1
|
Karagiannidis AG, Theodorakopoulou MP, Iatridi F, Ortiz A, Sarafidis P. A salty symphony: unraveling the tale of uromodulin and sodium sensitivity. J Hum Hypertens 2025:10.1038/s41371-025-01013-9. [PMID: 40164702 DOI: 10.1038/s41371-025-01013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Uromodulin is a kidney-specific glycoprotein which is uniquely synthesized by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. Among multiple roles in complex physiological and pathological processes, uromodulin mediates renal sodium handling through modulating tubular sodium transporters that reabsorb sodium and therefore is putatively linked to hypertension through generating sodium sensitivity of blood pressure. This review aims to present an updated overview of the role of uromodulin in sodium renal handling and summarize the existing evidence originating from preclinical, genetic, and clinical studies that support a relationship between uromodulin and sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Pantelis Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
2
|
Ray A, Yang C, Stelloh C, Tutaj M, Liu P, Liu Y, Qiu Q, Auer PL, Lin CW, Widlansky ME, Geurts AM, Cowley AW, Liang M, Kwitek AE, Greene AS, Rao S. Chromatin State Maps of Blood Pressure-Relevant Renal Segments Reveal Potential Regulatory Role for SNPs. Hypertension 2025; 82:476-488. [PMID: 39723540 DOI: 10.1161/hypertensionaha.124.23873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Hypertension or elevated blood pressure (BP) is a worldwide clinical challenge and the leading primary risk factor for kidney dysfunctions, heart failure, and cerebrovascular disease. The kidney is a central regulator of BP by maintaining sodium-water balance. Multiple genome-wide association studies revealed that BP is a heritable quantitative trait, modulated by several genetic, epigenetic, and environmental factors. The SNPs identified in genome-wide association studies predominantly (>95%) reside within noncoding genomic regions, making it difficult to understand how they regulate BP. Given the central role of the kidney in regulating BP, we hypothesized that chromatin-accessible regions in renal tissue would be enriched for BP-associated single nucleotide polymorphisms. METHODS We manually dissected 2 important kidney segments that maintain the sodium-water balance: proximal tubules and medullary thick ascending limbs from the human and rat kidneys. To delineate their chromatin and transcriptomic profiles, we performed the assay for transposase-accessible chromatin and RNA sequencing, respectively. RESULTS The chromatin accessibility maps revealed the shared and unique cis-regulatory elements that modulate the chromatin accessibility in proximal tubule and medullary thick ascending limbs of humans and rats. We developed a visualization tool to compare the cross-species epigenomic maps to identify potential regulatory targets for hypertension pathogenesis. We also identified a significant enrichment of BP-associated single nucleotide polymorphisms (1064 for human proximal tubule and 1172 for human medullary thick ascending limbs) within accessible chromatin regions of both segments, including rs1173771 and rs1421811 at the NPR3 locus and rs1800470 at the TGFb1 locus. CONCLUSIONS Collectively, this study lays a foundation for interrogating how intergenic single nucleotide polymorphisms may regulate polygenic traits such as BP.
Collapse
Affiliation(s)
- Atrayee Ray
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Chun Yang
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Cary Stelloh
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Monika Tutaj
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Pengyuan Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Yong Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Qiongzi Qiu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Paul L Auer
- The Institute for Health and Equity (P.L.A.), Medical College of Wisconsin, Milwaukee
| | - Chien-Wei Lin
- Division of Biostatistics, Data Science Institute (C.-W.L.), Medical College of Wisconsin, Milwaukee
| | | | - Aron M Geurts
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Anne E Kwitek
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | | | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
- Department of Pediatrics, Section of Hematology/Oncology/Transplantation (S.R.), Medical College of Wisconsin, Milwaukee
- Department of Cell Biology, Neurobiology, and Anatomy (S.R.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
3
|
Bazua-Valenti S, Brown MR, Zavras J, Riedl Khursigara M, Grinkevich E, Sidhom EH, Keller KH, Racette M, Dvela-Levitt M, Quintanova C, Demirci H, Sewerin S, Goss AC, Lin J, Yoo H, Vaca Jacome AS, Papanastasiou M, Udeshi N, Carr SA, Himmerkus N, Bleich M, Mutig K, Bachmann S, Halbritter J, Kmoch S, Živná M, Kidd K, Bleyer AJ, Weins A, Alper SL, Shaw JL, Kost-Alimova M, Pablo JLB, Greka A. Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors. J Clin Invest 2024; 134:e180347. [PMID: 39680459 PMCID: PMC11645142 DOI: 10.1172/jci180347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/22/2024] [Indexed: 12/18/2024] Open
Abstract
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
Collapse
Affiliation(s)
- Silvana Bazua-Valenti
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Matthew R. Brown
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Jason Zavras
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Magdalena Riedl Khursigara
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth Grinkevich
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Eriene-Heidi Sidhom
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith H. Keller
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Racette
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Moran Dvela-Levitt
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Hasan Demirci
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Sebastian Sewerin
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Alissa C. Goss
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John Lin
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Hyery Yoo
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Alvaro S. Vaca Jacome
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Malvina Papanastasiou
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Namrata Udeshi
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A. Carr
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nina Himmerkus
- Institute of Physiology, Christian - Albrechts - Universität, Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian - Albrechts - Universität, Kiel, Germany
| | - Kerim Mutig
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Sebastian Bachmann
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina, USA
| | - Anthony J. Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L. Alper
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian L. Shaw
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Maria Kost-Alimova
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Juan Lorenzo B. Pablo
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Anna Greka
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
McCallum L, Lip S, McConnachie A, Brooksbank K, MacIntyre IM, Doney A, Llano A, Aman A, Caparrotta TM, Ingram G, Mackenzie IS, Dominiczak AF, MacDonald TM, Webb DJ, Padmanabhan S. UMOD Genotype-Blinded Trial of Ambulatory Blood Pressure Response to Torasemide. Hypertension 2024; 81:2049-2059. [PMID: 39077768 PMCID: PMC11460757 DOI: 10.1161/hypertensionaha.124.23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND UMOD (uromodulin) has been linked to hypertension through potential activation of Na+-K+-2Cl- cotransporter (NKCC2), a target of loop diuretics. We posited that hypertensive patients carrying the rs13333226-AA UMOD genotype would demonstrate greater blood pressure responses to loop diuretics, potentially mediated by this UMOD/NKCC2 interaction. METHODS This prospective, multicenter, genotype-blinded trial evaluated torasemide (torsemide) efficacy on systolic blood pressure (SBP) reduction over 16 weeks in nondiabetic, hypertensive participants uncontrolled on ≥1 nondiuretic antihypertensive for >3 months. The primary end point was the change in 24-hour ambulatory SBP (ABPM SBP) and SBP response trajectories between baseline and 16 weeks by genotype (AA versus AG/GG) due to nonrandomized groups at baseline (ClinicalTrials.gov: NCT03354897). RESULTS Of 251 enrolled participants, 222 received torasemide and 174 demonstrated satisfactory treatment adherence and had genotype data. The study participants were middle-aged (59±11 years), predominantly male (62%), obese (body mass index, 32±7 kg/m2), with normal eGFR (92±17 mL/min/1.73 m²) and an average baseline ABPM of 138/81 mm Hg. Significant reductions in mean ABPM SBP were observed in both groups after 16 weeks (AA, -6.57 mm Hg [95% CI, -8.44 to -4.69]; P<0.0001; AG/GG, -3.22 [95% CI, -5.93 to -0.51]; P=0.021). The change in mean ABPM SBP (baseline to 16 weeks) showed a difference of -3.35 mm Hg ([95% CI, -6.64 to -0.05]; P=0.048) AA versus AG/GG genotypes. The AG/GG group displayed a rebound in SBP from 8 weeks, differing from the consistent decrease in the AA group (P=0.004 for difference in trajectories). CONCLUSIONS Our results confirm a plausible interaction between UMOD and NKCC2 and suggest a potential role for genotype-guided use of loop diuretics in hypertension management. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03354897.
Collapse
Affiliation(s)
- Linsay McCallum
- Queen Elizabeth University Hospital, Glasgow, Scotland, United Kingdom (L.M.C., S.L., A.L., G.I., S.P.)
- School of Cardiovascular and Metabolic Health (L.M.C., S.L., K.B., A.A., A.F.D., S.P.), University of Glasgow, Scotland, United Kingdom
| | - Stefanie Lip
- Queen Elizabeth University Hospital, Glasgow, Scotland, United Kingdom (L.M.C., S.L., A.L., G.I., S.P.)
- School of Cardiovascular and Metabolic Health (L.M.C., S.L., K.B., A.A., A.F.D., S.P.), University of Glasgow, Scotland, United Kingdom
| | - Alex McConnachie
- Robertson Centre for Biostatistics, School of Health and Wellbeing (A.M.C.), University of Glasgow, Scotland, United Kingdom
| | - Katriona Brooksbank
- School of Cardiovascular and Metabolic Health (L.M.C., S.L., K.B., A.A., A.F.D., S.P.), University of Glasgow, Scotland, United Kingdom
| | - Iain M. MacIntyre
- Clinical Pharmacology Unit and Research Centre, University of Edinburgh/BHF Centre of Research Excellence, United Kingdom (I.M.I., T.M.C., D.J.W.)
| | - Alexander Doney
- MEMO Research, University of Dundee, Ninewells Hospital and Medical School, United Kingdom (A.D., I.S.M., T.M.M.D.)
| | - Andrea Llano
- Queen Elizabeth University Hospital, Glasgow, Scotland, United Kingdom (L.M.C., S.L., A.L., G.I., S.P.)
| | - Alisha Aman
- School of Cardiovascular and Metabolic Health (L.M.C., S.L., K.B., A.A., A.F.D., S.P.), University of Glasgow, Scotland, United Kingdom
| | - Thomas M. Caparrotta
- Clinical Pharmacology Unit and Research Centre, University of Edinburgh/BHF Centre of Research Excellence, United Kingdom (I.M.I., T.M.C., D.J.W.)
| | - Gareth Ingram
- Queen Elizabeth University Hospital, Glasgow, Scotland, United Kingdom (L.M.C., S.L., A.L., G.I., S.P.)
| | - Isla S. Mackenzie
- MEMO Research, University of Dundee, Ninewells Hospital and Medical School, United Kingdom (A.D., I.S.M., T.M.M.D.)
| | - Anna F. Dominiczak
- School of Cardiovascular and Metabolic Health (L.M.C., S.L., K.B., A.A., A.F.D., S.P.), University of Glasgow, Scotland, United Kingdom
| | - Thomas M. MacDonald
- MEMO Research, University of Dundee, Ninewells Hospital and Medical School, United Kingdom (A.D., I.S.M., T.M.M.D.)
| | - David J. Webb
- Clinical Pharmacology Unit and Research Centre, University of Edinburgh/BHF Centre of Research Excellence, United Kingdom (I.M.I., T.M.C., D.J.W.)
| | - Sandosh Padmanabhan
- Queen Elizabeth University Hospital, Glasgow, Scotland, United Kingdom (L.M.C., S.L., A.L., G.I., S.P.)
