1
|
Zimmermann S, Mathew A, Bondareva O, Elwakiel A, Waldmann K, Jiang S, Rana R, Singh K, Kohli S, Shahzad K, Biemann R, Roskoden T, Storsberg SD, Mawrin C, Krügel U, Bechmann I, Goldschmidt J, Sheikh BN, Isermann B. Chronic kidney disease leads to microglial potassium efflux and inflammasome activation in the brain. Kidney Int 2024; 106:1101-1116. [PMID: 39089576 DOI: 10.1016/j.kint.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
Cognitive impairment is common in extracerebral diseases such as chronic kidney disease (CKD). Kidney transplantation reverses cognitive impairment, indicating that cognitive impairment driven by CKD is therapeutically amendable. However, we lack mechanistic insights allowing development of targeted therapies. Using a combination of mouse models (including mice with neuron-specific IL-1R1 deficiency), single cell analyses (single-nuclei RNA-sequencing and single-cell thallium autometallography), human samples and in vitro experiments we demonstrate that microglia activation impairs neuronal potassium homeostasis and cognition in CKD. CKD disrupts the barrier of brain endothelial cells in vitro and the blood-brain barrier in vivo, establishing that the uremic state modifies vascular permeability in the brain. Exposure to uremic conditions impairs calcium homeostasis in microglia, enhances microglial potassium efflux via the calcium-dependent channel KCa3.1, and induces p38-MAPK associated IL-1β maturation in microglia. Restoring potassium homeostasis in microglia using a KCa3.1-specific inhibitor (TRAM34) improves CKD-triggered cognitive impairment. Likewise, inhibition of the IL-1β receptor 1 (IL-1R1) using anakinra or genetically abolishing neuronal IL-1R1 expression in neurons prevent CKD-mediated reduced neuronal potassium turnover and CKD-induced impaired cognition. Accordingly, in CKD mice, impaired cognition can be ameliorated by either preventing microglia activation or inhibiting IL-1R-signaling in neurons. Thus, our data suggest that potassium efflux from microglia triggers their activation, which promotes microglia IL-1β release and IL-1R1-mediated neuronal dysfunction in CKD. Hence, our study provides new mechanistic insight into cognitive impairment in association with CKD and identifies possible new therapeutic approaches.
Collapse
Affiliation(s)
- Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany.
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (Hl-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Klarina Waldmann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Shihai Jiang
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Thomas Roskoden
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Christian Mawrin
- Department of Neuropathology and Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (Hl-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany.
| |
Collapse
|
2
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
3
|
Li N, Zhou H. Sodium-glucose Cotransporter Type 2 Inhibitors: A New Insight into the Molecular Mechanisms of Diabetic Nephropathy. Curr Pharm Des 2022; 28:2131-2139. [PMID: 35718973 DOI: 10.2174/1381612828666220617153331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy is one of the chronic microvascular complications of diabetes and is a leading cause of end-stage renal disease. Fortunately, clinical trials have demonstrated that sodium-glucose cotransporter type 2 inhibitors could decrease proteinuria and improve renal endpoints and are promising agents for the treatment of diabetic nephropathy. The renoprotective effects of sodium-glucose cotransporter type 2 inhibitors cannot be simply attributed to their advantages in aspects of metabolic benefits, such as glycemic control, lowering blood pressure, and control of serum uric acid, or improving hemodynamics associated with decreased glomerular filtration pressure. Some preclinical evidence suggests that sodium-glucose cotransporter type 2 inhibitors exert their renoprotective effects by multiple mechanisms, including attenuation of oxidative and endoplasmic reticulum stresses, anti-fibrosis and anti-inflammation, protection of podocytes, suppression of megalin function, improvement of renal hypoxia, restored mitochondrial dysfunction and autophagy, as well as inhibition of sodium-hydrogen exchanger 3. In the present study, the detailed molecular mechanisms of sodium-glucose cotransporter type 2 inhibitors with the actions of diabetic nephropathy were reviewed, with the purpose of providing the basis for drug selection for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
5
|
A small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase improves obesity, nephropathy and cardiomyopathy in obese ZSF1 rats. PLoS One 2021; 16:e0255022. [PMID: 34339435 PMCID: PMC8328318 DOI: 10.1371/journal.pone.0255022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Prolyl hydroxylase (PH) enzymes control the degradation of hypoxia-inducible factor (HIF), a transcription factor known to regulate erythropoiesis, angiogenesis, glucose metabolism, cell proliferation, and apoptosis. HIF-PH inhibitors (HIF-PHIs) correct anemia in patients with renal disease and in animal models of anemia and kidney disease. However, the effects of HIF-PHIs on comorbidities associated with kidney disease remain largely unknown. We evaluated the effects of the HIF-PHI FG-2216 in obese ZSF1 (Ob-ZSF1) rats, an established model of kidney failure with metabolic syndrome. Following unilateral nephrectomy (Nx) at 8 weeks of age, rats were treated with 40 mg/kg FG-2216 or vehicle by oral gavage three times per week for up to 18 weeks. FG-2216 corrected blood hemoglobin levels and improved kidney function and histopathology in Nx-Ob-ZSF1 rats by increasing the glomerular filtration rate, decreasing proteinuria, and reducing peritubular fibrosis, tubular damage, glomerulosclerosis and mesangial expansion. FG-2216 increased renal glucose excretion and decreased body weight, fat pad weight, and serum cholesterol in Nx-Ob-ZSF1 rats. Additionally, FG-2216 corrected hypertension, improved diastolic and systolic heart function, and reduced cardiac hypertrophy and fibrosis. In conclusion, the HIF-PHI FG-2216 improved renal and cardiovascular outcomes, and reduced obesity in a rat model of kidney disease with metabolic syndrome. Thus, in addition to correcting anemia, HIF-PHIs may provide renal and cardiac protection to patients suffering from kidney disease with metabolic syndrome.
Collapse
|
6
|
Fevrier-Paul A, Soyibo AK, De Silva N, Mitchell S, Nwokocha C, Voutchkov M. Addressing the Challenge of Potentially Hazardous Elements in the Reduction of Hypertension, Diabetes and Chronic Kidney Disease in the Caribbean. J Health Pollut 2021; 11:210613. [PMID: 34268000 PMCID: PMC8276730 DOI: 10.5696/2156-9614-11.30.210613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Environmental surveys have characterized trace elements such as lead (Pb), cadmium (Cd) and arsenic (As) as potential risk factors for non-communicable diseases. There have been few studies conducted in the Caribbean region to explore, define or clarify such findings locally. Furthermore, local pollution control efforts are often juxtaposed against more seemingly immediate economic concerns in poor communities. OBJECTIVES The present commentary is a call to action for the evaluation of potentially hazardous elements as potential risk indicators and/or factors of common noncommunicable diseases in the Caribbean. DISCUSSION Findings from Jamaican studies have identified exposure to potentially hazardous elements (PHE) via water, food, and other anthropogenic activities to the detriment of the resident population. Several attempts have been made to abate toxic metal exposure in children with relative success. However, high levels of PHE have been noted in vulnerable populations such as patients with hypertension, diabetes mellitus and chronic kidney disease. Currently, there is low priority towards infrastructure building within the Caribbean region that would promote and sustain long term monitoring and better inform environmental polices impacting chronic diseases. CONCLUSIONS Further investigations are needed to clarify the role that PHE play in increasing the risk or progression of non-communicable diseases, especially in vulnerable groups. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Adwalia Fevrier-Paul
- Department of Physics, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica
| | - Adedamola K. Soyibo
- Department of Medicine, University Hospital of the West Indies, Kingston, Jamaica
| | - Nimal De Silva
- Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sylvia Mitchell
- The Biotechnology Centre, Faculty of Science and Technology, University of the West Indies, Mona , Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, The University of the West Indies, Mona, Jamaica
| | - Mitko Voutchkov
- Department of Physics, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica
| |
Collapse
|
7
|
Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 2021; 17:319-334. [PMID: 33547417 DOI: 10.1038/s41581-021-00393-8] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Diabetic kidney disease is the leading cause of kidney failure worldwide; in the USA, it accounts for over 50% of individuals entering dialysis or transplant programmes. Unlike other complications of diabetes, the prevalence of diabetic kidney disease has failed to decline over the past 30 years. Hyperglycaemia is the primary aetiological factor responsible for the development of diabetic kidney disease. Once hyperglycaemia becomes established, multiple pathophysiological disturbances, including hypertension, altered tubuloglomerular feedback, renal hypoxia, lipotoxicity, podocyte injury, inflammation, mitochondrial dysfunction, impaired autophagy and increased activity of the sodium-hydrogen exchanger, contribute to progressive glomerular sclerosis and the decline in glomerular filtration rate. The quantitative contribution of each of these abnormalities to the progression of diabetic kidney disease, as well as their role in type 1 and type 2 diabetes mellitus, remains to be determined. Sodium-glucose co-transporter 2 (SGLT2) inhibitors have a beneficial impact on many of these pathophysiological abnormalities; however, as several pathophysiological disturbances contribute to the onset and progression of diabetic kidney disease, multiple agents used in combination will likely be required to slow the progression of disease effectively.
Collapse
|
8
|
Li P, Liu Y, Qin X, Chen K, Wang R, Yuan L, Chen X, Hao C, Huang X. SIRT1 attenuates renal fibrosis by repressing HIF-2α. Cell Death Discov 2021; 7:59. [PMID: 33758176 PMCID: PMC7987992 DOI: 10.1038/s41420-021-00443-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases. Previous studies have shown that SIRT1 is involved in kidney physiology regulation and protects the kidney from various pathological factors. However, the underlying mechanisms behind its function have yet to be fully elucidated. In our study, we found that ablation of Sirt1 in renal interstitial cells resulted in more severe renal damage and fibrosis in unilateral ureteral obstruction (UUO) model mice. We also observed that hypoxia-inducible factor (HIF)-2α expression was increased in Sirt1 conditional knockout mice, suggesting that HIF-2α might be a substrate of SIRT1, mediating its renoprotective roles. Therefore, we bred Hif2a deficient mice and subjected them to renal trauma through UUO surgery, ultimately finding that Hif2a ablation attenuated renal fibrogenesis induced by UUO injury. Moreover, in cultured NRK-49F cells, activation of SIRT1 decreased HIF-2α and fibrotic gene expressions, and inhibition of SIRT1 stimulated HIF-2α and fibrotic gene expressions. Co-immunoprecipitation analysis revealed that SIRT1 directly interacted with and deacetylated HIF-2α. Together, our data indicate that SIRT1 plays a protective role in renal damage and fibrosis, which is likely due to inhibition of HIF-2α.
