1
|
Vilà-González M, Pinte L, Fradique R, Causa E, Kool H, Rodrat M, Morell CM, Al-Thani M, Porter L, Guo W, Maeshima R, Hart SL, McCaughan F, Granata A, Sheppard DN, Floto RA, Rawlins EL, Cicuta P, Vallier L. In vitro platform to model the function of ionocytes in the human airway epithelium. Respir Res 2024; 25:180. [PMID: 38664797 PMCID: PMC11045446 DOI: 10.1186/s12931-024-02800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.
Collapse
Affiliation(s)
- Marta Vilà-González
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cell Therapy and Tissue Engineering Group, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma, 07122, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain.
| | - Laetitia Pinte
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ricardo Fradique
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Erika Causa
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Heleen Kool
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Carola Maria Morell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Maha Al-Thani
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Linsey Porter
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Wenrui Guo
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Ruhina Maeshima
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stephen L Hart
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Frank McCaughan
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Foundation Trust, Cambridge, CB2 0AY, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Pietro Cicuta
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité, Augustenburger Platz 1, 13353, Berlin, DE, Germany.
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Yottasan P, Chu T, Chhetri PD, Cil O. Repurposing calcium-sensing receptor activator drug cinacalcet for ADPKD treatment. Transl Res 2024; 265:17-25. [PMID: 37990828 PMCID: PMC10922239 DOI: 10.1016/j.trsl.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
ADPKD is characterized by progressive cyst formation and enlargement leading to kidney failure. Tolvaptan is currently the only FDA-approved treatment for ADPKD; however, it can cause serious adverse effects including hepatotoxicity. There remains an unmet clinical need for effective and safe treatments for ADPKD. The extracellular Ca2+-sensing receptor (CaSR) is a regulator of epithelial ion transport. FDA-approved CaSR activator cinacalcet can reduce cAMP-induced Cl- and fluid secretion in various epithelial cells by activating phosphodiesterases (PDE) that hydrolyze cAMP. Since elevated cAMP is a key mechanism of ADPKD progression by promoting cell proliferation, cyst formation and enlargement (via Cl- and fluid secretion), here we tested efficacy of cinacalcet in cell and animal models of ADPKD. Cinacalcet treatment reduced cAMP-induced Cl- secretion and CFTR activity in MDCK cells as suggested by ∼70 % lower short-circuit current (Isc) changes in response to forskolin and CFTRinh-172, respectively. Cinacalcet treatment inhibited forskolin-induced cAMP elevation by 60 % in MDCK cells, and its effect was completely reversed by IBMX (PDE inhibitor). In MDCK cells treated with forskolin, cinacalcet treatment concentration-dependently reduced cell proliferation, cyst formation and cyst enlargement by up to 50 % without affecting cell viability. Cinacalcet treatment (20 mg/kg/day for 7 days, subcutaneous) reduced renal cyst index in a mouse model of ADPKD (Pkd1flox/flox;Ksp-Cre) by 20 %. Lastly, cinacalcet treatment reduced cyst enlargement and cell proliferation in human ADPKD cells by 60 %. Considering its efficacy as shown here, and favorable safety profile including extensive post-approval data, cinacalcet can be repurposed as a novel ADPKD treatment.
Collapse
Affiliation(s)
- Pattareeya Yottasan
- Department of Pediatrics, University of California, San Francisco, 513 Parnassus Avenue, HSE 1244, San Francisco, CA, 94143, United States
| | - Tifany Chu
- Department of Pediatrics, University of California, San Francisco, 513 Parnassus Avenue, HSE 1244, San Francisco, CA, 94143, United States
| | - Parth D Chhetri
- Department of Pediatrics, University of California, San Francisco, 513 Parnassus Avenue, HSE 1244, San Francisco, CA, 94143, United States
| | - Onur Cil
- Department of Pediatrics, University of California, San Francisco, 513 Parnassus Avenue, HSE 1244, San Francisco, CA, 94143, United States.
