis, the CD36+ area in glomerular tufts increased compared with those diagnosed with minor glomerular abnormalities. This study revealed that EVO ameliorated mouse ADR nephropathy through the regulation of CD36 and NLRP3 inflammasome signaling. EVO treatment represents a potential therapeutic strategy for human NS.
Collapse
Affiliation(s)
- Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shohei Tachibana
- Department of Nephrology, Omiya Central General Hospital, Saitama, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Th17-Related Cytokines as Potential Discriminatory Markers between Neuromyelitis Optica (Devic's Disease) and Multiple Sclerosis-A Review. Int J Mol Sci 2021; 22:ijms22168946. [PMID: 34445668 PMCID: PMC8396435 DOI: 10.3390/ijms22168946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) and Devic’s disease (NMO; neuromyelitis optica) are autoimmune, inflammatory diseases of the central nervous system (CNS), the etiology of which remains unclear. It is a serious limitation in the treatment of these diseases. The resemblance of the clinical pictures of these two conditions generates a partial possibility of introducing similar treatment, but on the other hand, a high risk of misdiagnosis. Therefore, a better understanding and comparative characterization of the immunopathogenic mechanisms of each of these diseases are essential to improve their discriminatory diagnosis and more effective treatment. In this review, special attention is given to Th17 cells and Th17-related cytokines in the context of their potential usefulness as discriminatory markers for MS and NMO. The discussed results emphasize the role of Th17 immune response in both MS and NMO pathogenesis, which, however, cannot be considered without taking into account the broader perspective of immune response mechanisms.
Collapse
|
5
|
Navrazhina K, Garcet S, Gonzalez J, Grand D, Frew JW, Krueger JG. In-Depth Analysis of the Hidradenitis Suppurativa Serum Proteome Identifies Distinct Inflammatory Subtypes. J Invest Dermatol 2021; 141:2197-2207. [PMID: 33766512 DOI: 10.1016/j.jid.2021.02.742] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Hidradenitis suppurativa is a chronic inflammatory dermatosis with presentations ranging from painful nodules and abscesses to draining tunnels. Using an unbiased proteomics approach, we assessed cardiovascular-, cardiometabolic-, and inflammation-related biomarkers in the serum of patients with moderate-to-severe hidradenitis suppurativa. The serum of patients with hidradenitis suppurativa clustered separately from that of healthy controls and had an upregulation of neutrophil-related markers (Cathepsin D, IL-17A, CXCL1). Patients with histologically diagnosed dermal tunnels had higher serum lipocalin-2 levels compared with those without tunnels. Consistent with this, patients with tunnels had a more neutrophilic-rich serum signature, marked by Cathepsin D, IL-17A, and IL-17D alterations. There was a significant serum‒skin correlation between proteins in the serum and the corresponding mRNA expression in skin biopsies, with healthy-appearing perilesional skin demonstrating a significant correlation with neutrophil-related proteins in the serum. CSF3 mRNA levels in lesional skin significantly correlated with neutrophil-related proteins in the serum, suggesting that CFS3 in the skin may be a driver of neutrophilic inflammation. Clinical significantly correlated with the levels of lipocalin-2 and IL-17A in the serum. Using an unbiased, large-scale proteomic approach, we demonstrate that hidradenitis suppurativa is a systemic neutrophilic dermatosis, with a specific molecular signature associated with the presence of dermal tunnels.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York, USA
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
6
|
Wada Y, Iyoda M, Matsumoto K, Suzuki T, Tachibana S, Kanazawa N, Honda H. Reno-protective effect of IL-34 inhibition on cisplatin-induced nephrotoxicity in mice. PLoS One 2021; 16:e0245340. [PMID: 33428678 PMCID: PMC7799787 DOI: 10.1371/journal.pone.0245340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Interleukin-34 (IL-34) shares a receptor (cFMS) with colony stimulating factor-1 (CSF-1), and these two ligands mediate macrophage proliferation. However, in contrast to CSF-1, the influence of IL-34 on tubular epithelial cells (TECs) injury remains unclear. We investigated the physiological effects of IL-34 on TEC damage caused by cisplatin nephrotoxicity (CP-N). METHODS Mice were administered anti-mouse IL-34 antibody (anti-IL-34 Ab; 400 ng/kg) or vehicle from 1 day before and up to 2 days after CP-N induction. In vitro, mouse renal proximal TECs (MRPTEpiC) were cultured to analyze the inhibitory effects of IL-34 