1
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
2
|
Kulkarni AR, Bale CB, Wakhare PS, Shinde NS, Chavan AS, Dighe TA, Sajgure AD. Study of the Urinary TGF-β1 Profile in Diabetic Nephropathy: A Single-Center Experience From India. Cureus 2023; 15:e45102. [PMID: 37842382 PMCID: PMC10569234 DOI: 10.7759/cureus.45102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Diabetic nephropathy is one of the important causes of end-stage kidney disease (ESKD). Of the various cytokines playing a role in the pathogenesis of diabetic nephropathy, transforming growth factor beta-1 (TGF-β1) is an important one. Its major role is to mediate extracellular matrix deposition. Increased renal expression of TGF-β1 is found in diabetic nephropathy and its urinary excretion can serve as a useful marker of outcomes. Material and methods A prospective observational study was conducted, which included 10 cases of diabetic nephropathy in group A with age ≥ 18 years and a urinary protein creatinine ratio (UPCR) value of > 0.5 mg/mg and 10 healthy controls in group B. Patients with active urinary tract infection, chronic kidney disease (CKD) stage Vd patients on maintenance hemodialysis, and renal transplant recipients were excluded from the study. Urinary TGF-β1 level estimation in a 24-hour urine sample, 24-hour urine protein, and other baseline laboratory investigations were done. Results In diabetic nephropathy cases (group A), the mean value of urinary TGF-β1 levels was 88.33± 12.44 ng/24 hours. In the control group (group B), the mean value of urinary TGF-β1 was 29.03 ± 3.23 ng/24 hours. Urinary TGF-β1 levels were significantly elevated in group A as compared to group B (p<0.001). There was no significant correlation between urinary TGF-β1 levels and estimated glomerular filtration rate (eGFR) (r=0.376, p= 0.285) as well as the urinary TGF-β1 levels and 24-hour urine protein levels (p = 0.334, r = 0.341) in diabetic nephropathy cases. Glycosylated hemoglobin (HbA1c) levels didn't correlate with the urinary TGF-β1 levels (r = -0.265, p = 0.46). Conclusion The urinary TGF-β1 levels were significantly elevated in diabetic nephropathy patients as compared to healthy controls. There was no significant correlation between urinary TGF-β1 levels and proteinuria, eGFR, or HbA1c levels in diabetic nephropathy patients.
Collapse
Affiliation(s)
- Akshay R Kulkarni
- Nephrology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Charan B Bale
- Nephrology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Pavan S Wakhare
- Nephrology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Nilesh S Shinde
- Nephrology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Abhijit S Chavan
- Nephrology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Tushar A Dighe
- Nephrology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Atul D Sajgure
- Nephrology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| |
Collapse
|
3
|
Rende U, Guller A, Goldys EM, Pollock C, Saad S. Diagnostic and prognostic biomarkers for tubulointerstitial fibrosis. J Physiol 2023; 601:2801-2826. [PMID: 37227074 DOI: 10.1113/jp284289] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Renal fibrosis is the final common pathophysiological pathway in chronic kidney disease (CKD) regardless of the underlying cause of kidney injury. Tubulointerstitial fibrosis (TIF) is considered to be the key pathological predictor of CKD progression. Currently, the gold-standard tool to identify TIF is kidney biopsy, an invasive method that carries risks. Non-invasive diagnostics rely on an estimation of glomerular filtration rate and albuminuria to assess kidney function, but these fail to diagnose early CKD accurately or to predict progressive decline in kidney function. In this review, we summarize the current and emerging molecular biomarkers that have been studied in various clinical settings and in animal models of kidney disease and that are correlated with the degree of TIF. We examine the potential of these biomarkers to diagnose TIF non-invasively and to predict disease progression. We also examine the potential of new technologies and non-invasive diagnostic approaches in assessing TIF. Limitations of current and potential biomarkers are discussed and knowledge gaps identified.
Collapse
Affiliation(s)
- Umut Rende
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Anna Guller
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, NSW, Australia
| | - Ewa M Goldys
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
4
|
Stem Cells in Kidney Ischemia: From Inflammation and Fibrosis to Renal Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24054631. [PMID: 36902062 PMCID: PMC10002584 DOI: 10.3390/ijms24054631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Ischemic nephropathy consists of progressive renal function loss due to renal hypoxia, inflammation, microvascular rarefaction, and fibrosis. We provide a literature review focused on kidney hypoperfusion-dependent inflammation and its influence on renal tissue's ability to self-regenerate. Moreover, an overview of the advances in regenerative therapy with mesenchymal stem cell (MSC) infusion is provided. Based on our search, we can point out the following conclusions: 1. endovascular reperfusion is the gold-standard therapy for RAS, but its success mostly depends on treatment timeliness and a preserved downstream vascular bed; 2. anti-RAAS drugs, SGLT2 inhibitors, and/or anti-endothelin agents are especially recommended for patients with renal ischemia who are not eligible for endovascular reperfusion for slowing renal damage progression; 3. TGF-β, MCP-1, VEGF, and NGAL assays, along with BOLD MRI, should be extended in clinical practice and applied to a pre- and post-revascularization protocols; 4. MSC infusion appears effective in renal regeneration and could represent a revolutionary treatment for patients with fibrotic evolution of renal ischemia.
Collapse
|
5
|
Semibulk RNA-seq analysis as a convenient method for measuring gene expression statuses in a local cellular environment. Sci Rep 2022; 12:15309. [PMID: 36097044 PMCID: PMC9468030 DOI: 10.1038/s41598-022-19391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
When biologically interpretation of the data obtained from the single-cell RNA sequencing (scRNA-seq) analysis is attempted, additional information on the location of the single cells, behavior of the surrounding cells, and the microenvironment they generate, would be very important. We developed an inexpensive, high throughput application while preserving spatial organization, named “semibulk RNA-seq” (sbRNA-seq). We utilized a microfluidic device specifically designed for the experiments to encapsulate both a barcoded bead and a cell aggregate (a semibulk) into a single droplet. Using sbRNA-seq, we firstly analyzed mouse kidney specimens. In the mouse model, we could associate the pathological information with the gene expression information. We validated the results using spatial transcriptome analysis and found them highly consistent. When we applied the sbRNA-seq analysis to the human breast cancer specimens, we identified spatial interactions between a particular population of immune cells and that of cancer-associated fibroblast cells, which were not precisely represented solely by the single-cell analysis. Semibulk analysis may provide a convenient and versatile method, compared to a standard spatial transcriptome sequencing platform, to associate spatial information with transcriptome information.
Collapse
|
6
|
Ueda S, Tominaga T, Ochi A, Sakurai A, Nishimura K, Shibata E, Wakino S, Tamaki M, Nagai K. TGF-β1 is involved in senescence-related pathways in glomerular endothelial cells via p16 translocation and p21 induction. Sci Rep 2021; 11:21643. [PMID: 34737348 PMCID: PMC8569175 DOI: 10.1038/s41598-021-01150-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
p16 inhibits cyclin-dependent kinases and regulates senescence-mediated arrest as well as p21. Nuclear p16 promotes G1 cell cycle arrest and cellular senescence. In various glomerular diseases, nuclear p16 expression is associated with disease progression. Therefore, the location of p16 is important. However, the mechanism of p16 trafficking between the nucleus and cytoplasm is yet to be fully investigated. TGF-β1, a major cytokine involved in the development of kidney diseases, can upregulate p21 expression. However, the relationship between TGF-β1 and p16 is poorly understood. Here, we report the role of podocyte TGF-β1 in regulating the p16 behavior in glomerular endothelial cells. We analyzed podocyte-specific TGF-β1 overexpression mice. Although p16 was found in the nuclei of glomerular endothelial cells and led to endothelial cellular senescence, the expression of p16 did not increase in glomeruli. In cultured endothelial cells, TGF-β1 induced nuclear translocation of p16 without increasing its expression. Among human glomerular diseases, p16 was detected in the nuclei of glomerular endothelial cells. In summary, we demonstrated the novel role of podocyte TGF-β1 in managing p16 behavior and cellular senescence in glomeruli, which has clinical relevance for the progression of human glomerular diseases.
Collapse
Affiliation(s)
- Sayo Ueda
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Arisa Ochi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Akiko Sakurai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenji Nishimura
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Eriko Shibata
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shu Wakino
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masanori Tamaki
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kojiro Nagai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
7
|
Chalkia A, Gakiopoulou H, Theohari I, Foukas PG, Vassilopoulos D, Petras D. Transforming Growth Factor-β1/Smad Signaling in Glomerulonephritis and Its Association with Progression to Chronic Kidney Disease. Am J Nephrol 2021; 52:653-665. [PMID: 34496361 DOI: 10.1159/000517619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, with diverse roles in fibrosis and inflammation, which acts through Smad signaling in renal pathology. We intended to investigate the expression of TGF-β/Smad signaling in glomerulonephritis (GN) and to assess its role as risk factor for progression to chronic kidney disease (CKD). METHODS We evaluated the immunohistochemical expression of TGF-β1, phosphorylated Smad3 (pSmad3), and Smad7 semiquantitatively and quantitatively using computerized image analysis program in different compartments of 50 renal biopsies with GN, and the results were statistically analyzed with clinicopathological parameters. We also examined the associations among their expressions, the impact of their co-expression, and their role in progression to CKD. RESULTS TGF-β1 expression correlated positively with segmental glomerulosclerosis (p= 0.025) and creatinine level at diagnosis (p = 0.002), while pSmad3 expression with interstitial inflammation (p = 0.024). In glomerulus, concomitant expressions of high Smad7 and medium pSmad3 were observed to be correlated with renal inflammation, such as cellular crescent (p = 0.011), intense interstitial inflammation (p = 0.029), and lower serum complement (C) 3 (p = 0.028) and C4 (p = 0.029). We also reported a significant association between pSmad3 expression in glomerular endothelial cells of proliferative GN (p = 0.045) and in podocytes of nonproliferative GN (p = 0.005). Finally, on multivariate Cox-regression analysis, TGF-β1 expression (hazard ratio = 6.078; 95% confidence interval: 1.168-31.627; p = 0.032) was emerged as independent predictor for CKD. DISCUSSION/CONCLUSION TGF-β1/Smad signaling is upregulated with specific characteristics in different forms of GN. TGF-β1 expression is indicated as independent risk factor for progression to CKD, while specific co-expression pattern of pSmad3 and Smad7 in glomerulus is correlated with renal inflammation.