| |
Collapse
|
3
|
Lhuillier M, Aoust L, Dreano E, Franco-Montoya ML, Landry-Truchon K, Houde N, Chhun S, Hinzpeter A, Edelman A, Delacourt C, Jeannotte L, Sermet-Gaudelus I, Hadchouel A. Elexacaftor/Tezacaftor/Ivacaftor Disrupts Respiratory Tract Development in a Murine Fetal Lung Explant Model. Am J Respir Cell Mol Biol 2022; 67:723-726. [PMID: 36454086 PMCID: PMC9743190 DOI: 10.1165/rcmb.2022-0175le] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
| | - Laura Aoust
- Institut Necker Enfants MaladesParis, France,Assistance Publique-Hôpitaux de Paris (AP-HP)-CentreParis, France
| | | | | | - Kim Landry-Truchon
- Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis)Québec, Canada
| | - Nicolas Houde
- Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis)Québec, Canada
| | | | | | | | - Christophe Delacourt
- Institut Necker Enfants MaladesParis, France,Université de Paris CitéParis, France,Centre de Référence pour les Maladies Respiratoires Rares de l'EnfantParis, France
| | - Lucie Jeannotte
- Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis)Québec, Canada,Université LavalQuébec, Canada
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants MaladesParis, France,Assistance Publique-Hôpitaux de Paris (AP-HP)-CentreParis, France,Université de Paris CitéParis, France,Centre de Référence pour les Maladies Respiratoires Rares de l'EnfantParis, France,European Respiratory Network for Lung DiseaseFrankfurt, Germany,Corresponding author (e-mail: )
| | - Alice Hadchouel
- Institut Necker Enfants MaladesParis, France,Université de Paris CitéParis, France,Centre de Référence pour les Maladies Respiratoires Rares de l'EnfantParis, France
| |
Collapse
|
4
|
Oliveira I, Jacinto R, Pestana S, Nolasco F, Calado J, Lopes SS, Roxo-Rosa M. Zebrafish Model as a Screen to Prevent Cyst Inflation in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms22169013. [PMID: 34445719 PMCID: PMC8396643 DOI: 10.3390/ijms22169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), kidney cyst growth requires the recruitment of CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel that is defective in cystic fibrosis. We have been studying cyst inflation using the zebrafish Kupffer’s vesicle (KV) as model system because we previously demonstrated that knocking down polycystin 2 (PC2) induced a CFTR-mediated enlargement of the organ. We have now quantified the PC2 knockdown by showing that it causes a 73% reduction in the number of KV cilia expressing PC2. According to the literature, this is an essential event in kidney cystogenesis in ADPKD mice. Additionally, we demonstrated that the PC2 knockdown leads to a significant accumulation of CFTR-GFP at the apical region of the KV cells. Furthermore, we determined that KV enlargement is rescued by the injection of Xenopus pkd2 mRNA and by 100 µM tolvaptan treatment, the unique and approved pharmacologic approach for ADPKD management. We expected vasopressin V2 receptor antagonist to lower the cAMP levels of KV-lining cells and, thus, to inactivate CFTR. These findings further support the use of the KV as an in vivo model for screening compounds that may prevent cyst enlargement in this ciliopathy, through CFTR inhibition.
