1
|
Huynh-Cong E, Driscoll V, Ettou S, Keller K, Atakilit A, Taglienti ME, Kumar S, Weins A, Schumacher VA, Kreidberg JA. The integrin repertoire drives YAP-dependent epithelial:stromal interactions during injury of the kidney glomerulus. Nat Commun 2025; 16:3322. [PMID: 40199893 PMCID: PMC11978898 DOI: 10.1038/s41467-025-58567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
The kidney glomerulus is a filtration barrier in which capillary loop architecture depends on epithelial-stromal interactions between podocytes and mesangial cells. Podocytes are terminally differentiated cells within the glomerulus that express YAP and TAZ. Here we test the hypotheses that YAP and TAZ are required in podocytes to maintain capillary loop architecture and that shifts in the integrin repertoire during podocyte injury affect transcriptional activity of YAP and TAZ. Loss of YAP in podocytes of adult mice renders them more sensitive to injury, whereas loss of both YAP and TAZ in podocytes rapidly compromises the filtration barrier. α3β1 and αvβ5 are two prominent integrins on murine podocytes. Podocyte injury or loss of α3β1 leads to increased abundance of αvβ5 and nuclear localization of YAP. In vitro, blockade of αvβ5 decreases nuclear YAP. Increased αv integrins are found in human kidney disease. Thus, our studies demonstrate the crucial regulatory interplay between cell adhesion and transcriptional regulation as an important determinant of human disease.
Collapse
Affiliation(s)
- Evelyne Huynh-Cong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- for EHC: Evotec, Gottinggen, Germany
| | - Victoria Driscoll
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandrine Ettou
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Keith Keller
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mary E Taglienti
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Saurabh Kumar
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- for SK: University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerie A Schumacher
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- for VAS and JAK: Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| | - Jordan A Kreidberg
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- for VAS and JAK: Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Lewko B, Wodzińska M, Daca A, Płoska A, Obremska K, Kalinowski L. Urolithin A Ameliorates the TGF Beta-Dependent Impairment of Podocytes Exposed to High Glucose. J Pers Med 2024; 14:914. [PMID: 39338168 PMCID: PMC11433157 DOI: 10.3390/jpm14090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
Increased activity of transforming growth factor-beta (TGF-β) is a key factor mediating kidney impairment in diabetes. Glomerular podocytes, the crucial component of the renal filter, are a direct target of TGF-β action, resulting in irreversible cell loss and progression of chronic kidney disease (CKD). Urolithin A (UA) is a member of the family of polyphenol metabolites produced by gut microbiota from ellagitannins and ellagic acid-rich foods. The broad spectrum of biological activities of UA makes it a promising candidate for the treatment of podocyte disorders. In this in vitro study, we investigated whether UA influences the changes exerted in podocytes by TGF-β and high glucose. Following a 7-day incubation in normal (NG, 5.5 mM) or high (HG, 25 mM) glucose, the cells were treated with UA and/or TGF-β1 for 24 h. HG and TGF-β1, each independent and in concert reduced expression of nephrin, increased podocyte motility, and up-regulated expression of b3 integrin and fibronectin. These typical-for-epithelial-to-mesenchymal transition (EMT) effects were inhibited by UA in both HG and NG conditions. UA also reduced the typically elevated HG expression of TGF-β receptors and activation of the TGF-β signal transducer Smad2. Our results indicate that in podocytes cultured in conditions mimicking the diabetic milieu, UA inhibits and reverses changes underlying podocytopenia in diabetic kidneys. Hence, UA should be considered as a potential therapeutic agent in podocytopathies.
Collapse
Affiliation(s)
- Barbara Lewko
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Agnieszka Daca
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- BioTechMed Center, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-223 Gdansk, Poland
| |
Collapse
|
4
|
Kösters P, Cazorla-Vázquez S, Krüger R, Daniel C, Vonbrunn E, Amann K, Engel FB. Adhesion G Protein-Coupled Receptor Gpr126 ( Adgrg6) Expression Profiling in Diseased Mouse, Rat, and Human Kidneys. Cells 2024; 13:874. [PMID: 38786096 PMCID: PMC11119830 DOI: 10.3390/cells13100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Uncovering the function of understudied G protein-coupled receptors (GPCRs) provides a wealth of untapped therapeutic potential. The poorly understood adhesion GPCR Gpr126 (Adgrg6) is widely expressed in developing kidneys. In adulthood, Gpr126 expression is enriched in parietal epithelial cells (PECs) and epithelial cells of the collecting duct and urothelium. Whether Gpr126 plays a role in kidney disease remains unclear. Here, we characterized Gpr126 expression in diseased kidneys in mice, rats, and humans. RT-PCR data show that Gpr126 expression is altered in kidney disease. A quantitative RNAscope® analysis utilizing cell type-specific markers revealed that Gpr126 expression upon tubular damage is mainly increased in cell types expressing Gpr126 under healthy conditions as well as in cells of the distal and proximal tubules. Upon glomerular damage, an increase was mainly detected in PECs. Notably, Gpr126 expression was upregulated in an ischemia/reperfusion model within hours, while upregulation in a glomerular damage model was only detected after weeks. An analysis of kidney microarray data from patients with lupus nephritis, IgA nephropathy, focal segmental glomerulosclerosis (FSGS), hypertension, and diabetes as well as single-cell RNA-seq data from kidneys of patients with acute kidney injury and chronic kidney disease indicates that GPR126 expression is also altered in human kidney disease. In patients with FSGS, an RNAscope® analysis showed that GPR126 mRNA is upregulated in PECs belonging to FSGS lesions and proximal tubules. Collectively, we provide detailed insights into Gpr126 expression in kidney disease, indicating that GPR126 is a potential therapeutic target.
Collapse
Affiliation(s)
- Peter Kösters
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Salvador Cazorla-Vázquez
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - René Krüger
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Christoph Daniel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Eva Vonbrunn
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Kerstin Amann
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Felix B. Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| |
Collapse
|
5
|
Kimak A, Woźniacka A. The Role of Osteopontin in Psoriasis-A Scoping Review. J Clin Med 2024; 13:655. [PMID: 38337350 PMCID: PMC10856165 DOI: 10.3390/jcm13030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Psoriasis is a chronic systemic disease with an immunological basis and a complex pathophysiology. The chronic inflammatory status of psoriasis is associated with several comorbidities, such as metabolic syndrome, obesity, and cardiovascular disease. The development of psoriasis is influenced by osteopontin, a glycoprotein that influences physiological and pathological reactions by modulating Th1 and Th17 cellular responses, stimulating keratinocyte proliferation, regulating cellular apoptosis, and promoting angiogenesis. The recent identification of immune pathways involved in psoriasis development has facilitated the development of biological treatments; however, a better understanding of the intricate relationship between underlying inflammatory processes, psoriasis development, and accompanying comorbidities is needed for improved disease management.