Collapse
Affiliation(s)
- Aglaia Chalkia
- Nephrology Department, Hippokration General Hospital, Athens, Greece
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Irini Theohari
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Periklis G Foukas
- 2nd Department of Pathology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Vassilopoulos
- 2nd Department of Medicine and Laboratory, Clinical Immunology - Rheumatology Unit, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Petras
- Nephrology Department, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
8
|
Escasany E, Lanzón B, García-Carrasco A, Izquierdo-Lahuerta A, Torres L, Corrales P, Rodríguez Rodríguez AE, Luis-Lima S, Martínez Álvarez C, Javier Ruperez F, Ros M, Porrini E, Rydén M, Medina-Gómez G. Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney. Dis Model Mech 2021; 14:271939. [PMID: 34431499 PMCID: PMC8489029 DOI: 10.1242/dmm.048249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/27/2021] [Indexed: 01/06/2023] Open
Abstract
Glomerulosclerosis and tubulointerstitial fibrosis are pathological features of chronic kidney disease. Transforming growth factor β (TGFβ) is a key player in the development of fibrosis. However, of the three known TGFβ isoforms, only TGFβ1 has an established role in fibrosis, and the pathophysiological relevance of TGFβ2 and TGFβ3 is unknown. Because Tgfb3 deficiency in mice results in early postnatal lethality, we analyzed the kidney phenotype of heterozygous Tgfb3-knockout mice (Tgfb3+/−) and compared it with that of matched wild-type mice. Four-month-old Tgfb3+/− mice exhibited incipient renal fibrosis with epithelial–mesenchymal transition, in addition to glomerular basement membrane thickening and podocyte foot process effacement associated with albuminuria. Also evident was insulin resistance and oxidative stress at the renal level, together with aberrant renal lipid metabolism and mitochondrial function. Omics analysis revealed toxic species, such as diacylglycerides and ceramides, and dysregulated mitochondrial metabolism in Tgfb3+/− mice. Kidneys of Tgfb3+/− mice showed morphological alterations of mitochondria and overactivation of non-canonical MAPK ERK1/2 and JNK cascades. Our study indicates that renal TGFβ3 might have antifibrotic and renoprotective properties, opposing or counteracting the activity of TGFβ1. This article has an associated First Person interview with the first author of the paper. Summary: Our study describes the renal abnormalities of heterozygous Tgfb3-targeted mice and suggests that TGFβ3 is renoprotective and may counteract the activity of TGFβ1.
Collapse
Affiliation(s)
- Elia Escasany
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| | - Borja Lanzón
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| | - Almudena García-Carrasco
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| | - Adriana Izquierdo-Lahuerta
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| | - Lucía Torres
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| | - Patricia Corrales
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| | | | - Sergio Luis-Lima
- IIS-Fundación Jiménez Díaz, Departamento de Nefrología e Hipertensión, 28040 Madrid, Spain
| | - Concepción Martínez Álvarez
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Javier Ruperez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Manuel Ros
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| | - Esteban Porrini
- Universidad La Laguna, Instituto Tecnologías Biomédicas (ITB), 38200 La Laguna, Tenerife, Spain
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Gema Medina-Gómez
- Lipobeta group, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain.,LAFEMEX laboratory, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
9
|
Klyne DM, Barbe MF, James G, Hodges PW. Does the Interaction between Local and Systemic Inflammation Provide a Link from Psychology and Lifestyle to Tissue Health in Musculoskeletal Conditions? Int J Mol Sci 2021; 22:ijms22147299. [PMID: 34298917 PMCID: PMC8304860 DOI: 10.3390/ijms22147299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023] Open
Abstract
Musculoskeletal conditions are known to involve biological, psychological, social and, often, lifestyle elements. However, these domains are generally considered in isolation from each other. This siloed approach is unlikely to be adequate to understand the complexity of these conditions and likely explains a major component of the disappointing effects of treatment. This paper presents a hypothesis that aims to provide a foundation to understand the interaction and integration between these domains. We propose a hypothesis that provides a plausible link between psychology and lifestyle factors with tissue level effects (such as connective tissue dysregulation/accumulation) in musculoskeletal conditions that is founded on understanding the molecular basis for interaction between systemic and local inflammation. The hypothesis provides plausible and testable links between mind and body, for which empirical evidence can be found for many aspects. We present this hypothesis from the perspective of connective tissue biology and pathology (fibrosis), the role of inflammation locally (tissue level), and how this inflammation is shaped by systemic inflammation through bidirectional pathways, and various psychological and lifestyle factors via their influence on systemic inflammation. This hypothesis provides a foundation for new consideration of the development and refinement of personalized multidimensional treatments for individuals with musculoskeletal conditions.
Collapse
Affiliation(s)
- David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
- Correspondence: ; Tel.: +61-7-3365-4569
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Greg James
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| |
Collapse
|
10
|
Kuo LT, Huang APH. The Pathogenesis of Hydrocephalus Following Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22095050. [PMID: 34068783 PMCID: PMC8126203 DOI: 10.3390/ijms22095050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrocephalus is a common complication of aneurysmal subarachnoid hemorrhage (aSAH) and reportedly contributes to poor neurological outcomes. In this review, we summarize the molecular and cellular mechanisms involved in the pathogenesis of hydrocephalus following aSAH and summarize its treatment strategies. Various mechanisms have been implicated for the development of chronic hydrocephalus following aSAH, including alterations in cerebral spinal fluid (CSF) dynamics, obstruction of the arachnoid granulations by blood products, and adhesions within the ventricular system. Regarding molecular mechanisms that cause chronic hydrocephalus following aSAH, we carried out an extensive review of animal studies and clinical trials about the transforming growth factor-β/SMAD signaling pathway, upregulation of tenascin-C, inflammation-dependent hypersecretion of CSF, systemic inflammatory response syndrome, and immune dysregulation. To identify the ideal treatment strategy, we discuss the predictive factors of shunt-dependent hydrocephalus between surgical clipping and endovascular coiling groups. The efficacy and safety of other surgical interventions including the endoscopic removal of an intraventricular hemorrhage, placement of an external ventricular drain, the use of intraventricular or cisternal fibrinolysis, and an endoscopic third ventriculostomy on shunt dependency following aSAH were also assessed. However, the optimal treatment is still controversial, and it necessitates further investigations. A better understanding of the pathogenesis of acute and chronic hydrocephalus following aSAH would facilitate the development of treatments and improve the outcome.
Collapse
|
11
|
Burvenich IJG, Goh YW, Guo N, Gan HK, Rigopoulos A, Cao D, Liu Z, Ackermann U, Wichmann CW, McDonald AF, Huynh N, O'Keefe GJ, Gong SJ, Scott FE, Li L, Geng W, Zutshi A, Lan Y, Scott AM. Radiolabelling and preclinical characterization of 89Zr-Df-radiolabelled bispecific anti-PD-L1/TGF-βRII fusion protein bintrafusp alfa. Eur J Nucl Med Mol Imaging 2021; 48:3075-3088. [PMID: 33608805 DOI: 10.1007/s00259-021-05251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Τhis study aimed to optimize the 89Zr-radiolabelling of bintrafusp alfa investigational drug product and controls, and perform the in vitro and in vivo characterization of 89Zr-Df-bintrafusp alfa and 89Zr-Df-control radioconjugates. METHODS Bintrafusp alfa (anti-PD-L1 human IgG1 antibody fused to TGF-β receptor II (TGF-βRII), avelumab (anti-PD-L1 human IgG1 control antibody), isotype control (mutated inactive anti-PD-L1 IgG1 control antibody), and trap control (mutated inactive anti-PD-L1 human IgG1 fused to active TGF-βRII) were chelated with p-isothiocyanatobenzyl-desferrioxamine (Df). After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. In vivo biodistribution and imaging studies were performed with PET/CT to identify and quantitate 89Zr-Df-bintrafusp alfa tumour uptake in a PD-L1/TGF-β-positive murine breast cancer model (EMT-6). Specificity of 89Zr-Df-bintrafusp alfa was assessed via a combined biodistribution and imaging experiment in the presence of competing cold bintrafusp alfa (1 mg/kg). RESULTS Nanomolar affinities for PD-L1 were achieved with 89Zr-Df-bintrafusp alfa and 89Zr-avelumab. Biodistribution and imaging studies in PD-L1- and TGF-β-positive EMT-6 tumour-bearing BALB/c mice demonstrated the biologic similarity of 89Zr-Df-bintrafusp alfa and 89Zr-avelumab indicating the in vivo distribution pattern of bintrafusp alfa is driven by its PD-L1 binding arm. Competition study with 1 mg of unlabelled bintrafusp alfa or avelumab co-administered with trace dose of 89Zr-labelled bintrafusp alfa demonstrated the impact of dose and specificity of PD-L1 targeting in vivo. CONCLUSION Molecular imaging of 89Zr-Df-bintrafusp alfa biodistribution was achievable and allows non-invasive quantitation of tumour uptake of 89Zr-Df-bintrafusp alfa, suitable for use in bioimaging clinical trials in cancer patients.