- School of Cardiovascular and Metabolic Health (L.M.C., S.L., K.B., A.A., A.F.D., S.P.), University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
5
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Karagiannidis AG, Theodorakopoulou MP, Pella E, Sarafidis PA, Ortiz A. Uromodulin biology. Nephrol Dial Transplant 2024; 39:1073-1087. [PMID: 38211973 PMCID: PMC11210992 DOI: 10.1093/ndt/gfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 01/13/2024] Open
Abstract
Uromodulin is a kidney-specific glycoprotein which is exclusively produced by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. It is currently recognized as a multifaceted player in kidney physiology and disease, with discrete roles for intracellular, urinary, interstitial and serum uromodulin. Among these, uromodulin modulates renal sodium handling through the regulation of tubular sodium transporters that reabsorb sodium and are targeted by diuretics, such as the loop diuretic-sensitive Na+-K+-2Cl- cotransporter type 2 (NKCC2) and the thiazide-sensitive Na+/Cl- cotransporter (NCC). Given these roles, the contribution of uromodulin to sodium-sensitive hypertension has been proposed. However, recent studies in humans suggest a more complex interaction between dietary sodium intake, uromodulin and blood pressure. This review presents an updated overview of the uromodulin's biology and its various roles, and focuses on the interaction between uromodulin and sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eva Pella
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| |
Collapse
|
7
|
Eriksson M, Lipcsey M, Ilboudo Y, Yoshiji S, Richards B, Hultström M. Uromodulin in sepsis and severe pneumonia: a two-sample Mendelian randomization study. Physiol Genomics 2024; 56:409-416. [PMID: 38369967 DOI: 10.1152/physiolgenomics.00145.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
The outcome for patients with sepsis-associated acute kidney injury in the intensive care unit (ICU) remains poor. Low serum uromodulin (sUMOD) protein levels have been proposed as a causal mediator of this effect. We investigated the effect of different levels of sUMOD on the risk of sepsis and severe pneumonia and outcomes in these conditions. A two-sample Mendelian randomization (MR) study was performed. Single-nucleotide polymorphisms (SNPs) associated with increased levels of sUMOD were identified and used as instrumental variables for association with outcomes. Data from different cohorts were combined based on disease severity and meta-analyzed. Five SNPs associated with increased sUMOD levels were identified and tested in six datasets from two biobanks. There was no protective effect of increased levels of sUMOD on the risk of sepsis [two cohorts, odds ratio (OR) 0.99 (95% confidence interval 0.95-1.03), P = 0.698, and OR 0.95 (0.91-1.00), P = 0.060, respectively], risk of sepsis requiring ICU admission [OR 1.04 (0.93-1.16), P = 0.467], ICU mortality in sepsis [OR 1.00 (0.74-1.37), P = 0.987], risk of pneumonia requiring ICU admission [OR 1.05 (0.98-1.14), P = 0.181], or ICU mortality in pneumonia [OR 1.17 (0.98-1.39), P = 0.079]. Meta-analysis of hospital-admitted and ICU-admitted patients separately yielded similar results [OR 0.98 (0.95-1.01), P = 0.23, and OR 1.05 (0.99-1.12), P = 0.86, respectively]. Among patients with sepsis and severe pneumonia, there was no protective effect of different levels of sUMOD. Results were consistent regardless of geographic origins and not modified by disease severity. NEW & NOTEWORTHY The presence of acute kidney injury in severe infections increases the likelihood of poor outcome severalfold. A decrease in serum uromodulin (sUMOD), synthetized in the kidney, has been proposed as a mediator of this effect. Using the Mendelian randomization technique, we tested the hypothesis that increased sUMOD is protective in severe infections. Analyses, however, showed no evidence of a protective effect of higher levels of sUMOD in sepsis or severe pneumonia.
Collapse
Affiliation(s)
- Mikael Eriksson
- Department of Surgical Sciences, Section of Anesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Department of Surgical Sciences, Section of Anesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Yann Ilboudo
- Lady Davis Institute of Medical Research, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Satoshi Yoshiji
- Lady Davis Institute of Medical Research, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Kyoto-McGill International Collaborative Program in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Brent Richards
- Lady Davis Institute of Medical Research, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Twin Research, King's College London, London, United Kingdom
- 5 Prime Sciences, Montréal, Québec, Canada
| | - Michael Hultström
- Department of Surgical Sciences, Section of Anesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
- Lady Davis Institute of Medical Research, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Dissanayake LV, Kravtsova O, Lowe M, McCrorey MK, Van Beusecum JP, Palygin O, Staruschenko A. The presence of xanthine dehydrogenase is crucial for the maturation of the rat kidneys. Clin Sci (Lond) 2024; 138:269-288. [PMID: 38358003 DOI: 10.1042/cs20231144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
The development of the kidney involves essential cellular processes, such as cell proliferation and differentiation, which are led by interactions between multiple signaling pathways. Xanthine dehydrogenase (XDH) catalyzes the reaction producing uric acid in the purine catabolism, which plays a multifaceted role in cellular metabolism. Our previous study revealed that the genetic ablation of the Xdh gene in rats leads to smaller kidneys, kidney damage, decline of renal functions, and failure to thrive. Rats, unlike humans, continue their kidney development postnatally. Therefore, we explored whether XDH plays a critical role in kidney development using SS-/- rats during postnatal development phase. XDH expression was significantly increased from postnatal day 5 to 15 in wild-type but not homozygote rat kidneys. The transcriptomic profile of renal tissue revealed several dysregulated pathways due to the lack of Xdh expression with the remodeling in inflammasome, purinergic signaling, and redox homeostasis. Further analysis suggested that lack of Xdh affects kidney development, likely via dysregulation of epidermal growth factor and its downstream STAT3 signaling. The present study showed that Xdh is essential for kidney maturation. Our data, alongside the previous research, suggests that loss of Xdh function leads to developmental issues, rendering them vulnerable to kidney diseases in adulthood.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Melissa Lowe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Marice K McCrorey
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Justin P Van Beusecum
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson Veterans Affairs Healthcare System, Charleston, SC 29403, U.S.A
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, U.S.A
- James A. Haley Veterans' Hospital, Tampa, FL 33612, U.S.A
| |
Collapse
|
9
|
Jaques DA, Dufey Teso A, Wuerzner G, Martinez De Tejada B, Santagata M, Othenin Girard V, Le Tinier B, Pechere Bertschi A, Ponte B. Association of serum copeptin and urinary uromodulin with kidney function, blood pressure and albuminuria at 6 weeks post-partum in pre-eclampsia. Front Cardiovasc Med 2024; 11:1310300. [PMID: 38500759 PMCID: PMC10945001 DOI: 10.3389/fcvm.2024.1310300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Background Preeclampsia (PE) is associated with subsequent higher risk of cardiovascular and kidney disease. Serum copeptin, as a proxy for vasopressin, and urinary uromodulin, were associated with PE physiopathology and kidney functional mass respectively. We describe concentrations of these proteins in the post-partum period and characterize their association with persistent hypertension (HTN) or albuminuria. Methods Patients with PE and healthy controls with uncomplicated pregnancy were prospectively included at two teaching hospitals in Switzerland. Clinical parameters along with serum copeptin and urinary uromodulin were measured at 6 weeks post-partum. PE patients were further characterized based on presence of HTN (defined as either systolic BP (SBP) ≥140 mmHg or diastolic (BP) ≥90 mmHg) or albuminuria [defined as urinary albumin to creatinine ratio (ACR) ≥3 mg/mmol]. Results We included 226 patients with 35 controls, 120 (62.8%) PE with persistent HTN/albuminuria and 71 (37.1%) PE without persistent HTN/albuminuria. Median serum copeptin concentration was 4.27 (2.9-6.2) pmol/L without differences between study groups (p > 0.05). Higher copeptin levels were associated with higher SBP in controls (p = 0.039), but not in PE (p > 0.05). Median urinary uromodulin concentration was 17.5 (7.8-28.7) mg/g with lower levels in PE patients as compared to healthy controls (p < 0.001), but comparable levels between PE patients with or without HTN/albuminuria (p > 0.05). Higher uromodulin levels were associated with lower albuminuria in PE as well as control patients (p = 0.040). Conclusion Serum copeptin levels at 6 weeks post-partum are similar between PE patients and healthy controls and cannot distinguish between PE with or without residual kidney damage. This would argue against a significant pathophysiological role of the vasopressin pathway in mediating organ damage in the post-partum period. On the opposite, post-partum urinary uromodulin levels are markedly lower in PE patients as compared to healthy controls, potentially reflecting an increased susceptibility to vascular and kidney damage that could associate with adverse long-term cardiovascular and kidney outcomes.
Collapse
Affiliation(s)
- David A. Jaques
- Service of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Anne Dufey Teso
- Service of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Grégoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Begona Martinez De Tejada
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marika Santagata
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Véronique Othenin Girard
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Bénédicte Le Tinier
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | | | - Belen Ponte
- Service of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Sun G, Liu C, Song C, Geng X, Chi K, Fu Z, Hong Q, Wu D. Knowledge mapping of UMOD of English published work from 1985 to 2022: a bibliometric analysis. Int Urol Nephrol 2024; 56:249-261. [PMID: 37322316 PMCID: PMC10776727 DOI: 10.1007/s11255-023-03664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND UMOD is exclusively produced by renal epithelial cells. Recent genome-wide association studies (GWAS) suggested that common variants in UMOD gene are closely connected with the risk of CKD. However, a comprehensive and objective report on the current status of UMOD research is lacking. Therefore, we aim to conduct a bibliometric analysis to quantify and identify the status quo and trending issues of UMOD research in the past. METHODS We collected data from the Web of Science Core Collection database and used the Online Analysis Platform of Literature Metrology, the Online Analysis Platform of Literature Metrology and Microsoft Excel 2019 to perform bibliometricanalysis and visualization. RESULTS Based on the data from the WoSCC database from 1985 to 2022, a total of 353 UMOD articles were published in 193 academic journals by 2346 authors from 50 different countries/regions and 396 institutions. The United States published the most papers. Professor Devuyst O from University of Zurich not only published the greatest number of UMOD-related papers but also is among the top 10 co-cited authors. KIDNEY INTERNATIONAL published the most necroptosis studies, and it was also the most cited journal. High-frequency keywords mainly included 'chronic kidney disease', 'Tamm Horsfall protein' and 'mutation'. CONCLUSIONS The number of UMOD-related articles has steadily increased over the past decades Current UMOD studies focused on Biological relevance of the UMOD to kidney function and potential applications in the risk of CKD mechanisms, these might provide ideas for further research in the UMOD field.