on CP-induced TEC apoptosis. RESULTS Compared to vehicle treatment, anti-IL-34 Ab treatment significantly suppressed the intra-renal expression of IL-34 and its two receptors, cFMS and PTP-ζ, and significantly improved renal function, ameliorated tubulointerstitial injury, suppressed macrophage infiltration, and reduced apoptotic cell numbers in CP-N mice. It also significantly reduced the renal transcript levels of Kim-1, MIP-1/CCL3, TNF-α, and Bax in CP-N mice. Furthermore, anti-IL-34 Ab-treated CP-N mice showed less renal infiltration of F4/80+TNF-α+ cells. In vitro, stimulation with CP induced the expression of IL-34 and its two receptors in MRPTEpiC. Anti-IL-34 Ab treatment significantly suppressed CP-induced Bax expression with the degradation of ERK1/2 phosphorylation in damaged MRPTEpiC. CONCLUSIONS IL-34 secreted from damaged TECs appeared to be involved in the progression of CP-N. Inhibition of IL-34 with neutralizing antibody directly prevented CP-induced TEC apoptosis by inhibiting the phosphorylation of ERK 1/2. Blocking of IL-34 appears to suppress the proliferation of cytotoxic macrophages, which indirectly attenuates CP-N. Thus, IL-34 represents a potential therapeutic target for TEC injury, and the inhibition of IL-34 might have a reno-protective effect.
Collapse
Affiliation(s)
- Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.,Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Azeem M, Kader H, Kerstan A, Hetta HF, Serfling E, Goebeler M, Muhammad K. Intricate Relationship Between Adaptive and Innate Immune System in Allergic Contact Dermatitis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:699-709. [PMID: 33380932 PMCID: PMC7757059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allergic contact dermatitis (ACD) is a complex immunological allergic disease characterized by the interplay between the innate and adaptive immune system. Initially, the role of the innate immune system was believed to be confined to the initial sensitization phase, while adaptive immune reactions were linked with the advanced elicitation phase. However, recent data predicted a comparatively mixed and interdependent role of both immune systems throughout the disease progression. Therefore, the actual mechanisms of disease progression are more complex and interlinked. The aim of this review is to combine such findings that enhanced our understanding of the pathomechanisms of ACD. Here, we focused on the main cell types from both immune domains, which are involved in ACD, such as CD4+ and CD8+ T cells, B cells, neutrophils, and innate lymphoid cells (ILCs). Such insights can be useful for devising future therapeutic interventions for ACD.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Hidaya Kader
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology,
Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of
Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Prostaglandin E1 attenuates high glucose-induced apoptosis in proximal renal tubular cells by inhibiting the JNK/Bim pathway. Acta Pharmacol Sin 2020; 41:561-571. [PMID: 31685975 PMCID: PMC7471471 DOI: 10.1038/s41401-019-0314-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Proximal renal tubular damage is a critical process underlying diabetic kidney disease (DKD). Our previous study shows that prostaglandin E1 (PGE1) reduces the apoptosis of renal tubular cells in DKD rats. But its underlying mechanisms remain unclear. In this study we investigated the protective effects of PGE1 in DKD rats and high glucose (HG, 30 mM)-treated HK-2 proximal tubular cells. Four weeks after uninephrectomized streptozotocin-induced diabetic rats were established, the DKD rats were administered PGE1 (10 µg· kg−1· d−1, iv.) for 10 consecutive days. We showed that PGE1 administration did not change blood glucose levels, but alleviated diabetic kidney injury in the DKD rats, evidenced by markedly reduced proteinuria and renal tubular apoptosis. In the in vitro experiments, PGE1 (0.1–100 µM) significantly enhanced HG-reduced HK-2 cell viability. In HG-treated HK-2 cells, PGE1 (10 µM) significantly suppressed the c-Jun N-terminal kinase (JNK) and the mitochondrial apoptosis-related protein expressions such as Bim, Bax, caspase-3 and cleaved caspase-3; similar changes were also observed in the kidney of PGE1-treated DKD rats. By using two pharmacological tools-JNK activator anisomycin (AM) and JNK inhibitor SP600125, we revealed that PGE1 blocked HG-triggered activation of JNK/Bim pathway in HK-2 cells; JNK was an upstream regulator of Bim. In conclusion, our results demonstrate that the nephroprotective effects of PGE1 against apoptosis of proximal renal tubule in DKD rats via suppressing JNK-related Bim signaling pathway.