Collapse
Affiliation(s)
- Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Yit Wooi Goh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Hui Kong Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Diana Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Zhanqi Liu
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Uwe Ackermann
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Alexander Franklin McDonald
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nhi Huynh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Sylvia Jie Gong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Linghui Li
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Wanping Geng
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Anup Zutshi
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Yan Lan
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
12
|
Sisto M, Ribatti D, Lisi S. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules 2021; 11:biom11020310. [PMID: 33670735 PMCID: PMC7922523 DOI: 10.3390/biom11020310] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Collapse
|
13
|
Gil CL, Hooker E, Larrivée B. Diabetic Kidney Disease, Endothelial Damage, and Podocyte-Endothelial Crosstalk. Kidney Med 2021; 3:105-115. [PMID: 33604542 PMCID: PMC7873832 DOI: 10.1016/j.xkme.2020.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetes-related complications are a significant source of morbidity and mortality worldwide. Diabetic kidney disease is a frequent microvascular complication and a primary cause of kidney failure in patients with diabetes. The glomerular filtration barrier is composed of 3 layers: the endothelium, glomerular basement membrane, and podocytes. Podocytes and the endothelium communicate through molecular crosstalk to maintain filtration at the glomerular filtration barrier. Chronic hyperglycemia affects all 3 layers of the glomerular filtration barrier, as well as the molecular crosstalk that occurs between the 2 cellular layers. One of the earliest events following chronic hyperglycemia is endothelial cell dysfunction. Early endothelial damage is associated with progression of diabetic kidney disease. However, current therapies are based in controlling glycemia and arterial blood pressure without targeting endothelial dysfunction. Disruption of the endothelial cell layer also alters the molecular crosstalk that occurs between the endothelium and podocytes. This review discusses both the physiologic and pathologic communication that occurs at the glomerular filtration barrier. It examines how these signaling components contribute to podocyte foot effacement, podocyte detachment, and the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Cindy Lora Gil
- Department of Biomedical Sciences, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Erika Hooker
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Bruno Larrivée
- Department of Ophtalmology, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
14
|
Cheng TH, Ma MC, Liao MT, Zheng CM, Lu KC, Liao CH, Hou YC, Liu WC, Lu CL. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins (Basel) 2020; 12:E684. [PMID: 33138205 PMCID: PMC7693919 DOI: 10.3390/toxins12110684] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin, causes chronic kidney disease (CKD) progression via its tubulotoxicity. After cellular uptake, IS directly induces apoptotic and necrotic cell death of tubular cells. Additionally, IS increases oxidative stress and decreases antioxidant capacity, which are associated with tubulointerstitial injury. Injured tubular cells are a major source of transforming growth factor-β1 (TGF-β1), which induces myofibroblast transition from residual renal cells in damaged kidney, recruits inflammatory cells and thereby promotes extracellular matrix deposition in renal fibrosis. Moreover, IS upregulates signal transducers and activators of transcription 3 phosphorylation, followed by increases in TGF-β1, monocyte chemotactic protein-1 and α-smooth muscle actin production, which participate in interstitial inflammation, renal fibrosis and, consequently, CKD progression. Clinically, higher serum IS levels are independently associated with renal function decline and predict all-cause mortality in CKD. The poor removal of serum IS in conventional hemodialysis is also significantly associated with all-cause mortality and heart failure incidence in end-stage renal disease patients. Scavenging the IS precursor by AST-120 can markedly reduce tubular IS staining that attenuates renal tubular injury, ameliorates IS-induced oxidative stress and rescues antioxidant glutathione activity in tubular epithelial cells, thereby providing a protective role against tubular injury and ultimately retarding renal function decline.
Collapse
Affiliation(s)
- Tong-Hong Cheng
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei 235, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
| | - Chun-Hou Liao
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Divisions of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei 23148, Taiwan
| | - Yi-Chou Hou
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei 234, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei 242, Taiwan;
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei 242, Taiwan
| |
Collapse
|
15
|
Szóstek-Mioduchowska A, Leciejewska N, Zelmańska B, Staszkiewicz-Chodor J, Ferreira-Dias G, Skarzynski D. Lysophosphatidic acid as a regulator of endometrial connective tissue growth factor and prostaglandin secretion during estrous cycle and endometrosis in the mare. BMC Vet Res 2020; 16:343. [PMID: 32943074 PMCID: PMC7499873 DOI: 10.1186/s12917-020-02562-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background Equine endometrosis is a chronic degenerative condition, described as endometrial fibrosis that forms in the stroma, under the basement membrane and around the endometrial glands. The role of lysophosphatidic acid (LPA) in the development of tissue fibrosis varies depending on the organ, and its profibrotic role in mare endometrosis remains unclear. The study aimed to establish the endometrial presence of LPA and its receptors (LPAR1–4), together with its effects on connective tissue growth factor (CTGF) and prostaglandins (PG) secretion from equine endometrium under physiological (estrous cycle), or pathological conditions (endometrosis). Mare endometria in the mid-luteal phase (n = 5 for each category I, IIA, IIB, III of Kenney and Doig) and in the follicular phase (n = 5 for each category I, IIA, III and n = 4 for IIB) were used. In experiment 1, the levels of LPA, LPAR1–4 mRNA level and protein abundance were investigated in endometria at different stages of endometrosis. In experiment 2, the in vitro effect of LPA (10− 9 M) on the secretion of CTGF and PGs from endometrial tissue explants at different stages of endometrosis were determined. Results Endometrial LPA concentration was higher in the mid-luteal phase compared to the follicular phase in category I endometrium (P < 0.01). There was an alteration in endometrial concentrations of LPA and LPAR1–4 protein abundance in the follicular phase at different stages of endometrosis (P < 0.05). Additionally, LPA increased the secretion of PGE2 from category I endometrium in both phases of the estrous cycle (P < 0.05). The effect of LPA on the secretion of CTGF and PGF2α from endometrial tissue was altered depending on different stages of endometrosis (P < 0.05). Conclusion Our data indicate that endometrosis disturbs proper endometrial function and is associated with altered endometrial LPA concentration, its receptor expression and protein abundance, PGE2/PGF2α ratio, and CTGF secretion in response to LPA. These changes could influence several physiological events occurring in endometrium in mare during estrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland.
| | - Natalia Leciejewska
- Department of Animal Physiology and Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Beata Zelmańska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| | - Joanna Staszkiewicz-Chodor
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| | - Graça Ferreira-Dias
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| |
Collapse
|
16
|
Ullah MM, Basile DP. Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Semin Nephrol 2020; 39:567-580. [PMID: 31836039 DOI: 10.1016/j.semnephrol.2019.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, there has been an increased appreciation of the long-term sequelae of acute kidney injury (AKI) and the potential development of chronic kidney disease (CKD). Several pathophysiologic features have been proposed to mediate AKI to CKD progression including maladaptive alterations in tubular, interstitial, inflammatory, and vascular cells. These alterations likely interact to culminate in the progression to CKD. In this article we focus primarily on evidence of vascular rarefaction secondary to AKI, and the potential mechanisms by which rarefaction occurs in relation to other alterations in tubular and interstitial compartments. We further focus on the potential that rarefaction contributes to renal hypoxia. Consideration of the role of hypoxia in AKI to CKD transition focuses on experimental evidence of persistent renal hypoxia after AKI and experimental maneuvers to evaluate the influence of hypoxia, per se, in progressive disease. Finally, consideration of methods to evaluate hypoxia in patients is provided with the suggestion that noninvasive measurement of renal hypoxia may provide insight into progression in post-AKI patients.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN
| | - David P Basile
- Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, IN.
