1
|
Harrison‐Bernard LM, Raij L, Tian RX, Jaimes EA. Genetically conditioned interaction among microRNA-155, alpha-klotho, and intra-renal RAS in male rats: Link to CKD progression. Physiol Rep 2024; 12:e16172. [PMID: 39375174 PMCID: PMC11458328 DOI: 10.14814/phy2.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/09/2024] Open
Abstract
Incident chronic kidney disease (CKD) varies in populations with hypertension of similar severity. Proteinuria promotes CKD progression in part due to activation of plasminogen to plasmin in the podocytes, resulting in oxidative stress-mediated injury. Additional mechanisms include deficiency of renal alpha-klotho, that inhibits Wnt/beta-catenin, an up regulator of intra-renal renin angiotensin system (RAS) genes. Alpha-klotho deficiency therefore results in upregulation of the intra-renal RAS via Wnt/beta-catenin. In hypertensive, Dahl salt sensitive (DS) and spontaneously hypertensive rats (SHR), we investigated renal and vascular injury, miR-155, AT1R, alpha-klotho, and TNF-α. Hypertensive high salt DS (DS-HS), but not SHR developed proteinuria, plasminuria, and glomerulosclerosis. Compared to DS low salt (DS-LS), in hypertensive DS-HS alpha-klotho decreased 5-fold in serum and 2.6-fold in kidney, whereas serum mir-155 decreased 3.3-fold and AT1R increased 52% in kidney and 77% in aorta. AT1R, alpha-klotho, and miR-155 remained unchanged in prehypertensive and hypertensive SHR. TNF-α increased by 3-fold in serum and urine of DS-HS rats. These studies unveiled in salt sensitive DS-HS, but not in SHR, a genetically conditioned dysfunction of the intermolecular network integrated by alpha-klotho, RAS, miR-155, and TNF-α that is at the helm of their end-organ susceptibility while plasminuria may participate as a second hit.
Collapse
Affiliation(s)
- L. M. Harrison‐Bernard
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - L. Raij
- Katz Family Division of NephrologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - R. X. Tian
- South Florida Veterans Administration FoundationMiamiFloridaUSA
| | - E. A. Jaimes
- Renal ServiceMemorial Sloan Kettering Cancer Center and Weill Cornell Medical CollegeNew YorkNew YorkUSA
| |
Collapse
|
2
|
de Cos M, Mosoyan G, Chauhan K, Troost JP, Wong JS, Lefferts S, Morgan P, Meliambro K, Egerman M, Ray J, Parker T, Levine D, Seshan S, Bardash Y, Horowitz B, Kent CA, Shaw MM, Perlman A, Moledina DG, Coca SG, Campbell KN. Urinary Plasminogen as a Marker of Disease Progression in Human Glomerular Disease. Am J Kidney Dis 2024; 84:205-214.e1. [PMID: 38452919 PMCID: PMC11260534 DOI: 10.1053/j.ajkd.2024.01.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE & OBJECTIVE Glomerular disorders have a highly variable clinical course, and biomarkers that reflect the molecular mechanisms underlying their progression are needed. Based on our previous work identifying plasminogen as a direct cause of podocyte injury, we designed this study to test the association between urine plasmin(ogen) (ie, plasmin and its precursor plasminogen) and end-stage kidney disease (ESKD). STUDY DESIGN Multicenter cohort study. SETTING & PARTICIPANTS 1,010 patients enrolled in the CureGN Cohort with biopsy-proven glomerular disease (focal segmental glomerulosclerosis, membranous nephropathy, and immunoglobulin A nephropathy). PREDICTORS The main predictor was urine plasmin(ogen) at baseline. Levels were measured by an electrochemiluminescent immunoassay developed de novo. Traditional clinical and analytical characteristics were used for adjustment. The ratio of urine plasmin(ogen)/expected plasmin(ogen) was evaluated as a predictor in a separate model. OUTCOME Progression to ESKD. ANALYTICAL APPROACH Cox regression was used to examine the association between urinary plasmin(ogen) and time to ESKD. Urinary markers were log2 transformed to approximate normal distribution and normalized to urinary creatinine (Log2uPlasminogen/cr, Log2 urinary protein/cr [UPCR]). Expected plasmin(ogen) was calculated by multiple linear regression. RESULTS Adjusted Log2uPlasminogen/cr was significantly associated with