Collapse
|
9
|
Interleukin-17A induces renal fibrosis through the ERK and Smad signaling pathways. Biomed Pharmacother 2020; 123:109741. [PMID: 31901549 DOI: 10.1016/j.biopha.2019.109741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-17A is upregulated in several renal diseases and plays a crucial role in renal inflammation. However, it remains unclear how IL-17A contributes to renal fibrosis. Our result demonstrated that IL-17A expression was upregulated in the obstructed kidney of unilateral ureter obstruction (UUO) mice when compared to the contralateral control kidney. Inhibition of IL-17A functions by the intravenous administration of an anti-IL-17A receptor antibody (100 μg) 2 h prior to UUO and on post-UUO day 1 and 3 significantly reduced fibronectin expression in the UUO kidney. The addition of IL-17A (25-100 μg) to human renal proximal tubular cells or renal fibroblasts caused an increase in fibronectin production and extracellular signal-regulated kinase (ERK)1/2 activation, which were reduced upon pretreatment with the ERK inhibitor U0126. The level of phosphorylated (p)-ERK1/2 was increased in the UUO kidney, but reduced by the administration of the anti-IL-17A receptor antibody, verifying the importance of the ERK pathway in vivo. TGF-β1 mRNA expression and protein were increased in the UUO kidney and in IL-17A-stimulated cultured cells. The administration of an anti-TGF-β1 neutralizing antibody or TGF-β1 receptor I inhibitor (SB431542) to cells abrogated the IL-17A-mediated increase of fibronectin production. IL-17A induced an increase in p-Smad2 and p-Smad3 expression at 7.5 min and 24 h and pretreatment with the anti-TGF-β1 neutralizing antibody, and SB431542 reduced the IL-17A-stimulated increase of p-Smad2. Knockdown of Smad2 or Smad3 expression inhibited the IL-17A-enhanced production of fibronectin. These results suggest an essential role for the TGF-β/Smad pathway in the IL-17A-mediated increase of fibronectin production. This study demonstrates that IL-17A contributes to the production of extracellular matrix, and targeting its associated signaling pathways could provide a therapeutic target for preventing renal fibrosis.
Collapse
|
10
|
Liu Y, Shen P, Zhou Y, Tang L, Chai H. c‑Jun N‑terminal kinase/transforming growth factor‑β/Smad3 pathway: Is it associated with endoplasmic reticulum stress‑mediated renal interstitial fibrosis? Mol Med Rep 2019; 20:755-762. [PMID: 31180530 DOI: 10.3892/mmr.2019.10276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/15/2019] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the role of the c‑Jun N‑terminal kinase (JNK)/transforming growth factor‑β (TGF‑β)/Smad3 pathway in endoplasmic reticulum stress (ERS)‑mediated renal interstitial fibrosis, which would be beneficial for chronic kidney disease (CKD) therapy. In human renal biopsy tissue, the expression levels of glucose‑regulated protein 78 (GRP78) and phosphorylated (p)‑JNK were examined by immunohistochemical analysis. In renal tubular HK‑2 cells, tunicamycin (TM) was used to induce ERS, and the cells were then treated with the chemical ERS inhibitor 4‑phenylbutyrate (4‑PBA) or the chemical JNK pathway inhibitor SP600125, respectively. Western blotting was then performed in the cells to determine the expression levels of GRP78 and p‑JNK proteins, as well as TGF‑β/Smad3 pathway‑associated proteins, including TGF‑β1, p‑Smad3, connective tissue growth factor and α‑smooth muscle actin. The results revealed that GRP78 and p‑JNK were evidently expressed in the renal tissues of patients with CKD, and these expression levels were significantly higher in renal tissues with severe interstitial fibrosis compared with glomerular minor lesion tissues (P<0.01 and P<0.05, respectively). Furthermore, ERS and JNK pathway inhibition decreased the expression levels of TGF‑β/Smad3 pathway signals in cells incubated with TM. ERS pathway inhibition also attenuated the expression levels of p‑JNK in HK‑2 cells. In conclusion, ERS was observed to serve an important role in the pathogenesis of CKD and may induce renal interstitial fibrosis via the JNK/TGF‑β/Smad3 pathway.