| |
Collapse
|
17
|
Barbe MF, Hilliard BA, Amin M, Harris MY, Hobson LJ, Cruz GE, Popoff SN. Blocking CTGF/CCN2 reduces established skeletal muscle fibrosis in a rat model of overuse injury. FASEB J 2020; 34:6554-6569. [PMID: 32227398 PMCID: PMC7200299 DOI: 10.1096/fj.202000240rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Tissue fibrosis is a hallmark of overuse musculoskeletal injuries and contributes to functional declines. We tested whether inhibition of CCN2 (cellular communication network factor 2, previously known as connective tissue growth factor, CTGF) using a specific antibody (termed FG‐3019 or pamrevlumab) reduces established overuse‐induced muscle fibrosis in a clinically relevant rodent model of upper extremity overuse injury. Young adult rats performed a high repetition high force (HRHF) reaching and lever‐pulling task for 18 weeks, after first being shaped for 6 weeks to learn this operant task. Rats were then euthanized (HRHF‐Untreated), or rested and treated for 6 weeks with FG‐3019 (HRHF‐Rest/FG‐3019) or a human IgG as a vehicle control (HRHF‐Rest/IgG). HRHF‐Untreated and HRHF‐Rest/IgG rats had higher muscle levels of several fibrosis‐related proteins (TGFβ1, CCN2, collagen types I and III, and FGF2), and higher muscle numbers of alpha SMA and pERK immunopositive cells, compared to control rats. Each of these fibrogenic changes was restored to control levels by the blocking of CCN2 signaling in HRHF‐Rest/FG‐3019 rats, as were HRHF task‐induced increases in serum CCN2 and pro‐collagen I intact N‐terminal protein. Levels of cleaved CCN3, an antifibrotic protein, were lowered in HRHF‐Untreated and HRHF‐Rest/IgG rats, compared to control rats, yet elevated back to control levels in HRHF‐Rest/FG‐3019 rats. Significant grip strength declines observed in HRHF‐Untreated and HRHF‐Rest/IgG rats, were restored to control levels in HRHF‐Rest/FG‐3019 rats. These results are highly encouraging for use of FG‐3019 for therapeutic treatment of persistent skeletal muscle fibrosis, such as those induced with chronic overuse.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Brendan A Hilliard
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michele Y Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lucas J Hobson
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Geneva E Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Mizdrak M, Filipović N, Vukojević K, Čapkun V, Mizdrak I, Durdov MG. Prognostic value of connective tissue growth factor and c-Myb expression in IgA nephropathy and Henoch-Schönlein purpura-A pilot immunohistochemical study. Acta Histochem 2020; 122:151479. [PMID: 31870504 DOI: 10.1016/j.acthis.2019.151479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
AIM Adverse and advanced prognostic signs in IgA nephropathy (IgAN) are interstitial fibrosis and tubular atrophy, but early predictors of bad outcome are still lacking. We investigated expression of connective tissue growth factor (CTGF) and c-Myb in renal biopsies of IgAN and Henoch-Schönlein purpura (HSP), because these gene products are indirectly included in fibrosis and epithelial-mesenchymal transition (EMT). METHODS The sample included 23 patients and 8 controls who underwent nephrectomy due to renal cancer. The slides cut from the paraffin blocks were prepared for standard indirect immunoflourescence, using antibodies to CTGF and c-Myb. Ten high-power non-overlapping fields were photographed on Olympus IX51 microscope. Average percent of positive tubular cells, as well as number of positive cells per glomerulus were calculated. RESULTS The cytoplasmic tubular CTGF expression was higher in IgAN/HSP than in controls (P < 0.001), whereas no difference was found in glomeruli (P = 0.437). The nuclear c-Myb expresssion in glomeruli and tubules was higher in IgAN/HSP than in controls (P < 0.05). In the follow-up, decline in renal function correlated with glomerular and tubular c-Myb, as well as tubular CTGF expression (all P < 0.05). CONCLUSION Our results proposed c-Myb and CTGF as novel, early and sensitive markers of chronic kidney disease and worse renal outcome, but larger series are needed.
Collapse
|
19
|
Black LM, Lever JM, Agarwal A. Renal Inflammation and Fibrosis: A Double-edged Sword. J Histochem Cytochem 2019; 67:663-681. [PMID: 31116067 PMCID: PMC6713973 DOI: 10.1369/0022155419852932] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Renal tissue injury initiates inflammatory and fibrotic processes that occur to promote regeneration and repair. After renal injury, damaged tissue releases cytokines and chemokines, which stimulate activation and infiltration of inflammatory cells to the kidney. Normal tissue repair processes occur simultaneously with activation of myofibroblasts, collagen deposition, and wound healing responses; however, prolonged activation of pro-inflammatory and pro-fibrotic cell types causes excess extracellular matrix deposition. This review focuses on the physiological and pathophysiological roles of specialized cell types, cytokines/chemokines, and growth factors, and their implications in recovery or exacerbation of acute kidney injury.
Collapse
Affiliation(s)
- Laurence M Black
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Jeremie M Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
- Department of Veterans Affairs, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
20
|
Glomerular Expression of Some Profibrotic Factors in Progressive Childhood Lupus Nephritis. J Clin Rheumatol 2019; 26:305-312. [PMID: 31356397 DOI: 10.1097/rhu.0000000000001118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Lupus nephritis (LN) is a major cause of mortality and morbidity in both adult and pediatric patients. However, studies regarding pathogenesis and predictors of renal outcomes in childhood LN are limited. Transforming growth factor-β1 (TGF-β1) and Connective tissue growth factor (CTGF) have an important role in proliferative and fibrotic changes in many renal diseases. We aim to evaluate the role of such two profibrotic factors in the progression of childhood onset LN and to detect if their glomerular expression could represent an early predictor of future deterioration of renal function. METHODS 34 children with new onset of LN were included. Glomerular expressions of TGF-β1 and CTGF were evaluated by immunohistochemical analysis in the renal tissue of such patients and in control tissue. GFR was estimated at time of renal biopsy at the onset of LN and after 2 years of follow-up. Rate of GFR change (ΔGFR) was calculated and used as indicative of degree of renal disease progression. RESULTS Glomerular TGF-β1 and CTGF expressions in children with LN were significantly higher than in control tissue (LN 15.41 ± 9.84 and 15.56 ± 10.51 vs. 2.15 ± 1.45 and 1.35 ± 1.07 in control respectively, with p < 0.001 in both). In addition, the glomerular expressions of TGF-β1 and CTGF were significantly higher in patients with further decline in GFR (20.68 ± 7.73 and 21.05 ± 8.75) versus (5.75 ± 4.37 and 5.50 ± 3.78) in those without change in GFR with (p = 0.000 for both of them). CONCLUSIONS Patients with LN have increased glomerular expressions of TGF-β1 and CTGF, which were higher in those with further decline in GFR. These profibrotic factors are suspected to be involved in pathogenesis of LN and could be evaluated as a target for therapeutic intervention to stop progression of LN. In addition, their glomerular expression could be used as an early predictor of progression of LN, to justify early aggressive therapy in those with suspected rapid progression.
Collapse
|
21
|
Lopes TG, de Souza ML, da Silva VD, dos Santos M, da Silva WIC, Itaquy TP, Garbin HI, Veronese FV. Markers of renal fibrosis: How do they correlate with podocyte damage in glomerular diseases? PLoS One 2019; 14:e0217585. [PMID: 31220088 PMCID: PMC6586273 DOI: 10.1371/journal.pone.0217585] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal fibrosis is the result of the interaction of cellular and molecular pathways, which is induced by sustained glomerular injury and involves the podocytes and multiple profibrotic factors. In this study, we investigated the correlation of the mRNA expression of podocyte proteins and profibrotic factors with renal fibrosis measured in renal biopsies of patients with primary and secondary glomerulopathies. METHODS Eighty-four adult patients with primary or secondary glomerular diseases and 12 controls were included. Demographic and clinical data were collected. Seventy-two percent of the renal biopsies were done less than one year from clinical disease manifestation. The quantification of the podocyte-associated mRNAs of alpha-actinin-4, podocin, and podocalyxin, as well as of the profibrotic factors TGF-β1, CTGF, and VEGF-A were quantified by real-time polymerase chain reaction. The percent positive area of renal fibrosis was measured by immunohistochemistry staining, using anti-CTGF and anti-HHF35 antibodies and unpolarized Sirius Red. Correlations between the expression of tissue mRNAs and the positive area of fibrosis for the measured markers were made by Spearman's rank correlation coefficient. RESULTS In relation to control biopsies, podocyte-specific proteins were downregulated in podocytopathies, in proliferative nephritis, in diabetic kidney disease (DRD), and in IgA nephropathy (IgAN). Messenger RNA of TGF-β1, CTGF, and VEGF-A was upregulated in patients with podocytopathies and in DRD but not in proliferative nephritis and IgAN. Tissue mRNA expression of TGF-β1, CTGF, and VEGF-A were strongly correlated with renal fibrosis, as measured by HHF35; however, the correlation, albeit significant, was moderate for Sirius Red and weak for CTGF. The percent positive area of renal fibrosis measured by Sirius Red was similar between podocytopathies and DRD and significantly higher in podocytopathies compared to IgAN or proliferative nephritis. CONCLUSIONS In patients with glomerular diseases, the mRNA of TGF-β1, CTGF, and VEGF-A correlated positively with the extent of renal fibrosis, and the positive area of fibrosis was larger in the podocytopathies and in DRD as measured by Sirius Red. The pathways connecting podocyte damage and activation of profibrotic factors to kidney tissue fibrosis need to be better investigated.