Collapse
Affiliation(s)
- Peipei Li
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Yue Liu
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 8 Jianshe Road, 226300, Nantong, Jiangsu, China
| | - Xiaogang Qin
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 8 Jianshe Road, 226300, Nantong, Jiangsu, China
| | - Kairen Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Ruiting Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, and Nephrology Research Institute, Fudan University, 12 Urumqi Middle Road, Shanghai, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Honda T, Hirakawa Y, Mizukami K, Yoshihara T, Tanaka T, Tobita S, Nangaku M. A distinctive distribution of hypoxia-inducible factor-1α in cultured renal tubular cells with hypoperfusion simulated by coverslip placement. Physiol Rep 2021; 9:e14689. [PMID: 33369883 PMCID: PMC7769172 DOI: 10.14814/phy2.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022] Open
Abstract
Chronic hypoxia in the renal tubulointerstitium plays a key role in the progression of chronic kidney disease (CKD). It is therefore important to investigate tubular hypoxia and the activity of hypoxia-inducible factor (HIF)-1α in response to hypoxia. Rarefaction of the peritubular capillary causes hypoperfusion in CKD; however, the effect of hypoperfusion on HIFs has rarely been investigated. We induced hypoperfusion caused by coverslip placement in human kidney-2 cells, and observed an oxygen gradient under the coverslip. Immunocytochemistry of HIF-1α showed a doughnut-shaped formation on the edge of a pimonidazole-positive area, which we named the "HIF-ring". The oxygen tension of the HIF-ring was estimated to be between approximately 4 mmHg and 20 mmHg. This result was not compatible with those of past research showing HIF-1α accumulation in the anoxic range with homogeneous oxygen tension. We further observed the presence of a pH gradient under a coverslip, as well as a shift of the HIF ring due to changes in the pH of the culture medium, suggesting that the HIF ring was formed by suppression of HIF-1α related to low pH. This research demonstrated that HIF-1α activation mimics the physiological state in cultured cells with hypoperfusion.
Collapse
Affiliation(s)
- Tomoko Honda
- Division of Nephrology and EndocrinologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yosuke Hirakawa
- Division of Nephrology and EndocrinologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kiichi Mizukami
- Graduate School of Science and TechnologyGunma UniversityGunmaJapan
| | | | - Tetsuhiro Tanaka
- Division of Nephrology and EndocrinologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Seiji Tobita
- Graduate School of Science and TechnologyGunma UniversityGunmaJapan
| | - Masaomi Nangaku
- Division of Nephrology and EndocrinologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
10
|
Faivre A, Scholz CC, de Seigneux S. Hypoxia in chronic kidney disease: towards a paradigm shift? Nephrol Dial Transplant 2020; 36:1782-1790. [PMID: 33895835 DOI: 10.1093/ndt/gfaa091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as an alteration of kidney structure and/or function lasting for >3 months [1]. CKD affects 10% of the general adult population and is responsible for large healthcare costs [2]. Since the end of the last century, the role of hypoxia in CKD progression has controversially been discussed. To date, there is evidence of the presence of hypoxia in late-stage renal disease, but we lack time-course evidence, stage correlation and also spatial co-localization with fibrotic lesions to ensure its causative role. The classical view of hypoxia in CKD progression is that it is caused by peritubular capillary alterations, renal anaemia and increased oxygen consumption regardless of the primary injury. In this classical view, hypoxia is assumed to further induce pro-fibrotic and pro-inflammatory responses, as well as oxidative stress, leading to CKD worsening as part of a vicious circle. However, recent investigations tend to question this paradigm, and both the presence of hypoxia and its role in CKD progression are still not clearly demonstrated. Hypoxia-inducible factor (HIF) is the main transcriptional regulator of the hypoxia response. Genetic HIF modulation leads to variable effects on CKD progression in different murine models. In contrast, pharmacological modulation of the HIF pathway [i.e. by HIF hydroxylase inhibitors (HIs)] appears to be generally protective against fibrosis progression experimentally. We here review the existing literature on the role of hypoxia, the HIF pathway and HIF HIs in CKD progression and summarize the evidence that supports or rejects the hypoxia hypothesis, respectively.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland.,Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Honda T, Hirakawa Y, Nangaku M. The role of oxidative stress and hypoxia in renal disease. Kidney Res Clin Pract 2019; 38:414-426. [PMID: 31558011 PMCID: PMC6913586 DOI: 10.23876/j.krcp.19.063] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Oxygen is required to sustain aerobic organisms. Reactive oxygen species (ROS) are constantly released during mitochondrial oxygen consumption for energy production. Any imbalance between ROS production and its scavenger system induces oxidative stress. Oxidative stress, a critical contributor to tissue damage, is well-known to be associated with various diseases. The kidney is susceptible to hypoxia, and renal hypoxia is a common final pathway to end stage kidney disease, regardless of the underlying cause. Renal hypoxia aggravates oxidative stress, and elevated oxidative stress, in turn, exacerbates renal hypoxia. Oxidative stress is also enhanced in chronic kidney disease, especially diabetic kidney disease, through various mechanisms. Thus, the vicious cycle between oxidative stress and renal hypoxia critically contributes to the progression of renal injury. This review examines recent evidence connecting chronic hypoxia and oxidative stress in renal disease and subsequently describes several promising therapeutic approaches against oxidative stress.
Collapse
Affiliation(s)
- Tomoko Honda
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 2019; 15:641-659. [PMID: 31488900 DOI: 10.1038/s41581-019-0182-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Studies of the regulation of erythropoietin (EPO) production by the liver and kidneys, one of the classical physiological responses to hypoxia, led to the discovery of human oxygen-sensing mechanisms, which are now being targeted therapeutically. The oxygen-sensitive signal is generated by 2-oxoglutarate-dependent dioxygenases that deploy molecular oxygen as a co-substrate to catalyse the post-translational hydroxylation of specific prolyl and asparaginyl residues in hypoxia-inducible factor (HIF), a key transcription factor that regulates transcriptional responses to hypoxia. Hydroxylation of HIF at different sites promotes both its degradation and inactivation. Under hypoxic conditions, these processes are suppressed, enabling HIF to escape destruction and form active transcriptional complexes at thousands of loci across the human genome. Accordingly, HIF prolyl hydroxylase inhibitors stabilize HIF and stimulate expression of HIF target genes, including the EPO gene. These molecules activate endogenous EPO gene expression in diseased kidneys and are being developed, or are already in clinical use, for the treatment of renal anaemia. In this Review, we summarize information on the molecular circuitry of hypoxia signalling pathways underlying these new treatments and highlight some of the outstanding questions relevant to their clinical use.
Collapse
|
13
|
Situmorang GR, Sheerin NS. Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction. Pediatr Nephrol 2019; 34:951-963. [PMID: 29603016 PMCID: PMC6477994 DOI: 10.1007/s00467-018-3940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
The increasing use of extended criteria organs to meet the demand for kidney transplantation raises an important question of how the severity of early ischaemic injury influences long-term outcomes. Significant acute ischaemic kidney injury is associated with delayed graft function, increased immune-associated events and, ultimately, earlier deterioration of graft function. A comprehensive understanding of immediate molecular events that ensue post-ischaemia and their potential long-term consequences are key to the discovery of novel therapeutic targets. Acute ischaemic injury primarily affects tubular structure and function. Depending on the severity and persistence of the insult, this may resolve completely, leading to restoration of normal function, or be sustained, resulting in persistent renal impairment and progressive functional loss. Long-term effects of acute renal ischaemia are mediated by several mechanisms including hypoxia, HIF-1 activation, endothelial dysfunction leading to vascular rarefaction, sustained pro-inflammatory stimuli involving innate and adaptive immune responses, failure of tubular cells to recover and epigenetic changes. This review describes the biological relevance and interaction of these mechanisms based on currently available evidence.
Collapse
Affiliation(s)
- Gerhard R Situmorang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Urology Department, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Neil S Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
14
|
Sethi K, Rao K, Bolton D, Patel O, Ischia J. Targeting HIF-1 α to Prevent Renal Ischemia-Reperfusion Injury: Does It Work? Int J Cell Biol 2018; 2018:9852791. [PMID: 30595695 PMCID: PMC6286753 DOI: 10.1155/2018/9852791] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Partial nephrectomy (open or minimally invasive) usually requires temporary renal arterial occlusion to limit intraoperative bleeding and improve access to intrarenal structures. This is a time-critical step due to the critical ischemia period of renal tissue. Prolonged renal ischemia may lead to irreversible nephron damage in the remaining tissue and, ultimately, chronic kidney disease. This is potentiated by the incompletely understood ischemia-reperfusion injury (IRI). A key mechanism in IRI prevention appears to be the upregulation of an intracellular transcription protein, Hypoxia-Inducible Factor (HIF). HIF mediates metabolic adaptation, angiogenesis, erythropoiesis, cell growth, survival, and apoptosis. Upregulating HIF-1α via ischemic preconditioning (IPC) or drugs that simulate hypoxia (hypoxia-mimetics) has been investigated as a method to reduce IRI. While many promising chemical agents have been trialed for the prevention of IRI in small animal studies, all have failed in human trials. The aim of this review is to highlight the techniques and drugs that target HIF-1α and ameliorate IRI associated with renal ischemia. Developing a technique or drug that could reduce the risk of acute kidney injury associated with renal IRI would have an immediate worldwide impact on multisystem surgeries that would otherwise risk ischemic tissue injury.
Collapse
Affiliation(s)
- Kapil Sethi
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| | - Kenny Rao
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| | - Damien Bolton
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| | - Oneel Patel
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Joseph Ischia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Urology Unit, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
15
|
Billin AN, Honeycutt SE, McDougal AV, Kerr JP, Chen Z, Freudenberg JM, Rajpal DK, Luo G, Kramer HF, Geske RS, Fang F, Yao B, Clark RV, Lepore J, Cobitz A, Miller R, Nosaka K, Hinken AC, Russell AJ. HIF prolyl hydroxylase inhibition protects skeletal muscle from eccentric contraction-induced injury. Skelet Muscle 2018; 8:35. [PMID: 30424786 PMCID: PMC6234580 DOI: 10.1186/s13395-018-0179-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/14/2018] [Indexed: 12/23/2022] Open
Abstract
Background In muscular dystrophy and old age, skeletal muscle repair is compromised leading to fibrosis and fatty tissue accumulation. Therefore, therapies that protect skeletal muscle or enhance repair would be valuable medical treatments. Hypoxia-inducible factors (HIFs) regulate gene transcription under conditions of low oxygen, and HIF target genes EPO and VEGF have been associated with muscle protection and repair. We tested the importance of HIF activation following skeletal muscle injury, in both a murine model and human volunteers, using prolyl hydroxylase inhibitors that stabilize and activate HIF. Methods Using a mouse eccentric limb injury model, we characterized the protective effects of prolyl hydroxylase inhibitor, GSK1120360A. We then extended these studies to examine the impact of EPO modulation and infiltrating immune cell populations on muscle protection. Finally, we extended this study with an experimental medicine approach using eccentric arm exercise in untrained volunteers to measure the muscle-protective effects of a clinical prolyl hydroxylase inhibitor, daprodustat. Results GSK1120360A dramatically prevented functional deficits and histological damage, while accelerating recovery after eccentric limb injury in mice. Surprisingly, this effect was independent of EPO, but required myeloid HIF1α-mediated iNOS activity. Treatment of healthy human volunteers with high-dose daprodustat reduced accumulation of circulating damage markers following eccentric arm exercise, although we did not observe any diminution of functional deficits with compound treatment. Conclusion The results of these experiments highlight a novel skeletal muscle protective effect of prolyl hydroxylase inhibition via HIF-mediated expression of iNOS in macrophages. Partial recapitulation of these findings in healthy volunteers suggests elements of consistent pharmacology compared to responses in mice although there are clear differences between these two systems. Electronic supplementary material The online version of this article (10.1186/s13395-018-0179-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew N Billin
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Samuel E Honeycutt
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Alan V McDougal
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Jaclyn P Kerr
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Zhe Chen
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | - Guizhen Luo
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Henning Fritz Kramer
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Robert S Geske
- Target Sciences, GlaxoSmithKline, King of Prussia, PA, USA
| | - Frank Fang
- Clinical Statistics, GlaxoSmithKline, King of Prussia, PA, USA
| | - Bert Yao
- Metabolic Pathways and Cardiovascular Therapy Area, GlaxoSmithKline, King of Prussia, PA, USA
| | - Richard V Clark
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - John Lepore
- Metabolic Pathways and Cardiovascular Therapy Area, GlaxoSmithKline, King of Prussia, PA, USA
| | - Alex Cobitz
- Metabolic Pathways and Cardiovascular Therapy Area, GlaxoSmithKline, King of Prussia, PA, USA
| | - Ram Miller
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Aaron C Hinken
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Alan J Russell
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA.