Collapse
Affiliation(s)
- Yuyuan Liu
- Department of Nephrology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Ping Shen
- Department of Nephrology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Yongmei Zhou
- Department of Nephrology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Li Tang
- Department of Nephrology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Huaqi Chai
- Department of Nephrology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
11
|
Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers (Basel) 2019; 11:cancers11040564. [PMID: 31010242 PMCID: PMC6520693 DOI: 10.3390/cancers11040564] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer is not only about the tumor cell itself, but also about other involved players including cancer cell recruited immune cells, their released pro-inflammatory factors, and the extracellular matrix. These players constitute the tumor microenvironment and play vital roles in the cancer progression. Neutrophils—the most abundant white blood cells in the circulation system—constitute a significant part of the tumor microenvironment. Neutrophils play major roles linking inflammation and cancer and are actively involved in progression and metastasis. Additionally, recent data suggest that neutrophils could be considered one of the emerging targets for multiple cancer types. This review summarizes the most recent updates regarding neutrophil recruitments and functions in the tumor microenvironment as well as potential development of neutrophils-targeted putative therapeutic strategies.
Collapse
|
12
|
Pan YJ, Ren X, Zhang YY, Lv J, Zeng QL, Zhang HY, Yu ZJ. IL-17A-mediated ERK1/2/p65 signaling pathway is associated with cell apoptosis after non-alcoholic steatohepatitis. IUBMB Life 2019; 71:302-309. [PMID: 30481403 DOI: 10.1002/iub.1960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/30/2023]
Abstract
Interleukin (IL)-17A is pro-inflammatory cytokine which has been identified as a noninvasive marker of the pathogenesis of non-alcoholic steatohepatitis (NASH). However, the underlying role of IL-17A in NASH progression remains unclear. This study was designed to investigate the biological function and molecular mechanism of IL-17A in the induction of NASH. The results showed that IL-17A was highly expressed in high-fat diet (HFD)-induced NASH mouse model. Intravenous injection of IL-17A exacerbated steatohepatitis process via promoting hepatocyte apoptosis. Furthermore, IL-17A-induced apoptosis was mediated by ERK1/2/p65 signaling pathway. In conclusion, we demonstrated that IL-17A-mediated ERK1/2/p65 signaling pathway was a promising target for the treatment of NASH. © 2018 IUBMB Life, 71(3):302-309, 2019.
Collapse
Affiliation(s)
- Ya-Jie Pan
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xing Ren
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying-Ying Zhang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jun Lv
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hong-Yu Zhang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
13
|
Th17 cells in renal inflammation and autoimmunity. Autoimmun Rev 2018; 18:129-136. [PMID: 30572135 DOI: 10.1016/j.autrev.2018.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 12/30/2022]
Abstract
Th17 cells are a distinct lineage of T-cells. These T-cells express IL-17A and the lineage-defining transcription factor RORγt. Th17 cells have a pivotal, physiological role in host defense against pathogens. These pro-inflammatory T-cells are also key players in autoimmunity and a pathogenic role has been demonstrated in several diseases such as rheumatoid arthritis or psoriasis. Recently, there is evidence that Th17 cells may drive renal inflammation and renal autoimmunity in anti-neutrophil-cytoplasmic-antibody-(ANCA)-vasculitis and systemic lupus erythematosus. The aim of this review is to discuss the possible involvement of Th17 cells in renal autoimmunity and its value for future therapeutic approaches.