Collapse
Affiliation(s)
- Inês Oliveira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Fernando Nolasco
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
| | - Joaquim Calado
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
- ToxOmics, Center of ToxicoGenomics & Human Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| |
Collapse
|
5
|
Prins S, Langron E, Hastings C, Hill EJ, Stefan AC, Griffin LD, Vergani P. Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity. J Biol Chem 2020; 295:16529-16544. [PMID: 32934006 PMCID: PMC7864054 DOI: 10.1074/jbc.ra120.014061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/21/2020] [Indexed: 11/21/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane anion channel that plays a key role in controlling transepithelial fluid movement. Excessive activation results in intestinal fluid loss during secretory diarrheas, whereas CFTR mutations underlie cystic fibrosis (CF). Anion permeability depends both on how well CFTR channels work (permeation/gating) and on how many are present at the membrane. Recently, treatments with two drug classes targeting CFTR-one boosting ion-channel function (potentiators) and the other increasing plasma membrane density (correctors)-have provided significant health benefits to CF patients. Here, we present an image-based fluorescence assay that can rapidly and simultaneously estimate both CFTR ion-channel function and the protein's proximity to the membrane. We monitor F508del-CFTR, the most common CF-causing variant, and confirm rescue by low temperature, CFTR-targeting drugs and second-site revertant mutation R1070W. In addition, we characterize a panel of 62 CF-causing mutations. Our measurements correlate well with published data (electrophysiology and biochemistry), further confirming validity of the assay. Finally, we profile effects of acute treatment with approved potentiator drug VX-770 on the rare-mutation panel. Mapping the potentiation profile on CFTR structures raises mechanistic hypotheses on drug action, suggesting that VX-770 might allow an open-channel conformation with an alternative arrangement of domain interfaces. The assay is a valuable tool for investigation of CFTR molecular mechanisms, allowing accurate inferences on gating/permeation. In addition, by providing a two-dimensional characterization of the CFTR protein, it could better inform development of single-drug and precision therapies addressing the root cause of CF disease.
Collapse
Affiliation(s)
- Stella Prins
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Emily Langron
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Cato Hastings
- CoMPLEX, University College London, London, United Kingdom
| | - Emily J Hill
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Andra C Stefan
- Natural Sciences, University College London, London, United Kingdom
| | | | - Paola Vergani
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Thornell IM, Rehman T, Pezzulo AA, Welsh MJ. Paracellular bicarbonate flux across human cystic fibrosis airway epithelia tempers changes in airway surface liquid pH. J Physiol 2020; 598:4307-4320. [PMID: 32627187 PMCID: PMC7589346 DOI: 10.1113/jp280120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Cl- and HCO3- had similar paracellular permeabilities in human airway epithelia. PCl /PNa of airway epithelia was unaltered by pH 7.4 vs. pH 6.0 solutions. Under basal conditions, calculated paracellular HCO3- flux was secretory. Cytokines that increased airway surface liquid pH decreased or reversed paracellular HCO3- flux. HCO3- flux through the paracellular pathway may counterbalance effects of cellular H+ and HCO3- secretion. ABSTRACT Airway epithelia control the pH of airway surface liquid (ASL), thereby optimizing respiratory defences. Active H+ and HCO3- secretion by airway epithelial cells produce an ASL that is acidic compared with the interstitial space. The paracellular pathway could provide a route for passive HCO3- flux that also modifies ASL pH. However, there is limited information about paracellular HCO3- flux, and it remains uncertain whether an acidic pH produced by loss of cystic fibrosis transmembrane conductance regulator anion channels or proinflammatory cytokines might alter the paracellular pathway function. To investigate paracellular HCO3- transport, we studied differentiated primary cultures of human cystic fibrosis (CF) and non-CF airway epithelia. The paracellular pathway was pH-insensitive at pH 6.0 vs. pH 7.4 and was equally permeable to Cl- and HCO3- . Under basal conditions at pH ∼6.6, calculated paracellular HCO3- flux was weakly secretory. Treating epithelia with IL-17 plus TNFα alkalinized ASL pH to ∼7.0, increased paracellular HCO3- permeability, and paracellular HCO3- flux was negligible. Applying IL-13 increased ASL pH to ∼7.4 without altering paracellular HCO3- permeability, and calculated paracellular HCO3- flux was absorptive. These results suggest that HCO3- flux through the paracellular pathway counterbalances, in part, changes in the ASL pH produced via cellular mechanisms. As the pH of ASL increases towards that of basolateral liquid, paracellular HCO3- flux becomes absorptive, tempering the alkaline pH generated by transcellular HCO3- secretion.