| |
Collapse
|
16
|
Ozurumba E, Mathew O, Ranganna K, Choi M, Oyekan A. Regulation of hypoxia inducible factor/prolyl hydroxylase binding domain proteins 1 by PPARα and high salt diet. J Basic Clin Physiol Pharmacol 2018; 29:165-173. [PMID: 29500923 DOI: 10.1515/jbcpp-2017-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/08/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hypoxia inducible factor (HIF)/prolyl hydroxylase domain (PHD)-containing proteins are involved in renal adaptive response to high salt (HS). Peroxisome proliferator activated receptor alpha (PPARα), a transcription factor involved in fatty acid oxidation is implicated in the regulation of renal function. As both HIF-1α/PHD and PPARα contribute to the adaptive changes to altered oxygen tension, this study tested the hypothesis that PHD-induced renal adaptive response to HS is PPARα-dependent. METHODS PPARα wild type (WT) and knock out (KO) mice were fed a low salt (LS) (0.03% NaCl) or a HS (8% NaCl) diet for 8 days and treated with hydralazine. PPARα and heme oxygenase (HO)-1 expression were evaluated in the kidney cortex and medulla. A 24-h urinary volume (UV), sodium excretion (UNaV), and nitrite excretion (UNOx V) were also determined. RESULTS PHD1 expression was greater in the medulla as compared to the cortex of PPARα WT mice (p<0.05) fed with a LS (0.03% NaCl) diet. The HS diet (8% NaCl) downregulated PHD1 expression in the medulla (p<0.05) but not the cortex of WT mice whereas expression was downregulated in the cortex (p<0.05) and medulla (p<0.05) of KO mice. These changes were accompanied by HS-induced diuresis (p<0.05) and natriuresis (p<0.05) that were greater in WT mice (p<0.05). Similarly, UNOx V, index of renal nitric oxide synthase (NOS) activity or availability and heme oxygenase (HO)-1 expression was greater in WT (p<0.05) but unchanged in KO mice on HS diet. Hydralazine, a PHD inhibitor, did not affect diuresis or natriuresis in LS diet-fed WT or KO mice but both were increased (p<0.05) in HS diet-fed WT mice. Hydralazine also increased UNOx V (p<0.05) with no change in diuresis, natriuresis, or HO-1 expression in KO mice on HS diet. CONCLUSIONS These data suggest that HS-induced PPARα-mediated downregulation of PHD1 is a novel pathway for PHD/HIF-1α transcriptional regulation for adaptive responses to promote renal function via downstream signaling involving NOS and HO.
Collapse
Affiliation(s)
- Ezinne Ozurumba
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Omana Mathew
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Katsuri Ranganna
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Myung Choi
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Adebayo Oyekan
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA, Phone: +(713) 313 4258/4341, Fax: +(713) 313 4342
| |
Collapse
|
17
|
Dugbartey GJ. The smell of renal protection against chronic kidney disease: Hydrogen sulfide offers a potential stinky remedy. Pharmacol Rep 2017; 70:196-205. [PMID: 29471067 DOI: 10.1016/j.pharep.2017.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a common global health challenge characterized by irreversible pathological processes that reduce kidney function and culminates in development of end-stage renal disease. It is associated with increased morbidity and mortality in addition to increased caregiver burden and higher financial cost. A central player in CKD pathogenesis and progression is renal hypoxia. Renal hypoxia stimulates induction of oxidative and endoplasmic reticulum stress, inflammation and tubulointerstitial fibrosis, which in turn, promote cellular susceptibility and further aggravate hypoxia, thus forming a pathological vicious cycle in CKD progression. Although the importance of CKD is widely appreciated, including improvements in the quality of existing therapies such as dialysis and transplantation, new therapeutic options are limited, as there is still increased morbidity, mortality and poor quality of life among CKD patients. Growing evidence indicates that hydrogen sulfide (H2S), a small gaseous signaling molecule with an obnoxious smell, accumulates in the renal medulla under hypoxic conditions, and functions as an oxygen sensor that restores oxygen balance and increases medullary flow. Moreover, plasma H2S level has been recently reported to be markedly reduced in CKD patients and animal models. Also, H2S has been established to possess potent antioxidant, anti-inflammatory, and anti-fibrotic properties in several experimental models of kidney diseases, suggesting that its supplementation could protect against CKD and retard its progression. The purpose of this review is to discuss current clinical and experimental developments regarding CKD, its pathophysiology, and potential cellular and molecular mechanisms of protection by H2S in experimental models of CKD.
Collapse
Affiliation(s)
- George J Dugbartey
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Patinha D, Pijacka W, Paton JFR, Koeners MP. Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Front Physiol 2017; 8:752. [PMID: 29046642 PMCID: PMC5632678 DOI: 10.3389/fphys.2017.00752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oxygen sensing mechanisms are vital for homeostasis and survival. When oxygen levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or a combination of both, to counteract tissue damage. These adjustments are regulated by local, humoral, or neural reflex mechanisms. The kidney and the carotid body are both directly sensitive to falls in the partial pressure of oxygen and trigger reflex adjustments and thus act as oxygen sensors. We hypothesize a cooperative oxygen sensing function by both the kidney and carotid body to ensure maintenance of whole body blood flow and tissue oxygen homeostasis. Under pathological conditions of severe or prolonged tissue hypoxia, these sensors may become continuously excessively activated and increase perfusion pressure chronically. Consequently, persistence of their activity could become a driver for the development of hypertension and cardiovascular disease. Hypoxia-mediated renal and carotid body afferent signaling triggers unrestrained activation of the renin angiotensin-aldosterone system (RAAS). Renal and carotid body mediated responses in arterial pressure appear to be synergistic as interruption of either afferent source has a summative effect of reducing blood pressure in renovascular hypertension. We discuss that this cooperative oxygen sensing system can activate/sensitize their own afferent transduction mechanisms via interactions between the RAAS, hypoxia inducible factor and erythropoiesis pathways. This joint mechanism supports our view point that the development of cardiovascular disease involves afferent nerve activation.
Collapse
Affiliation(s)
- Daniela Patinha
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Wioletta Pijacka
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maarten P Koeners
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Kong KH, Oh HJ, Lim BJ, Kim M, Han KH, Choi YH, Kwon K, Nam BY, Park KS, Park JT, Han SH, Yoo TH, Lee S, Kim SJ, Kang DH, Choi KB, Eremina V, Quaggin SE, Ryu DR, Kang SW. Selective tubular activation of hypoxia-inducible factor-2α has dual effects on renal fibrosis. Sci Rep 2017; 7:11351. [PMID: 28900259 PMCID: PMC5596020 DOI: 10.1038/s41598-017-11829-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is a key transcriptional factor in the response to hypoxia. Although the effect of HIF activation in chronic kidney disease (CKD) has been widely evaluated, the results have been inconsistent until now. This study aimed to investigate the effects of HIF-2α activation on renal fibrosis according to the activation timing in inducible tubule-specific transgenic mice with non-diabetic CKD. HIF-2α activation in renal tubular cells upregulated mRNA and protein expressions of fibronectin and type 1 collagen associated with the activation of p38 mitogen-activated protein kinase. In CKD mice, activation of HIF-2α at the beginning of CKD significantly aggravated renal fibrosis, whereas it did not lead to renal dysfunction. However, activation at a late-stage of CKD abrogated both renal dysfunction and fibrosis, which was associated with restoration of renal vasculature and amelioration of hypoxia through increased renal tubular expression of VEGF and its isoforms. As with tubular cells with HIF-2α activation, those under hypoxia also upregulated VEGF, fibronectin, and type 1 collagen expressions associated with HIF-1α activation. In conclusion, late-stage renal tubular HIF-2α activation has protective effects on renal fibrosis and the resultant renal dysfunction, thus it could represent a therapeutic target in late stage of CKD.
Collapse
Affiliation(s)
| | - Hyung Jung Oh
- Ewha Institute of Convergence Medicine, Ewha Womans University, Seoul, Korea
| | - Beom Jin Lim
- College of Medicine, Yonsei University, Seoul, Korea
| | - Minsuk Kim
- School of Medicine, Ewha Womans University, Seoul, Korea
| | - Ki-Hwan Han
- School of Medicine, Ewha Womans University, Seoul, Korea
| | - Youn-Hee Choi
- School of Medicine, Ewha Womans University, Seoul, Korea
- Tissue Injury Defense Research Center, Ewha Womans University, Seoul, Korea
| | - Kihwan Kwon
- School of Medicine, Ewha Womans University, Seoul, Korea
| | - Bo Young Nam
- College of Medicine, Yonsei University, Seoul, Korea
| | | | - Jung Tak Park
- College of Medicine, Yonsei University, Seoul, Korea
| | | | - Tae-Hyun Yoo
- College of Medicine, Yonsei University, Seoul, Korea
| | - Shina Lee
- School of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung-Jung Kim
- School of Medicine, Ewha Womans University, Seoul, Korea
| | - Duk-Hee Kang
- School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyu Bok Choi
- School of Medicine, Ewha Womans University, Seoul, Korea
| | - Vera Eremina
- The Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois, USA
| | - Dong-Ryeol Ryu
- School of Medicine, Ewha Womans University, Seoul, Korea.