Collapse
|
14
|
Krueger JG, Brunner PM. Interleukin-17 alters the biology of many cell types involved in the genesis of psoriasis, systemic inflammation and associated comorbidities. Exp Dermatol 2017; 27:115-123. [PMID: 29152791 DOI: 10.1111/exd.13467] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic, immune-mediated, systemic inflammatory disease that is defined by a characteristic skin reaction produced when elevated levels of inflammatory cytokines such as interleukin (IL)-17 alter the growth and differentiation of skin cells. The pathogenesis of comorbid conditions associated with psoriasis, including psoriatic arthritis, cardiovascular disease, obesity, metabolic syndrome, liver disorders, renal disease and depression, is also largely affected by inflammation. In this review, we examine the effect of IL-17 on the inflammatory pathways in a variety of different cell types, including keratinocytes, as well as epithelial cells of the colon, kidney, gut and liver. Additionally, we investigate the role of IL-17 in mediating the psoriasis-associated comorbidities detailed above.
Collapse
Affiliation(s)
- James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Patrick M Brunner
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Mori K, Fujisawa T, Kusagaya H, Yamanaka K, Hashimoto D, Enomoto N, Inui N, Nakamura Y, Maekawa M, Suda T. Synergistic Proinflammatory Responses by IL-17A and Toll-Like Receptor 3 in Human Airway Epithelial Cells. PLoS One 2015; 10:e0139491. [PMID: 26418032 PMCID: PMC4587973 DOI: 10.1371/journal.pone.0139491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/13/2015] [Indexed: 12/18/2022] Open
Abstract
Viral respiratory infections activate the innate immune response in the airway epithelium through Toll-like receptors (TLRs) and induce airway inflammation, which causes acute exacerbation of asthma. Although increases in IL-17A expression were observed in the airway of severe asthma patients, the interaction between IL-17A and TLR activation in airway epithelium remains poorly understood. In this study, we demonstrated that IL-17A and polyI:C, the ligand of TLR3, synergistically induced the expression of proinflammatory cytokines and chemokines (G-CSF, IL-8, CXCL1, CXCL5, IL-1F9), but not type I interferon (IFN-α1, -β) in primary culture of normal human bronchial epithelial cells. Synergistic induction after co-stimulation with IL-17A and polyI:C was observed from 2 to 24 hours after stimulation. Treatment with cycloheximide or actinomycin D had no effect, suggesting that the synergistic induction occurred without de novo protein synthesis or mRNA stabilization. Inhibition of the TLR3, TLR/TIR-domain-containing adaptor-inducing interferon β (TRIF), NF-κB, and IRF3 pathways decreased the polyI:C- and IL-17A/polyI:C-induced G-CSF and IL-8 mRNA expression. Comparing the levels of mRNA induction between co-treatment with IL-17A/polyI:C and treatment with polyI:C alone, blocking the of NF-κB pathway significantly attenuated the observed synergism. In western blotting analysis, activation of both NF-κB and IRF3 was observed in treatment with polyI:C and co-treatment with IL-17A/polyI:C; moreover, co-treatment with IL-17A/polyI:C augmented IκB-α phosphorylation as compared to polyI:C treatment alone. Collectively, these findings indicate that IL-17A and TLR3 activation cooperate to induce proinflammatory responses in the airway epithelium via TLR3/TRIF-mediated NF-κB/IRF3 activation, and that enhanced activation of the NF-κB pathway plays an essential role in synergistic induction after co-treatment with IL-17A and polyI:C in vitro.
Collapse
Affiliation(s)
- Kazutaka Mori
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
- * E-mail:
| | - Hideki Kusagaya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Katsumasa Yamanaka
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Dai Hashimoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| |
Collapse
|
16
|
Wada Y, Iyoda M, Matsumoto K, Shindo-Hirai Y, Kuno Y, Yamamoto Y, Suzuki T, Saito T, Iseri K, Shibata T. Epidermal growth factor receptor inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats. PLoS One 2014; 9:e111728. [PMID: 25390346 PMCID: PMC4229108 DOI: 10.1371/journal.pone.0111728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The effects of blocking the epidermal growth factor receptor (EGFR) in acute kidney injury (AKI) are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP)-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP-nephrotoxicity (CP-N). In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2). Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.