Collapse
Affiliation(s)
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Hallera 1, 90-647 Lodz, Poland;
| |
Collapse
|
6
|
Cazorla-Vázquez S, Kösters P, Bertz S, Pfister F, Daniel C, Dedden M, Zundler S, Jobst-Schwan T, Amann K, Engel FB. Adhesion GPCR Gpr126 (Adgrg6) Expression Profiling in Zebrafish, Mouse, and Human Kidney. Cells 2023; 12:1988. [PMID: 37566066 PMCID: PMC10417176 DOI: 10.3390/cells12151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) comprise the second-largest class of GPCRs, the most common target for approved pharmacological therapies. aGPCRs play an important role in development and disease and have recently been associated with the kidney. Several aGPCRs are expressed in the kidney and some aGPCRs are either required for kidney development or their expression level is altered in diseased kidneys. Yet, general aGPCR function and their physiological role in the kidney are poorly understood. Here, we characterize in detail Gpr126 (Adgrg6) expression based on RNAscope® technology in zebrafish, mice, and humans during kidney development in adults. Gpr126 expression is enriched in the epithelial linage during nephrogenesis and persists in the adult kidney in parietal epithelial cells, collecting ducts, and urothelium. Single-cell RNAseq analysis shows that gpr126 expression is detected in zebrafish in a distinct ionocyte sub-population. It is co-detected selectively with slc9a3.2, slc4a4a, and trpv6, known to be involved in apical acid secretion, buffering blood or intracellular pH, and to maintain high cytoplasmic Ca2+ concentration, respectively. Furthermore, gpr126-expressing cells were enriched in the expression of potassium transporter kcnj1a.1 and gcm2, which regulate the expression of a calcium sensor receptor. Notably, the expression patterns of Trpv6, Kcnj1a.1, and Gpr126 in mouse kidneys are highly similar. Collectively, our approach permits a detailed insight into the spatio-temporal expression of Gpr126 and provides a basis to elucidate a possible role of Gpr126 in kidney physiology.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Peter Kösters
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Frederick Pfister
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| |
Collapse
|
7
|
Deletion of osteopontin or bone sialoprotein induces opposite bone responses to mechanical stimulation in mice. Bone Rep 2022; 17:101621. [PMID: 36159882 PMCID: PMC9493388 DOI: 10.1016/j.bonr.2022.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Osteopontin (OPN) and Bone Sialoprotein (BSP) are co-expressed in bone and display overlapping and complementary physiological properties. Both genes show a rapid expression response to mechanical stimulation. We used mice with single and double deletions (DKO) of BSP and OPN to assess the specificity of their roles in skeletal adaptation to loading. Two-month-old Wild-Type (WT), BSP knockout (BSP−/−), OPN−/− and DKO male mice were submitted to two mechanical stimulation regimen (n = 10 mice/group) respectively impacting trabecular bone (Hypergravity, HG) and cortical bone (Whole Body Vibration, WBV). HG increased trabecular bone volume (BV/TV) in WT femur through reduced resorption, and in BSP−/− mice femur and vertebra through increased bone formation. In contrast, HG increased the turnover of OPN−/− bone, resulting in reduced femur and vertebra BV/TV. HG did not affect DKO bones. Similarly, WBV increased cortical thickness in BSP−/− mice and decreased it in OPN−/−, without affecting structurally WT and DKO bone. Vibrated BSP−/− mice displayed increased endocortical bone formation with a drop in Sclerostin expression, and reduced periosteal osteoclasts with lower Rankl and Cathepsin K expression. In contrast, vibrated OPN−/− endocortical bone displayed decreased formation and increased osteoclast coverage. Therefore, under two regimen (HG and WBV) targeting distinct bone compartments, absence of OPN resulted in bone loss while lack of BSP induced bone gain, reflecting divergent structural adaptations. Strikingly, absence of both proteins led to a relative insensitivity to either mechanical challenge. Interplay between OPN and BSP thus appears as a key element of skeletal response to mechanical stimulation. Osteopontin gene knockout induces bone loss under mechanical stimulation Bone Sialoprotein gene knockout potentiates bone gain under mechanical stimulation Knockout of both genes leads to bone insensitivity Their interplay is crucial for bone response to mechanical challenges
Collapse
|
8
|
Lausecker F, Lennon R, Randles MJ. The kidney matrisome in health, aging, and disease. Kidney Int 2022; 102:1000-1012. [PMID: 35870643 DOI: 10.1016/j.kint.2022.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Dysregulated extracellular matrix is the hallmark of fibrosis, and it has a profound impact on kidney function in disease. Furthermore, perturbation of matrix homeostasis is a feature of aging and is associated with declining kidney function. Understanding these dynamic processes, in the hope of developing therapies to combat matrix dysregulation, requires the integration of data acquired by both well-established and novel technologies. Owing to its complexity, the extracellular proteome, or matrisome, still holds many secrets and has great potential for the identification of clinical biomarkers and drug targets. The molecular resolution of matrix composition during aging and disease has been illuminated by cutting-edge mass spectrometry-based proteomics in recent years, but there remain key questions about the mechanisms that drive altered matrix composition. Basement membrane components are particularly important in the context of kidney function; and data from proteomic studies suggest that switches between basement membrane and interstitial matrix proteins are likely to contribute to organ dysfunction during aging and disease. Understanding the impact of such changes on physical properties of the matrix, and the subsequent cellular response to altered stiffness and viscoelasticity, is of critical importance. Likewise, the comparison of proteomic data sets from multiple organs is required to identify common matrix biomarkers and shared pathways for therapeutic intervention. Coupled with single-cell transcriptomics, there is the potential to identify the cellular origin of matrix changes, which could enable cell-targeted therapy. This review provides a contemporary perspective of the complex kidney matrisome and draws comparison to altered matrix in heart and liver disease.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Randles
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| |
Collapse
|
9
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
10
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
11
|
Huang C, Zhao X, Su M, Yin Z. Construction and evaluation of novel αvβ3 integrin ligand-conjugated ultrasmall star polymer micelles targeted glomerular podocytes through GFB permeation. Biomaterials 2021; 276:121053. [PMID: 34352625 DOI: 10.1016/j.biomaterials.2021.121053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
As glomerular cells, podocytes are the last line of defense for glomerular filtration barriers (GFB) and play a critical role in chronic kidney disease (CKD). Podocyte-targeted drug delivery is a promising direction in the treatment of CKD. In this study, we constructed four-arm star polymers conjugated with a novel linear RWrNM peptide. And poly ε-caprolactone (PCL) hydrophobic core and brush poly (2-hydroxyethyl methacrylate) (PHEMA) hydrophilic shell were synthesized by ROP and SET LRP polymerization. The PHEMA modified by succinic anhydride was coupled with the novel linear RWrNM peptide, and then the PCL hydrophobic core was loaded with dexamethasone acetate (Dexac) to form micelles with stable dimensions. Our findings showed that the novel micelles had an ultrasmall particle size of 16-30 nm. We, for the first time, showed that the specific affinity of the novel linear RWrNM peptide to primary podocytes (24.9 ± 1.7 times of the free RhB uptake) through the αvβ3 integrin receptor mediation was comparable to that of B16F10 cells (24.4 ± 1.2 times of the free RhB uptake). In vivo studies showed that the novel ultrasmall micelles possessed a significant kidney-targeted effect, excellent podocyte colocalization effect, and GFB permeability at 49%-60 % in normal SD rats. Besides, the novel ultrasmall micelles decreased the plasma elimination half-life of Dexac to 1.62-2.09 h and showed good safety in vitro and in vivo. Both in vitro and in vivo results demonstrated the novel ultrasmall micelles could be used as a promising drug delivery strategy for actively targeted therapy of CKD.