Collapse
Affiliation(s)
- Tiago Giulianni Lopes
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Molecular Biology Applied to Nephrology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maysa Lucena de Souza
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Molecular Biology Applied to Nephrology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Mariane dos Santos
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Molecular Biology Applied to Nephrology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - William Israel Cardoso da Silva
- Laboratory of Molecular Biology Applied to Nephrology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Pereira Itaquy
- Laboratory of Molecular Biology Applied to Nephrology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique Iahnke Garbin
- Laboratory of Molecular Biology Applied to Nephrology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Francisco Veríssimo Veronese
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Molecular Biology Applied to Nephrology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Division of Nephrology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Ramzy MM, Abdalla AM, Zenhom NM, Okasha AM, Abdelkafy AE, Saleh RK. Therapeutic effect of liraglutide on expression of CTGF and BMP-7 in induced diabetic nephropathy. J Cell Biochem 2019; 120:17512-17519. [PMID: 31127659 DOI: 10.1002/jcb.29015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetic nephropathy (DN) is one of the critical complications of diabetes mellitus and the main cause of chronic renal dysfunction. The pathogenic mechanism causing the disease remains unclear and there is a lack of effective treatment methods so novel strategies are needed for DN management. The aim of this study, therefore, is to evaluate the effect of liraglutide as glucagon-like peptide-1 analogue and its underlying mechanisms on induced DN in rats MATERIALS AND METHODS: Sixty rats were divided into control group, diabetic group, and liraglutide-treated group. At the end of experiment, renal CTGF and BMP-7 messeger RNA expression were determined. Blood sugar, serum urea, and creatinine were measured. Also, histopathological changes were studied. RESULTS Liraglutide can improve renal alterations associated with diabetes as it reduced CTGF expression and increased BMP-7 expression. In the same time, it could improve histopathological changes and renal function tests. CONCLUSION These findings influence the beneficial use of liraglutide for the management of DN in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Maggie M Ramzy
- Department of Biochemistry, Faculty of Medicine, Minia University, Minya, Egypt
| | - Ahlam M Abdalla
- Department of Biochemistry, Faculty of Medicine, Minia University, Minya, Egypt
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Minya, Egypt
| | - Ahmed M Okasha
- Department of Biochemistry, Faculty of Medicine, Minia University, Minya, Egypt
| | - Aya E Abdelkafy
- Department of Biochemistry, Faculty of Medicine, Minia University, Minya, Egypt
| | - Rabeh K Saleh
- Department of Pathology, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
23
|
Yin Q, Liu H. Connective Tissue Growth Factor and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:365-380. [PMID: 31399974 DOI: 10.1007/978-981-13-8871-2_17] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
CCN2, also known as connective tissue growth factor (CTGF), is one of important members of the CCN family. Generally, CTGF expresses at low levels in normal adult kidney, while increases significantly in various kidney diseases, playing an important role in the development of glomerular and tubulointerstitial fibrosis in progressive kidney diseases. CTGF is involved in cell proliferation, migration, and differentiation and can promote the progression of fibrosis directly or act as a downstream factor of transforming growth factor β (TGF-β). CTGF also regulates the expression and activity of TGF-β and bone morphogenetic protein (BMP), thereby playing an important role in the process of kidney repair. In patients with chronic kidney disease, elevated plasma CTGF is an independent risk factor for progression to end-stage renal disease and is closely related to glomerular filtration rate. Therefore, CTGF may be a potential biological marker of kidney fibrosis, but more clinical studies are needed to confirm this view. This section briefly describes the role and molecular mechanisms of CTGF in renal fibrosis and also discusses the potential value of targeting CCN2 for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
24
|
Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen 2018; 38:14. [PMID: 30123390 PMCID: PMC6091167 DOI: 10.1186/s41232-018-0070-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/08/2018] [Indexed: 01/27/2023] Open
Abstract
Background Glomerulonephritis, which causes inflammation in glomeruli, is a common cause of end-stage renal failure. Severe and prolonged inflammation can damage glomeruli and lead to kidney fibrosis. Connective tissue growth factor (CTGF) is a member of the CCN matricellular protein family, consisting of four domains, that regulates the signaling of other growth factors and promotes kidney fibrosis. Main body of the abstract CTGF can simultaneously interact with several factors with its four domains. The microenvironment differs depending on the types of cells and tissues and differentiation stages of these cells. The diverse biological actions of CTGF on various types of cells and tissues depend on this difference in microenvironment. In the kidney, CTGF is expressed at low levels in normal condition and its expression is upregulated by kidney fibrosis. CTGF expression is known to be upregulated in the extra-capillary and mesangial lesions of glomerulonephritis in human kidney biopsy samples. In addition to involvement in fibrosis, CTGF modulates the expression of inflammatory mediators, including cytokines and chemokines, through distinct signaling pathways, in various cell systems. In anti-glomerular basement membrane (GBM) glomerulonephritis, systemic CTGF knockout (Rosa-CTGF cKO) mice exhibit 50% reduction of proteinuria and decreased crescent formation and mesangial expansion compared with control mice. In addition to fibrotic markers, the glomerular mRNA expression of Ccl2 is increased in the control mice with anti-GBM glomerulonephritis, and this increase is reduced in Rosa-CTGF cKO mice with nephritis. Accumulation of MAC2-positive cells in glomeruli is also reduced in Rosa-CTGF cKO mice. These results suggest that CTGF may be required for the upregulation of Ccl2 expression not only in anti-GBM glomerulonephritis but also in other types of glomerulonephritis, such as IgA nephropathy; CTGF expression and accumulation of macrophages in the mesangial area have been documented in these glomerular diseases. CTGF induces the expression of inflammatory mediators and promotes cell adhesion. Short conclusion CTGF plays an important role in the development of glomerulonephritis by inducing the inflammatory process. CTGF is a potentiate target for the treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Naohiro Toda
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Masashi Mukoyama
- 2Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Motoko Yanagita
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hideki Yokoi
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
25
|
Seleem AA, Sultan ARS, Said A, Shahat MM, Moustafa MA. Localization of connective tissue growth factor (CTGF) and transforming growth factor beta-2 (TGF-β2) during eye development of four species of birds. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1475861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Amin A. Seleem
- Biology Department, Faculty of Science and Arts, Taibah University, Allula, Kingdom of Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Ahmed Said
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed M. Shahat
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohsen A. Moustafa
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
26
|
Frara N, Fisher PW, Zhao Y, Tarr JT, Amin M, Popoff SN, Barbe MF. Substance P increases CCN2 dependent on TGF-beta yet Collagen Type I via TGF-beta1 dependent and independent pathways in tenocytes. Connect Tissue Res 2018; 59:30-44. [PMID: 28399671 PMCID: PMC5581284 DOI: 10.1080/03008207.2017.1297809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transforming growth factor beta 1 (TGFbeta-1) and connective tissue growth factor (CCN2) are important mediators of tissue repair and fibrosis, with CCN2 functioning as a downstream mediator of TGFβ-1. Substance P (SP) is also linked to collagen production in tenocytes. A link between SP, TGFbeta-1 and CCN2 has yet to be established in tenocytes or fibrogenic processes. We sought to determine whether SP induces tenocyte proliferation, CCN2, or collagen production via TGFbeta-1 signaling or independently in rat primary tenocytes. Tenocytes were isolated from rat tendons, cultured and stimulated by SP and/or TGFbeta-1. Cultured cells expressed proteins characteristic of tenocytes (vimentin and tenomodulin) and underwent increased proliferation dose dependently after SP and TGFbeta-1 treatments, alone or combined (more than SP alone when combined). SP induced TGFbeta-1 expression in tenocytes in both dose- and time-dependent manners. SP and TGFbeta-1, alone or combined, stimulated CCN2 expression in tenocytes and their supernatants after both 24 and 48 h of stimulation; a response blocked with addition of a TGFbeta-1 receptor inhibitor. In contrast, SP potentiated collagen type I secretion by tenocytes, a response abrogated by the TGFbeta-1 receptor inhibitor after 48 h of stimulation, but not after the shorter 24 h of stimulation. Our findings suggest that both SP and TGFbeta-1 can stimulate tenocyte fibrogenic processes, albeit differently. TGFbeta-1 pathway signaling was involved in CCN2 production at all time points examined, while SP induced collagen type I production independently prior to the onset of signaling through the TGFbeta-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary F. Barbe
- Corresponding Author: Mary F. Barbe, PhD, Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500 North Broad St., Philadelphia, PA 19140, 215/707-6422 phone, 215/707-2966 fax,
| |
Collapse
|
27
|
Vanhove T, Kinashi H, Nguyen TQ, Metalidis C, Poesen K, Naesens M, Lerut E, Goldschmeding R, Kuypers DRJ. Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis. Transpl Int 2017; 30:695-705. [PMID: 28390067 DOI: 10.1111/tri.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/27/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Connective tissue growth factor (CTGF) is an important mediator of renal allograft fibrosis, and urinary CTGF (CTGFu) levels correlate with the development of human allograft interstitial fibrosis. We evaluated the predictive value of CTGF protein expression in 160 kidney transplant recipients with paired protocol biopsies at 3 months and 5 years after transplantation. At month 3 and year 1, CTGFu was measured using ELISA, and biopsies were immunohistochemically stained for CTGF, with semiquantitative scoring of tubulointerstitial CTGF-positive area (CTGFti). Predictors of interstitial fibrosis and tubular atrophy (IF/TA) severity at 5 years were donor age [OR 1.05 (1.02-1.08), P = 0.001], female donor [OR 0.40 (0.18-0.90), P = 0.026], induction therapy [OR 2.76 (1.10-6.89), P = 0.030], and CTGFti >10% at month 3 [OR 2.72 (1.20-6.15), P = 0.016]. In subgroups of patients with little histologic damage at 3 months [either ci score 0 (n = 119), IF/TA score ≤1 (n = 123), or absence of IF/TA, interstitial inflammation, and tubulitis (n = 45)], consistent predictors of progression of chronic histologic damage by 5 years were donor age, induction therapy, CTGFti >10%, and CTGFu. These results suggest that, even in patients with favorable histology at 3 months, significant CTGF expression is often present which may predict accelerated accumulation of histologic damage.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Hiroshi Kinashi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Nephrology, Nagoya University Hospital, Nagoya, Japan
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Metalidis
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Poesen
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Luo D, Guan Q, Wang K, Nguan CY, Du C. TGF-β1 stimulates movement of renal proximal tubular epithelial cells in a three-dimensional cell culture via an autocrine TGF-β2 production. Exp Cell Res 2017; 350:132-139. [DOI: 10.1016/j.yexcr.2016.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/30/2022]
|
29
|
Rocha LP, Xavier SC, Helmo FR, Machado JR, Ramalho FS, Dos Reis MA, Corrêa RRM. Epithelial-mesenchymal transition in pediatric nephropathies. Pathol Res Pract 2016; 212:1157-1166. [PMID: 27707584 DOI: 10.1016/j.prp.2016.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells may express mesenchymal cell markers with subsequent change in their functions, and it may be part of the etiopathogenesis of kidney disease. OBJECTIVE The aim of this study was to evaluate the immunexpression of some EMT inducers and markers in frequent nephropathies in pediatric patients. METHODS 59 patients aged 2-18 years old were selected and divided into 6 groups of frequent nephropathies in children and adolescents, as well as one control group. Urea and creatinine data of the patients were recorded. TGF-β3, fibronectin, α-SMA and vimentin were evaluated by immunohistochemistry. RESULTS Glomerular TGF-β3 was higher in the Lupus Nephritis and Acute Diffuse Glomerulonephritis (ADGN) groups than in the control group. Glomerular fibronectin was higher in the Podocytopathy, Lupus Nephritis, ADGN and Membranous Glomerulopathy patients than in control subjects. The expression of α-SMA was higher in the tubulointerstitial compartment of ADGN and Membranous Glomerulopathy groups than in the control group. Glomerular α-SMA was higher in ADGN patients than in control and Berger's Disease groups. Glomerular vimentin was higher in individuals with ADGN than in those with Podocytopathy, Lupus Nephritis, Berger's Disease and Thin Basement Membrane Disease/Alport Syndrome. There was a positive correlation between fibronectin in the tubulointerstitial compartment and creatinine levels, between α-SMA and vimentin in both tubulointerstitial and glomerular compartments, and between urea and creatinine levels of patients, regardless of their nephropathy (p<0.05 for all results). CONCLUSION These markers may possibly be used as indicators of renal functional impairment in various nephropathies in pediatric patients.