Collapse
Affiliation(s)
- Ian M. Thornell
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Tayyab Rehman
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Alejandro A. Pezzulo
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Michael J. Welsh
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Molecular Physiology and BiophysicsPappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Howard Hughes Medical InstituteUniversity of IowaIowa CityIAUSA
| |
Collapse
|
7
|
Ramsbottom SA, Thelwall PE, Wood KM, Clowry GJ, Devlin LA, Silbermann F, Spiewak HL, Shril S, Molinari E, Hildebrandt F, Gunay-Aygun M, Saunier S, Cordell HJ, Sayer JA, Miles CG. Mouse genetics reveals Barttin as a genetic modifier of Joubert syndrome. Proc Natl Acad Sci U S A 2020; 117:1113-1118. [PMID: 31879347 PMCID: PMC6969532 DOI: 10.1073/pnas.1912602117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genetic and phenotypic heterogeneity and the lack of sufficiently large patient cohorts pose a significant challenge to understanding genetic associations in rare disease. Here we identify Bsnd (alias Barttin) as a genetic modifier of cystic kidney disease in Joubert syndrome, using a Cep290-deficient mouse model to recapitulate the phenotypic variability observed in patients by mixing genetic backgrounds in a controlled manner and performing genome-wide analysis of these mice. Experimental down-regulation of Bsnd in the parental mouse strain phenocopied the severe cystic kidney phenotype. A common polymorphism within human BSND significantly associates with kidney disease severity in a patient cohort with CEP290 mutations. The striking phenotypic modifications we describe are a timely reminder of the value of mouse models and highlight the significant contribution of genetic background. Furthermore, if appropriately managed, this can be exploited as a powerful tool to elucidate mechanisms underlying human disease heterogeneity.
Collapse
Affiliation(s)
- Simon A Ramsbottom
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Peter E Thelwall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
- Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Katrina M Wood
- The Histopathology Department, The Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Gavin J Clowry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Flora Silbermann
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, 75015 Paris, France
| | - Helena L Spiewak
- Northern Genetics Service, International Centre for Life, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Shirlee Shril
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, 75015 Paris, France
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Colin G Miles
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom;
| |
Collapse
|
8
|
Impact of CF on the Kidneys. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Yanda MK, Cha B, Cebotaru CV, Cebotaru L. Pharmacological reversal of renal cysts from secretion to absorption suggests a potential therapeutic strategy for managing autosomal dominant polycystic kidney disease. J Biol Chem 2019; 294:17090-17104. [PMID: 31570523 DOI: 10.1074/jbc.ra119.010320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) induces a secretory phenotype, resulting in multiple fluid-filled cysts. We have previously demonstrated that VX-809, a corrector of the cystic fibrosis transmembrane conductance regulator (CFTR), reduces cyst growth. Here, we show that in normal mice CFTR is located within the cells and also at the apical and basolateral membranes. However, in polycystic kidney disease (pkd1)-knockout mice, CFTR was located at the plasma membrane, consistent with its role in cAMP-dependent fluid secretion. In cystic mice, VX-809 treatment increased CFTR levels at the apical membrane and reduced its association with the endoplasmic reticulum. Surprisingly, VX-809 treatment significantly increased CFTR's co-localization with the basolateral membrane in cystic mice. Na+/H+ exchanger 3 (NHE3) is present in pkd1-knockout and normal mice and in proximal tubule-derived, cultured pkd1-knockout cells. VX-809 increased the expression, activity, and apical plasma membrane localization of NHE3. Co-localization of epithelial sodium channel (ENaC) with the plasma membrane was reduced in cysts in pkd1-knockout mice, consistent with an inability of the cysts to absorb fluid. Interestingly, in the cystic mice, VX-809 treatment increased ENaC levels at the apical plasma membrane consistent with fluid absorption. Thus, VX-809 treatment of pkd1-null mouse kidneys significantly affected CFTR, NHE3, and ENaC, altering the cyst phenotype from one poised toward fluid secretion toward one more favorable for absorption. VX-809 also altered the location of CFTR but not of NHE3 or ENaC in normal mice. Given that VX-809 administration is safe, it may have potential utility for treating patients with ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Boyoung Cha