Collapse
Affiliation(s)
- Guannan Sun
- Medical School of Chinese PLA, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China
| | - Chao Liu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China
| | - Chengcheng Song
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China
| | - Xiaodong Geng
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China
| | - Kun Chi
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China
| | - Zhangning Fu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China
| | - Di Wu
- Medical School of Chinese PLA, Beijing, 100853, China.
- State Key Laboratory of Kidney Diseases, Department of Nephrology, First Medical Center of Chinese, National Clinical Research Center for Kidney Diseases, PLA General Hospital, Beijing, 100853, China.
- Department of Nephrology, Beijing Electric Power Hospital, Beijing, 100073, China.
| |
Collapse
|
11
|
Mary S, Boder P, Padmanabhan S, McBride MW, Graham D, Delles C, Dominiczak AF. Role of Uromodulin in Salt-Sensitive Hypertension. Hypertension 2022; 79:2419-2429. [PMID: 36378920 PMCID: PMC9553220 DOI: 10.1161/hypertensionaha.122.19888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Collapse
Affiliation(s)
- Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Boder
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Martin W. McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
David BL, Ivan GNJ, Emilio PGE, Daniela MSJ, Betsabe CH, Luisa VVM, Selene FRN, Guadalupe ACEA, Miriam SCA, Alfredo C, Arturo NVC, Mercedes HCD, German CME, Gonzalez-Lopez L. Low serum uromodulin levels and their association with lupus flares. PLoS One 2022; 17:e0276481. [PMID: 36301848 PMCID: PMC9612514 DOI: 10.1371/journal.pone.0276481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Only two previous studies in systemic lupus erythematosus (SLE) patients have identified that the blood concentrations of uromodulin are lower in nephritis. However, none of them had evaluated whether a low serum uromodulin adjusted by the glomerular filtration rate (sUromod/eGFR index) contributed to identify patients in risk of lupus nephritis (LN) using multivariable models. AIM Therefore, this study aimed two objectives to evaluate the association between low serum uromodulin levels and low sUromod adjusted by eGFR with renal flares in SLE excluding effects of potential confounders in multivariable analyses; and to identify the value of low sUmod and low sUmod/eGFR index as a potential diagnostic marker of LN. PATIENTS AND METHODS Design: Cross-sectional study. SLE patients (n = 114) were investigated for lupus flare with renal SLEDAI. Two groups: a) SLE with renal flare (renal-SLEDAI≥4, n = 41) and b) SLE non-renal flare (renal SLEDAI<4, n = 73). SLE patients were evaluated by other indices including a global disease activity index (SLEDAI) and SLICC renal disease activity score. Serum uromodulin levels (ng/mL) were quantified by ELISA. Serum uromodulin was adjusted by eGFR (sUromod/eGFR index). Cutt-offs of low sUromodulin and low sUromod/eGFR index were computed, ROC curves were performed and values of diagnostic tests were obtained. Multivariable logistic regression models were performed to identify if low sUromod/eGFR index is associated to renal flares. RESULTS Low serum uromodulin and low sUromod/eGFR index correlated to high scores of renal-SLEDAI, SLICC-renal and proteinuria. SLE patients with a renal flare had lower uromodulin levels compared to SLE patients without renal flare (p = 0.004). After adjusting by potential confounders, the low sUromod/eGFR index (<0.80 ng/mL) increased the risk of a renal flare (OR, 2.91; 95%CI, 1.21 to 6.98; p = 0.02). CONCLUSIONS We propose the low sUromod/eGFR index as a potential new marker of renal disease activity in SLE.
Collapse
Affiliation(s)
- Bonilla-Lara David
- Programa de Doctorado en Farmacología, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Gamez-Nava Jorge Ivan
- Programa de Doctorado en Farmacología, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Programa de Doctorado en Salud Publica, Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, Departamento de Salud Pública, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Research Group of Factors Related to Therapeutic Outcomes in Autoimmune Diseases, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Perez-Guerrero Edsaul Emilio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Murillo-Saich Jessica Daniela
- Department of Medicine, School of Medicine, University of California, San Diego, California, United States of America
| | - Contreras-Haro Betsabe
- División de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco, México
| | - Vazquez-Villegas Maria Luisa
- Programa de Doctorado en Salud Publica, Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, Departamento de Salud Pública, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Research Group of Factors Related to Therapeutic Outcomes in Autoimmune Diseases, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Departamento de Epidemiología, Unidad de Medicina Familiar N°, 4, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Fajardo-Robledo Nicte Selene
- Research Group of Factors Related to Therapeutic Outcomes in Autoimmune Diseases, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Laboratorio de Investigación y Desarrollo Farmacéutico, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Aguilar-Chavez Erika Anita Guadalupe
- Department of Medicine, School of Medicine, University of California, San Diego, California, United States of America
- Unidad de Medicina Familiar No. 2, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Saldaña-Cruz Ana Miriam
- Research Group of Factors Related to Therapeutic Outcomes in Autoimmune Diseases, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Celis Alfredo
- Programa de Doctorado en Salud Publica, Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, Departamento de Salud Pública, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Nava-Valdivia Cesar Arturo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | - Cardona-Muñoz Ernesto German
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Laura Gonzalez-Lopez
- Programa de Doctorado en Farmacología, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Research Group of Factors Related to Therapeutic Outcomes in Autoimmune Diseases, Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
- Departamento de Medicina Interna-Reumatología, Hospital General Regional 110 Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
- * E-mail: ,
| |
Collapse
|
13
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
14
|
Wang L, Lin X, Zhou Z, Yang Y, Gao P, Wu Z. Genetic Variants Involved in the Crystallization Pathway Are Associated with Calcium Nephrolithiasis in the Chinese Han Population. Genes (Basel) 2022; 13:genes13060943. [PMID: 35741705 PMCID: PMC9222851 DOI: 10.3390/genes13060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
A genome-wide association analysis study (GWAS) in the Japanese population identified 14 significant loci associated with nephrolithiasis. Besides 4 novel loci related to metabolic traits, the 10 remaining loci were associated with kidney or electrolyte-related traits. We aimed to replicate the association of these loci with calcium nephrolithiasis in the Chinese Han population. A case–control association analysis was conducted involving 691 calcium nephrolithiasis patients and 1008 control subjects. We were able to genotype a total of 11 single-nucleotide polymorphisms (SNPs) previously identified as being correlated with nephrolithiasis in the Japanese population. SNP rs35747824 at PDILT was related to calcium nephrolithiasis in the Chinese Han population (p = 4.346 × 10−3, OR = 1.292). Moreover, four SNPs at four loci, rs6667242 at ALPL (p = 0.02999, OR = 0.8331), rs1544935 at KCNK5 (p = 0.01341, OR = 0.7804), rs7328064 at DGKH (p = 0.007452, OR = 1.211) and rs13041834 at BCAS1 (p = 0.03897, OR = 0.8409), were suggestively associated with calcium nephrolithiasis. Our results demonstrated that the genetic variants at 1p36.12, 6p21.2, 13q14.11, 16p12.3 and 20q13.2 are associated with calcium nephrolithiasis in the Chinese Han population. Furthermore, our study highlights the importance of genetic variance associated with the crystallization pathway in Chinese patients with calcium nephrolithiasis.
Collapse
Affiliation(s)
- Lujia Wang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai 200040, China; (L.W.); (Z.Z.); (Y.Y.); (P.G.)
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xiaoling Lin
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China;
| | - Zijian Zhou
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai 200040, China; (L.W.); (Z.Z.); (Y.Y.); (P.G.)
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yuanyuan Yang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai 200040, China; (L.W.); (Z.Z.); (Y.Y.); (P.G.)
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Peng Gao
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai 200040, China; (L.W.); (Z.Z.); (Y.Y.); (P.G.)
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhong Wu
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai 200040, China; (L.W.); (Z.Z.); (Y.Y.); (P.G.)
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Correspondence: ; Tel.: +86-21-52887081
| |
Collapse
|
15
|
Vargas-Poussou R. Pathophysiological aspects of the thick ascending limb and novel genetic defects: HELIX syndrome and transient antenatal Bartter syndrome. Pediatr Nephrol 2022; 37:239-252. [PMID: 33733301 DOI: 10.1007/s00467-021-05019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
The thick ascending limb plays a central role in human kidney physiology, participating in sodium reabsorption, urine concentrating mechanisms, calcium and magnesium homeostasis, bicarbonate and ammonium homeostasis, and uromodulin synthesis. This review aims to illustrate the importance of these roles from a pathophysiological point of view by describing the interactions of the key proteins of this segment and by discussing how recently identified and long-known hereditary diseases affect this segment. The descriptions of two recently described salt-losing tubulopathies, transient antenatal Bartter syndrome and HELIX syndrome, which are caused by mutations in MAGED2 and CLDN10 genes, respectively, highlight the role of new players in the modulation of sodium reabsorption the thick ascending limb.
Collapse
Affiliation(s)
- Rosa Vargas-Poussou
- Department of Molecular Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 20-40 rue Leblanc, 75015, Paris, France. .,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France. .,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
16
|
Torres-Pinzon DL, Ralph DL, Veiras LC, McDonough AA. Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles. Am J Physiol Cell Physiol 2021; 321:C897-C909. [PMID: 34613843 PMCID: PMC8616593 DOI: 10.1152/ajpcell.00282.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 02/04/2023]
Abstract
Kidneys continuously filter an enormous amount of sodium and adapt kidney Na+ reabsorption to match Na+ intake to maintain circulatory volume and electrolyte homeostasis. Males (M) respond to high-salt (HS) diet by translocating proximal tubule Na+/H+ exchanger isoform 3 (NHE3) to the base of the microvilli, reducing activated forms of the distal NaCl cotransporter (NCC) and epithelial Na+ channel (ENaC). Males (M) and females (F) on normal-salt (NS) diet present sex-specific profiles of "transporters" (cotransporters, channels, pumps, and claudins) along the nephron, e.g., F exhibit 40% lower NHE3 and 200% higher NCC abundance than M. We tested the hypothesis that adaptations to HS diet along the nephron will, likewise, exhibit sexual dimorphisms. C57BL/6J mice were fed for 15 days with 4% NaCl diet (HS) versus 0.26% NaCl diet (NS). On HS, M and F exhibited normal plasma [Na+] and [K+], similar urine volume, Na+, K+, and osmolal excretion rates normalized to body weight. In F, like M, HS lowered abundance of distal NCC, phosphorylated NCC, and cleaved (activated) forms of ENaC. The adaptations associated with achieving electrolyte homeostasis exhibit sex-dependent and independent mechanisms. Sex differences in baseline "transporters" abundance persist during HS diet, yet the fold changes during HS diet (normalized to NS) are similar along the distal nephron and collecting duct. Sex-dependent differences observed along the proximal tubule during HS show that female kidneys adapt differently from patterns reported in males, yet achieve and maintain fluid and electrolyte homeostasis.