Collapse
Affiliation(s)
- Laura Penna Rocha
- Department of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | - Samuel Cavalcante Xavier
- Department of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Fernanda Rodrigues Helmo
- Department of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Fernando Silva Ramalho
- Department of Pathology and Forensic Medicine, Ribeirão Preto Faculty of Medicine of São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Marlene Antônia Dos Reis
- Department of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rosana Rosa Miranda Corrêa
- Department of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
30
|
Chun J, Chung H, Wang X, Barry R, Taheri ZM, Platnich JM, Ahmed SB, Trpkov K, Hemmelgarn B, Benediktsson H, James MT, Muruve DA. NLRP3 Localizes to the Tubular Epithelium in Human Kidney and Correlates With Outcome in IgA Nephropathy. Sci Rep 2016; 6:24667. [PMID: 27093923 PMCID: PMC4837396 DOI: 10.1038/srep24667] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 01/03/2023] Open
Abstract
Nod-like receptor pyrin domain-containing-3 (NLRP3) has been implicated in the pathogenesis of experimental renal injury, yet its characterization in human kidney disease remains largely unexplored. NLRP3 expression was evaluated in human kidney biopsies, primary renal tubular cells (HPTC) and correlated to disease outcomes in patients with IgA nephropathy (IgAN). NLRP3 localized to renal tubules in normal human kidney tissue and to mitochondria within HPTC by immunohistochemistry and immunofluorescence microscopy. Compared to control kidneys, NLRP3 gene expression was increased in biopsies of patients with IgAN. While NLRP3 expression in IgAN was detected in glomeruli, it remained largely confined to the tubular epithelial compartment. In vitro NLRP3 mRNA and protein expression were transiently induced in HPTC by TGF-β1 but subsequently diminished over time as cells lost their epithelial phenotype in a process regulated by transcription and ubiquitin-mediated degradation. Consistent with the in vitro data, low NLRP3 mRNA expression in kidney biopsies was associated with a linear trend of higher risk of composite endpoint of doubling serum creatinine and end stage renal disease in patients with IgAN. Taken together, these data show that NLRP3 is primarily a kidney tubule-expressed protein that decreases in abundance in progressive IgAN.
Collapse
Affiliation(s)
- Justin Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Xiangyu Wang
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Barry
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Zohreh Mohammad Taheri
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jaye M Platnich
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sofia B Ahmed
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Brenda Hemmelgarn
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hallgrimur Benediktsson
- Department of Pathology and Laboratory Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Matthew T James
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Daniel A Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Benali SL, Lees GE, Nabity MB, Aricò A, Drigo M, Gallo E, Giantin M, Aresu L. X-Linked Hereditary Nephropathy in Navasota Dogs: Clinical Pathology, Morphology, and Gene Expression During Disease Progression. Vet Pathol 2016; 53:803-12. [PMID: 26917550 DOI: 10.1177/0300985815624494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
X-linked hereditary nephropathy (XLHN) in Navasota dogs is a spontaneously occurring disease caused by a mutation resulting in defective production of type IV collagen and juvenile-onset renal failure. The study was aimed at examining the evolution of renal damage and the expression of selected molecules potentially involved in the pathogenesis of XLHN. Clinical data and renal samples were obtained in 10 XLHN male dogs and 5 controls at 4 (T0), 6 (T1), and 9 (T2) months of age. Glomerular and tubulointerstitial lesions were scored by light microscopy, and the expression of 21 molecules was investigated by quantitative real-time polymerase chain reaction with selected proteins evaluated by immunohistochemistry. No significant histologic lesions or clinicopathologic abnormalities were identified in controls at any time-point. XLHN dogs had progressive proteinuria starting at T0. At T1, XLHN dogs had a mesangioproliferative glomerulopathy with glomerular loss, tubular necrosis, and interstitial fibrosis. At T2, glomerular and tubulointerstitial lesions were more severe, particularly glomerular loss, interstitial fibrosis, and inflammation. At T0, transforming growth factor β, connective tissue growth factor, and platelet-derived growth factor α mRNA were overexpressed in XLHN dogs compared with controls. Clusterin and TIMP1 transcripts were upregulated in later stages of the disease. Transforming growth factor β, connective tissue growth factor, and platelet-derived growth factor α should be considered as key players in the initial events of XHLN. Clusterin and TIMP1 appear to be more associated with the progression rather than initiation of tubulointerstitial damage in chronic renal disease.
Collapse
Affiliation(s)
- S L Benali
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Italy
| | - G E Lees
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - M B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A Aricò
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Italy
| | - M Drigo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università, Legnaro, Italy
| | - E Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Italy
| | - L Aresu
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Italy
| |
Collapse
|
32
|
Sureshbabu A, Muhsin SA, Choi ME. TGF-β signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol 2016; 310:F596-F606. [PMID: 26739888 DOI: 10.1152/ajprenal.00365.2015] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is generally considered as a central mediator of fibrotic diseases. Indeed, much focus has been placed on inhibiting TGF-β and its downstream targets as ideal therapeutic strategies. However, pharmacological blockade of TGF-β has not yet translated into successful therapy for humans, which may be due to pleiotropic effects of TGF-β signaling. Equally, TGF-β signaling as a protective response in kidney injury has been relatively underexplored. An emerging body of evidence from experimental kidney disease models indicates multifunctionality of TGF-β capable of inducing profibrotic and protective effects. This review discusses recent advances highlighting the diverse roles of TGF-β in promoting not only renal fibrosis but also protective responses of TGF-β signaling. We review, in particular, growing evidence that supports protective effects of TGF-β by mechanisms which include inhibiting inflammation and induction of autophagy. Additional detailed studies are required to fully understand the diverse mechanisms of TGF-β actions in renal fibrosis and inflammation that will likely direct toward effective antifibrotic therapies.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | - Saif A Muhsin
- New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; and .,New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| |
Collapse
|
33
|
Gerritsen KGF, Leeuwis JW, Koeners MP, Bakker SJL, van Oeveren W, Aten J, Tarnow L, Rossing P, Wetzels JFM, Joles JA, Kok RJ, Goldschmeding R, Nguyen TQ. Elevated Urinary Connective Tissue Growth Factor in Diabetic Nephropathy Is Caused by Local Production and Tubular Dysfunction. J Diabetes Res 2015; 2015:539787. [PMID: 26171399 PMCID: PMC4485941 DOI: 10.1155/2015/539787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/27/2015] [Accepted: 06/03/2015] [Indexed: 01/28/2023] Open
Abstract
Connective tissue growth factor (CTGF; CCN2) plays a role in the development of diabetic nephropathy (DN). Urinary CTGF (uCTGF) is elevated in DN patients and has been proposed as a biomarker for disease progression, but it is unknown which pathophysiological factors contribute to elevated uCTGF. We studied renal handling of CTGF by infusion of recombinant CTGF in diabetic mice. In addition, uCTGF was measured in type 1 DN patients and compared with glomerular and tubular dysfunction and damage markers. In diabetic mice, uCTGF was increased and fractional excretion (FE) of recombinant CTGF was substantially elevated indicating reduced tubular reabsorption. FE of recombinant CTGF correlated with excretion of endogenous CTGF. CTGF mRNA was mainly localized in glomeruli and medullary tubules. Comparison of FE of endogenous and recombinant CTGF indicated that 60% of uCTGF had a direct renal source, while 40% originated from plasma CTGF. In DN patients, uCTGF was independently associated with markers of proximal and distal tubular dysfunction and damage. In conclusion, uCTGF in DN is elevated as a result of both increased local production and reduced reabsorption due to tubular dysfunction. We submit that uCTGF is a biomarker reflecting both glomerular and tubulointerstitial hallmarks of diabetic kidney disease.