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Cristina V Cebotaru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Liudmila Cebotaru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
10
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
11
|
Meng X, Wang Y, Wang X, Wrennall JA, Rimington TL, Li H, Cai Z, Ford RC, Sheppard DN. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation. J Biol Chem 2017; 292:3706-3719. [PMID: 28087700 PMCID: PMC5339754 DOI: 10.1074/jbc.m116.751537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations that disrupt the plasma membrane expression, stability, and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Two small molecules, the CFTR corrector lumacaftor and the potentiator ivacaftor, are now used clinically to treat CF, although some studies suggest that they have counteracting effects on CFTR stability. Here, we investigated the impact of these compounds on the instability of F508del-CFTR, the most common CF mutation. To study individual CFTR Cl- channels, we performed single-channel recording, whereas to assess entire CFTR populations, we used purified CFTR proteins and macroscopic CFTR Cl- currents. At 37 °C, low temperature-rescued F508del-CFTR more rapidly lost function in cell-free membrane patches and showed altered channel gating and current flow through open channels. Compared with purified wild-type CFTR, the full-length F508del-CFTR was about 10 °C less thermostable. Lumacaftor partially stabilized purified full-length F508del-CFTR and slightly delayed deactivation of individual F508del-CFTR Cl- channels. By contrast, ivacaftor further destabilized full-length F508del-CFTR and accelerated channel deactivation. Chronic (prolonged) co-incubation of F508del-CFTR-expressing cells with lumacaftor and ivacaftor deactivated macroscopic F508del-CFTR Cl- currents. However, at the single-channel level, chronic co-incubation greatly increased F508del-CFTR channel activity and temporal stability in most, but not all, cell-free membrane patches. We conclude that chronic lumacaftor and ivacaftor co-treatment restores stability in a small subpopulation of F508del-CFTR Cl- channels but that the majority remain destabilized. A fuller understanding of these effects and the characterization of the small F508del-CFTR subpopulation might be crucial for CF therapy development.
Collapse
Affiliation(s)
- Xin Meng
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Yiting Wang
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Xiaomeng Wang
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Joe A Wrennall
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Tracy L Rimington
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Hongyu Li
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Zhiwei Cai
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Robert C Ford
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - David N Sheppard
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
12
|
Capra JP, Eskelinen SM. MDCK cells are capable of water secretion and reabsorption in response to changes in the ionic environment. Can J Physiol Pharmacol 2017; 95:72-83. [DOI: 10.1139/cjpp-2016-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A prerequisite for tissue electrolyte homeostasis is highly regulated ion and water transport through kidney or intestinal epithelia. In the present work, we monitored changes in the cell and luminal volumes of type II Madin-Darby canine kidney (MDCK) cells grown in a 3D environment in response to drugs, or to changes in the composition of the basal extracellular fluid. Using fluorescent markers and high-resolution spinning disc confocal microscopy, we could show that lack of sodium and potassium ions in the basal fluid (tetramethylammonium chloride (TMACl) buffer) induces a rapid increase in the cell and luminal volumes. This transepithelial water flow could be regulated by inhibitors and agonists of chloride channels. Hence, the driving force for the transepithelial water flow is chloride secretion, stimulated by hyperpolarization. Chloride ion depletion of the basal fluid (using sodium gluconate buffer) induces a strong reduction in the lumen size, indicating reabsorption of water from the lumen to the basal side. Lumen size also decreased following depolarization of the cell interior by rendering the membrane permeable to potassium. Hence, MDCK cells are capable of both absorption and secretion of chloride ions and water; negative potential within the lumen supports secretion, while depolarizing conditions promote reabsorption.