- Tissue Injury Defense Research Center, Ewha Womans University, Seoul, Korea.
| | | |
Collapse
|
20
|
Bohuslavova R, Cerychova R, Nepomucka K, Pavlinkova G. Renal injury is accelerated by global hypoxia-inducible factor 1 alpha deficiency in a mouse model of STZ-induced diabetes. BMC Endocr Disord 2017; 17:48. [PMID: 28774305 PMCID: PMC5543752 DOI: 10.1186/s12902-017-0200-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypoxia inducible factor 1 (HIF-1) activates protective pathways to counteract hypoxia and prevent tissue damage in conjunction with renal injury. The aim of this study was to evaluate a role of HIF-1 in diabetes-induced kidney damage. METHODS We used a streptozotocin-induced diabetes mouse model and compared biochemical, histological and molecular parameters associated with kidney damage in Hif1α deficient (Hif1α +/- ) and wild-type mice. RESULTS We showed that Hif1α deficiency accelerated pathological changes in the early stage of DN. Six weeks after diabetes-induction, Hif1α deficient mice showed more prominent changes in biochemical serum parameters associated with glomerular injury, increased expression of podocyte damage markers, and loss of podocytes compared to wild-type mice. These results indicate that Hif1α deficiency specifically affects podocyte survival in the early phase of DN, resulting in diabetic glomerular injury. In contrast, renal fibrosis was not affected by the global reduction of Hif1α, at least not in the early phase of diabetic exposure. CONCLUSIONS Together our data reveal that HIF-1 has an essential role in the early response to prevent diabetes-induced tissue damage and that impaired HIF-1 signaling results in a faster progression of DN. Although the modulation of HIF-1 activity is a high-priority target for clinical treatments, further study is required to investigate HIF-1 as a potential therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, Vestec, 25242 Czechia
| | - Radka Cerychova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, Vestec, 25242 Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Katerina Nepomucka
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, Vestec, 25242 Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, Vestec, 25242 Czechia
| |
Collapse
|
21
|
Liu ZZ, Bullen A, Li Y, Singh P. Renal Oxygenation in the Pathophysiology of Chronic Kidney Disease. Front Physiol 2017; 8:385. [PMID: 28701959 PMCID: PMC5487476 DOI: 10.3389/fphys.2017.00385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant health problem associated with high morbidity and mortality. Despite significant research into various pathways involved in the pathophysiology of CKD, the therapeutic options are limited in diabetes and hypertension induced CKD to blood pressure control, hyperglycemia management (in diabetic nephropathy) and reduction of proteinuria, mainly with renin-angiotensin blockade therapy. Recently, renal oxygenation in pathophysiology of CKD progression has received a lot of interest. Several advances have been made in our understanding of the determinants and regulators of renal oxygenation in normal and diseased kidneys. The goal of this review is to discuss the alterations in renal oxygenation (delivery, consumption and tissue oxygen tension) in pre-clinical and clinical studies in diabetic and hypertensive CKD along with the underlying mechanisms and potential therapeutic options.
Collapse
Affiliation(s)
- Zhi Zhao Liu
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| | - Alexander Bullen
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| | - Ying Li
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| |
Collapse
|
22
|
Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, Fliser D, Fouque D, Heine GH, Jager KJ, Kanbay M, Mallamaci F, Parati G, Rossignol P, Wiecek A, London G. The systemic nature of CKD. Nat Rev Nephrol 2017; 13:344-358. [PMID: 28435157 DOI: 10.1038/nrneph.2017.52] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The accurate definition and staging of chronic kidney disease (CKD) is one of the major achievements of modern nephrology. Intensive research is now being undertaken to unravel the risk factors and pathophysiologic underpinnings of this disease. In particular, the relationships between the kidney and other organs have been comprehensively investigated in experimental and clinical studies in the last two decades. Owing to technological and analytical limitations, these links have been studied with a reductionist approach focusing on two organs at a time, such as the heart and the kidney or the bone and the kidney. Here, we discuss studies that highlight the complex and systemic nature of CKD. Energy balance, innate immunity and neuroendocrine signalling are highly integrated biological phenomena. The diseased kidney disrupts such integration and generates a high-risk phenotype with a clinical profile encompassing inflammation, protein-energy wasting, altered function of the autonomic and central nervous systems and cardiopulmonary, vascular and bone diseases. A systems biology approach to CKD using omics techniques will hopefully enable in-depth study of the pathophysiology of this systemic disease, and has the potential to unravel critical pathways that can be targeted for CKD prevention and therapy.
Collapse
Affiliation(s)
- Carmine Zoccali
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy
| | - Raymond Vanholder
- Ghent University Hospital, Department of Nephrology, Department of Internal Medicine, University Hospital Gent, De Pintelaan 185, B9000 Ghent, Belgium
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Assistance Publique Hôpitaux de Paris, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, Paris.,University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), 55 Avenue de Paris, 78000 Versailles, France.,Inserm U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Equipe 5, Hôpital Paul-Brousse, 16 avenue Paul Vaillant-Couturier, 94807 Villejuif Cedex, France.,Paris-Sud University (PSU), 15 Rue Georges Clemenceau, 91400 Orsay, France.,French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France
| | - Alberto Ortiz
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Thessaloniki, Konstantinoupoleos 49, Thessaloniki 546 42, Greece
| | - Friedo W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Danilo Fliser
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Denis Fouque
- Université de Lyon, UCBL, Carmen, Department of Nephrology, Centre Hospitalier Lyon-Sud, F-69495 Pierre Bénite, France
| | - Gunnar H Heine
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Kitty J Jager
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine,Koç University, Rumelifeneri Yolu 34450 Sarıyer Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy.,Nephrology, Dialysis and Transplantation Unit Ospedali Riuniti, 89124 Reggio Calabria Italy
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital, Istituto Auxologico Italiano &Department of Medicine and Surgery, University of Milan-Bicocca, Piazzale Brescia 20, Milan 20149, Italy
| | - Patrick Rossignol
- French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France.,Inserm, Centre d'Investigations Cliniques-Plurithématique 1433, Cardiovascular and Renal Clinical Trialists (INI-CRCT), Institut Lorrain du Cœur et des Vaisseaux Louis Mathieu, 4 rue Morvan, 54500 Vandoeuvre-les-Nancy, France.,Inserm U1116, Faculté de Médecine, Bâtiment D 1er étage, 9 avenue de la forêt de Haye - BP 184, 54500 Vandœuvre-lès-Nancy Cedex, France.,CHU Nancy, Département de Cardiologie, Institut Lorrain du Cœur et des Vaisseaux, 5 Rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 34 Cours Léopold, 54000 Nancy, France
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24 Street, Pl-40-027 Katowice, Poland
| | - Gerard London
- INSERM U970, Hopital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | | |
Collapse
|
23
|
Thomas JL, Pham H, Li Y, Hall E, Perkins GA, Ali SS, Patel HH, Singh P. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F282-F290. [PMID: 28331062 DOI: 10.1152/ajprenal.00579.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of chronic kidney disease (CKD) is driven by alterations in surviving nephrons to sustain renal function with ongoing nephron loss. Oxygen supply-demand mismatch, due to hemodynamic adaptations, with resultant hypoxia, plays an important role in the pathophysiology in early CKD. We sought to investigate the underlying mechanisms of this mismatch. We utilized the subtotal nephrectomy (STN) model of CKD to investigate the alterations in renal oxygenation linked to sodium (Na) transport and mitochondrial function in the surviving nephrons. Oxygen delivery was significantly reduced in STN kidneys because of lower renal blood flow. Fractional oxygen extraction was significantly higher in STN. Tubular Na reabsorption was significantly lower per mole of oxygen consumed in STN. We hypothesized that decreased mitochondrial bioenergetic capacity may account for this and uncovered significant mitochondrial dysfunction in the early STN kidney: higher oxidative metabolism without an attendant increase in ATP levels, elevated superoxide levels, and alterations in mitochondrial morphology. We further investigated the effect of activation of hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular hypoxia response. We observed significant improvement in renal blood flow, glomerular filtration rate, and tubular Na reabsorption per mole of oxygen consumed with HIF-1α activation. Importantly, HIF-1α activation significantly lowered mitochondrial oxygen consumption and superoxide production and increased mitochondrial volume density. In conclusion, we report significant impairment of renal oxygenation and mitochondrial function at the early stages of CKD and demonstrate the beneficial role of HIF-1α activation on renal function and metabolism.
Collapse
Affiliation(s)
- Joanna L Thomas
- Department of Biomedical Engineering, School of Engineering, Mercer University, Macon, Georgia
| | - Hai Pham
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, and VA San Diego Healthcare System, San Diego, California
| | - Ying Li
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, and VA San Diego Healthcare System, San Diego, California
| | - Elanore Hall
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, and VA San Diego Healthcare System, San Diego, California
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, La Jolla, California
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Science, Zewail City of Science and Technology, Giza, Egypt; and.,Department of Anesthesiology, University of California, San Diego, California and VA San Diego Healthcare System, San Diego, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, California and VA San Diego Healthcare System, San Diego, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, and VA San Diego Healthcare System, San Diego, California;
| |
Collapse
|
24
|
Hirakawa Y, Tanaka T, Nangaku M. Renal Hypoxia in CKD; Pathophysiology and Detecting Methods. Front Physiol 2017; 8:99. [PMID: 28270773 PMCID: PMC5318422 DOI: 10.3389/fphys.2017.00099] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem. Accumulating evidence suggests that CKD aggravates renal hypoxia, and in turn, renal hypoxia accelerates CKD progression. To eliminate this vicious cycle, hypoxia-related therapies, such as hypoxia-inducible factor (HIF) activation (prolyl hydroxylase domain inhibition) or NF-E2-related factor 2 activation, are currently under investigation. Clinical studies have revealed heterogeneity in renal oxygenation; therefore, the detection of patients with more hypoxic kidneys can be used to identify likely responders to hypoxia-oriented therapies. In this review, we provide a detailed description of current hypoxia detection methods. HIF degradation correlates with the intracellular oxygen concentration; thus, methods that can detect intracellular oxygen tension changes are desirable. The use of a microelectrode is a classical technique that is superior in quantitative performance; however, its high invasiveness and the fact that it reflects the extracellular oxygen tension are disadvantages. Pimonidazole protein adduct immunohistochemistry and HIF activation detection reflect intracellular oxygen tension, but these techniques yield qualitative data. Blood oxygen level-dependent magnetic resonance imaging has the advantage of low invasiveness, high quantitative performance, and application in clinical use, but its biggest disadvantage is that it measures only deoxyhemoglobin concentrations. Phosphorescence lifetime measurement is a relatively novel in vivo oxygen sensing technique that has the advantage of being quantitative; however, it has several disadvantages, such as toxicity of the phosphorescent dye and the inability to assess deeper tissues. Understanding the advantages and disadvantages of these hypoxia detection methods will help researchers precisely assess renal hypoxia and develop new therapeutics against renal hypoxia-associated CKD.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology, The University of Tokyo School of Medicine Hongo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology, The University of Tokyo School of Medicine Hongo, Japan
| | - Masaomi Nangaku
- Division of Nephrology, The University of Tokyo School of Medicine Hongo, Japan
| |
Collapse
|
25
|
Movafagh S, Raj D, Sanaei-Ardekani M, Bhatia D, Vo K, Mahmoudieh M, Rahman R, Kim EH, Harralson AF. Hypoxia Inducible Factor 1: A Urinary Biomarker of Kidney Disease. Clin Transl Sci 2017; 10:201-207. [PMID: 28181420 PMCID: PMC5421733 DOI: 10.1111/cts.12445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023] Open
Abstract
Identifying noninvasive biomarkers of kidney disease is valuable for diagnostic and therapeutic purposes. Hypoxia inducible factor 1 (HIF-1) expression is known to be elevated in the kidneys in several renal disease pathologies. We hypothesized that the urinary HIF-1a mRNA level may be a suitable biomarker for expression of this protein in chronic kidney disease (CKD). We compared HIF-1a mRNA levels from urine pellets of CKD and healthy subjects. To ensure that urinary HIF-1a mRNA is of kidney origin, we examined colocalization of HIF-1a mRNA with two kidney specific markers in urine cells. We found that HIF-1a mRNA is readily quantifiable in urine pellets and its expression was significantly higher in CKD patients compared with healthy adults. We also showed that the urinary HIF-1a mRNA comes primarily from cells of renal origin. Our data suggest that urinary HIF-1a mRNA is a potential biomarker in CKD and can be noninvasively assessed in patients.