Collapse
Affiliation(s)
- Chengyuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiling Su
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Hayes K, Warner E, Bollinger C, Wright D, Fitch RM. Repository corticotropin injection versus corticosteroids for protection against renal damage in a focal segmental glomerulosclerosis rodent model. BMC Nephrol 2020; 21:226. [PMID: 32539845 PMCID: PMC7296742 DOI: 10.1186/s12882-020-01879-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Background Focal segmental glomerulosclerosis (FSGS) causes renal fibrosis and may lead to kidney failure. FSGS and its common complication, proteinuria, are challenging to treat. Corticosteroids are ineffective in many patients with FSGS, and alternative treatments often yield suboptimal responses. Repository corticotropin injection (RCI; Acthar® Gel), a naturally sourced complex mixture of purified adrenocorticotropic hormone analogs and other pituitary peptides, may have beneficial effects on idiopathic FSGS via melanocortin receptor activation. Methods Two studies in a preclinical (female Sprague-Dawley rats) puromycin aminonucleoside FSGS model assessed the effect of RCI on renal function and morphology: an 8-week comparison of a single RCI dose with methylprednisolone (N = 27), and a 12-week chronic RCI dose range study (N = 34). Primary outcomes were proteinuria and renal pathology improvements for measures of renal fibrosis, tubular damage, glomerular injury, and total kidney injury score. Impact of RCI treatment was also determined by assessing urinary biomarkers for renal injury, podocyte expression of podoplanin (a biomarker for injury), podocyte effacement by electron microscopy, and histological staining for fibrosis biomarkers. Results Compared with saline treatment, RCI 30 IU/kg significantly reduced proteinuria, with a 38% reduction in peak mean urine protein levels on day 28 in the 8-week model, and RCI 10 IU/kg, 30 IU/kg, and 60 IU/kg reduced peak mean urine protein in the 12-week model by 18, 47, and 44%, respectively. RCI also showed significant dose-dependent improvements in fibrosis, interstitial inflammation, tubular injury, and glomerular changes. Total kidney injury score (calculated from histopathological evaluations) demonstrated statistically significant improvements with RCI 30 IU/kg in the 8-week study and RCI 60 IU/kg in the 12-week study. RCI treatment improved levels of urinary biomarkers of kidney injury (KIM-1 and OPN), expression of podoplanin, and podocyte morphology. RCI also reduced levels of desmin and fibrosis-associated collagen deposition staining. Methylprednisolone did not improve renal function or pathology in this model. Conclusions These results provide evidence supporting the improvement of FSGS with RCI, which was superior to corticosteroid treatment in this experimental model. To the authors’ knowledge, this is the first evidence that a drug for the treatment of FSGS supports podocyte recovery after repeated injury.
Collapse
Affiliation(s)
- Kyle Hayes
- Mallinckrodt Pharmaceuticals, 675 James S. McDonnell Blvd, 20-1-W, Hazelwood, MO, USA.
| | - Elizabeth Warner
- Mallinckrodt Pharmaceuticals, 675 James S. McDonnell Blvd, 20-1-W, Hazelwood, MO, USA
| | - Chris Bollinger
- Mallinckrodt Pharmaceuticals, 675 James S. McDonnell Blvd, 20-1-W, Hazelwood, MO, USA
| | - Dale Wright
- Mallinckrodt Pharmaceuticals, 675 James S. McDonnell Blvd, 20-1-W, Hazelwood, MO, USA
| | - Richard M Fitch
- Mallinckrodt Pharmaceuticals, 675 James S. McDonnell Blvd, 20-1-W, Hazelwood, MO, USA
| |
Collapse
|
13
|
Gigliotti JC, Tin A, Pourafshar S, Cechova S, Wang YT, Sung SSJ, Bodonyi-Kovacs G, Cross JV, Yang G, Nguyen N, Chan F, Rebholz C, Yu B, Grove ML, Grams ME, Köttgen A, Scharpf R, Ruiz P, Boerwinkle E, Coresh J, Le TH. GSTM1 Deletion Exaggerates Kidney Injury in Experimental Mouse Models and Confers the Protective Effect of Cruciferous Vegetables in Mice and Humans. J Am Soc Nephrol 2020; 31:102-116. [PMID: 31727850 PMCID: PMC6935006 DOI: 10.1681/asn.2019050449] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND GSTM1 encodes glutathione S-transferase μ-1 (GSTM1), which belongs to a superfamily of phase 2 antioxidant enzymes. The highly prevalent GSTM1 deletion variant is associated with kidney disease progression in human cohorts: the African American Study of Kidney Disease and Hypertension and the Atherosclerosis Risk in Communities (ARIC) Study. METHODS We generated a Gstm1 knockout mouse line to study its role in a CKD model (involving subtotal nephrectomy) and a hypertension model (induced by angiotensin II). We examined the effect of intake of cruciferous vegetables and GSTM1 genotypes on kidney disease in mice as well as in human ARIC study participants. We also examined the importance of superoxide in the mediating pathways and of hematopoietic GSTM1 on renal inflammation. RESULTS Gstm1 knockout mice displayed increased oxidative stress, kidney injury, and inflammation in both models. The central mechanism for kidney injury is likely mediated by oxidative stress, because treatment with Tempol, an superoxide dismutase mimetic, rescued kidney injury in knockout mice without lowering BP. Bone marrow crosstransplantation revealed that Gstm1 deletion in the parenchyma, and not in bone marrow-derived cells, drives renal inflammation. Furthermore, supplementation with cruciferous broccoli powder rich in the precursor to antioxidant-activating sulforaphane significantly ameliorated kidney injury in Gstm1 knockout, but not wild-type mice. Similarly, among humans (ARIC study participants), high consumption of cruciferous vegetables was associated with fewer kidney failure events compared with low consumption, but this association was observed primarily in participants homozygous for the GSTM1 deletion variant. CONCLUSIONS Our data support a role for the GSTM1 enzyme in the modulation of oxidative stress, inflammation, and protective metabolites in CKD.
Collapse
Affiliation(s)
| | - Adrienne Tin
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | | | | | - Yves T Wang
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York
| | | | | | - Janet V Cross
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Guang Yang
- Division of Nephrology, Heinrich-Heine University of Dusseldorf, Dusseldorf, Germany
| | - Nhu Nguyen
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan
| | - Fang Chan
- Division of Nephrology, Department of Medicine and
| | - Casey Rebholz
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health and
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
- Department of Medicine and
| | - Anna Köttgen
- Department of Epidemiology and
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Robert Scharpf
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland
- Division of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phillip Ruiz
- Department of Pathology, University of Miami, Miami, Florida
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Josef Coresh
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Thu H Le
- Division of Nephrology, Department of Medicine and
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland
| |
Collapse
|
14
|
Kliewe F, Kaling S, Lötzsch H, Artelt N, Schindler M, Rogge H, Schröder S, Scharf C, Amann K, Daniel C, Lindenmeyer MT, Cohen CD, Endlich K, Endlich N. Fibronectin is up-regulated in podocytes by mechanical stress. FASEB J 2019; 33:14450-14460. [PMID: 31675484 DOI: 10.1096/fj.201900978rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypertension is one of the central causes of kidney damage. In the past it was shown that glomerular hypertension leads to morphologic changes of podocytes and effacement and is responsible for detachment of these postmitotic cells. Because we have shown that podocytes are mechanosensitive and respond to mechanical stress by reorganization of the actin cytoskeleton in vitro, we look for mechanotransducers in podocytes. In this study, we demonstrate that the extracellular matrix protein fibronectin (Fn1) might be a potential candidate. The present study shows that Fn1 is essential for the attachment of podocytes during mechanical stress. By real-time quantitative PCR as well as by liquid chromatography-mass spectrometry, we found a significant up-regulation of Fn1 caused by mechanical stretch (3 d, 0.5 Hz, and 5% extension). To study the role of Fn1 in cultured podocytes under mechanical stress, Fn1 was knocked down (Fn1 KD) by a specific small interfering RNA. Additionally, we established a Fn1 knockout (KO) podocyte cell line (Fn1 KO) by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). During mechanical stress, a significant loss of podocytes (>80%) was observed in Fn1 KD as well as Fn1 KO podocytes compared with control cells. Furthermore, Fn1 KO podocytes showed a significant down-regulation of the focal adhesion proteins talin, vinculin, and paxillin and a reduced cell spreading, indicating an important role of Fn1 in adhesion. Analyses of kidney sections from patients with diabetic nephropathy have shown a significant up-regulation of FN1 in contrast to control biopsies. In summary, we show that Fn1 plays an important role in the adaptation of podocytes to mechanical stress.-Kliewe, F., Kaling, S., Lötzsch, H., Artelt, N., Schindler, M., Rogge, H., Schröder, S., Scharf, C., Amann, K., Daniel, C., Lindenmeyer, M. T., Cohen, C. D., Endlich, K., Endlich, N. Fibronectin is up-regulated in podocytes by mechanical stress.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Sören Kaling
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Henriette Lötzsch
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Maximilian Schindler
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Sindy Schröder
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Ear, Nose, and Throat Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany
| | - Maja T Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Schell C, Sabass B, Helmstaedter M, Geist F, Abed A, Yasuda-Yamahara M, Sigle A, Maier JI, Grahammer F, Siegerist F, Artelt N, Endlich N, Kerjaschki D, Arnold HH, Dengjel J, Rogg M, Huber TB. ARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier. Dev Cell 2018; 47:741-757.e8. [PMID: 30503751 PMCID: PMC6302147 DOI: 10.1016/j.devcel.2018.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion. ARP3-dependent actin assembly is required for podocyte process formation Arp2/3 thereby links process formation, podocyte adhesion and mechano-adaptation Arp2/3 function is regulated by a reciprocal interplay with actomyosin
Collapse
Affiliation(s)
- Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Benedikt Sabass
- Institute of Complex Systems-2, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Martin Helmstaedter
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Felix Geist
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ahmed Abed
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Mako Yasuda-Yamahara
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - August Sigle
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jasmin I Maier
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Florian Grahammer
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald 17487, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald 17487, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald 17487, Germany
| | | | - Hans-Henning Arnold
- Cell and Molecular Biology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Jörn Dengjel
- BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79106, Germany; Department of Biology, University of Fribourg, Fribourg 1700, Switzerland; Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Manuel Rogg
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79106, Germany.