Collapse
Affiliation(s)
- Janne P. Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka M. Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
13
|
Roxo-Rosa M, Jacinto R, Sampaio P, Lopes SS. The zebrafish Kupffer's vesicle as a model system for the molecular mechanisms by which the lack of Polycystin-2 leads to stimulation of CFTR. Biol Open 2015; 4:1356-66. [PMID: 26432887 PMCID: PMC4728361 DOI: 10.1242/bio.014076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), cyst inflation and continuous enlargement are associated with marked transepithelial ion and fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR). Indeed, the inhibition or degradation of CFTR prevents the fluid accumulation within cysts. The in vivo mechanisms by which the lack of Polycystin-2 leads to CFTR stimulation are an outstanding challenge in ADPKD research and may bring important biomarkers for the disease. However, hampering their study, the available ADPKD in vitro cellular models lack the three-dimensional architecture of renal cysts and the ADPKD mouse models offer limited access for live-imaging experiments in embryonic kidneys. Here, we tested the zebrafish Kupffer's vesicle (KV) as an alternative model-organ. KV is a fluid-filled vesicular organ, lined by epithelial cells that express both CFTR and Polycystin-2 endogenously, being each of them easily knocked-down. Our data on the intracellular distribution of Polycystin-2 support its involvement in the KV fluid-flow induced Ca2+-signalling. Mirroring kidney cysts, the KV lumen inflation is dependent on CFTR activity and, as we clearly show, the knockdown of Polycystin-2 results in larger KV lumens through overstimulation of CFTR. In conclusion, we propose the zebrafish KV as a model organ to study the renal cyst inflation. Favouring its use, KV volume can be easily determined by in vivo imaging offering a live readout for screening compounds and genes that may prevent cyst enlargement through CFTR inhibition. Summary: Here, we tested the zebrafish Kupffer's vesicle (KV) as a model organ to study, through in vivo imaging of KV volume, the stimulation of cystic fibrosis transmembrane conductance regulator (CFTR) in autosomal dominant polycystic kidney disease ADPKD.
Collapse
Affiliation(s)
- Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Pedro Sampaio
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| |
Collapse
|
14
|
LaRiviere WB, Irazabal MV, Torres VE. Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Transl Res 2015; 165:488-98. [PMID: 25438190 PMCID: PMC4363282 DOI: 10.1016/j.trsl.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the progressive growth of renal cysts that, over time, destroy the architecture of the renal parenchyma and typically lead to kidney failure by the sixth decade of life. ADPKD is common and represents a leading cause of renal failure worldwide. Currently, there are no Food and Drug Administration-approved treatments for the disease, and the existing standard of care is primarily supportive in nature. However, significant advances in the understanding of the molecular biology of the disease have inspired investigation into potential new therapies. Several drugs designed to slow or arrest the progression of ADPKD have shown promise in preclinical models and clinical trials, including vasopressin receptor antagonists and somatostatin analogs. This article examines the literature underlying the rationale for molecular therapies for ADPKD and reviews the existing clinical evidence for their indication for human patients with the disease.
Collapse
Affiliation(s)
- Wells B LaRiviere
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
15
|
Waheed A, Ludtmann MHR, Pakes N, Robery S, Kuspa A, Dinh C, Baines D, Williams RSB, Carew MA. Naringenin inhibits the growth of Dictyostelium and MDCK-derived cysts in a TRPP2 (polycystin-2)-dependent manner. Br J Pharmacol 2014; 171:2659-70. [PMID: 24116661 PMCID: PMC4009007 DOI: 10.1111/bph.12443] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/04/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Identifying and characterizing potential new therapeutic agents to target cell proliferation may provide improved treatments for neoplastic disorders such as cancer and polycystic diseases. EXPERIMENTAL APPROACH We used the simple, tractable biomedical model Dictyostelium to investigate the molecular mechanism of naringenin, a dietary flavonoid with antiproliferative and chemopreventive actions in vitro and in animal models of carcinogenesis. We then translated these results to a mammalian kidney model, Madin-Darby canine kidney (MDCK) tubule cells, grown in culture and as cysts in a collagen matrix. KEY RESULTS Naringenin inhibited Dictyostelium growth, but not development. Screening of a library of random gene knockout mutants identified a mutant lacking TRPP2 (polycystin-2) that was resistant to the effect of naringenin on growth and random cell movement. TRPP2 is a divalent transient receptor potential cation channel, where mutations in the protein give rise to type 2 autosomal dominant polycystic kidney disease (ADPKD). Naringenin inhibited MDCK cell growth and inhibited cyst growth. Knockdown of TRPP2 levels by siRNA in this model conferred partial resistance to naringenin such that cysts treated with 3 and 10 μM naringenin were larger following TRPP2 knockdown compared with controls. Naringenin did not affect chloride secretion. CONCLUSIONS AND IMPLICATIONS The action of naringenin on cell growth in the phylogenetically diverse systems of Dictyostelium and mammalian kidney cells, suggests a conserved effect mediated by TRPP2 (polycystin-2). Further studies will investigate naringenin as a potential new therapeutic agent in ADPKD.