Collapse
Affiliation(s)
- S Movafagh
- Department of Pharmacogenomics, Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, Virginia, USA
| | - D Raj
- Department of Nephrology, George Washington University Division of Kidney Diseases and Hypertension, Washington, DC, USA
| | | | - D Bhatia
- Department of Pharmacogenomics, Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, Virginia, USA
| | - K Vo
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, Virginia, USA
| | - M Mahmoudieh
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, Virginia, USA
| | - R Rahman
- Kidney and Hypertension Specialists, Manassas, Virginia, USA
| | - E H Kim
- Kidney and Hypertension Specialists, Manassas, Virginia, USA
| | - A F Harralson
- Department of Pharmacogenomics, Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, Virginia, USA
| |
Collapse
|
26
|
Liu M, Ning X, Li R, Yang Z, Yang X, Sun S, Qian Q. Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 2017; 21:1248-1259. [PMID: 28097825 PMCID: PMC5487923 DOI: 10.1111/jcmm.13060] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022] Open
Abstract
Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end‐stage kidney disease (ESKD), which joints the scientist's attention recently to exploit the molecular mechanism underlying hypoxia‐induced renal fibrogenesis. The scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia‐inducible signalling pathways and complex interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia‐induced pathogenesis of interstitial fibrosis, including pathways mediated by HIF, TGF‐β, Notch, PKC/ERK, PI3K/Akt, NF‐κB, Ang II/ROS and microRNAs. Roles of molecules such as IL‐6, IL‐18, KIM‐1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia‐responsive signalling pathways and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully translated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.
Collapse
Affiliation(s)
- Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rong Li
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxia Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Qian
- Department of Medicine, Division of Nephrology and hypertension, Mayo Clinic College of Medicine, Mayo Graduate School, Rochester, MN, USA
| |
Collapse
|
27
|
Mazumder MK, Giri A, Kumar S, Borah A. A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption. Life Sci 2016; 161:27-36. [PMID: 27493078 DOI: 10.1016/j.lfs.2016.07.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 12/23/2022]
Abstract
AIMS In the present study, a novel mice model of chronic kidney disease (CKD) was developed, and psycho-motor behavioural abnormalities, blood-brain barrier (BBB) integrity and brain histology were studied. MAIN METHODS Swiss albino female mice were given high adenine diet (0.3% w/w mixed with feed) for 4weeks. Serum urea and creatinine levels and renal histological studies were performed to validate the model. Psycho-motor behavioural abnormalities and neurological severity were studied. BBB integrity was assessed using Evans blue extravasation method. Nissl staining was performed to see possible morphological aberrations in brain. KEY FINDINGS There was a significant increase in serum urea and creatinine levels in mice given high adenine diet, and the mice had abnormal kidney morphology. Deposition of adenine and 2,8-dihydroxyadenine crystals, and increased collagen deposits in the renal tissues were found, which validate induction of CKD in the mice. Motor behavioural abnormalities, depression-like and anxiolytic behaviour and increase in neurological severity were prevalent in mice with CKD. Evans Blue dye extravasation was found to occur in the brain, which signifies disruption of BBB. However, Nissl staining did not reveal any morphological aberration in brain tissue. SIGNIFICANCE The present study puts forward a highly reproducible mice model of CKD validated with serum parameters and renal histopathological changes. The mice showed psycho-motor behavioural abnormalities and BBB disruption. It is a convenient model to study the disease pathology, and understanding the associated disorders, and their therapeutic interventions.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anirudha Giri
- Environmental Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Sanjeev Kumar
- Microbial and Molecular Immunology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anupom Borah
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
28
|
Preisser F, Giehl K, Rehm M, Goppelt-Struebe M. Inhibitors of oxygen sensing prolyl hydroxylases regulate nuclear localization of the transcription factors Smad2 and YAP/TAZ involved in CTGF synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2027-36. [DOI: 10.1016/j.bbamcr.2016.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
|
29
|
Layton AT. Recent advances in renal hypoxia: insights from bench experiments and computer simulations. Am J Physiol Renal Physiol 2016; 311:F162-5. [PMID: 27147670 DOI: 10.1152/ajprenal.00228.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 11/22/2022] Open
Abstract
The availability of oxygen in renal tissue is determined by the complex interactions among a host of processes, including renal blood flow, glomerular filtration, arterial-to-venous oxygen shunting, medullary architecture, Na(+) transport, and oxygen consumption. When this delicate balance is disrupted, the kidney may become susceptible to hypoxic injury. Indeed, renal hypoxia has been implicated as one of the major causes of acute kidney injury and chronic kidney diseases. This review highlights recent advances in our understanding of renal hypoxia; some of these studies were published in response to a recent Call for Papers of this journal: Renal Hypoxia.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, North Carolina
| |
Collapse
|
30
|
Abstract
Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
31
|
Maiese K. Erythropoietin and diabetes mellitus. World J Diabetes 2015; 6:1259-1273. [PMID: 26516410 PMCID: PMC4620106 DOI: 10.4239/wjd.v6.i14.1259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is a 30.4 kDa growth factor and cytokine that governs cell proliferation, immune modulation, metabolic homeostasis, vascular function, and cytoprotection. EPO is under investigation for the treatment of variety of diseases, but appears especially suited for the treatment of disorders of metabolism that include diabetes mellitus (DM). DM and the complications of this disease impact a significant portion of the global population leading to disability and death with currently limited therapeutic options. In addition to its utility for the treatment of anemia, EPO can improve cardiac function, reduce fatigue, and improve cognition in patients with DM as well as regulate cellular energy metabolism, obesity, tissue repair and regeneration, apoptosis, and autophagy in experimental models of DM. Yet, EPO can have adverse effects that involve the vasculature system and unchecked cellular proliferation. Critical to the cytoprotective capacity and the potential for a positive clinical outcome with EPO are the control of signal transduction pathways that include protein kinase B, the mechanistic target of rapamycin, Wnt signaling, mammalian forkhead transcription factors of the O class, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), and AMP activated protein kinase. Therapeutic strategies that can specifically target and control EPO and its signaling pathways hold great promise for the development of new and effective clinical treatments for DM and the complications of this disorder.
Collapse
|
32
|
Li H, Satriano J, Thomas JL, Miyamoto S, Sharma K, Pastor-Soler NM, Hallows KR, Singh P. Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease. Am J Physiol Renal Physiol 2015; 309:F414-28. [PMID: 26136559 DOI: 10.1152/ajprenal.00463.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/22/2015] [Indexed: 12/16/2022] Open
Abstract
Renal hypoxia contributes to chronic kidney disease (CKD) progression, as validated in experimental and human CKD. In the early stages, increased oxygen consumption causes oxygen demand/supply mismatch, leading to hypoxia. Hence, early targeting of the determinants and regulators of oxygen consumption in CKD may alter the disease course before permanent damage ensues. Here, we focus on hypoxia inducible factor-1α (HIF-1α) and AMP-activated protein kinase (AMPK) and on the mechanisms by which they may facilitate cellular hypoxia adaptation. We found that HIF-1α activation in the subtotal nephrectomy (STN) model of CKD limits protein synthesis, inhibits apoptosis, and activates autophagy, presumably for improved cell survival. AMPK activation was diminished in the STN kidney and was remarkably restored by HIF-1α activation, demonstrating a novel role for HIF-1α in the regulation of AMPK activity. We also investigated the independent and combined effects of HIF-1α and AMPK on cell survival and death pathways by utilizing pharmacological and knockdown approaches in cell culture models. We found that the effect of HIF-1α activation on autophagy is independent of AMPK, but on apoptosis it is partially AMPK dependent. The effects of HIF-1α and AMPK activation on inhibiting protein synthesis via the mTOR pathway appear to be additive. These various effects were also observed under hypoxic conditions. In conclusion, HIF-1α and AMPK appear to be linked at a molecular level and may act as components of a concerted cellular response to hypoxic stress in the pathophysiology of CKD.
Collapse
Affiliation(s)
- Hui Li
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph Satriano
- Division of Nephrology and Hypertension, Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Joanna L Thomas
- Division of Nephrology and Hypertension, Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Satoshi Miyamoto
- Division of Nephrology and Hypertension, Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, San Diego, California; and Center for Renal Translational Medicine, University of California, San Diego, California
| | - Kumar Sharma
- Division of Nephrology and Hypertension, Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, San Diego, California; and Center for Renal Translational Medicine, University of California, San Diego, California
| | - Núria M Pastor-Soler
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kenneth R Hallows
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, San Diego, California; and
| |
Collapse
|
33
|
Hirose Y, Johnson ZI, Schoepflin ZR, Markova DZ, Chiba K, Toyama Y, Shapiro IM, Risbud MV. FIH-1-Mint3 axis does not control HIF-1 transcriptional activity in nucleus pulposus cells. J Biol Chem 2015; 289:20594-605. [PMID: 24867948 DOI: 10.1074/jbc.m114.565101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine the role of FIH-1 in regulating HIF-1 activity in the nucleus pulposus (NP) cells and the control of this regulation by binding and sequestration of FIH-1 by Mint3. FIH-1 and Mint3 were both expressed in the NP and were shown to strongly co-localize within the cell nucleus. Although both mRNA and protein expression of FIH-1 decreased in hypoxia, only Mint3 protein levels were hypoxiasensitive. Overexpression of FIH-1 was able to reduce HIF-1 function, as seen by changes in activities of hypoxia response element-luciferase reporter and HIF-1-C-TAD and HIF-2-TAD. Moreover, co-transfection of either full-length Mint3 or the N terminus of Mint3 abrogated FIH-1-dependent reduction in HIF-1 activity under both normoxia and hypoxia. Nuclear levels of FIH-1 and Mint3 decreased in hypoxia, and the use of specific nuclear import and export inhibitors clearly showed that cellular compartmentalization of overexpressed FIH-1 was critical for its regulation of HIF-1 activity in NP cells. Interestingly, microarray results after stable silencing of FIH-1 showed no significant changes in transcripts of classical HIF-1 target genes. However, expression of several other transcripts, including those of the Notch pathway, changed in FIH-1-silenced cells. Moreover, co-transfection of Notch-ICD could restore suppression of HIF-1-TAD activity by exogenous FIH-1. Taken together, these results suggest that, possibly due to low endogenous levels and/or preferential association with substrates such as Notch, FIH-1 activity does not represent a major mechanism by which NP cells control HIF-1-dependent transcription, a testament to their adaptation to a unique hypoxic niche.