Collapse
Affiliation(s)
- Diana L Torres-Pinzon
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Luciana C Veiras
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
You R, Chen L, Xu L, Zhang D, Li H, Shi X, Zheng Y, Chen L. High Level of Uromodulin Increases the Risk of Hypertension: A Mendelian Randomization Study. Front Cardiovasc Med 2021; 8:736001. [PMID: 34540925 PMCID: PMC8440862 DOI: 10.3389/fcvm.2021.736001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The association of uromodulin and hypertension has been observed in clinical studies, but not proven by a causal relationship. We conducted a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between uromodulin and blood pressure. Methods: We selected single nucleotide polymorphisms (SNPs) related to urinary uromodulin (uUMOD) and serum uromodulin (sUMOD) from a large Genome-Wide Association Studies (GWAS) meta-analysis study and research in PubMed. Six datasets based on the UK Biobank and the International Consortium for Blood Pressure (ICBP) served as outcomes with a large sample of hypertension (n = 46,188), systolic blood pressure (SBP, n = 1,194,020), and diastolic blood pressure (DBP, n = 1,194,020). The inverse variance weighted (IVW) method was performed in uUMOD MR analysis, while methods of IVW, MR-Egger, Weighted median, and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) were utilized on sUMOD MR analysis. Results: MR analysis of IVM showed the odds ratio (OR) of the uUMOD to hypertension (“ukb-b-14057” and “ukb-b-14177”) is 1.04 (95% Confidence Interval (CI), 1.03-1.04, P < 0.001); the effect sizes of the uUMOD to SBP are 1.10 (Standard error (SE) = 0.25, P = 8.92E-06) and 0.03 (SE = 0.01, P = 2.70E-04) in “ieu-b-38” and “ukb-b-20175”, respectively. The β coefficient of the uUMOD to DBP is 0.88 (SE = 0.19, P = 4.38E-06) in “ieu-b-39” and 0.05 (SE = 0.01, P = 2.13E-10) in “ukb-b-7992”. As for the sUMOD, the OR of hypertension (“ukb-b-14057” and “ukb-b-14177”) is 1.01 (95% CI 1.01–1.02, all P < 0.001). The β coefficient of the SBP is 0.37 (SE = 0.07, P = 1.26E-07) in “ieu-b-38” and 0.01 (SE = 0.003, P = 1.04E-04) in “ukb-b-20175”. The sUMOD is causally associated with elevated DBP (“ieu-b-39”: β = 0.313, SE = 0.050, P = 3.43E-10; “ukb-b-7992”: β = 0.018, SE = 0.003, P = 8.41E-09). Conclusion: Our results indicated that high urinary and serum uromodulin levels are potentially detrimental in elevating blood pressure, and serve as a causal risk factor for hypertension.
Collapse
Affiliation(s)
- Ruilian You
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lanlan Chen
- First Clinical Medical College of Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Lubin Xu
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dingding Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Li
- China-Japan Friendship Hospital, Jilin University, Changchun, China
| | - Xiaoxiao Shi
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yali Zheng
- Department of Nephrology, Affiliated Ningxia People's Hospital of Ningxia Medical University, Yinchuan, China
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Boder P, Mary S, Mark PB, Leiper J, Dominiczak AF, Padmanabhan S, Rampoldi L, Delles C. Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and hypertension. J Hypertens 2021; 39:1490-1504. [PMID: 34187999 PMCID: PMC7611110 DOI: 10.1097/hjh.0000000000002861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension is a significant risk factor for cardiovascular disease and mortality worldwide. The kidney is a major regulator of blood pressure and electrolyte homeostasis, with monogenic disorders indicating a link between abnormal ion transport and salt-sensitive hypertension. However, the association between salt and hypertension remains controversial. Thus, there is continued interest in deciphering the molecular mechanisms behind these processes. Uromodulin (UMOD) is the most abundant protein in the normal urine and is primarily synthesized by the thick ascending limb epithelial cells of the kidney. Genome-wide association studies have linked common UMOD variants with kidney function, susceptibility to chronic kidney disease and hypertension independent of renal excretory function. This review will discuss and provide predictions on the role of the UMOD protein in renal ion transport and hypertension based on current observational, biochemical, genetic, pharmacological and clinical evidence.
Collapse
Affiliation(s)
- Philipp Boder
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheon Mary
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick B. Mark
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Delles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Abstract
Uromodulin, a protein exclusively produced by the kidney, is the most abundant urinary protein in physiological conditions. Already described several decades ago, uromodulin has gained the spotlight in recent years, since the discovery that mutations in its encoding gene UMOD cause a renal Mendelian disease (autosomal dominant tubulointerstitial kidney disease) and that common polymorphisms are associated with multifactorial disorders, such as chronic kidney disease, hypertension, and cardiovascular diseases. Moreover, variations in uromodulin levels in urine and/or blood reflect kidney functioning mass and are of prognostic value for renal function, cardiovascular events, and overall mortality. The clinical relevance of uromodulin reflects its multifunctional nature, playing a role in renal ion transport and immunomodulation, in protection against urinary tract infections and renal stones, and possibly as a systemic antioxidant. Here, we discuss the multifaceted roles of this protein in kidney physiology and its translational relevance.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy;
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, University of Zurich, CH-8057 Zurich, Switzerland
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy;
| |
Collapse
|
20
|
Schroth J, Thiemermann C, Henson SM. Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:564461. [PMID: 33163486 PMCID: PMC7581911 DOI: 10.3389/fcell.2020.564461] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) presents an ever-growing disease burden for the world's aging population. It is characterized by numerous changes to the kidney, including a decrease in renal mass, renal fibrosis, and a diminished glomerular filtration rate. The premature aging phenotype observed in CKD is associated with cellular senescence, particularly of renal tubular epithelial cells (TECs), which contributes to chronic inflammation through the production of a proinflammatory senescence associated secretory phenotype (SASP). When coupled with changes in immune system composition and progressive immune dysfunction, the accumulation of senescent kidney cells acts as a driver for the progression of CKD. The targeting of senescent cells may well present an attractive therapeutic avenue for the treatment of CKD. We propose that the targeting of senescent cells either by direct inhibition of pro-survival pathways (senolytics) or through the inhibition of their proinflammatory secretory profile (senomorphics) together with immunomodulation to enhance immune system surveillance of senescent cells could be of benefit to patients with CKD.
Collapse
Affiliation(s)
| | | | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
McFarlin BE, Chen Y, Priver TS, Ralph DL, Mercado A, Gamba G, Madhur MS, McDonough AA. Coordinate adaptations of skeletal muscle and kidney to maintain extracellular [K +] during K +-deficient diet. Am J Physiol Cell Physiol 2020; 319:C757-C770. [PMID: 32845718 PMCID: PMC7654654 DOI: 10.1152/ajpcell.00362.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022]
Abstract
Extracellular fluid (ECF) potassium concentration ([K+]) is maintained by adaptations of kidney and skeletal muscle, responses heretofore studied separately. We aimed to determine how these organ systems work in concert to preserve ECF [K+] in male C57BL/6J mice fed a K+-deficient diet (0K) versus 1% K+ diet (1K) for 10 days (n = 5-6/group). During 0K feeding, plasma [K+] fell from 4.5 to 2 mM; hindlimb muscle (gastrocnemius and soleus) lost 28 mM K+ (from 115 ± 2 to 87 ± 2 mM) and gained 27 mM Na+ (from 27 ± 0.4 to 54 ± 2 mM). Doubling of muscle tissue [Na+] was not associated with inflammation, cytokine production or hypertension as reported by others. Muscle transporter adaptations in 0K- versus 1K-fed mice, assessed by immunoblot, included decreased sodium pump α2-β2 subunits, decreased K+-Cl- cotransporter isoform 3, and increased phosphorylated (p) Na+,K+,2Cl- cotransporter isoform 1 (NKCC1p), Ste20/SPS-1-related proline-alanine rich kinase (SPAKp), and oxidative stress-responsive kinase 1 (OSR1p) consistent with intracellular fluid (ICF) K+ loss and Na+ gain. Renal transporters' adaptations, effecting a 98% reduction in K+ excretion, included two- to threefold increased phosphorylated Na+-Cl- cotransporter (NCCp), SPAKp, and OSR1p abundance, limiting Na+ delivery to epithelial Na+ channels where Na+ reabsorption drives K+ secretion; and renal K sensor Kir 4.1 abundance fell 25%. Mass balance estimations indicate that over 10 days of 0K feeding, mice lose ~48 μmol K+ into the urine and muscle shifts ~47 μmol K+ from ICF to ECF, illustrating the importance of the concerted responses during K+ deficiency.
Collapse
Affiliation(s)
- Brandon E McFarlin
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yuhan Chen
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cardiology, Nanjing University Medical School, Nanjing, China
| | - Taylor S Priver
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Adriana Mercado
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Meena S Madhur
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Plotkin M, O'Brien CA, Goellner J, Williams J, Carter W, Sharma S, Stone A. A Uromodulin Mutation Drives Autoimmunity and Kidney Mononuclear Phagocyte Endoplasmic Reticulum Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2436-2452. [PMID: 32926855 DOI: 10.1016/j.ajpath.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
We identified a family with a UMOD gene mutation (C106F) resulting in glomerular inflammation and complement deposition. To determine if the observed phenotype is due to immune system activation by mutant uromodulin, a mouse strain with a homologous cysteine to phenylalanine mutation (C105F) in the UMOD gene was generated using CRISPR-Cas9 gene editing and the effect of this mutation on mononuclear phagocytic cells was examined. Mutant mice developed high levels of intracellular and secreted aggregated uromodulin, resulting in anti-uromodulin antibodies and circulating uromodulin containing immune complexes with glomerular deposition and kidney fibrosis with aging. F4/80+ and CD11c+ kidney cells phagocytize uromodulin. Differential gene expression analysis by RNA sequencing of F4/80+ phagocytic cells revealed activation of the activating transcription factor 5 (ATF5)-mediated stress response pathway in mutant mice. Phagocytosis of mutant uromodulin by cultured dendritic cells resulted in activation of the endoplasmic reticulum stress response pathway and markers of cell inactivation, an effect not seen with wild-type protein. Mutant mice demonstrate a twofold increase in T-regulatory cells, consistent with induction of immune tolerance, resulting in decreased inflammatory response and improved tissue repair following ischemia-reperfusion injury. The C105F mutation results in autoantibodies against aggregated misfolded protein with immune complex formation and kidney fibrosis. Aggregated uromodulin may induce dendritic cell tolerance following phagocytosis through an unfolded protein/endoplasmic reticulum stress response pathway, resulting in decreased inflammation following tissue injury.