Collapse
Affiliation(s)
- A Waheed
- School of Pharmacy & Chemistry, Kingston UniversityKingston upon Thames, Surrey, UK
| | - M H R Ludtmann
- Centre for Biomedical Science, School of Biological Sciences, Royal Holloway University of LondonEgham, Surrey, UK
| | - N Pakes
- Centre for Biomedical Science, School of Biological Sciences, Royal Holloway University of LondonEgham, Surrey, UK
| | - S Robery
- Centre for Biomedical Science, School of Biological Sciences, Royal Holloway University of LondonEgham, Surrey, UK
| | - A Kuspa
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA
| | - C Dinh
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA
| | - D Baines
- Biomedical Sciences, St George's University of LondonLondon, UK
| | - R S B Williams
- Centre for Biomedical Science, School of Biological Sciences, Royal Holloway University of LondonEgham, Surrey, UK
| | - M A Carew
- School of Pharmacy & Chemistry, Kingston UniversityKingston upon Thames, Surrey, UK
| |
Collapse
|
16
|
Abstract
Specific channels permit movement of selected ions through cellular membranes, and are of vital importance in a number of physiological processes, particularly in excitable tissues such as nerve and muscle, but also in endocrine organs and in epithelial biology. Disorders of channel proteins are termed channelopathies, and their importance is increasingly recognised within medicine. In the kidney, ion channels have critical roles enabling sodium and potassium reuptake or excretion along the nephron, in magnesium homeostasis, in the control of water reabsorption in the collecting duct, and in determining glomerular permeability. In this review, we assess the channelopathies encountered in each nephron segment, and see how their molecular and genetic characterisation in the past 20–30 years has furthered our understanding of normal kidney physiology and disease processes, aids correct diagnosis and promises future therapeutic opportunities.
Collapse
Affiliation(s)
- KW Loudon
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - AC Fry
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
17
|
Torra R. Tratamiento de la poliquistosis renal autosómica dominante. Med Clin (Barc) 2014; 142:73-9. [DOI: 10.1016/j.medcli.2013.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 01/22/2023]
|
18
|
Cai Z, Li H, Chen JH, Sheppard DN. Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms. Am J Physiol Cell Physiol 2013; 305:C817-28. [PMID: 23784545 PMCID: PMC3798681 DOI: 10.1152/ajpcell.00052.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
The chemical structures of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) resemble those of small-molecules that inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We therefore tested the acute effects of T3, T4 and reverse T3 (rT3) on recombinant wild-type human CFTR using the patch-clamp technique. When added directly to the intracellular solution bathing excised membrane patches, T3, T4, and rT3 (all tested at 50 μM) inhibited CFTR in several ways: they strongly reduced CFTR open probability by impeding channel opening; they moderately decreased single-channel current amplitude, and they promoted transitions to subconductance states. To investigate the mechanism of CFTR inhibition, we studied T3. T3 (50 μM) had multiple effects on CFTR gating kinetics, suggestive of both allosteric inhibition and open-channel blockade. Channel inhibition by T3 was weakly voltage dependent and stronger than the allosteric inhibitor genistein, but weaker than the open-channel blocker glibenclamide. Raising the intracellular ATP concentration abrogated T3 inhibition of CFTR gating, but not the reduction in single-channel current amplitude nor the transitions to subconductance states. The decrease in single-channel current amplitude was relieved by membrane depolarization, but not the transitions to subconductance states. We conclude that T3 has complex effects on CFTR consistent with both allosteric inhibition and open-channel blockade. Our results suggest that there are multiple allosteric mechanisms of CFTR inhibition, including interference with ATP-dependent channel gating and obstruction of conformational changes that gate the CFTR pore. CFTR inhibition by thyroid hormones has implications for the development of innovative small-molecule CFTR inhibitors.