Collapse
|
34
|
Crean D, Bellwon P, Aschauer L, Limonciel A, Moenks K, Hewitt P, Schmidt T, Herrgen K, Dekant W, Lukas A, Bois F, Wilmes A, Jennings P, Leonard MO. Development of an in vitro renal epithelial disease state model for xenobiotic toxicity testing. Toxicol In Vitro 2014; 30:128-37. [PMID: 25536518 DOI: 10.1016/j.tiv.2014.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 12/28/2022]
Abstract
There is a growing impetus to develop more accurate, predictive and relevant in vitro models of renal xenobiotic exposure. As part of the EU-FP7, Predict-IV project, a major aim was to develop models that recapitulate not only normal tissue physiology but also aspects of disease conditions that exist as predisposing risk factors for xenobiotic toxicity. Hypoxia, as a common micro-environmental alteration associated with pathophysiology in renal disease, was investigated for its effect on the toxicity profile of a panel of 14 nephrotoxins, using the human proximal tubular epithelial RPTECT/TERT1 cell line. Changes in ATP, glutathione and resazurin reduction, after 14 days of daily repeat exposure, revealed a number of compounds, including adefovir dipivoxil with enhanced toxicity in hypoxia. We observed intracellular accumulation of adefovir in hypoxia and suggest decreases in the efflux transport proteins MRP4, MRP5, NHERF1 and NHERF3 as a possible explanation. MRP5 and NHERF3 were also down-regulated upon treatment with the HIF-1 activator, dimethyloxalylglycine. Interestingly, adefovir dependent gene expression shifted from alterations in cell cycle gene expression to an inflammatory response in hypoxia. The ability to investigate aspects of disease states and their influence on renal toxin handling is a key advantage of in vitro systems developed here. They also allow for detailed investigations into mechanisms of compound toxicity of potential importance for compromised tissue exposure.
Collapse
Affiliation(s)
- Daniel Crean
- University College Dublin, School of Medicine and Medical Science, Dublin, Ireland
| | - Patricia Bellwon
- Institut fuer Toxikologie, Universitaet Wuerzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Lydia Aschauer
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Alice Limonciel
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Konrad Moenks
- Emergentec Biodevelopment GmbH, Vienna 1180, Austria
| | - Philip Hewitt
- Merck KGaA, Merck Serono, Nonclinical Safety, Darmstadt 64293, Germany
| | - Tobias Schmidt
- Institut fuer Toxikologie, Universitaet Wuerzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Karin Herrgen
- Institut fuer Toxikologie, Universitaet Wuerzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Wolfgang Dekant
- Institut fuer Toxikologie, Universitaet Wuerzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Arno Lukas
- Emergentec Biodevelopment GmbH, Vienna 1180, Austria
| | - Frederic Bois
- Université de Technologie de Compiègne, Compiègne Cedex 60205, France
| | - Anja Wilmes
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Paul Jennings
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Martin O Leonard
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot OX11 0RQ, UK.
| |
Collapse
|
35
|
Polichnowski AJ, Griffin KA, Picken MM, Licea-Vargas H, Long J, Williamson GA, Bidani AK. Hemodynamic basis for the limited renal injury in rats with angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2014; 308:F252-60. [PMID: 25477472 DOI: 10.1152/ajprenal.00596.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II is thought to increase the susceptibility to hypertension-induced renal disease (HIRD) via blood pressure (BP)-dependent and BP-independent pathways; however, the quantitative relationships between BP and HIRD have not been examined in ANG II-infused hypertensive rats. We compared the relationship between radiotelemetrically measured BP and HIRD in Sprague-Dawley rats (Harlan) chronically administered ANG II (300-500 ng·kg(-1)·min(-1), n = 19) for 4 wk versus another commonly employed pharmacological model of hypertension induced by the chronic administration of N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg·kg(-1)·day(-1), n = 23). [DOSAGE ERROR CORRECTED]. Despite the significantly higher average systolic BP associated with ANG II (191.1 ± 3.2 mmHg) versus l-NAME (179.9 ± 2.5 mmHg) administration, the level of HIRD was very modest in the ANG II versus l-NAME model as evidenced by significantly less glomerular injury (6.6 ± 1.3% vs. 11.3 ± 1.5%, respectively), tubulointerstitial injury (0.3 ± 0.1 vs. 0.7 ± 0.1 injury score, respectively), proteinuria (66.3 ± 10.0 vs. 117.5 ± 10.1 mg/day, respectively), and serum creatinine levels (0.5 ± 0.04 vs. 0.9 ± 0.07 mg/dl, respectively). Given that HIRD severity is expected to be a function of renal microvascular BP transmission, BP-renal blood flow (RBF) relationships were examined in additional conscious rats administered ANG II (n = 7) or l-NAME (n = 8). Greater renal vasoconstriction was observed during ANG II versus l-NAME administration (41% vs. 23% decrease in RBF from baseline). Moreover, administration of ANG II, but not l-NAME, led to a unique BP-RBF pattern in which the most substantial decreases in RBF were observed during spontaneous increases in BP. We conclude that the hemodynamic effects of ANG II may mediate the strikingly low susceptibility to HIRD in the ANG II-infused model of hypertension in rats.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Hines Veterans Affairs Hospital and Department of Medicine Loyola University, Maywood, Illinois;
| | - Karen A Griffin
- Hines Veterans Affairs Hospital and Department of Medicine Loyola University, Maywood, Illinois
| | - Maria M Picken
- Department of Pathology Loyola University, Maywood, Illinois
| | - Hector Licea-Vargas
- Hines Veterans Affairs Hospital and Department of Medicine Loyola University, Maywood, Illinois
| | - Jianrui Long
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Anil K Bidani
- Hines Veterans Affairs Hospital and Department of Medicine Loyola University, Maywood, Illinois
| |
Collapse
|
36
|
Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects. PLoS One 2014; 9:e111838. [PMID: 25392999 PMCID: PMC4230943 DOI: 10.1371/journal.pone.0111838] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/01/2014] [Indexed: 11/30/2022] Open
Abstract
Oxygen sensing by hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) is the dominant regulatory mechanism of erythropoietin (EPO) expression. In chronic kidney disease (CKD), impaired EPO expression causes anemia, which can be treated by supplementation with recombinant human EPO (rhEPO). However, treatment can result in rhEPO levels greatly exceeding the normal physiological range for endogenous EPO, and there is evidence that this contributes to hypertension in patients with CKD. Mimicking hypoxia by inhibiting HIF-PHs, thereby stabilizing HIF, is a novel treatment concept for restoring endogenous EPO production. HIF stabilization by oral administration of the HIF-PH inhibitor BAY 85-3934 (molidustat) resulted in dose-dependent production of EPO in healthy Wistar rats and cynomolgus monkeys. In repeat oral dosing of BAY 85-3934, hemoglobin levels were increased compared with animals that received vehicle, while endogenous EPO remained within the normal physiological range. BAY 85-3934 therapy was also effective in the treatment of renal anemia in rats with impaired kidney function and, unlike treatment with rhEPO, resulted in normalization of hypertensive blood pressure in a rat model of CKD. Notably, unlike treatment with the antihypertensive enalapril, the blood pressure normalization was achieved without a compensatory activation of the renin–angiotensin system. Thus, BAY 85-3934 may provide an approach to the treatment of anemia in patients with CKD, without the increased risk of adverse cardiovascular effects seen for patients treated with rhEPO. Clinical studies are ongoing to investigate the effects of BAY 85-3934 therapy in patients with renal anemia.
Collapse
|
37
|
Wang L, Zhang T, Fang M, Shen N, Wang D, Teng J, Fu B, Xie H, Hong Q, Lin H. Podocytes protect glomerular endothelial cells from hypoxic injury via deSUMOylation of HIF-1α signaling. Int J Biochem Cell Biol 2014; 58:17-27. [PMID: 25448415 DOI: 10.1016/j.biocel.2014.10.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/17/2014] [Indexed: 11/17/2022]
Abstract
Hypoxia can cause severe tubulointerstitial injury and peritubular capillary loss. However, hypoxia-induced injury in glomerular capillaries is far milder than tubulointerstitium, but the reason for this difference is unclear. We hypothesized that the phenomenon is due to the protective crosstalk among intrinsic glomerular cells. To mimic the microenvironment and investigate the crosstalk process temporally, we established co-culture models of glomerular endothelial cells (GEnCs) with podocytes or with mesangial cells. We found that podocytes rather than mesangial cells prevented GEnCs from injury and hypoxia-induced apoptosis and promoted migration and angiogenesis of GEnCs under hypoxic conditions. We then identified that increased activation of the hypoxia inducible factor 1α (HIF-1α) pathway as the major mechanism enabling podocytes to protect GEnCs against hypoxia. HIF-1α stabilization during hypoxia is known to be dependent on SUMO-specific protease 1 (SENP1)-mediated deSUMOylate modifications. Therefore, we further targeted deSUMOylation, regulated by SENP1, by short hairpin RNA (shRNA) knockdown of SENP1 mRNA in vitro and measured expression of HIF-1α and its downstream gene VEGF in hypoxic podocytes. Our results showed that SENP1 was essential for HIF-1α deSUMOylation in podocytes. The blockade of deSUMOylation by SENP1 shRNA successfully abolished the activation of HIF-1α signaling and consequently suppressed the protective effects of podocytes on GEnCs. In conclusion, we demonstrate for the first time that hypoxia may promote HIF-1α stabilization and activation by increasing SENP1 expression in podocytes, which induce GEnCs survival and angiogenesis to resist hypoxia. Thus, deSUMOylation of HIF-1α signaling is a potentially novel therapeutic target for treating hypoxic renal disorders.