Collapse
Affiliation(s)
- Matthew Plotkin
- Renal Division, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Joseph Goellner
- Center for Musculoskeletal Disease Research, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Joshua Williams
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Weleetka Carter
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Annjanette Stone
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
23
|
Then C, Thorand B, Then HL, Meisinger C, Heier M, Peters A, Koenig W, Rathmann W, Bidlingmaier M, Lechner A, Reincke M, Scherberich JE, Seissler J. Serum uromodulin is inversely associated with arterial hypertension and the vasoconstrictive prohormone CT-proET-1 in the population-based KORA F4 study. PLoS One 2020; 15:e0237364. [PMID: 32764816 PMCID: PMC7413541 DOI: 10.1371/journal.pone.0237364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022] Open
Abstract
Objectives Uromodulin has been associated with arterial hypertension in genome-wide association studies, but data from clinical and preclinical studies are inconsistent. We here analyzed the association of serum uromodulin (sUmod) with arterial hypertension and vasoactive hormones in a population-based study. Methods In 1108 participants of the KORA F4 study aged 62–81 years, sUmod was measured and the association of sUmod with arterial hypertension was assessed using logistic regression models. The associations of sUmod with renin and aldosterone and with the vasoconstrictive prohormone C-terminal pro-endothelin-1 (CT-proET-1) were analyzed in 1079 participants and in 618 participants, respectively, using linear regression models. Results After multivariable adjustment including sex, age, eGFR, BMI, fasting glucose, current smoking, previous stroke and myocardial infarction, sUmod was inversely associated with arterial hypertension (OR 0.78; 95% CI 0.68–0.91; p = 0.001). SUmod was not significantly associated with renin and aldosterone after adjustment for sex, age and eGFR. However, sUmod was inversely associated with CT-proET-1 (β -0.19 ± 0.04; p < 0.001) after adjustment for sex, age, eGFR, BMI, arterial hypertension, fasting glucose, current smoking, previous stroke and myocardial infarction. The association with CT-proET-1 was stronger in participants with hypertension (β -0.22 ± 0.04) than in normotensive participants (β -0.13 ± 0.06; p for interaction hypertension = 0.003 in the model adjusted for hypertension). Conclusions SUmod was inversely associated with arterial hypertension and the vasoconstrictive prohormone CT-proET-1, suggesting direct or indirect effects of sUmod on blood pressure regulation.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- * E-mail:
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology at UNIKAT Augsburg, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Andreas Lechner
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Jürgen E. Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
24
|
Molinari E, Sayer JA. Disease Modeling To Understand the Pathomechanisms of Human Genetic Kidney Disorders. Clin J Am Soc Nephrol 2020; 15:855-872. [PMID: 32139361 PMCID: PMC7274277 DOI: 10.2215/cjn.08890719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The class of human genetic kidney diseases is extremely broad and heterogeneous. Accordingly, the range of associated disease phenotypes is highly variable. Many children and adults affected by inherited kidney disease will progress to ESKD at some point in life. Extensive research has been performed on various different disease models to investigate the underlying causes of genetic kidney disease and to identify disease mechanisms that are amenable to therapy. We review some of the research highlights that, by modeling inherited kidney disease, contributed to a better understanding of the underlying pathomechanisms, leading to the identification of novel genetic causes, new therapeutic targets, and to the development of new treatments. We also discuss how the implementation of more efficient genome-editing techniques and tissue-culture methods for kidney research is providing us with personalized models for a precision-medicine approach that takes into account the specificities of the patient and the underlying disease. We focus on the most common model systems used in kidney research and discuss how, according to their specific features, they can differentially contribute to biomedical research. Unfortunately, no definitive treatment exists for most inherited kidney disorders, warranting further exploitation of the existing disease models, as well as the implementation of novel, complex, human patient-specific models to deliver research breakthroughs.
Collapse
Affiliation(s)
- Elisa Molinari
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Uromodulin (UMOD), also known as Tamm-Horsfall protein, is the most abundant protein in human urine. UMOD has multiple functions such as protection against urinary tract infections and nephrolithiasis. This review outlines recent progress made in UMOD's role in renal physiology, tubular transport, and mineral metabolism. RECENT FINDINGS UMOD is mostly secreted in the thick ascending limb (TAL) and to a lesser degree in the distal convoluted tubule (DCT). UMOD secretion is regulated by the calcium-sensing receptor. UMOD upregulates ion channels [e.g., renal outer medullary potassium channel, transient receptor potential cation channel subfamily V member 5, and transient receptor potential melastatin 6 (TRPM6)] and cotransporters [e.g., Na,K,2Cl cotransporter (NKCC2) and sodium-chloride cotransporter (NCC)] in the TAL and DCT. Higher serum UMOD concentrations have been associated with higher renal function and preserved renal reserve. Higher serum UMOD has also been linked to a lower risk of cardiovascular disease and diabetes mellitus. SUMMARY With better serum UMOD detection assays the extent of different functions for UMOD is still expanding. Urinary UMOD regulates different tubular ion channels and cotransporters. Variations of urinary UMOD secretion can so contribute to common disorders such as hypertension or nephrolithiasis.
Collapse
|
26
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
The Urinary Excretion of Uromodulin is Regulated by the Potassium Channel ROMK. Sci Rep 2019; 9:19517. [PMID: 31863061 PMCID: PMC6925250 DOI: 10.1038/s41598-019-55771-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Uromodulin, the most abundant protein in normal urine, is produced by cells lining the thick ascending limb (TAL) of the loop of Henle. Uromodulin regulates the activity of the potassium channel ROMK in TAL cells. Common variants in KCNJ1, the gene encoding ROMK, are associated with urinary levels of uromodulin in population studies. Here, we investigated the functional link between ROMK and uromodulin in Kcnj1 knock-out mouse models, in primary cultures of mouse TAL (mTAL) cells, and in patients with Bartter syndrome due to KCNJ1 mutations. Both global and kidney-specific Kcnj1 knock-out mice showed reduced urinary levels of uromodulin paralleled by increased levels in the kidney, compared to wild-type controls. Pharmacological inhibition and genetic deletion of ROMK in mTAL cells caused a reduction in apical uromodulin excretion, reflected by cellular accumulation. In contrast, NKCC2 inhibition showed no effect on uromodulin processing. Patients with Bartter syndrome type 2 showed reduced urinary uromodulin levels compared to age and gender matched controls. These results demonstrate that ROMK directly regulates processing and release of uromodulin by TAL cells, independently from NKCC2. They support the functional link between transport activity and uromodulin in the TAL, relevant for blood pressure control and urinary concentrating ability.
Collapse
|
28
|
Kliewe F, Kaling S, Lötzsch H, Artelt N, Schindler M, Rogge H, Schröder S, Scharf C, Amann K, Daniel C, Lindenmeyer MT, Cohen CD, Endlich K, Endlich N. Fibronectin is up-regulated in podocytes by mechanical stress. FASEB J 2019; 33:14450-14460. [PMID: 31675484 DOI: 10.1096/fj.201900978rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypertension is one of the central causes of kidney damage. In the past it was shown that glomerular hypertension leads to morphologic changes of podocytes and effacement and is responsible for detachment of these postmitotic cells. Because we have shown that podocytes are mechanosensitive and respond to mechanical stress by reorganization of the actin cytoskeleton in vitro, we look for mechanotransducers in podocytes. In this study, we demonstrate that the extracellular matrix protein fibronectin (Fn1) might be a potential candidate. The present study shows that Fn1 is essential for the attachment of podocytes during mechanical stress. By real-time quantitative PCR as well as by liquid chromatography-mass spectrometry, we found a significant up-regulation of Fn1 caused by mechanical stretch (3 d, 0.5 Hz, and 5% extension). To study the role of Fn1 in cultured podocytes under mechanical stress, Fn1 was knocked down (Fn1 KD) by a specific small interfering RNA. Additionally, we established a Fn1 knockout (KO) podocyte cell line (Fn1 KO) by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). During mechanical stress, a significant loss of podocytes (>80%) was observed in Fn1 KD as well as Fn1 KO podocytes compared with control cells. Furthermore, Fn1 KO podocytes showed a significant down-regulation of the focal adhesion proteins talin, vinculin, and paxillin and a reduced cell spreading, indicating an important role of Fn1 in adhesion. Analyses of kidney sections from patients with diabetic nephropathy have shown a significant up-regulation of FN1 in contrast to control biopsies. In summary, we show that Fn1 plays an important role in the adaptation of podocytes to mechanical stress.-Kliewe, F., Kaling, S., Lötzsch, H., Artelt, N., Schindler, M., Rogge, H., Schröder, S., Scharf, C., Amann, K., Daniel, C., Lindenmeyer, M. T., Cohen, C. D., Endlich, K., Endlich, N. Fibronectin is up-regulated in podocytes by mechanical stress.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Sören Kaling
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Henriette Lötzsch
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Maximilian Schindler
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Sindy Schröder
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Ear, Nose, and Throat Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany
| | - Maja T Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Steubl D, Buzkova P, Garimella PS, Ix JH, Devarajan P, Bennett MR, Chaves PHM, Shlipak MG, Bansal N, Sarnak MJ. Association of Serum Uromodulin With ESKD and Kidney Function Decline in the Elderly: The Cardiovascular Health Study. Am J Kidney Dis 2019; 74:501-509. [PMID: 31128770 PMCID: PMC7188359 DOI: 10.1053/j.ajkd.2019.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE & OBJECTIVE Uromodulin is released by tubular epithelial cells into the serum and lower levels are associated with more severe interstitial fibrosis and tubular atrophy. Low serum uromodulin (sUMOD) levels are associated with mortality and cardiovascular disease. However, little is known about the association of sUMOD levels with long-term kidney outcomes in older adults, a population with a high prevalence of interstitial fibrosis and tubular atrophy. STUDY DESIGN Case-cohort study and case-control study. SETTING & PARTICIPANTS Random subcohort (n=933) and additional cases of end-stage kidney disease (ESKD) and kidney function decline (≥30% decline in estimated glomerular filtration rate [eGFR]) during follow-up of the Cardiovascular Health Study (CHS). PREDICTOR sUMOD level. OUTCOMES ESKD (n=14) from the random subcohort and all additional ESKD cases from outside the random subcohort (n=39) during follow-up (10 years, case-cohort study); kidney function decline of≥30% eGFR at 9 years of follow-up in individuals with repeated eGFR assessments from the random subcohort (n=56) and additional cases (n=123). 224 participants from the random subcohort served as controls (case-control study). ANALYTICAL APPROACH Modified multivariable Cox regression for ESKD and multivariable logistic regression for kidney function decline. Both analyses adjusted for demographics, eGFR, urinary albumin-creatinine ratio, and other kidney disease progression risk factors. RESULTS Mean age of the random subcohort was 78 years, 40% were men, 15% were black. Mean sUMOD level was 127±64ng/mL and eGFR was 63±19mL/min/1.73m2. In multivariable analysis, each 1-SD higher sUMOD level was associated with 63% lower risk for ESKD (HR, 0.37; 95% CI, 0.14-0.95). In demographic-adjusted analyses of kidney function decline, each 1-SD higher sUMOD level was associated with 25% lower odds of kidney function decline (OR, 0.75; 95% CI, 0.60-0.95); after multivariable adjustment, the association was attenuated and no longer significant (OR, 0.88; 95% CI, 0.68-1.14). LIMITATIONS Possibility of survival bias in the kidney function decline analysis. CONCLUSIONS Higher sUMOD levels may identify elderly persons at reduced risk for ESKD.