| |
Collapse
|
16
|
Mazaheri N, Peymani M, Galehdari H, Ghaedi K, Ghoochani A, Kiani-Esfahani A, Nasr-Esfahani MH. Ameliorating Effect of Osteopontin on H 2O 2-Induced Apoptosis of Human Oligodendrocyte Progenitor Cells. Cell Mol Neurobiol 2018; 38:891-899. [PMID: 29110207 PMCID: PMC11481903 DOI: 10.1007/s10571-017-0563-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
Recently our group used oligodendrocyte progenitor cells (OPCs) as appropriate model cells to pinpoint the mechanism of the progress of neurodegenerative disorders. In the present study, we focused on the therapeutic role of osteopontin (OPN), a secreted glycosylated phosphoprotein, involved in a number of physiological events including bone formation and remodeling, immune responses, and tumor progression. Protective role of OPN, as a negative regulator of tumorigenesis, has already been clarified. Human embryonic stem cell-derived OPCs were pretreated with OPN before induction of apoptosis by H2O2. Data indicated that OPN prohibited cell death and enhanced OPC viability. This effect is achieved through reduction of apoptosis and induction of anti-apoptosis markers. In addition OPN induces expression of several integrin subunits, responsible for OPN interaction. Notably, our findings showed that expression of αV β1/β3/β5 and β8 integrins increased in response to OPN, while treatment with H2O2 down-regulated αV β1/β5 and β8 integrins expression significantly. In conclusion, OPN may act via αV integrin signaling and trigger suppression of P53-dependent apoptotic cascades. Therefore OPN therapy may be considered as a feasible process to prevent progress of neurodegenerative diseases in human.
Collapse
Affiliation(s)
- Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| | - Ali Ghoochani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| |
Collapse
|
17
|
Cazorla-Vázquez S, Engel FB. Adhesion GPCRs in Kidney Development and Disease. Front Cell Dev Biol 2018; 6:9. [PMID: 29468160 PMCID: PMC5808184 DOI: 10.3389/fcell.2018.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease (CKD) represents the fastest growing pathology worldwide with a prevalence of >10% in many countries. In addition, kidney cancer represents 5% of all new diagnosed cancers. As currently no effective therapies exist to restore kidney function after CKD- as well as cancer-induced renal damage, it is important to elucidate new regulators of kidney development and disease as new therapeutic targets. G protein-coupled receptors (GPCRs) represent the most successful class of pharmaceutical targets. In recent years adhesion GPCRs (aGPCRs), the second largest GPCR family, gained significant attention as they are present on almost all mammalian cells, are associated to a plethora of diseases and regulate important cellular processes. aGPCRs regulate for example cell polarity, mitotic spindle orientation, cell migration, and cell aggregation; all processes that play important roles in kidney development and/or disease. Moreover, polycystin-1, a major regulator of kidney development and disease, contains a GAIN domain, which is otherwise only found in aGPCRs. In this review, we assess the potential of aGPCRs as therapeutic targets for kidney disease. For this purpose we have summarized the available literature and analyzed data from the databases The Human Protein Atlas, EURExpress, Nephroseq, FireBrowse, cBioPortal for Cancer Genomics and the National Cancer Institute Genomic Data Commons data portal (NCIGDC). Our data indicate that most aGPCRs are expressed in different spatio-temporal patterns during kidney development and that altered aGPCR expression is associated with a variety of kidney diseases including CKD, diabetic nephropathy, lupus nephritis as well as renal cell carcinoma. We conclude that aGPCRs present a promising new class of therapeutic targets and/or might be useful as diagnostic markers in kidney disease.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Feng D, DuMontier C, Pollak MR. Mechanical challenges and cytoskeletal impairments in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2018; 314:F921-F925. [PMID: 29363327 DOI: 10.1152/ajprenal.00641.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologically defined form of kidney injury typically mediated by podocyte dysfunction. Podocytes rely on their intricate actin-based cytoskeleton to maintain the glomerular filtration barrier in the face of mechanical challenges resulting from pulsatile blood flow and filtration of this blood flow. This review summarizes the mechanical challenges faced by podocytes in the form of stretch and shear stress, both of which may play a role in the progression of podocyte dysfunction and detachment. It also reviews how podocytes respond to these mechanical challenges in dynamic fashion through rearranging their cytoskeleton, triggering various biochemical pathways, and, in some disease states, altering their morphology in the form of foot process effacement. Furthermore, this review highlights the growing body of evidence identifying several mutations of important cytoskeleton proteins as causes of FSGS. Lastly, it synthesizes the above evidence to show that a better understanding of how these mutations leave podocytes vulnerable to the mechanical challenges they face is essential to better understanding the mechanisms by which they lead to disease. The review concludes with future research directions to fill this gap and some novel techniques with which to pursue these directions.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Clark DuMontier
- Harvard Medical School , Boston, Massachusetts.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
19
|
Srivastava T, Thiagarajan G, Alon US, Sharma R, El-Meanawy A, McCarthy ET, Savin VJ, Sharma M. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 2018; 32:759-765. [PMID: 28339567 DOI: 10.1093/ndt/gfw430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) including solitary kidney constitute the main cause of progressive chronic kidney disease (CKD) in children. Children born with CAKUT develop signs of CKD only during adolescence and do not respond to renin-angiotensin-aldosterone system blockers. Early cellular changes underlying CKD progression to end-stage renal disease by early adulthood are not well understood. The mechanism of maladaptive hyperfiltration that occurs from loss of functional nephrons, including solitary kidney, is not clear. We re-examine the phenomenon of hyperfiltration in the context of biomechanical forces with special reference to glomerular podocytes. Capillary stretch exerts tensile stress on podocytes through the glomerular basement membrane. The flow of ultrafiltrate over the cell surface directly causes fluid flow shear stress (FFSS) on podocytes. FFSS on the podocyte surface increases 1.5- to 2-fold in animal models of solitary kidney and its effect on podocytes is a subject of ongoing research. Podocytes (i) are mechanosensitive to tensile and shear forces, (ii) use prostaglandin E2, angiotensin-II or nitric oxide for mechanoperception and (iii) use specific signaling pathways for mechanotransduction. We discuss (i) the nature of and differences in cellular responses to biomechanical forces, (ii) methods to study biomechanical forces and (iii) effects of biomechanical forces on podocytes and glomeruli. Future studies on FFSS will likely identify novel targets for strategies for early intervention to complement and strengthen the current regimen for treating children with CAKUT.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA.,Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ganesh Thiagarajan
- School of Computing and Engineering, University of Missouri at Kansas City, MO, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ellen T McCarthy
- Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
20
|