Collapse
Affiliation(s)
- Lingyu Wang
- Graduate School of Dalian Medical University, Dalian, China; Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tuaner Zhang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ming Fang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Shen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaqi Teng
- Graduate School of Dalian Medical University, Dalian, China
| | - Bo Fu
- Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, China
| | - Hua Xie
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quan Hong
- Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
38
|
Abstract
Interstitial fibrosis represents the final common pathway of any form of progressive renal disease. The severity of tubular interstitial damage is highly correlated to the degree of decline of renal function, even better than the glomerular lesions do. Angiotensin II (Ang II), the main effector of the renin-angiotensin system, is a critical promoter of fibrogenesis. It represents a nexus among glomerular capillary hypertension, barrier dysfunction, and renal tubular injury caused by abnormally filtered proteins. Transforming growth factor (TGF)-β1 and reactive oxygen species (ROS) are the key mediators of the pro-fibrotic effect of Ang II causing apoptosis and epithelial-to-mesenchymal transition of the renal tubular epithelium. Recent studies link fibrosis to changes of microRNA (miRNA) modulated by Ang II through TGF-β1, unraveling that antifibrotic action of Ang II antagonism is attributable to epigenetic control of fibrosis-associated genes. Other mechanisms of Ang II-induced fibrosis include ROS-dependent activation of hypoxia-inducible factor-1. Finally, Ang II via angiotensin type 1 receptor regulates the activation and transdifferentiation of pericytes and fibrocytes into scar-forming myofibroblasts. Detachment and phenotypic changes of the former can lead to the loss of peritubular capillaries and also contribute to hypoxia-dependent fibrosis.
Collapse
|
39
|
Wang Z, Zhu Q, Li PL, Dhaduk R, Zhang F, Gehr TW, Li N. Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. Am J Physiol Renal Physiol 2014; 306:F1236-42. [PMID: 24623146 DOI: 10.1152/ajprenal.00673.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Overactivation of hypoxia-inducible factor (HIF)-1α is implicated as a pathogenic factor in chronic kidney diseases (CKD). However, controversy exists regarding the roles of HIF-1α in CKD. Additionally, although hypoxia and HIF-1α activation are observed in various CKD and HIF-1α has been shown to stimulate fibrogenic factors, there is no direct evidence whether HIF-1α is an injurious or protective factor in chronic renal hypoxic injury. The present study determined whether knocking down the HIF-1α gene can attenuate or exaggerate kidney damage using a chronic renal ischemic model. Chronic renal ischemia was induced by unilaterally clamping the left renal artery for 3 wk in Sprague-Dawley rats. HIF-1α short hairpin (sh) RNA or control vectors were transfected into the left kidneys. Experimental groups were sham+control vector, clip+control vector, and clip+HIF-1α shRNA. Enalapril was used to normalize blood pressure 1 wk after clamping the renal artery. HIF-1α protein levels were remarkably increased in clipped kidneys, and this increase was blocked by shRNA. Morphological examination showed that HIF-1α shRNA significantly attenuated injury in clipped kidneys: glomerular injury indices were 0.71 ± 0.04, 2.50 ± 0.12, and 1.34 ± 0.11, and the percentage of globally damaged glomeruli was 0.02, 34.3 ± 5.0, and 6.3 ± 1.6 in sham, clip, and clip+shRNA groups, respectively. The protein levels of collagen and α-smooth muscle actin also dramatically increased in clipped kidneys, but this effect was blocked by HIF-1α shRNA. In conclusion, long-term overactivation of HIF-1α is a pathogenic factor in chronic renal injury associated with ischemia/hypoxia.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China; and
| | - Qing Zhu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Romesh Dhaduk
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Todd W Gehr
- Department of Medicine, Division of Nephrology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia;
| |
Collapse
|
40
|
Pullmann R, Rabb H. HuR and other turnover- and translation-regulatory RNA-binding proteins: implications for the kidney. Am J Physiol Renal Physiol 2014; 306:F569-76. [PMID: 24431206 DOI: 10.1152/ajprenal.00270.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The posttranscriptional regulation of gene expression occurs through cis RNA regulatory elements by the action of trans factors, which are represented by noncoding RNAs (especially microRNAs) and turnover- and translation-regulatory (TTR) RNA-binding proteins (RBPs). These multifactorial proteins are a group of heterogeneous RBPs primarily implicated in controlling the decay and translation rates of target mRNAs. TTR-RBPs usually shuttle between cellular compartments (the nucleus and cytoplasm) in response to various stimuli and undergo posttranslational modifications such as phosphorylation or methylation to ensure their proper subcellular localization and function. TTR-RBPs are emerging as key regulators of a wide variety of genes influencing kidney physiology and pathology. This review summarizes the current knowledge of TTR-RBPs that influence renal metabolism. We will discuss the role of TTR-RBPs as regulators of kidney ischemia, fibrosis and matrix remodeling, angiogenesis, membrane transport, immunity, vascular tone, hypertension, and acid-base balance as well as anemia, bone mineral disease, and vascular calcification.
Collapse
|
41
|
Zapata-Morales JR, Galicia-Cruz OG, Franco M, Martinez Y Morales F. Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J Biol Chem 2013; 289:346-57. [PMID: 24196951 DOI: 10.1074/jbc.m113.526814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we demonstrated the regulation of glucose transporters by hypoxia inducible factor-1α (HIF-1α) activation in renal epithelial cells. LLC-PK1 monolayers were incubated for 1, 3, 6, or 12 h with 0% or 5% O2 or 300 μm cobalt (CoCl2). We evaluated the effects of hypoxia on the mRNA and protein expression of HIF-1α and of the glucose transporters SGLT1, SGLT2, and GLUT1. The data showed an increase in HIF-1α mRNA and protein expression under the three evaluated conditions (p < 0.05 versus t = 0). An increase in GLUT1 mRNA (12 h) and protein expression (at 3, 6, and 12 h) was observed (p < 0.05 versus t = 0). SGLT1 and SGLT2 mRNA and protein expression decreased under the three evaluated conditions (p < 0.05 versus t = 0). In conclusion, our results suggest a clear decrease in the expression of the glucose transporters SGLT1 and SGLT2 under hypoxic conditions which implies a possible correlation with increased expression of HIF-1α.
Collapse
Affiliation(s)
- Juan R Zapata-Morales
- From the Department of Pharmacology, School of Medicine, University of San Luis Potosi, 78210 San Luis Potosi, Mexico and
| | | | | | | |
Collapse
|
42
|
Weidemann A, Breyer J, Rehm M, Eckardt KU, Daniel C, Cicha I, Giehl K, Goppelt-Struebe M. HIF-1α activation results in actin cytoskeleton reorganization and modulation of Rac-1 signaling in endothelial cells. Cell Commun Signal 2013; 11:80. [PMID: 24144209 PMCID: PMC3895861 DOI: 10.1186/1478-811x-11-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/10/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is a major driving force in vascularization and vascular remodeling. Pharmacological inhibition of prolyl hydroxylases (PHDs) leads to an oxygen-independent and long-lasting activation of hypoxia-inducible factors (HIFs). Whereas effects of HIF-stabilization on transcriptional responses have been thoroughly investigated in endothelial cells, the molecular details of cytoskeletal changes elicited by PHD-inhibition remain largely unknown. To investigate this important aspect of PHD-inhibition, we used a spheroid-on-matrix cell culture model. RESULTS Microvascular endothelial cells (glEND.2) were organized into spheroids. Migration of cells from the spheroids was quantified and analyzed by immunocytochemistry. The PHD inhibitor dimethyloxalyl glycine (DMOG) induced F-actin stress fiber formation in migrating cells, but only weakly affected microvascular endothelial cells firmly attached in a monolayer. Compared to control spheroids, the residual spheroids were larger upon PHD inhibition and contained more cells with tight VE-cadherin positive cell-cell contacts. Morphological alterations were dependent on stabilization of HIF-1α and not HIF-2α as shown in cells with stable knockdown of HIF-α isoforms. DMOG-treated endothelial cells exhibited a reduction of immunoreactive Rac-1 at the migrating front, concomitant with a diminished Rac-1 activity, whereas total Rac-1 protein remained unchanged. Two chemically distinct Rac-1 inhibitors mimicked the effects of DMOG in terms of F-actin fiber formation and orientation, as well as stabilization of residual spheroids. Furthermore, phosphorylation of p21-activated kinase PAK downstream of Rac-1 was reduced by DMOG in a HIF-1α-dependent manner. Stabilization of cell-cell contacts associated with decreased Rac-1 activity was also confirmed in human umbilical vein endothelial cells. CONCLUSIONS Our data demonstrates that PHD inhibition induces HIF-1α-dependent cytoskeletal remodeling in endothelial cells, which is mediated essentially by a reduction in Rac-1 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Universität Erlangen-Nürnberg, Loschgestrasse 8, 91054 Erlangen, Germany.
| |
Collapse
|
43
|
Hansell P, Welch WJ, Blantz RC, Palm F. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 2013. [PMID: 23181475 DOI: 10.1111/1440-1681.12034] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The high renal oxygen (O(2) ) demand is associated primarily with tubular O(2) consumption (Qo(2) ) necessary for solute reabsorption. Increasing O(2) delivery relative to demand via increased blood flow results in augmented tubular electrolyte load following elevated glomerular filtration, which, in turn, increases metabolic demand. Consequently, elevated kidney metabolism results in decreased tissue oxygen tension. The metabolic efficiency for solute transport (Qo(2) /T(Na) ) varies not only between different nephron sites, but also under different conditions of fluid homeostasis and disease. Contributing mechanisms include the presence of different Na(+) transporters, different levels of oxidative stress and segmental tubular dysfunction. Sustained hyperglycaemia results in increased kidney Qo(2) , partly due to mitochondrial dysfunction and reduced electrolyte transport efficiency. This results in intrarenal tissue hypoxia because the increased Qo(2) is not matched by a similar increase in O(2) delivery. Hypertension leads to renal hypoxia, mediated by increased angiotensin receptor tonus and oxidative stress. Reduced uptake in the proximal tubule increases load to the thick ascending limb. There, the increased load is reabsorbed, but at greater O(2) cost. The combination of hypertension, angiotensin II and oxidative stress initiates events leading to renal damage and reduced function. Tissue hypoxia is now recognized as a unifying pathway to chronic kidney disease. We have gained good knowledge about major changes in O(2) metabolism occurring in diabetic and hypertensive kidneys. However, further efforts are needed to elucidate how these alterations can be prevented or reversed before translation into clinical practice.
Collapse
Affiliation(s)
- Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
44
|
Singh P, Ricksten SE, Bragadottir G, Redfors B, Nordquist L. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 2013; 40:138-47. [PMID: 23360244 DOI: 10.1111/1440-1681.12036] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
Abstract
Acute kidney injury (AKI) is a major burden on health systems and may arise from multiple initiating insults, including ischaemia-reperfusion injury, cardiovascular surgery, radiocontrast administration and sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase, with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage renal disease. Although the mechanisms for the development of AKI and progression to CKD remain poorly understood, initial impairment of oxygen balance likely constitutes a common pathway, causing renal tissue hypoxia and ATP starvation that, in turn, induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop diuretics, atrial natriuretic peptide and inhibitors of inducible nitric oxide synthase, substances that target kidney oxygen consumption and regulators of renal oxygenation, such as nitric oxide and heme oxygenase-1.