Collapse
Affiliation(s)
- Dominik Steubl
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA; Division of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Pranav S Garimella
- Division of Nephrology-Hypertension, University of California San Diego, San Diego, CA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, University of California San Diego, San Diego, CA
| | - Prasad Devarajan
- Department of Nephrology and Hypertension, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH
| | - Michael R Bennett
- Department of Nephrology and Hypertension, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH
| | - Paolo H M Chaves
- Benjamin Leon Center for Geriatric Research and Education, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Michael G Shlipak
- Division of General Internal Medicine, University of California San Francisco, San Francisco, CA
| | - Nisha Bansal
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA
| | - Mark J Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA.
| |
Collapse
|
30
|
Hepsin-mediated Processing of Uromodulin is Crucial for Salt-sensitivity and Thick Ascending Limb Homeostasis. Sci Rep 2019; 9:12287. [PMID: 31444371 PMCID: PMC6707305 DOI: 10.1038/s41598-019-48300-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Uromodulin is a zona pellucida-type protein essentially produced in the thick ascending limb (TAL) of the mammalian kidney. It is the most abundant protein in normal urine. Defective uromodulin processing is associated with various kidney disorders. The luminal release and subsequent polymerization of uromodulin depend on its cleavage mediated by the serine protease hepsin. The biological relevance of a proper cleavage of uromodulin remains unknown. Here we combined in vivo testing on hepsin-deficient mice, ex vivo analyses on isolated tubules and in vitro studies on TAL cells to demonstrate that hepsin influence on uromodulin processing is an important modulator of salt transport via the sodium cotransporter NKCC2 in the TAL. At baseline, hepsin-deficient mice accumulate uromodulin, along with hyperactivated NKCC2, resulting in a positive sodium balance and a better adaptation to water deprivation. In conditions of high salt intake, defective uromodulin processing predisposes hepsin-deficient mice to a salt-wasting phenotype, with a decreased salt sensitivity. These modifications are associated with intracellular accumulation of uromodulin, endoplasmic reticulum-stress and signs of tubular damage. These studies expand the physiological role of hepsin and uromodulin and highlight the importance of hepsin-mediated processing of uromodulin for kidney tubule homeostasis and salt sensitivity.
Collapse
|
31
|
Wu CH, Yang CC, Chang HW, Huang B, Chen CJ, Lin EIC, Wu CY, Chung YH, Hsu YH, Lee CT, Chuang FR. Urinary Uromodulin/Creatinine Ratio as a Potential Clinical Biomarker for Chronic Kidney Disease Patients with Gout: A Pilot Study. Med Princ Pract 2019; 28:273-279. [PMID: 30636243 PMCID: PMC6597938 DOI: 10.1159/000496844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/13/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Recent studies have reported that reduced excretion of urinary uromodulin is associated with renal tubular function and risks of progressive kidney disease. Gouty nephropathy is usually seen in patients with gout. Patients with chronic gouty nephropathy are characterized by the deposition of monosodium urate crystals primarily involving the collecting ducts in the medulla. We postulated that this correlation may be specific to gout and may serve as a useful biomarker for chronic kidney disease (CKD). MATERIALS AND METHODS A total of 114 Taiwanese patients diagnosed with gout (n = 72), CKD (n = 26), or healthy volunteers (n = 16) were prospectively enrolled for this study from the Rheumatology and Nephrology Outpatient Clinics of our institution. We obtained urine and blood samples on patient visits to the outpatient clinics. Demographic data were obtained from medical records. RESULTS In patients with gout, the spot urinary uromodulin/creatinine ratio (uUMCR; mg/g) in patients with CKD was significantly lower than that in those without CKD (CKD group: 2.2; non-CKD group: 5.6, p = 0.005). Multivariate analysis revealed that patients with CKD and gout had a lower uUMCR than those with gout alone (p = 0.028). A significant association was not observed in our non-gout cohort. CONCLUSION The association of decreased uUMCR with CKD status was identified only in patients with gout in the present study. We believe that uUMCR might serve as an indicator of differential CKD in patients with gout.
Collapse
Affiliation(s)
- Chien-Hsing Wu
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Dr. Feng-Rong Chuang, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Niaosong District, Kaohsiung 83301 (Taiwan), E-Mail
| | - Chih-Chao Yang
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jen Chen
- Division of General Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Eton I-Cheng Lin
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Chien-Yi Wu
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yueh-Hua Chung
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Han Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Rong Chuang
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Pathophysiological and molecular mechanisms involved in renal congestion in a novel rat model. Sci Rep 2018; 8:16808. [PMID: 30429498 PMCID: PMC6235885 DOI: 10.1038/s41598-018-35162-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 01/18/2023] Open
Abstract
Increased central venous pressure in congestive heart failure causes renal dysfunction; however, the underlying mechanisms are unclear. We created a rat renal congestion model and investigated the effect of renal congestion on hemodynamics and molecular mechanisms. The inferior vena cava (IVC) between the renal veins was ligated by suture in male Sprague-Dawley rats to increase upstream IVC pressure and induce congestion in the left kidney only. Left kidney congestion reduced renal blood flow, glomerular filtration rate, and increased renal interstitial hydrostatic pressure. Tubulointerstitial and glomerular injury and medullary thick ascending limb hypoxia were observed only in the congestive kidneys. Molecules related to extracellular matrix expansion, tubular injury, and focal adhesion were upregulated in microarray analysis. Renal decapsulation ameliorated the tubulointerstitial injury. Electron microscopy captured pericyte detachment in the congestive kidneys. Transgelin and platelet-derived growth factor receptors, as indicators of pericyte-myofibroblast transition, were upregulated in the pericytes and the adjacent interstitium. With the compression of the peritubular capillaries and tubules, hypoxia and physical stress induce pericyte detachment, which could result in extracellular matrix expansion and tubular injury in renal congestion.
Collapse
|
33
|
Cañadas-Garre M, Anderson K, McGoldrick J, Maxwell AP, McKnight AJ. Genomic approaches in the search for molecular biomarkers in chronic kidney disease. J Transl Med 2018; 16:292. [PMID: 30359254 PMCID: PMC6203198 DOI: 10.1186/s12967-018-1664-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is recognised as a global public health problem, more prevalent in older persons and associated with multiple co-morbidities. Diabetes mellitus and hypertension are common aetiologies for CKD, but IgA glomerulonephritis, membranous glomerulonephritis, lupus nephritis and autosomal dominant polycystic kidney disease are also common causes of CKD. MAIN BODY Conventional biomarkers for CKD involving the use of estimated glomerular filtration rate (eGFR) derived from four variables (serum creatinine, age, gender and ethnicity) are recommended by clinical guidelines for the evaluation, classification, and stratification of CKD. However, these clinical biomarkers present some limitations, especially for early stages of CKD, elderly individuals, extreme body mass index values (serum creatinine), or are influenced by inflammation, steroid treatment and thyroid dysfunction (serum cystatin C). There is therefore a need to identify additional non-invasive biomarkers that are useful in clinical practice to help improve CKD diagnosis, inform prognosis and guide therapeutic management. CONCLUSION CKD is a multifactorial disease with associated genetic and environmental risk factors. Hence, many studies have employed genetic, epigenetic and transcriptomic approaches to identify biomarkers for kidney disease. In this review, we have summarised the most important studies in humans investigating genomic biomarkers for CKD in the last decade. Several genes, including UMOD, SHROOM3 and ELMO1 have been strongly associated with renal diseases, and some of their traits, such as eGFR and serum creatinine. The role of epigenetic and transcriptomic biomarkers in CKD and related diseases is still unclear. The combination of multiple biomarkers into classifiers, including genomic, and/or epigenomic, may give a more complete picture of kidney diseases.
Collapse
Affiliation(s)
- M. Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - K. Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - J. McGoldrick
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - A. P. Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
| | - A. J. McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| |
Collapse
|
34
|
Bachmann S. A novel role for Tamm-Horsfall protein (uromodulin) in the renal tubule. Kidney Int 2018; 94:652-655. [PMID: 30243308 DOI: 10.1016/j.kint.2018.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
Tamm-Horsfall protein (THP)/uromodulin, the most abundant urinary protein, is produced in the thick ascending limb of the loop of Henle. Besides immunological functions, it has regulatory impact on ion transport and volume regulation. It had been debated whether the distal convoluted tubule is a source for THP as well. Novel results suggest that in its early portions, THP synthesis affects adaptive plasticity of the epithelium, stabilizes calcium homeostasis, and activates the thiazide-sensitive Na+,Cl--cotransporter.