Collapse
Affiliation(s)
- Karin G. F. Gerritsen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Jan Willem Leeuwis
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Maarten P. Koeners
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, 9700 RB Groningen, Netherlands
| | | | - Jan Aten
- Department of Pathology, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Lise Tarnow
- Steno Diabetes Center, 2820 Gentofte, Denmark
| | | | - Jack F. M. Wetzels
- Department of Nephrology, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, Netherlands
| | - Jaap A. Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Robbert Jan Kok
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Tri Q. Nguyen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
- *Tri Q. Nguyen:
| |
Collapse
|
34
|
Tubulointerstitial fibrosis in patients with IgG4-related kidney disease: pathological findings on repeat renal biopsy. Rheumatol Int 2014; 35:1093-101. [PMID: 25371379 DOI: 10.1007/s00296-014-3153-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022]
Abstract
Renal parenchymal lesions in patients with IgG4-related kidney disease (IgG4-RKD) are characterized by tubulointerstitial nephritis with storiform fibrosis and infiltration by high numbers of IgG4-positive plasma cells. The aim of this study was to evaluate the clinical and pathological effects of corticosteroid therapy in patients with IgG4-RKD. Of six patients who were diagnosed with IgG4-RKD, four patients underwent re-biopsy at approximately 30-50 days after corticosteroid therapy was initiated. Based on the classification of Yamaguchi et al., the degree of tubulointerstitial fibrosis was classified before and after therapy. In addition, tubulointerstitial expression patterns of α-smooth muscle actin (α-SMA), collagen I, III, and IV protein, and connective tissue growth factor (CTGF) mRNA were examined. Histopathological findings before treatment showed α-SMA-positive myofibroblasts in the lesion, and CTGF mRNA-positive cells were found in the cellular infiltrate. Although corticosteroid therapy improved serum creatinine clinically, the stage of fibrosis advanced pathologically as evidenced by increased staining for collagen I and III. However, the number of IgG4-positive plasma cells decreased, and CTGF mRNA expression reduced. In other words, fibrosis had advanced from the time of extensive cell infiltration in patients with IgG4-RKD and inflammation was relieved by corticosteroid. A reduced number of positive CTGF mRNA expression cells in repeat biopsies indicated that the fibrosis process was terminated by corticosteroid therapy. We propose that corticosteroid therapy could terminate the pathway of active fibrosis, thereby inhibiting progression to renal dysfunction.
Collapse
|
35
|
Li Z, Li Y, Chen L. Association between transforming growth factor-β1gene-509C/T polymorphism and susceptibility of IgA nephropathy: a meta-analysis. Ren Fail 2014; 36:1473-1480. [PMID: 25112155 DOI: 10.3109/0886022x.2014.947517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A role for transforming growth factor-β1gene has been suggested in the etiology of IgA nephropathy. However, results have been inconsistent. In this study, a meta-analysis was performed to further clarify the association between transforming growth factor-β1-509C/T gene polymorphism and the susceptibility of IgA nephropathy. PubMed, EMBASE, Web of Science, CNKI, WanFang, and VIP Data were searched for eligible studies. Pooled odds ratios (ORs) with 95% confidence intervals were calculated using a fixed-effects model or random-effects model. A total of eight publications involving 1355 IgA nephropathy patients and 1464 controls met the inclusion and were analyzed. The pooled ORs for the association between TGF-β1gene-509C/T polymorphism and IgA nephropathy risk were not statistically significant under all genetic models (for CT+TT vs. CC: OR = 1.09; 95% CI = 0.92-1.29, p = 0.490; for TT vs. CT+CC: OR = 1.14; 95% CI = 0.94-1.38, p = 0.081; for CC vs. TT: OR = 0.87; 95% CI = 0.69-1.08, p = 0.195; for C allele vs. T allele: OR = 0.92; 95% CI = 0.83-1.03, p = 0.149). In the stratified analysis by ethnicity, results also showed no significant association between TGF-β1 gene-509C/T polymorphism and IgA nephropathy risk in both European and Asian populations. This meta-analysis does not support the hypothesis that TGF-β1 gene-509C/T polymorphism is a risk factor for the development of IgA nephropathy.
Collapse
Affiliation(s)
- Zhanzhan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University , Changsha, Hunan Province , China and
| | | | | |
Collapse
|
36
|
Chen Z, Qian J, Ma J, Chang S, Yun H, Jin H, Sun A, Zou Y, Ge J. Glucocorticoid ameliorates early cardiac dysfunction after coronary microembolization and suppresses TGF-β1/Smad3 and CTGF expression. Int J Cardiol 2013; 167:2278-84. [DOI: 10.1016/j.ijcard.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 05/30/2012] [Accepted: 06/07/2012] [Indexed: 01/02/2023]
|
37
|
Dong Z, Chen CX. Effect of catalpol on diabetic nephropathy in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1023-1029. [PMID: 23746755 DOI: 10.1016/j.phymed.2013.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/19/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
PURPOSE To investigate the effect of catalpol on diabetic nephropathy in rats. METHODS Male Sprague-Dawley rats were randomly divided into two groups and fed with normal pallet diet (NPD) or high-fat diet (HFD) for 4 weeks respectively. Then the HFD-fed rats were injected with 35 mg/kg streptozotocin (STZ) for establishing diabetic model. The diabetic rats were randomly divided into five groups: model group, model plus catalpol 30, 60, 120 mg/kg groups and model plus metformin 200 mg/kg group. The NPD-fed rats were randomly divided into two groups: normal control group and normal plus catalpol 60 mg/kg control group. After administration for 10 weeks, random blood glucose (RBG), glycated serum protein (GSP), 24h urinary protein excretion (UPE), serum creatinine (Scr), blood urea nitrogen (BUN), and kidney weight index (KWI) were determined. The kidney pathological changes were evaluated by periodic acid-Schiff (PAS) staining. The concentrations of angiotensin II (Ang II), transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), fibronectin (FN), collagen type IV (Col IV) in renal cortex were determined. Real time RT-PCR was used to detect the mRNA expressions of TGF-β1 and CTGF. RESULTS Catalpol could significantly reduce the KWI, improve the kidney function and pathological change, decrease the tissue level of Ang II, TGF-β1, CTGF, FN, Col IV. Catalpol could also down regulate the mRNA expressions of TGF-β1 and CTGF in renal cortex. CONCLUSION Catalpol may have beneficial effects against diabetic nephropathy. The mechanisms may be related to reducing the extracellular matrix accumulation by restraining the expression of TGF-β1, CTGF and Ang II.
Collapse
Affiliation(s)
- Zhao Dong
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | | |
Collapse
|
38
|
Faherty N, O'Donovan H, Kavanagh D, Madden S, McKay GJ, Maxwell AP, Martin F, Godson C, Crean J. TGFβ and CCN2/CTGF mediate actin related gene expression by differential E2F1/CREB activation. BMC Genomics 2013; 14:525. [PMID: 23902294 PMCID: PMC3765338 DOI: 10.1186/1471-2164-14-525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CCN2/CTGF is an established effector of TGFβ driven responses in diabetic nephropathy. We have identified an interaction between CCN2 and TGFβ leading to altered phenotypic differentiation and inhibited cellular migration. Here we determine the gene expression profile associated with this phenotype and define a transcriptional basis for differential actin related gene expression and cytoskeletal function. RESULTS From a panel of genes regulated by TGFβ and CCN2, we used co-inertia analysis to identify and then experimentally verify a subset of transcription factors, E2F1 and CREB, that regulate an expression fingerprint implicated in altered actin dynamics and cell hypertrophy. Importantly, actin related genes containing E2F1 and CREB binding sites, stratified by expression profile within the dataset. Further analysis of actin and cytoskeletal related genes from patients with diabetic nephropathy suggests recapitulation of this programme during the development of renal disease. The Rho family member Cdc42 was also found uniquely to be activated in cells treated with TGFβ and CCN2; Cdc42 interacting genes were differentially regulated in diabetic nephropathy. CONCLUSIONS TGFβ and CCN2 attenuate CREB and augment E2F1 transcriptional activation with the likely effect of altering actin cytoskeletal and cell growth/hypertrophic gene activity with implications for cell dysfunction in diabetic kidney disease. The cytoskeletal regulator Cdc42 may play a role in this signalling response.