Kim EY, Roshanravan H, Dryer SE. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2342-2354. [PMID: 28629718 PMCID: PMC5557291 DOI: 10.1016/j.bbadis.2017.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Primary forms of focal and segmental glomerulosclerosis (FSGS) are driven by circulating factors that cause dysfunction or loss podocytes. Rare genetic forms of FSGS can be caused by mutations in TRPC6, which encodes a Ca2+-permeable cationic channel expressed in mesangial cells and podocytes; and NPHS2, which encodes podocin, a TRPC6-binding protein expressed in podocyte slit diaphragm domains. Here we observed that exposing immortalized mouse podocytes to serum or plasma from recurrent FSGS patients for 24h increased the steady-state cell-surface abundance of TRPC6, accompanied by an increase in currents through endogenous TRPC6 channels evoked by a hypoosmotic stretch stimulus. These effects were mimicked by the soluble urokinase receptor (suPAR) and by tumor necrosis factor (TNF), circulating factors implicated in nephrotic syndromes. Most but not all of the recurrent FSGS plasma samples that we examined also caused a loss of podocin over a period of several hours. The loss of podocin was also seen following exposure to suPAR but not TNF. However, TNF increased the effects of suPAR on TRPC6 and podocin, and TNF and suPAR are required for the full effects of one of the recurrent FSGS plasma samples. The actions of FSGS plasma, suPAR and TNF on surface abundance of TRPC6 were blocked by cilengitide, an inhibitor of αvβ3-integrin signaling. These data suggest that primary FSGS is a heterogeneous condition mediated by multiple circulating factors, and support TRPC6 and αvβ3-integrin as potential therapeutic targets.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
22
|
Kriz W, Lemley KV. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr Nephrol 2017; 32:405-417. [PMID: 27008645 DOI: 10.1007/s00467-016-3358-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
Podocytes are lost as viable cells by detachment from the glomerular basement membrane (GBM), possibly due to factors such as pressure and filtrate flow. Distension of glomerular capillaries in response to increased pressure is limited by the elastic resistance of the GBM. The endothelium and podocytes adapt to changes in GBM area. The slit diaphragm (SD) seems to adjust by shuttling SD components between the SD and the adjacent foot processes (FPs), resulting in changes in SD area that parallel those in perfusion pressure.Filtrate flow tends to drag podocytes towards the urinary orifice by shear forces, which are highest within the filtration slits. The SD represents an atypical adherens junction, mechanically interconnecting the cytoskeleton of opposing FPs and tending to balance the shear forces.If under pathological conditions, increased filtrate flows locally overtax the attachment of FPs, the SDs are replaced by occluding junctions that seal the slits and the attachment of podocytes to the GBM is reinforced by FP effacement. Failure of these temporary adaptive mechanisms results in a steady process of podocyte detachment due to uncontrolled filtrate flows through bare areas of the GBM and, subsequently, the labyrinthine subpodocyte spaces, presenting as pseudocysts. In our view, shear stress due to filtrate flow-not capillary hydrostatic pressure-is the major challenge to the attachment of podocytes to the GBM.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
23
|
FocusHeuristics - expression-data-driven network optimization and disease gene prediction. Sci Rep 2017; 7:42638. [PMID: 28205611 PMCID: PMC5311990 DOI: 10.1038/srep42638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022] Open
Abstract
To identify genes contributing to disease phenotypes remains a challenge for bioinformatics. Static knowledge on biological networks is often combined with the dynamics observed in gene expression levels over disease development, to find markers for diagnostics and therapy, and also putative disease-modulatory drug targets and drugs. The basis of current methods ranges from a focus on expression-levels (Limma) to concentrating on network characteristics (PageRank, HITS/Authority Score), and both (DeMAND, Local Radiality). We present an integrative approach (the FocusHeuristics) that is thoroughly evaluated based on public expression data and molecular disease characteristics provided by DisGeNet. The FocusHeuristics combines three scores, i.e. the log fold change and another two, based on the sum and difference of log fold changes of genes/proteins linked in a network. A gene is kept when one of the scores to which it contributes is above a threshold. Our FocusHeuristics is both, a predictor for gene-disease-association and a bioinformatics method to reduce biological networks to their disease-relevant parts, by highlighting the dynamics observed in expression data. The FocusHeuristics is slightly, but significantly better than other methods by its more successful identification of disease-associated genes measured by AUC, and it delivers mechanistic explanations for its choice of genes.
Collapse
|
24
|
Hyperfiltration-associated biomechanical forces in glomerular injury and response: Potential role for eicosanoids. Prostaglandins Other Lipid Mediat 2017; 132:59-68. [PMID: 28108282 DOI: 10.1016/j.prostaglandins.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.
Collapse
|
25
|
Ma R, Jiang W, Li Z, Sun Y, Wei Z. Intrarenal macrophage infiltration induced by T cells is associated with podocyte injury in lupus nephritis patients. Lupus 2016; 25:1577-1586. [PMID: 27147620 DOI: 10.1177/0961203316646861] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/04/2016] [Indexed: 11/16/2022]
Abstract
Proteinuria is the hallmark of clinical manifestation of disease activity in lupus nephritis (LN) patients, which arises from direct or indirect podocyte injury. This study is to explore the relationship between intrarenal T cell infiltration and podocyte injury in lupus nephritis (LN), and to understand the potential mechanisms of podocyte injury induced by intrarenal T cells. Sixty renal biopsies from patients diagnosed with LN were included in the present study. Histological changes in LN patients were detected by light and electron microscopy. Podocyte-specific nephrin expression in renal tissues was detected by immunofluorescence. Infiltration of T cells (CD3+ cells), infiltration of macrophages (CD68+ cells) and the expression of osteopontin (OPN) in renal tissues were examined by immunohistochemical staining. Pearson or Spearman’s tests were used to perform correlation analysis. Morphologic lesions of podocytes were more severe in LN patients than in normal control subjects. Compared with normal control subjects, nephrin expression was significantly decreased in LN patients. The expression level of nephrin was significantly lower in active LN patients than in the inactive group of patients ( P < 0.05). Compared with normal control subjects, the number of infiltrated intrarenal T cells and macrophages was significantly increased in LN patients. T cells were mainly distributed in renal interstitium, with very few being in glomeruli, while macrophages were mainly located in glomeruli. The number of intrarenal infiltrated T cells and macrophages in active LN patients was more than that in the inactive group ( P < 0.05). Compared with normal control subjects, OPN expression in LN patients was increased significantly. The expression level of OPN in active LN patients was significantly higher than that in the inactive group ( P < 0.05). Podocyte-specific nephrin was negatively correlated with 24-hour proteinuria, intrarenal T cells infiltration and intrarenal OPN expression in LN patients ( P < 0.001). Intrarenal macrophages had significantly positive correlation with intrarenal OPN expression ( P < 0.001). The present study provides possible links between intrarenal T cells, OPN, macrophages with reduced podocyte-nephrin and podocytopathy in systemic lupus erythematosus. In addition, infiltration of macrophages in glomeruli induced by OPN that is induced by T cells may be a crucial mechanism for podocyte injury.