Collapse
Affiliation(s)
- Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Nie M, Bal MS, Liu J, Yang Z, Rivera C, Wu XR, Hoenderop JGJ, Bindels RJM, Marciano DK, Wolf MTF. Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). J Biol Chem 2018; 293:16488-16502. [PMID: 30139743 DOI: 10.1074/jbc.ra118.003950] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Up to 15% of the population have mild to moderate chronic hypomagnesemia, which is associated with type 2 diabetes mellitus, hypertension, metabolic syndrome, and chronic kidney disease. The kidney is the key organ for magnesium homeostasis, but our understanding of renal magnesium regulation is very limited. Uromodulin (UMOD) is the most abundant urinary protein in humans, and here we report that UMOD has a role in renal magnesium homeostasis. Umod-knockout (Umod -/-) mice excreted more urinary magnesium than WT mice and displayed up-regulation of genes promoting magnesium absorption. The majority of magnesium is absorbed in the thick ascending limb. However, both mouse strains responded similarly to the diuretic agent furosemide, indicating appropriate function of the thick ascending limb in the Umod -/- mice. Magnesium absorption is fine-tuned in the distal convoluted tubule (DCT) via the apical magnesium channel transient receptor potential melastatin 6 (TRPM6). We observed decreased apical Trpm6 staining in the DCT of Umod -/- mice. Applying biotinylation assays and whole-cell patch-clamp recordings, we found that UMOD enhances TRPM6 cell-surface abundance and current density from the extracellular space. UMOD physically interacted with TRPM6 and thereby impaired dynamin-dependent TRPM6 endocytosis. WT mice fed a low-magnesium diet had an increased urinary UMOD secretion compared with the same mice on a regular diet. Our results suggest that increased urinary UMOD secretion in low-magnesium states reduces TRPM6 endocytosis and thereby up-regulates TRPM6 cell-surface abundance to defend against further urinary magnesium losses.
Collapse
Affiliation(s)
| | | | - Jie Liu
- From the Departments of Pediatrics and
| | - Zhufeng Yang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Xue-Ru Wu
- the Departments of Urology and Pathology, New York University School of Medicine, New York, New York 10016, and
| | - Joost G J Hoenderop
- the Department of Physiology, Radboud Center for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - René J M Bindels
- the Department of Physiology, Radboud Center for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Denise K Marciano
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
36
|
Edwards N, Olinger E, Adam J, Kelly M, Schiano G, Ramsbottom SA, Sandford R, Devuyst O, Sayer JA. A novel homozygous UMOD mutation reveals gene dosage effects on uromodulin processing and urinary excretion. Nephrol Dial Transplant 2018; 32:1994-1999. [PMID: 28605509 PMCID: PMC5837645 DOI: 10.1093/ndt/gfx066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/19/2017] [Indexed: 01/08/2023] Open
Abstract
Heterozygous mutations in UMOD encoding the urinary protein uromodulin are the most common genetic cause of autosomal dominant tubulointerstitial kidney disease (ADTKD). We describe the exceptional case of a patient from a consanguineous family carrying a novel homozygous UMOD mutation (p.C120Y) affecting a conserved cysteine residue within the EGF-like domain III of uromodulin. Comparison of heterozygote and homozygote mutation carriers revealed a gene dosage effect with unprecedented low levels of uromodulin and aberrant uromodulin fragments in the urine of the homozygote proband. Despite an amplified biological effect of the homozygote mutation, the proband did not show a strikingly more severe clinical evolution nor was the near absence of urinary uromodulin associated with urinary tract infections or kidney stones.
Collapse
Affiliation(s)
- Noel Edwards
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Eric Olinger
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jennifer Adam
- Renal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Kelly
- Renal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Guglielmo Schiano
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Simon A Ramsbottom
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Richard Sandford
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge, UK
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - John A Sayer
- Renal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Maruyama H, Taguchi A, Nishikawa Y, Guili C, Mikame M, Nameta M, Yamaguchi Y, Ueno M, Imai N, Ito Y, Nakagawa T, Narita I, Ishii S. Medullary thick ascending limb impairment in the Gla tmTg(CAG-A4GALT) Fabry model mice. FASEB J 2018; 32:4544-4559. [PMID: 29553830 PMCID: PMC6071062 DOI: 10.1096/fj.201701374r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A main feature of Fabry disease is nephropathy, with polyuria an early manifestation; however, the mechanism that underlies polyuria and affected tubules is unknown. To increase globotriaosylceramide (Gb3) levels, we previously crossbred asymptomatic Glatm mice with transgenic mice that expressed human Gb3 synthase (A4GALT) and generated the GlatmTg(CAG-A4GALT) symptomatic Fabry model mice. Additional analyses revealed that these mice exhibit polyuria and renal dysfunction without remarkable glomerular damage. In the present study, we investigated the mechanism of polyuria and renal dysfunction in these mice. Gb3 accumulation was mostly detected in the medulla; medullary thick ascending limbs (mTALs) were the most vacuolated tubules. mTAL cells contained lamellar bodies and had lost their characteristic structure (i.e., extensive infolding and numerous elongated mitochondria). Decreased expression of the major molecules—Na+-K+-ATPase, uromodulin, and Na+-K+-2Cl− cotransporter—that are involved in Na+ reabsorption in mTALs and the associated loss of urine-concentrating ability resulted in progressive water- and salt-loss phenotypes. GlatmTg(CAG-A4GALT) mice exhibited fibrosis around mTALs and renal dysfunction. These and other features were consistent with pathologic findings in patients with Fabry disease. Results demonstrate that mTAL dysfunction causes polyuria and renal impairment and contributes to the pathophysiology of Fabry nephropathy.—Maruyama, H., Taguchi, A., Nishikawa, Y., Guili, C., Mikame, M., Nameta, M., Yamaguchi, Y., Ueno, M., Imai, N., Ito, Y., Nakagawa, T., Narita, I., Ishii, S. Medullary thick ascending limb impairment in the GlatmTg(CAG-A4GALT) Fabry model mice.
Collapse
Affiliation(s)
- Hiroki Maruyama
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsumi Taguchi
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Matrix Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Chu Guili
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mariko Mikame
- Department of Clinical Nephroscience, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, Niigata, Japan
| | | | - Mitsuhiro Ueno
- University Health Center, Joetsu University of Education, Joetsu, Japan
| | - Naofumi Imai
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Ito
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Ishii
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,GlycoPharma Corporation, Oita, Japan
| |
Collapse
|
38
|
Liu Y, Goldfarb DS, El-Achkar TM, Lieske JC, Wu XR. Tamm-Horsfall protein/uromodulin deficiency elicits tubular compensatory responses leading to hypertension and hyperuricemia. Am J Physiol Renal Physiol 2018; 314:F1062-F1076. [PMID: 29357410 DOI: 10.1152/ajprenal.00233.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Expression of Tamm-Horsfall protein (THP or uromodulin) is highly restricted to the kidney thick ascending limb (TAL) of loop of Henle. Despite the unique location and recent association of THP gene mutations with hereditary uromodulin-associated kidney disease and THP single nucleotide polymorphisms with chronic kidney disease and hypertension, the physiological function(s) of THP and its pathological involvement remain incompletely understood. By studying age-dependent changes of THP knockout (KO) mice, we show here that young KO mice had significant salt and water wasting but were partially responsive to furosemide, due to decreased luminal translocation of Na-K-Cl cotransporter 2 (NKCC2) in the TAL. Aged THP KO mice were, however, markedly oliguric and unresponsive to furosemide, and their NKCC2 was localized primarily in the cytoplasm as evidenced by lipid raft floatation assay, cell fractionation, and confocal and immunoelectron microscopy. These aged KO mice responded to metolazone and acetazolamide, known to target distal and proximal tubules, respectively. They also had marked upregulation of renin in juxtaglomerular apparatus and serum, and they were hypertensive. Finally, the aged THP KO mice had significant upregulation of Na-coupled urate transporters Slc5a8 and Slc22a12 as well as sodium-hydrogen exchanger 3 (NHE3) in the proximal tubule and elevated serum uric acid and allantoin. Collectively, our results suggest that THP deficiency can cause progressive disturbances in renal functions via initially NKCC2 dysfunction and later compensatory responses, resulting in prolonged activation of the renin-angiotensin-aldosterone axis and hyperuricemia.
Collapse
Affiliation(s)
- Yan Liu
- Department of Urology, New York University School of Medicine , New York, New York
| | - David S Goldfarb
- Department of Nephrology, New York University School of Medicine , New York, New York.,Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, New York
| | - Tarek M El-Achkar
- Division of Nephrology, Indiana University School of Medicine and Indianapolis Veterans Affairs , Indianapolis, Indiana
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine , New York, New York.,Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, New York.,Department of Pathology, New York University School of Medicine , New York, New York
| |
Collapse
|
39
|
Devuyst O, Olinger E, Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 2017; 13:525-544. [PMID: 28781372 DOI: 10.1038/nrneph.2017.101] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is exclusively produced in the kidney and is the most abundant protein in normal urine. The function of uromodulin remains elusive, but the available data suggest that this protein might regulate salt transport, protect against urinary tract infection and kidney stones, and have roles in kidney injury and innate immunity. Interest in uromodulin was boosted by genetic studies that reported involvement of the UMOD gene, which encodes uromodulin, in a spectrum of rare and common kidney diseases. Rare mutations in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), which leads to chronic kidney disease (CKD). Moreover, genome-wide association studies have identified common variants in UMOD that are strongly associated with risk of CKD and also with hypertension and kidney stones in the general population. These findings have opened up a new field of kidney research. In this Review we summarize biochemical, physiological, genetic and pathological insights into the roles of uromodulin; the mechanisms by which UMOD mutations cause ADTKD, and the association of common UMOD variants with complex disorders.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
40
|
Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci Rep 2017; 7:7383. [PMID: 28785050 PMCID: PMC5547146 DOI: 10.1038/s41598-017-07804-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an inherited disorder that causes progressive kidney damage and renal failure. Mutations in the UMOD gene, encoding uromodulin, lead to ADTKD-UMOD related. Uromodulin is a GPI-anchored protein exclusively produced by epithelial cells of the thick ascending limb of Henle's loop. It is released in the tubular lumen after proteolytic cleavage and represents the most abundant protein in human urine in physiological condition. We previously generated and characterized a transgenic mouse model expressing mutant uromodulin (Tg UmodC147W) that recapitulates the main features of ATDKD-UMOD. While several studies clearly demonstrated that mutated uromodulin accumulates in endoplasmic reticulum, the mechanisms that lead to renal damage are not fully understood. In our work, we used kidney transcriptional profiling to identify early events of pathogenesis in the kidneys of Tg UmodC147W mice. Our results demonstrate up-regulation of inflammation and fibrosis and down-regulation of lipid metabolism in young Tg UmodC147W mice, before any functional or histological evidence of kidney damage. We also show that pro-inflammatory signals precede fibrosis onset and are already present in the first week after birth. Early induction of inflammation is likely relevant for ADTKD-UMOD pathogenesis and related pathways can be envisaged as possible novel targets for therapeutic intervention.