Collapse
Affiliation(s)
- Noel Faherty
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Faherty N, Curran SP, O'Donovan H, Martin F, Godson C, Brazil DP, Crean JK. CCN2/CTGF increases expression of miR-302 microRNAs, which target the TGFβ type II receptor with implications for nephropathic cell phenotypes. J Cell Sci 2012; 125:5621-9. [PMID: 22976296 DOI: 10.1242/jcs.105528] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Signalling interplay between transforming growth factor-β (TGFβ) and CCN2 [also called connective tissue growth factor (CTGF)] plays a crucial role in the progression of diabetic nephropathy and has been implicated in cellular differentiation. To investigate the potential role of microRNAs (miRNAs) in the mediation of this signalling network, we performed miRNA screening in mesangial cells treated with recombinant human CCN2. Analysis revealed a cohort of 22 miRNAs differentially expressed by twofold or more, including members of the miR-302 family. Target analysis of miRNA to 3'-untranslated regions (3'-UTRs) identified TGFβ receptor II (TβRII) as a potential miR-302 target. In mesangial cells, decreased TβRII expression was confirmed in response to CCN2 together with increased expression of miR-302d. TβRII was confirmed as an miR-302 target, and inhibition of miR-302d was sufficient to attenuate the effect of CCN2 on TβRII. Data from the European Renal cDNA Biopsy Bank revealed decreased TβRII in diabetic patients, suggesting pathophysiological significance. In a mouse model of fibrosis (UUO), miR-302d was increased, with decreased TβRII expression and aberrant signalling, suggesting relevance in chronic fibrosis. miR-302d decreased TGFβ-induced epithelial mesenchymal transition (EMT) in renal HKC8 epithelial cells and attenuated TGFβ-induced mesangial production of fibronectin and thrombospondin. In summary, we demonstrate a new mode of regulation of TGFβ by CCN2, and conclude that the miR-302 family has a role in regulating growth factor signalling pathways, with implications for nephropathic cell fate transitions.
Collapse
Affiliation(s)
- Noel Faherty
- UCD Diabetes Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
40
|
El Mesallamy HO, Ahmed HH, Bassyouni AA, Ahmed AS. Clinical significance of inflammatory and fibrogenic cytokines in diabetic nephropathy. Clin Biochem 2012; 45:646-50. [PMID: 22421318 DOI: 10.1016/j.clinbiochem.2012.02.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/17/2012] [Accepted: 02/25/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To study the role of inflammatory chemokine; monocyte chemoattractant protein-1 (MCP-1), and fibrogenic markers [transforming growth factor beta-1 (TGF-β(1)), connective tissue growth factor (CTGF) and fibronectin (FN)] in diabetic nephropathy (DN). DESIGN AND METHODS This study included 17 control and 65 type 2 diabetic subjects (18 normoalbuminuric, 22 microalbuminuric and 25 macroalbuminuric). Demographic characteristics, diabetic index and kidney function tests were monitored. Serum TGF-β(1), plasma CTGF, MCP-1 and FN levels were assayed. RESULTS Microalbuminuric and macroalbuminuric subjects showed a significant elevation in TGF-β(1), CTGF, MCP-1 and FN levels as compared with control and normoalbuminuric subjects. There was positive correlation between these markers and fasting plasma glucose, albumin excretion rate and with each other. CONCLUSION This study revealed the importance of these markers in DN pathogenesis which is powered by their association and thus the possibility of their use as biochemical markers in DN was suggested.
Collapse
|
41
|
Ka SM, Yeh YC, Huang XR, Chao TK, Hung YJ, Yu CP, Lin TJ, Wu CC, Lan HY, Chen A. Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 2012; 55:509-19. [PMID: 22086159 DOI: 10.1007/s00125-011-2364-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/30/2011] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS The TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways have been shown to play a critical role in the development of renal fibrosis and inflammation in diabetic nephropathy. We therefore examined whether targeting these pathways by a kidney-targeting Smad7 gene transfer has therapeutic effects on renal lesions in the db/db mouse model of type 2 diabetes. METHODS We delivered Smad7 plasmids into the kidney of db/db mice using kidney-targeting, ultrasound-mediated, microbubble-inducible gene transfer. The histopathology, ultrastructural pathology and pathways of TGF-β/SMAD2/3-mediated fibrosis and NF-κB-dependent inflammation were evaluated. RESULTS In this mouse model of type 2 diabetes, Smad7 gene therapy significantly inhibited diabetic kidney injury, compared with mice treated with empty vectors. Symptoms inhibited included: (1) proteinuria and renal function impairment; (2) renal fibrosis such as glomerular sclerosis, tubulo-interstitial collagen matrix abundance and renal inflammation, including Inos (also known as Nos2), Il1b and Mcp1 (also known as Ccl2) upregulation, as well as macrophage infiltration; and (3) podocyte and endothelial cell injury as demonstrated by immunohistochemistry and/or electron microscopy. Further study demonstrated that the improvement of type 2 diabetic kidney injury by overexpression of Smad7 was associated with significantly inhibited local activation of the TGF-β/SMAD and NF-κB signalling pathways in the kidney. CONCLUSIONS/INTERPRETATION Our results clearly demonstrate that kidney-targeting Smad7 gene transfer may be an effective therapy for type 2 diabetic nephropathy, acting via simultaneous modulation of the TGF-β/SMAD and NF-κB signalling pathways.
Collapse
Affiliation(s)
- S M Ka
- Graduate Institute of Aerospace and Undersea Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:68-71. [PMID: 22179589 DOI: 10.1097/med.0b013e32834fd881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Oh Y. The insulin-like growth factor system in chronic kidney disease: Pathophysiology and therapeutic opportunities. Kidney Res Clin Pract 2012; 31:26-37. [PMID: 26889406 PMCID: PMC4715090 DOI: 10.1016/j.krcp.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/24/2011] [Accepted: 11/24/2011] [Indexed: 12/21/2022] Open
Abstract
The growth hormone-insulin-like growth factor-insulin-like growth factor binding protein (GH-IGF-IGFBP) axis plays a critical role in the maintenance of normal renal function and the pathogenesis and progression of chronic kidney disease (CKD). Serum IGF-I and IGFBPs are altered with different stages of CKD, the speed of onset, the amount of proteinuria, and the potential of remission. Recent studies demonstrate that growth failure in children with CKD is due to a relative GH insensitivity and functional IGF deficiency. The functional IGF deficiency in CKD results from either IGF resistance due to increased circulating levels of IGFBPs or IGF deficiency due to increased urinary excretion of serum IGF-IGFBP complexes. In addition, not only GH and IGFs in circulation, but locally produced IGFs, the high-affinity IGFBPs, and low-affinity insulin-like growth factor binding protein-related proteins (IGFBP-rPs) may also affect the kidney. With respect to diabetic kidney disease, there is growing evidence suggesting that GH, IGF-I, and IGFBPs are involved in the pathogenesis of diabetic nephropathy (DN). Thus, prevention of GH action by blockade either at the receptor level or along its signal transduction pathway offers the potential for effective therapeutic opportunities. Similarly, interrupting IGF-I and IGFBP actions also may offer a way to inhibit the development or progression of DN. Furthermore, it is well accepted that the systemic inflammatory response is a key player for progression of CKD, and how to prevent and treat this response is currently of great interest. Recent studies demonstrate existence of IGF-independent actions of high-affinity and low-affinity-IGFBPs, in particular, antiinflammatory action of IGFBP-3 and profibrotic action of IGFBP-rP2/CTGF. These findings reinforce the concept in support of the clinical significance of the IGF-independent action of IGFBPs in the assessment of pathophysiology of kidney disease and its therapeutic potential for CKD. Further understanding of GH-IGF-IGFBP etiopathophysiology in CKD may lead to the development of therapeutic strategies for this devastating disease. It would hold promise to use of GH, somatostatin analogs, IGFs, IGF agonists, GHR and insulin-like growth factor-I receptor (IGF-IR) antagonists, IGFBP displacer, and IGFBP antagonists as well as a combination treatment as therapeutic agents for CKD.
Collapse
Affiliation(s)
- Youngman Oh
- Cancer and Metabolic Syndrome Research Laboratory, Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
44
|
Pauly RP, Tonelli M. Predicting development of CKD in the general population--early days in a rapidly evolving field. Am J Kidney Dis 2011; 57:805-7. [PMID: 21601124 DOI: 10.1053/j.ajkd.2011.02.378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 12/20/2022]
|
45
|
Aihara KI, Ikeda Y, Yagi S, Akaike M, Matsumoto T. Transforming Growth Factor-β1 as a Common Target Molecule for Development of Cardiovascular Diseases, Renal Insufficiency and Metabolic Syndrome. Cardiol Res Pract 2010; 2011:175381. [PMID: 21234356 PMCID: PMC3018616 DOI: 10.4061/2011/175381] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/08/2010] [Indexed: 01/25/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a polypeptide member of the transforming growth factor β superfamily of cytokines. It is a secreted protein that performs many cellular functions including control of cell growth, cell proliferation, cell differentiation and apoptosis. In the cardiovascular system, TGF-β1 plays pivotal roles in the pathogenesis of hypertension, restenosis after percutaneous coronary intervention, atherosclerosis, cardiac hypertrophy and heart failure. In addition, TGF-β1 has been shown to be increased in adipose tissue of obese subjects with insulin resistance. Furthermore, TGF-β1 is a potent initiator of proliferation of renal mesangial cells leading to chronic kidney disease. Some currently available agents can manipulate TGF-β1 expression leading to amelioration of cardiovascular diseases. Thus, an understanding of interactions between chronic kidney disease and metabolic syndrome and the development of cardiovascular diseases is an important issue, and attention should be given to TGF-β1 as a crucial factor for regulation and modulation of those pathological conditions.
Collapse
Affiliation(s)
- Ken-Ichi Aihara
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima, Graduate School of Health Biosciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|