Collapse
Affiliation(s)
- Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Shindo-Hirai
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamamoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Liu W, Guo W, Guo L, Gu Y, Cai P, Xie N, Yang X, Shu Y, Wu X, Sun Y, Xu Q. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response. Int Immunopharmacol 2014; 20:337-45. [DOI: 10.1016/j.intimp.2014.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 01/24/2023]
|
18
|
Berney-Meyer L, Hung N, Slatter T, Schollum JBW, Kitching AR, Walker RJ. Omeprazole-induced acute interstitial nephritis: A possible Th1-Th17-mediated injury? Nephrology (Carlton) 2014; 19:359-65. [DOI: 10.1111/nep.12226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Linda Berney-Meyer
- Departments of Medicine and Pathology; University of Otago; Dunedin New Zealand
- Microbiology and Immunology Department; Albert Einstein College of Medicine; New York USA
| | - Noelyn Hung
- Departments of Medicine and Pathology; University of Otago; Dunedin New Zealand
| | - Tania Slatter
- Departments of Medicine and Pathology; University of Otago; Dunedin New Zealand
| | - John BW Schollum
- Departments of Medicine and Pathology; University of Otago; Dunedin New Zealand
| | - A Richard Kitching
- Department of Medicine; Monash University; Monash Medical Centre; Melbourne Victoria Australia
| | - Robert J Walker
- Departments of Medicine and Pathology; University of Otago; Dunedin New Zealand
| |
Collapse
|
19
|
Mathews JA, Williams AS, Brand JD, Wurmbrand AP, Chen L, Ninin FMC, Si H, Kasahara DI, Shore SA. γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα. PLoS One 2014; 9:e97707. [PMID: 24823369 PMCID: PMC4019643 DOI: 10.1371/journal.pone.0097707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/22/2014] [Indexed: 11/21/2022] Open
Abstract
Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24–72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ−/−) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ−/− mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ−/− mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ−/− versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Bronchoalveolar Lavage
- DNA Primers/genetics
- Etanercept
- Flow Cytometry
- Immunoglobulin G
- Interleukin-17/metabolism
- Lung/drug effects
- Lung/immunology
- Macrophages/immunology
- Mice
- Mice, Knockout
- Neutrophils/immunology
- Ozone/toxicity
- Pneumonia/chemically induced
- Pneumonia/immunology
- Real-Time Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Tumor Necrosis Factor
- Receptors, Tumor Necrosis Factor, Type II
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Joel A. Mathews
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Alison S. Williams
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jeffrey D. Brand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Allison P. Wurmbrand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Lucas Chen
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Fernanda MC. Ninin
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Huiqing Si
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David I. Kasahara
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Stephanie A. Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Therapeutic effects of human mesenchymal stem cells in Wistar-Kyoto rats with anti-glomerular basement membrane glomerulonephritis. PLoS One 2013; 8:e67475. [PMID: 23826305 PMCID: PMC3691173 DOI: 10.1371/journal.pone.0067475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 05/20/2013] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Multipotent mesenchymal stem cells (MSCs) have become a promising therapeutic approach in many clinical conditions. The hypothesis that MSCs can provide a potential therapy for human anti-glomerular basement membrane (GBM) glomerulonephritis (GN) was tested. METHODS Nephrotoxic serum nephritis was induced in Wistar-Kyoto rats on day 0. Groups of animals were given either human MSCs (hMSCs, 3×10(6)) or vehicle by intravenous injection on day 4; all rats were sacrificed at either day 7 or day 13. RESULTS Fluorescently labeled hMSCs were localized in glomeruli and tubulointerstitium 5 h after hMSC administration and persisted until 48 h, but hMSCs were barely detectable after 7 days. hMSC-treated rats had decreased kidney weight, proteinuria, and glomerular tuft area at each time point. The serum creatinine level and degree of glomerular crescent formation were decreased by hMSC treatment on day 13. ED1-positive macrophages, CD8-positive cells, and TUNEL-positive apoptotic cells in glomeruli were reduced by hMSC treatment on day 7, and this trend in apoptotic cells persisted to day 13. Renal cortical mRNA for TNF-α, IL-1β, and IL-17, and the serum IL-17A level were decreased, whereas renal cortical mRNA for IL-4 and Foxp3 and the serum IL-10 level were increased in the MSC-treated group on day 7. Collagen types I and III and TGF-β mRNA were decreased by hMSC treatment on day 13. CONCLUSION The present results demonstrated that anti-inflammatory and immunomodulatory effects were involved in the mechanism of attenuating established experimental anti-GBM GN by hMSCs. These results suggest that hMSCs are a promising therapeutic candidate for the treatment of anti-GBM GN.
Collapse
|