Collapse
Affiliation(s)
- R Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - W Jiang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Z Li
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Y Sun
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Z Wei
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, PR China
| |
Collapse
|
26
|
Ivanova EA, Arcolino FO, Elmonem MA, Rastaldi MP, Giardino L, Cornelissen EM, van den Heuvel LP, Levtchenko EN. Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility. Kidney Int 2016; 89:1037-1048. [PMID: 27083281 DOI: 10.1016/j.kint.2016.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/22/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
The involvement of the glomerulus in the pathogenesis of cystinosis, caused by loss-of-function mutations in cystinosin (CTNS, 17p13), is a matter of controversy. Although patients with cystinosis demonstrate glomerular lesions and high-molecular-weight proteinuria starting from an early age, a mouse model of cystinosis develops only signs of proximal tubular dysfunction. Here we studied podocyte damage in patients with cystinosis by analyzing urinary podocyte excretion and by in vitro studies of podocytes deficient in cystinosin. Urine from patients with cystinosis presented a significantly higher amount of podocytes compared with controls. In culture, cystinotic podocytes accumulated cystine compatible with cystinosin deficiency. The expression of podocyte specific genes CD2AP, podocalyxin, and synaptopodin and of the WT1 protein was evident in all cell lines. Conditionally immortalized podocyte lines of 2 patients with different CTNS mutations had altered cytoskeleton, impaired cell adhesion sites, and increased individual cell motility. Moreover, these cells showed enhanced phosphorylation of both Akt1 and Akt2 (isoforms of protein kinase B). Inhibition of Akt by a specific inhibitor (Akti inhibitor 1/2) resulted in normalization of the hypermotile phenotype. Thus, our study extends the list of genetic disorders causing podocyte damage and provides the evidence of altered cell signaling cascades resulting in impaired cell adhesion and enhanced cell motility in cystinosis.
Collapse
Affiliation(s)
- Ekaterina A Ivanova
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Fanny O Arcolino
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mohamed A Elmonem
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maria P Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Fondazione D'Amico, Milano, Italy
| | - Laura Giardino
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Fondazione D'Amico, Milano, Italy
| | - Elisabeth M Cornelissen
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lambertus P van den Heuvel
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elena N Levtchenko
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
27
|
Kim EY, Roshanravan H, Dryer SE. Syndecan-4 ectodomain evokes mobilization of podocyte TRPC6 channels and their associated pathways: An essential role for integrin signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2610-20. [PMID: 26193076 DOI: 10.1016/j.bbamcr.2015.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/11/2015] [Accepted: 07/17/2015] [Indexed: 01/24/2023]
Abstract
PodocyteTRPC6 channels have been implicated in glomerular diseases. Syndecan-4 (Sdc4) is a membrane proteoglycan that can be cleaved to release a soluble ectodomain capable of paracrine and autocrine signaling. We have confirmed that overexpression of Sdc4 core protein increases surface abundance of TRPC6 channels in cultured podocytes, whereas Sdc4 knockdown has the opposite effect. Exposure to soluble Sdc4 ectodomain also increased the surface abundance of TRPC6, and increased cationic currents evoked by a diacylglycerol analog in podocytes. Sdc4 ectodomain increased generation of reactive oxygen species (ROS), reduced activation of RhoA, increased activation of Rac1, increased nuclear abundance of NFATc1, and increased total β3-integrin. The effects of Sdc4 ectodomain on cell-surface TRPC6 were blocked by the ROS quencher TEMPOL, and by the Rac1 inhibitor NSC-23766, but were not blocked by inhibition of calcineurin-NFATc1 signaling. The Sdc4 core protein co-immunoprecipitates with β3-integrin in cultured podocytes. Moreover, effects of Sdc4 ectodomain on TRPC6, ROS generation, Rac1 and RhoA modulation, and NFATc1 activation were blocked by cilengitide, a selective inhibitor of outside-in signaling through αv-containing integrins. Exposure to TNF, or serum from three patients with recurrent FSGS in relapse, increased shedding of podocyte Sdc4 ectodomains into the surrounding medium. This was also observed after treating podocytes with the metalloproteinase ADAM17 or after overexpression of the Sdc4 core protein. Increased concentrations of Sdc4 ectodomain were detected in urine of rats during acute puromycin aminonucleoside nephrosis. Locally generated Sdc4 may play a role in regulating TRPC6 channels, and may contribute to glomerular pathology.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Blumenthal A, Giebel J, Warsow G, Li L, Ummanni R, Schordan S, Schordan E, Klemm P, Gretz N, Endlich K, Endlich N. Mechanical stress enhances CD9 expression in cultured podocytes. Am J Physiol Renal Physiol 2014; 308:F602-13. [PMID: 25503725 DOI: 10.1152/ajprenal.00190.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Elevated glomerular pressure represents a high risk for the development of severe kidney diseases and causes an increase in mechanical load to podocytes. In this study, we investigated whether mechanical stress alters gene expression in cultured podocytes using gene arrays. We found that tetraspanin CD9 is significantly upregulated in cultured podocytes after mechanical stress. The differential expression of CD9 was confirmed by RT-PCR and Western blotting under stretched and unstretched conditions. Furthermore, mechanical stress resulted in a relocalization of CD9. To get an insight into the functional role of CD9, podocytes were transfected with pEGFP-CD9. The expression of CD9 induced the formation of substratum-attached thin arborized protrusions. Ca(2+) depletion revealed that podocytes overexpressing CD9 possess altered adhesive properties in contrast to the control transfected cells. Finally, elevated CD9 expression increased migration of podocytes in a wound assay. In summary, our results suggest that upregulation of CD9 may play an important role in podocyte morphology, adhesion, and migration.
Collapse
Affiliation(s)
- A Blumenthal
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - J Giebel
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany;
| | - G Warsow
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - L Li
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - R Ummanni
- Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; and
| | - S Schordan
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - E Schordan
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - P Klemm
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - N Gretz
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - K Endlich
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - N Endlich
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Seth D, Duly A, Kuo PC, McCaughan GW, Haber PS. Osteopontin is an important mediator of alcoholic liver disease via hepatic stellate cell activation. World J Gastroenterol 2014; 20:13088-13104. [PMID: 25278703 PMCID: PMC4177488 DOI: 10.3748/wjg.v20.i36.13088] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate over-expression of Osteopontin (OPN) pathway expression and mechanisms of action in human alcoholic liver disease (ALD), in vivo and in vitro acute alcohol models.
METHODS: OPN pathway was evaluated in livers from patients with progressive stages of human ALD and serum from drinkers with and without liver cirrhosis. In vitro stellate LX2 cells exposed to acute alcohol and in vivo in acute alcoholic steatosis mouse models were also investigated for OPN pathway expression and function. WT and OPN-/- mice were administered an acute dose of alcohol and extent of liver injury was examined by histopathology and liver biochemistry after 16-24 h. The causative role of OPN was studied in OPN knockout animals and in vitro in stellate LX2 cells, utilizing siRNA, aptamer and neutralizing antibodies to block OPN and OPN pathway. OPN pathway expression and downstream functional consequences were measured for signaling by Western blotting, plasmin activation by spectrophotometric assays and cell migration by confocal imaging and quantitation.
RESULTS: OPN expression positively correlated with disease severity in patients with progressive stages of ALD. In vivo, associated with alcoholic steatosis, a single dose of acute alcohol significantly increased hepatic OPN mRNA and protein, and a cleaved OPN form in a dose dependent manner. OPN mRNA and secreted OPN also increased in parallel with activation of LX2 stellate cells within 4 h of a single dose of alcohol. Expression of OPN receptors, αvβ3-integrin and CD44, increased in human ALD, and in vivo and in vitro with alcohol administration. This was accompanied by downstream phosphorylation of Akt and Erk, increased mRNA expression of several fibrogenesis, fibrinolysis and extracellular matrix pathway genes, plasmin activation and hepatic stellate cell (HSC) migration. Inhibition of OPN and OPN-receptor mediated signaling partially inhibited alcohol-induced HSC activation, plasmin activity and cell migration.