Collapse
Affiliation(s)
- Prabhleen Singh
- Division of Nephrology-Hypertension, VA San Diego Healthcare System, University of California San Diego, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
45
|
Satriano J, Sharma K, Blantz RC, Deng A. Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease. Am J Physiol Renal Physiol 2013; 305:F727-33. [PMID: 23825068 DOI: 10.1152/ajprenal.00293.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The rat kidney ablation and infarction (A/I) model of subtotal or 5/6th nephrectomy is the most commonly studied model of nondiabetic chronic kidney disease (CKD). The A/I kidney at 1 wk exhibits reductions in kidney function, as determined by glomerular filtration rate, and diminished metabolic efficiency as determined by oxygen consumption per sodium transport (QO2/TNa). As renoprotective AMPK activity is affected by metabolic changes and cellular stress, we evaluated AMPK activity in this model system. We show that these early pathophysiological changes are accompanied by a paradoxical decrease in AMPK activity. Over time, these kidney parameters progressively worsen with extensive kidney structural, functional, metabolic, and fibrotic changes observed at 4 wk after A/I. We show that induction of AMPK activity with either metformin or 5-aminoimidazole-4-carboxamide ribonucleotide increases AMPK activity in this model and also corrects kidney metabolic inefficiency, improves kidney function, and ameliorates kidney fibrosis and structural alterations. We conclude that AMPK activity is reduced in the subtotal nephrectomy model of nondiabetic CKD, that altered regulation of AMPK is coincident with the progression of disease parameters, and that restoration of AMPK activity can suppress the progressive loss of function characteristic of this model. We propose that induction of AMPK activity may prove an effective therapeutic target for the treatment of nondiabetic CKD.
Collapse
Affiliation(s)
- Joseph Satriano
- Div. of Nephrology-Hypertension, O’Brien Kidney Center, University of California San Diego and Veterans Administration San Diego Healthcare System, La Jolla, California 92161, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Despite apparent blood pressure (BP) control and renin-angiotensin system (RAS) blockade, the chronic kidney disease (CKD) outcomes have been suboptimal. Accordingly, this review is addressed to renal microvascular and autoregulatory impairments that underlie the enhanced dynamic glomerular BP transmission in CKD progression. RECENT FINDINGS Clinical data suggest that failure to achieve adequate 24-h BP control is likely contributing to the suboptimal outcomes in CKD. Whereas evidence continues to accumulate regarding the importance of preglomerular autoregulatory impairment to the dynamic glomerular BP transmission, emerging data indicate that nitric oxide-mediated efferent vasodilation may play an important role in mitigating the consequences of glomerular hypertension. By contrast, the vasoconstrictor effects of angiotensin II are expected to potentially reduce glomerular barotrauma and possibly enhance ischemic injury. When adequate BP measurement methods are used, the evidence for BP-independent injury initiating mechanisms is considerably weaker and the renoprotection by RAS blockade largely parallels its antihypertensive effectiveness. SUMMARY Adequate 24-h BP control presently offers the most feasible intervention for reducing glomerular BP transmission and improving suboptimal outcomes in CKD. Investigations addressed to improving myogenic autoregulation and/or enhancing nitric oxide-mediated efferent dilation in addition to the more downstream mediators may provide additional future therapeutic targets.
Collapse
|
47
|
New model for adenine-induced chronic renal failure in mice, and the effect of gum acacia treatment thereon: comparison with rats. J Pharmacol Toxicol Methods 2013; 68:384-93. [PMID: 23669035 DOI: 10.1016/j.vascn.2013.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/22/2022]
Abstract
INTRODUCTION This study aimed at comparing the effects of feeding mice and rats with adenine to induce a state of chronic renal failure (CRF), and to assess the effect of treatment with gum acacia (GA) thereon. METHODS We compared the outcome, in mice, of feeding adenine at three different doses (0.75%, 0.3%, and 0.2%, w/w). Biochemical and histopathological studies were conducted in plasma, urine and renal homogenates from both species. RESULTS When mice and rats were fed adenine (0.75%, w/w), all treated rats survived the treatment, but all treated mice died within 1-2 days. The dosage in mice was reduced to 0.3%, w/w, for 4 weeks, but again all treated mice died within 3-4 days. A further reduction in the dosage in mice to 0.2%, w/w, for 4 weeks resulted in no mortality, and produced alterations similar to those observed in rats fed adenine at a dose of 0.75%,w/w, for 4 weeks. Plasma creatinine, urea and urinary protein were significantly increased (P<0.001) in adenine-treated mice and rats, and this action was incompletely, but significantly (P<0.05), reversed by GA. Adenine significantly (P<0.001) reduced superoxide dismutase (SOD) activity and reduced glutathione (GSH) concentration in renal homogenates from both species, and these reductions were significantly (P<0.05) ameliorated by GA. DISCUSSION Our data suggest that mice are more sensitive to adenine than rats, and that a dose of adenine of 0.2%, w/w, for 4 weeks in mice is suggested as a model for CRF. In both models, GA (15%, w/v, in the drinking water for 4 weeks) given concomitantly with adenine ameliorated the severity of CRF to a similar extent.
Collapse
|
48
|
Albumin overload induces expression of hypoxia-inducible factor 1α and its target genes in HK-2 human renal proximal tubular cell line. Biochem Biophys Res Commun 2013; 434:670-5. [PMID: 23587905 DOI: 10.1016/j.bbrc.2013.03.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the effect of human serum albumin (HSA) overload on the expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) in human renal proximal tubular cell line HK-2. First, the cell viability and cytotoxic activity were examined to assess the cellular conditions in HK-2 cells with HSA treatment employed in this study. HSA treatment for 48h decreased the cell viability and increased the leakage of lactate dehydrogenase (LDH) into the medium in a concentration-dependent manner, but the toxicity was relatively mild. Western Blot analysis revealed that HSA treatment induced the expression of HIF-1α protein in a concentration-dependent manner without a change in β-actin protein expression. Confocal microscopy analysis revealed that HIF-1α protein was predominantly localized in the nucleus but was also observed in the cytoplasm. The HIF-1 target gene mRNAs, glucose transporter 1 and glyceraldehyde 3-phosphate dehydrogenase, were up-regulated by HSA treatment, leading to the increases in the protein expression levels. In addition, the mRNA of HIF-1α was increased by HSA treatment. In conclusion, albumin loading induces HIF-1α in HK-2 cells, resulting in the increases in the expression of proteins of its target genes.
Collapse
|
49
|
Dallatu MK, Nwokocha E, Agu N, Myung C, Newaz MA, Garcia G, Truong LD, Oyekan AO. The Role of Hypoxia-Inducible Factor/Prolyl Hydroxylation Pathway in Deoxycorticosterone Acetate/Salt Hypertension in the Rat. ACTA ACUST UNITED AC 2013; 3. [PMID: 26185735 DOI: 10.4172/2167-1095.1000184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KKidney disease could result from hypertension and ischemia/hypoxia. Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia inducible factor (HIF)s which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. However, HIF activation can be protective as in ischemic death or promote renal fibrosis in chronic conditions. This study tested the hypothesis that increased HIF-1α consequent to reduced PHD expression contributes to the attendant hypertension and target organ damage in deoxycorticosterone acetate (DOCA)/salt hypertension and that PHD inhibition ameliorates this effect. In rats made hypertensive by DOCA/salt treatment (DOCA 50 mg/kg s/c; 1% NaCl orally), PHD inhibition with dimethyl oxallyl glycine (DMOG) markedly attenuated hypertension (P<0.05), proteinuria (P<0.05) and attendant tubular interstitial changes and glomerular damage (P<0.05). Accompanying these changes, DMOG blunted the increased expression of kidney injury molecule (KIM)-1 (P<0.05), a marker of tubular injury and reversed the decreased expression of nephrin (P<0.05), a marker of glomerular injury. DMOG also decreased collagen I staining (P<0.05), increased serum nitrite (P<0.05) and decreased serum 8-isopostane (P<0.05). However, the increased HIF-1α expression (P<0.01) and decreased PHD2 expression (P<0.05) in DOCA/salt hypertensive rats was not affected by DMOG. These data suggest that reduced PHD2 expression with consequent increase in HIF-1α expression probably results from hypoxia induced by DOCA/salt treatment with the continued hypoxia and reduced PHD2 expression evoking hypertensive renal injury and collagen deposition at later stages. Moreover, a PHD inhibitor exerted a protective effect in DOCA/salt hypertension by mechanisms involving increased nitric oxide production and reduced production of reactive oxygen species.
Collapse
Affiliation(s)
| | | | - Ngozi Agu
- Center for Cardiovascular Diseases, Texas Southern University, USA
| | - Choi Myung
- Center for Cardiovascular Diseases, Texas Southern University, USA
| | | | - Gabriela Garcia
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, USA
| | - Adebayo O Oyekan
- Center for Cardiovascular Diseases, Texas Southern University, USA
| |
Collapse
|
50
|
Newton AW, Ranganath L, Armstrong C, Peter V, Roberts NB. Differential distribution of cobalt, chromium, and nickel between whole blood, plasma and urine in patients after metal-on-metal (MoM) hip arthroplasty. J Orthop Res 2012; 30:1640-6. [PMID: 22447496 DOI: 10.1002/jor.22107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/01/2012] [Indexed: 02/04/2023]
Abstract
Evidence shows that raised cobalt (Co), chromium (Cr), and nickel (Ni) whole blood concentrations correlate with poor device outcome in patients following metal-on-metal (MoM) hip arthroplasty. To understand the local and systemic pathological effects of these raised metal concentrations it is important to define their distribution between whole blood, plasma, and urine. The metals were measured by Inductively Coupled Plasma Mass Spectrometry (ICPMS). Two hundred and five plasma, 199 whole blood, and 24 sets of urine samples were analyzed from 202 patients with Co-Cr alloy MoM hip prostheses implanted between 8 months to 12 years (mean 6.0 years) prior to analysis. Plasma Co (median 39.1 nmol/L) showed significantly positive 1:1 correlation with whole blood Co (median 45.9 nmol/L; R(2) = 0.98, p < 0.001, slope = 1.0). Plasma Cr (median 53.8 nmol/L) and whole blood Cr (median 40.3 nmol/L) were also correlated; however, concentrations were significantly higher in plasma indicating relatively little blood cell uptake (R(2) = 0.96, p < 0.001, slope = 1.6). Urinary Co was up to threefold higher than Cr (median 334.0 vs. 97.3 nmol/L respectively). Nickel concentrations in whole blood, plasma, and urine were low relative to Co and Cr. The analysis shows fundamental differences in the physiological handling of these metals: Co is distributed approximately equally between blood cells and plasma, whereas Cr is mainly in plasma, despite which, Cr had far less renal excretion than Co.
Collapse
Affiliation(s)
- Ashley W Newton
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, University of Liverpool, Prescot Street, Liverpool L7 8XP, United Kingdom.
| | | | | | | | | |
Collapse
|