Collapse
Affiliation(s)
- Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
19
|
Billet A, Luo Y, Balghi H, Hanrahan JW. Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2013; 288:21815-23. [PMID: 23760269 DOI: 10.1074/jbc.m113.479360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl(-)) channel, which plays an important role in physiological anion and fluid secretion, and is defective in several diseases. Although its activation by PKA and PKC has been studied extensively, its regulation by receptors is less well understood. To study signaling involved in CFTR activation, we measured whole-cell Cl(-) currents in BHK cells cotransfected with GPCRs and CFTR. In cells expressing the M3 muscarinic acetylcholine receptor, the agonist carbachol (Cch) caused strong activation of CFTR through two pathways; the canonical PKA-dependent mechanism and a second mechanism that involves tyrosine phosphorylation. The role of PKA was suggested by partial inhibition of cholinergic stimulation by the specific PKA inhibitor Rp-cAMPS. The role of tyrosine kinases was suggested by Cch stimulation of 15SA-CFTR and 9CA-CFTR, mutants that lack 15 PKA or 9 PKC consensus sequences and are unresponsive to PKA or PKC stimulation, respectively. Moreover the residual Cch response was sensitive to inhibitors of the Pyk2 and Src tyrosine kinase family. Our results suggest that tyrosine phosphorylation acts on CFTR directly and through inhibition of the phosphatase PP2A. Results suggest that PKA and tyrosine kinases contribute to CFTR regulation by GPCRs that are expressed at the apical membrane of intestinal and airway epithelia.
Collapse
Affiliation(s)
- Arnaud Billet
- Department of Physiology, McGill University and Research Institute of the McGill University Hospital Centre, Montréal, Quebec H3G 1Y6, Canada.
| | | | | | | |
Collapse
|
20
|
Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NWM, Bijvelds MJC, Scholte BJ, Nieuwenhuis EES, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 2013; 19:939-45. [PMID: 23727931 DOI: 10.1038/nm.3201] [Citation(s) in RCA: 740] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023]
Abstract
We recently established conditions allowing for long-term expansion of epithelial organoids from intestine, recapitulating essential features of the in vivo tissue architecture. Here we apply this technology to study primary intestinal organoids of people suffering from cystic fibrosis, a disease caused by mutations in CFTR, encoding cystic fibrosis transmembrane conductance regulator. Forskolin induces rapid swelling of organoids derived from healthy controls or wild-type mice, but this effect is strongly reduced in organoids of subjects with cystic fibrosis or in mice carrying the Cftr F508del mutation and is absent in Cftr-deficient organoids. This pattern is phenocopied by CFTR-specific inhibitors. Forskolin-induced swelling of in vitro-expanded human control and cystic fibrosis organoids corresponds quantitatively with forskolin-induced anion currents in freshly excised ex vivo rectal biopsies. Function of the CFTR F508del mutant protein is restored by incubation at low temperature, as well as by CFTR-restoring compounds. This relatively simple and robust assay will facilitate diagnosis, functional studies, drug development and personalized medicine approaches in cystic fibrosis.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yuajit C, Homvisasevongsa S, Chatsudthipong L, Soodvilai S, Muanprasat C, Chatsudthipong V. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation. PLoS One 2013; 8:e58871. [PMID: 23536832 PMCID: PMC3594167 DOI: 10.1371/journal.pone.0058871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/07/2013] [Indexed: 01/26/2023] Open
Abstract
Cyst enlargement in polycystic kidney disease (PKD) involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK) cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM) reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h) with steviol (100 microM) also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h) with steviol (100 microM) markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Chaowalit Yuajit
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sureeporn Homvisasevongsa
- Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand
| | - Lisa Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|