CONCLUSION: OPN is a key mediator of the alcohol-induced effects on hepatic stellate cell functions and liver fibrogenesis.
Collapse
MESH Headings
- Animals
- Case-Control Studies
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fatty Liver, Alcoholic/genetics
- Fatty Liver, Alcoholic/metabolism
- Fatty Liver, Alcoholic/pathology
- Female
- Fibrinolysin/metabolism
- Fibrinolysis
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Humans
- Hyaluronan Receptors/metabolism
- Integrin alphaVbeta3/metabolism
- Liver Cirrhosis, Alcoholic/genetics
- Liver Cirrhosis, Alcoholic/metabolism
- Liver Cirrhosis, Alcoholic/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Osteopontin/deficiency
- Osteopontin/genetics
- Osteopontin/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Severity of Illness Index
- Signal Transduction
- Time Factors
- Transfection
- Up-Regulation
Collapse
|
30
|
Schlondorff J. How many Achilles' heels does a podocyte have? An update on podocyte biology: Table 1. Nephrol Dial Transplant 2014; 30:1091-7. [DOI: 10.1093/ndt/gfu214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022] Open
|
31
|
Grabias BM, Konstantopoulos K. The physical basis of renal fibrosis: effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 2013; 306:F473-85. [PMID: 24352503 DOI: 10.1152/ajprenal.00503.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Healthy kidneys are continuously exposed to an array of physical forces as they filter the blood: shear stress along the inner lumen of the tubules, distension of the tubular walls in response to changing fluid pressures, and bending moments along both the cilia and microvilli of individual epithelial cells that comprise the tubules. Dysregulation of kidney homeostasis via underlying medical conditions such as hypertension, diabetes, or glomerulonephritis fundamentally elevates the magnitudes of each principle force in the kidney and leads to fibrotic scarring and eventual loss of organ function. The purpose of this review is to summarize the progress made characterizing the response of kidney cells to pathological levels of mechanical stimuli. In particular, we examine important, mechanically responsive signaling cascades and explore fundamental changes in renal cell homeostasis after cyclic strain or fluid shear stress exposure. Elucidating the effects of these disease-related mechanical imbalances on endogenous signaling events in kidney cells presents a unique opportunity to better understand the fibrotic process.
Collapse
Affiliation(s)
- Bryan M Grabias
- Dept. of Chemical and Biomolecular Engineering, The Johns Hopkins Univ., New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218.
| | | |
Collapse
|
32
|
Abstract
Amniotic fluid is in continuity with multiple developing organ systems, including the kidney. Committed, but still stem-like cells from these organs may thus appear in amniotic fluid. We report having established for the first time a stem-like cell population derived from human amniotic fluid and possessing characteristics of podocyte precursors. Using a method of triple positive selection we obtained a population of cells (hAKPC-P) that can be propagated in vitro for many passages without immortalization or genetic manipulation. Under specific culture conditions, these cells can be differentiated to mature podocytes. In this work we compared these cells with conditionally immortalized podocytes, the current gold standard for in vitro studies. After in vitro differentiation, both cell lines have similar expression of the major podocyte proteins, such as nephrin and type IV collagen, that are characteristic of mature functional podocytes. In addition, differentiated hAKPC-P respond to angiotensin II and the podocyte toxin, puromycin aminonucleoside, in a way typical of podocytes. In contrast to immortalized cells, hAKPC-P have a more nearly normal cell cycle regulation and a pronounced developmental pattern of specific protein expression, suggesting their suitability for studies of podocyte development for the first time in vitro. These novel progenitor cells appear to have several distinct advantages for studies of podocyte cell biology and potentially for translational therapies.
Collapse
|
33
|
Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA. Fluid flow shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 2013; 29:65-72. [PMID: 24166460 DOI: 10.1093/ndt/gft387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is emerging as the key risk factor for progression of chronic kidney disease (CKD). Podocytes are exposed to fluid flow shear stress (FFSS) caused by the flow of ultrafiltrate within Bowman's space. The mechanism of hyperfiltration-induced podocyte injury is not clear. We postulated that glomerular hyperfiltration in solitary kidney increases FFSS over podocytes. METHODS Infant Sprague-Dawley rats at 5 days of age and C57BL/6J 14-week-old adult mice underwent unilateral nephrectomy. Micropuncture and morphological studies were then performed on 20- and 60-day-old rats. FFSS over podocytes in uninephrectomized rats and mice was calculated using the recently published equation by Friedrich et al. which includes the variables-single nephron glomerular filtration rate (SNGFR), filtration fraction (f), glomerular tuft diameter (2RT) and width of Bowman's space (s). RESULTS Glomerular hypertrophy was observed in uninephrectomized rats and mice. Uninephrectomized rats on Day 20 showed a 2.0-fold increase in SNGFR, 1.0-fold increase in 2RT and 2.1-fold increase in FFSS, and on Day 60 showed a 1.9-fold increase in SNGFR, 1.3-fold increase in 2RT and 1.5-fold increase in FFSS, at all values of modeled 's'. Similarly, uninephrectomized mice showed a 2- to 3-fold increase in FFSS at all values of modeled SNGFR. CONCLUSIONS FFSS over podocytes is increased in solitary kidneys in both infant rats and adult mice. This increase is a consequence of increased SNGFR. We speculate that increased FFSS caused by reduced nephron number contributes to podocyte injury and promotes the progression of CKD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schordan S, Grisk O, Schordan E, Miehe B, Rumpel E, Endlich K, Giebel J, Endlich N. OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice. Am J Physiol Renal Physiol 2013; 304:F1458-70. [PMID: 23552865 DOI: 10.1152/ajprenal.00615.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteopontin (OPN) expression has been reported to be elevated in experimental models of renal injury such as arterial hypertension or diabetic nephropathy finally leading to focal segmental glomerulosclerosis (FSGS). FSGS is characterized by glomerular matrix deposition and loss or damage of podocytes that represent the main constituents of the glomerular filtration barrier. To evaluate the role of OPN in the kidney we investigated WT and OPN knockout mice (OPN-/-) without treatment, after uninephrectomy (UNX), as well as after UNX and desoxycorticosterone acetate (DOCA)-salt treatment with respect to urine parameters, glomerular morphology, and expression of podocyte markers. OPN-/- mice showed normal urine parameters while a thickening of the glomerular basement membrane was evident. Intriguingly, following UNX, OPN-/- mice exhibited prominent FSGS, proteinuria, and glomerular matrix deposition. Electron microscopy revealed bulgings of the glomerular basement membrane and occasionally an effacement of podocytes. After UNX and DOCA-salt treatment, severe glomerular lesions as well as proteinuria and albuminuria were seen in WT and OPN-/- mice. Moreover, we found a reduction of specific markers such as Wilm's tumor-1, podocin, and synaptopodin in both experimental groups indicating a loss of podocytes. Podocyte damage was accompanied by increased number of Ki-67-positive cells in the parietal epithelium of Bowman's capsule. We conclude that OPN plays a crucial role in adaptation of podocytes following renal ablation and is renoprotective when glomerular mechanical load is increased.