Collapse
|
41
|
Graham LA, Dominiczak AF, Ferreri NR. Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure. Physiol Genomics 2017; 49:261-276. [PMID: 28389525 PMCID: PMC5451551 DOI: 10.1152/physiolgenomics.00017.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Hypertension (HTN), a major public health issue is currently the leading factor in the global burden of disease, where associated complications account for 9.4 million deaths worldwide every year. Excessive dietary salt intake is among the environmental factors that contribute to HTN, known as salt sensitivity. The heterogeneity of salt sensitivity and the multiple mechanisms that link high salt intake to increases in blood pressure are of upmost importance for therapeutic application. A continual increase in the kidney's reabsorption of sodium (Na+) relies on sequential actions at various segments along the nephron. When the distal segments of the nephron fail to regulate Na+, the effects on Na+ homeostasis are unfavorable. We propose that the specific nephron region where increased active uptake occurs as a result of variations in Na+ reabsorption is at the thick ascending limb of the loop of Henle (TAL). The purpose of this review is to urge the consideration of the TAL as contributing to the pathophysiology of salt-sensitive HTN. Further research in this area will enable development of a therapeutic application for targeted treatment.
Collapse
Affiliation(s)
- Lesley A Graham
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow Cardiovascular and Medical Sciences, Glasgow, United Kingdom; and
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow Cardiovascular and Medical Sciences, Glasgow, United Kingdom; and
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
42
|
Association Study of Reported Significant Loci at 5q35.3, 7p14.3, 13q14.1 and 16p12.3 with Urolithiasis in Chinese Han Ethnicity. Sci Rep 2017; 7:45766. [PMID: 28361944 PMCID: PMC5374640 DOI: 10.1038/srep45766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, we aimed to validate the association of 8 reported significant loci at 5q35.3, 7p14.3, 13q14.1 and 16p12.3 with urolithiasis in Chinese Han population. We performed case-control association analysis using 624 patients with nephrolithiasis and 1008 control subjects. We selected single-nucleotide polymorphism (SNPs) including rs12654812 and rs11746443 from 5q32.3; rs12669187 and rs1000597 from 7q14.3; rs7981733, rs4142110 and rs17646069 from 13q14.1 and rs4293393 from 16p12.3 which were previously reported to be associated with nephrolithiasis. We found none of these eight reported SNPs were significant associated with urolithiasis risk in Chinese Han population, which suggested that differences could exist in the mechanisms of calcium urolithiasis between Chinese and Japanese Ethnics. The A allele of rs12669187 was significantly correlated with increased level of serum magnesium. The C allele of rs1000597 was associated with higher levels of serum creatinine, uric acid, calcium and lower urine pH level. The T allele of rs4142110 was correlated with higher levels of serum magnesium, phosphorus, and lower AKP level. The G alleles of rs4293393 was associated with higher serum CO2 level. The risk alleles of these SNPs were proved to be associated with the electrolytes metabolism that may result in the formation of urolithiasis.
Collapse
|
43
|
Schenk H, Müller-Deile J, Kinast M, Schiffer M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res 2017; 369:127-141. [PMID: 28331970 DOI: 10.1007/s00441-017-2593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mark Kinast
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA.
| |
Collapse
|
44
|
Piret SE, Olinger E, Reed AAC, Nesbit MA, Hough TA, Bentley L, Devuyst O, Cox RD, Thakker RV. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis Model Mech 2017; 10:773-786. [PMID: 28325753 PMCID: PMC5483009 DOI: 10.1242/dmm.029488] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD) due to missense uromodulin (UMOD) mutations (ADTKD-UMOD). ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER) of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R). Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78) was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo. Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis. Summary: A mouse model for renal fibrosis caused by uromodulin mutations reveals roles for ER stress and the unfolded protein response.
Collapse
Affiliation(s)
- Sian E Piret
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | - Anita A C Reed
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - M Andrew Nesbit
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.,School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Tertius A Hough
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Liz Bentley
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | - Roger D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| |
Collapse
|
45
|
Leiherer A, Muendlein A, Saely CH, Ebner J, Brandtner EM, Fraunberger P, Drexel H. Serum uromodulin is a predictive biomarker for cardiovascular events and overall mortality in coronary patients. Int J Cardiol 2017; 231:6-12. [DOI: 10.1016/j.ijcard.2016.12.183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
46
|
Blankenstein KI, Borschewski A, Labes R, Paliege A, Boldt C, McCormick JA, Ellison DH, Bader M, Bachmann S, Mutig K. Calcineurin inhibitor cyclosporine A activates renal Na-K-Cl cotransporters via local and systemic mechanisms. Am J Physiol Renal Physiol 2016; 312:F489-F501. [PMID: 28003191 DOI: 10.1152/ajprenal.00575.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022] Open
Abstract
Calcineurin dephosphorylates nuclear factor of activated T cells transcription factors, thereby facilitating T cell-mediated immune responses. Calcineurin inhibitors are instrumental for immunosuppression after organ transplantation but may cause side effects, including hypertension and electrolyte disorders. Kidneys were recently shown to display activation of the furosemide-sensitive Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb and the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule upon calcineurin inhibition using cyclosporin A (CsA). An involvement of major hormones like angiotensin II or arginine vasopressin (AVP) has been proposed. To resolve this issue, the effects of CsA treatment in normal Wistar rats, AVP-deficient Brattleboro rats, and cultured renal epithelial cells endogenously expressing either NKCC2 or NCC were studied. Acute administration of CsA to Wistar rats rapidly augmented phosphorylation levels of NKCC2, NCC, and their activating kinases suggesting intraepithelial activating effects. Chronic CsA administration caused salt retention and hypertension, along with stimulation of renin and suppression of renal cyclooxygenase 2, pointing to a contribution of endocrine and paracrine mechanisms at long term. In Brattleboro rats, CsA induced activation of NCC, but not NKCC2, and parallel effects were obtained in cultured cells in the absence of AVP. Stimulation of cultured thick ascending limb cells with AVP agonist restored their responsiveness to CsA. Our results suggest that the direct epithelial action of calcineurin inhibition is sufficient for the activation of NCC, whereas its effect on NKCC2 is more complex and requires concomitant stimulation by AVP.
Collapse
Affiliation(s)
- K I Blankenstein
- Department of Anatomy, Charité University Medicine, Berlin, Germany
| | - A Borschewski
- Department of Anatomy, Charité University Medicine, Berlin, Germany
| | - R Labes
- Department of Anatomy, Charité University Medicine, Berlin, Germany
| | - A Paliege
- Department of Anatomy, Charité University Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - C Boldt
- Department of Anatomy, Charité University Medicine, Berlin, Germany
| | - J A McCormick
- Division of Nephrology and Hypertension, Oregon Health & Science University and Veterans Affairs Medical Center, Portland, Oregon; and
| | - D H Ellison
- Division of Nephrology and Hypertension, Oregon Health & Science University and Veterans Affairs Medical Center, Portland, Oregon; and
| | - M Bader
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - S Bachmann
- Department of Anatomy, Charité University Medicine, Berlin, Germany
| | - K Mutig
- Department of Anatomy, Charité University Medicine, Berlin, Germany;
| |
Collapse
|
47
|
Wan JP, Li L, Li HY, Wang F, Zhang XJ, Zhao H, Li CZ, Wang XT, Chen ZJ. Role of UMOD Promoter Polymorphism in the Etiology of Preeclampsia. Genet Test Mol Biomarkers 2016; 20:471-4. [PMID: 27315129 DOI: 10.1089/gtmb.2015.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ji-Peng Wan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hong-Yan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fei Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao-Jing Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Chang-Zhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xie-Tong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| |
Collapse
|
48
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Mutig K, Borowski T, Boldt C, Borschewski A, Paliege A, Popova E, Bader M, Bachmann S. Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach. Am J Physiol Renal Physiol 2016; 311:F411-23. [PMID: 27306979 DOI: 10.1152/ajprenal.00126.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na(+)-K(+)-2Cl(-)-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications.
Collapse
Affiliation(s)
- Kerim Mutig
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Tordis Borowski
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Christin Boldt
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Aljona Borschewski
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Alexander Paliege
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| |
Collapse
|
50
|
Troyanov S, Delmas-Frenette C, Bollée G, Youhanna S, Bruat V, Awadalla P, Devuyst O, Madore F. Clinical, Genetic, and Urinary Factors Associated with Uromodulin Excretion. Clin J Am Soc Nephrol 2015; 11:62-9. [PMID: 26683887 DOI: 10.2215/cjn.04770415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES The urinary excretion of uromodulin is influenced by common variants in the UMOD gene, and it may be related to NaCl retention and hypertension. Levels of uromodulin are also dependent of the renal function, but other determinants remain unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We tested associations between the urinary excretion of uromodulin; medical history and medication; serum and urinary levels of electrolytes, glucose, and uric acid; and the genotype at the UMOD/Protein Disulfide Isomerase-Like, Testis Expressed locus (rs4293393 and rs12446492); 943 participants from the CARTaGENE Cohort, a random sample from the Canadian population of 20,004 individuals, were analyzed. Participants with available genotyping were obtained from a substudy addressing associations between common variants and cardiovascular disease in paired participants with high and low Framingham risk scores and vascular rigidity indexes. RESULTS The population studied was 54±9 years old, with 51% women and eGFR of 9±14 ml/min per 1.73 m(2). Uromodulin excretion was 25 (11-42) mg/g creatinine. Using linear regression, it was independently higher among patients with higher eGFR, the TT genotype of rs4293393, and the TT genotype of rs12446492. The fractional excretions of urate and sodium showed a strong positive correlation with uromodulin, likely linked to the extracellular volume status. The presence of glycosuria and the use of uricosuric drugs, which both increased the fraction excretion of urate, were independently associated with a lower uromodulin excretion, suggesting novel interactions between uric acid and uromodulin excretion. CONCLUSIONS In this large cohort, the excretion of uromodulin correlates with clinical, genetic, and urinary factors. The strongest associations were between uric acid, sodium, and uromodulin excretions and are likely linked to the extracellular volume status.
Collapse
Affiliation(s)
- Stéphan Troyanov
- Nephrology Division, Sacré-Coeur Hospital, Montreal, Quebec, Canada;
| | | | - Guillaume Bollée
- Nephrology Division, Hospital Center for the University of Montreal (CHUM), Montreal, Quebec, Canada
| | - Sonia Youhanna
- Institute of Physiology, Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Vanessa Bruat
- Medical and Population Genomics Laboratory, Research Center, Ste-Justine Hospital, Montreal, Quebec, Canada; and Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Philip Awadalla
- Medical and Population Genomics Laboratory, Research Center, Ste-Justine Hospital, Montreal, Quebec, Canada; and Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, Zurich, Switzerland;
| | - François Madore
- Nephrology Division, Sacré-Coeur Hospital, Montreal, Quebec, Canada
| |
Collapse
|