Collapse
Affiliation(s)
- Sandra Schordan
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Glomerular hypertension (ie, increased glomerular capillary pressure), has been shown to cause podocyte damage progressing to glomerulosclerosis in animal models. Increased glomerular capillary pressure results in an increase in wall tension that acts primarily as circumferential tensile stress on the capillary wall. The elastic properties of the glomerular basement membrane (GBM) and the elastic as well as contractile properties of the cytoskeleton of the endothelium and of podocyte foot processes resist circumferential tensile stress. Whether the contractile forces generated by podocytes are able to equal circumferential tensile stress to effectively counteract wall tension is an open question. Mechanical stress is transmitted from the GBM to the actin cytoskeleton of podocyte foot processes via cell-matrix contacts that contain mainly integrin α3β1 and a variety of linker, scaffolding, and signaling proteins, which are not well characterized in podocytes. We know from in vitro studies that podocytes are sensitive to stretch, however, the crucial mechanosensor in podocytes remains unclear. On the other hand, in vitro studies have shown that in stretched podocytes specific signaling cascades are activated, the synthesis and secretion of various hormones and their receptors are increased, cell-cycle arrest is reinforced, cell adhesion is altered through secretion of matricellular proteins and changes in integrin expression, and the actin cytoskeleton is reorganized in a way that stress fibers are lost. In summary, current evidence suggests that in glomerular hypertension podocytes primarily aim to maintain the delicate architecture of interdigitating foot processes in the face of an expanding GBM area.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
36
|
Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte's response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 2013; 304:F333-47. [DOI: 10.1152/ajprenal.00478.2012] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Progressive loss of podocytes is the most frequent cause accounting for end-stage renal failure. Podocytes are complex, terminally differentiated cells incapable of replicating. Thus lost podocytes cannot be replaced by proliferation of neighboring undamaged cells. Moreover, podocytes occupy a unique position as epithelial cells, adhering to the glomerular basement membrane (GBM) only by their processes, whereas their cell bodies float within the filtrate in Bowman's space. This exposes podocytes to the danger of being lost by detachment as viable cells from the GBM. Indeed, podocytes are continually excreted as viable cells in the urine, and the rate of excretion dramatically increases in glomerular diseases. Given this situation, it is likely that evolution has developed particular mechanisms whereby podocytes resist cell detachment. Podocytes respond to stress and injury by undergoing tremendous changes in shape. Foot process effacement is the most prominent and, yet in some ways, the most enigmatic of those changes. This review summarizes the various structural responses of podocytes to injury, focusing on foot process effacement and detachment. We raise the hypothesis that foot process effacement represents a protective response of podocytes to escape detachment from the GBM.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isao Shirato
- Division of Nephrology, Department of Internal Medicine, Juntendo University, School of Medicine, Tokyo, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-City, Japan
| | - Michel LeHir
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; and
| | - Kevin V. Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
37
|
Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 2013; 9:200-10. [PMID: 23338211 DOI: 10.1038/nrneph.2012.291] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesion is crucial for maintaining the mechanical integrity of epithelial tissues. Podocytes--a key component of the glomerular filtration barrier--are exposed to permanent transcapillary filtration pressure and must therefore adhere tightly to the underlying glomerular basement membrane (GBM). The major cell-matrix adhesion receptor in podocytes is the integrin α3β1, which connects laminin 521 in the GBM through various adaptor proteins to the intracellular actin cytoskeleton. Other cell-matrix adhesion receptors expressed by podocytes include the integrins α2β1 and αvβ3, α-dystroglycan, syndecan-4 and type XVII collagen. Mutations in genes encoding any of the components critical for podocyte adhesion cause glomerular disease. This Review highlights recent advances in our understanding of the cell biology and genetics of podocyte adhesion with special emphasis on glomerular disease.
Collapse
Affiliation(s)
- Norman Sachs
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Pollinger K, Hennig R, Breunig M, Tessmar J, Ohlmann A, Tamm ER, Witzgall R, Goepferich A. Kidney podocytes as specific targets for cyclo(RGDfC)-modified nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3368-75. [PMID: 22888052 DOI: 10.1002/smll.201200733] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/04/2012] [Indexed: 05/08/2023]
Abstract
Renal nanoparticle passage opens the door for targeting new cells like podocytes, which constitute the exterior part of the renal filter. When cyclo(RGDfC)-modified Qdots are tested on isolated primary podocytes for selective binding to the αvβ3 integrin receptor a highly cell- and receptor-specific binding can be observed. In displacement experiments with free cyclo(RGDfC) IC(50) values of 150 nM for αvβ3 integrin over-expressing U87-MG cells and 60 nM for podocytes are measured. Confocal microscopy shows a cellular Qdot uptake into vesicle-like structures. Our ex vivo study gives clear evidence that, after renal filtration, nanoparticles can be targeted to podocyte integrin receptors in the future. This could be a highly promising approach for future therapy and diagnostics of podocyte-associated diseases.
Collapse
Affiliation(s)
- Klaus Pollinger
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Osteopontin contributes to TGF-β1 mediated hepatic stellate cell activation. Dig Dis Sci 2012; 57:2883-91. [PMID: 22661273 DOI: 10.1007/s10620-012-2248-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is characterized by accumulation of extracellular matrix. Our previous study found that osteopontin (OPN) increased in plasma of cirrhotic patients and indicative of cirrhosis staging. The present study was designed to investigate the expression of OPN in liver tissues and plasma of cirrhotic patients and further explore the role of OPN in human hepatic stellate cell (HSC) activation. METHODS We used immunohistochemical staining and enzyme-linked immunosorbent assay to evaluate the expression level of OPN in liver tissues and plasma from cirrhotic patients, respectively. We produced lentivirus particles and infected target cell to manipulate OPN expression. Infection efficiency was determined by real-time RT-PCR and western blot. Cell proliferation was determined using CCK8 assay, and phenotypes of HSC activation were determined by real-time RT-PCR. OPN promoter activity was determined by dual luciferase reporter assay. RESULTS We found that OPN expression in human cirrhotic liver tissues was upregulated compared to normal controls. In addition, its expression correlated with Child-Pugh classification, MELD score and the occurrence of complications. We further explored OPN level in patients' plasma and showed that its level correlated with transforming growth factor-β1 (TGF-β1). In human HSC cell line LX-2, we found that change of OPN expression level could not only affect the proliferation of cells but also the TGF-β1 mediated HSC activation. Moreover, OPN was increased by TGF-β1 stimulation and regulated by TGF-β1 at transcription level. CONCLUSIONS OPN is upregulated in liver tissues and plasma of cirrhotic patients and promotes TGF-β1 mediated HSC activation.
Collapse
|
40
|
Müller-Krebs S, Kihm LP, Madhusudhan T, Isermann B, Reiser J, Zeier M, Schwenger V. Human RAGE antibody protects against AGE-mediated podocyte dysfunction. Nephrol Dial Transplant 2012; 27:3129-36. [DOI: 10.1093/ndt/gfs005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Huang C, Bruggeman LA, Hydo LM, Miller RT. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp Cell Res 2012; 318:1075-85. [PMID: 22472346 DOI: 10.1016/j.yexcr.2012.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 02/06/2023]
Abstract
The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD(1), and PLD(2) to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD(1) but not PLD(2). The inhibition of shear stress-induced c-Src phosphorylation by PP(2) (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Chunfa Huang
- Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
As an integral member of the filtration barrier in the kidney glomerulus, the podocyte is in a unique geographical position: It is exposed to chemical signals from the urinary space (Bowman's capsule), it receives and transmits chemical and mechanical signals to/from the glomerular basement membrane upon which it elaborates, and it receives chemical and mechanical signals from the vascular space with which it also communicates. As with every cell, the ability of the podocyte to receive signals from the surrounding environment and to translate them to the intracellular milieu is dependent largely on molecules residing on the cell membrane. These molecules are the first-line soldiers in the ongoing battle to sense the environment, to respond to friendly signals, and to defend against injurious foes. In this review, we take a membrane biologist's view of the podocyte, examining the many membrane receptors, channels, and other signaling molecules that have been implicated in podocyte biology. Although we attempt to be comprehensive, our goal is not to capture every membrane-mediated pathway but rather to emphasize that this approach may be fruitful in understanding the podocyte and its unique properties.
Collapse
Affiliation(s)
- Anna Greka
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|