ESKD (HR per doubling Log2 uPlasminogen/cr 1.31 [95% CI, 1.22-1.40], P<0.001). Comparison of the predictive performance of the models including Log2 uPlasminogen/cr, Log2 UPCR, or both markers showed the plasmin(ogen) model superiority. The ratio of measured/expected urine plasmin(ogen) was independently associated with ESKD: HR, 0.41 (95% CI, 0.22-0.77) if ratio<0.8 and HR 2.42 (95% CI, 1.54-3.78) if ratio>1.1 (compared with ratio between 0.8 and 1.1). LIMITATIONS Single plasmin(ogen) determination does not allow for the study of changes over time. The use of a cohort of mostly white patients and the restriction to patients with 3 glomerular disorders limits the external validity of our analysis. CONCLUSIONS Urinary plasmin(ogen) and the ratio of measured/expected plasmin(ogen) are independently associated with ESKD in a cohort of patients with glomerular disease. Taken together with our previous experimental findings, urinary plasmin(ogen) could be a useful biomarker in prognostic decision making and a target for the development of novel therapies in patients with proteinuria and glomerular disease. PLAIN-LANGUAGE SUMMARY Glomerular diseases are an important cause of morbidity and mortality in patients of all ages. Knowing the individual risk of progression to dialysis or transplantation would help to plan the follow-up and treatment of these patients. Our work studies the usefulness of urinary plasminogen as a marker of progression in this context, since previous studies indicate that plasminogen may be involved in the mechanisms responsible for the progression of these disorders. Our work in a sample of 1,010 patients with glomerular disease demonstrates that urinary plasminogen (as well as the ratio of measured to expected plasminogen) is associated with the risk of progression to end-stage kidney disease. Urine plasminogen exhibited good performance and, if further validated, could enable risk stratification for timely interventions in patients with proteinuria and glomerular disease.
Collapse
Affiliation(s)
- Marina de Cos
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sean Lefferts
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul Morgan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Justina Ray
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tom Parker
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Daniel Levine
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Surya Seshan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yoni Bardash
- St. Joseph's University Medical, Paterson, New Jersey
| | - Benjamin Horowitz
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Candice A Kent
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa M Shaw
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Alan Perlman
- Rogosin Institute, Weill Cornell Medicine, New York, New York; Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
3
|
Yu H, Ma J, Gu Y, Zou W, Zhao N. Serum cell division cycle 42 reflects the development and progression of diabetic nephropathy in patients with diabetes mellitus. Exp Ther Med 2024; 27:185. [PMID: 38533430 PMCID: PMC10964736 DOI: 10.3892/etm.2024.12473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 03/28/2024] Open
Abstract
Cell division cycle 42 (CDC42) regulates podocyte apoptosis to take part in the development and progression of diabetic nephropathy (DN), but currently the clinical evidence is limited. The aim of the present study was to investigate the capability of serum CDC42 expression level to estimate the development and progression of DN in patients with diabetes mellitus (DM). Patients with type 2 DM (n=306) were enrolled and divided into normoalbuminuria (n=185), microalbuminuria (n=72) and macroalbuminuria (n=49) groups based on the urinary albumin-to-creatinine ratio. Serum CDC42 was measured in all subjects using enzyme-linked immunosorbent assay. The median (interquartile range) CDC42 in patients with DM was 0.461 (0.314-0.690) ng/ml (range, 0.087-1.728 ng/ml). CDC42 was positively associated with the estimated glomerular filtration rate (P<0.001), but negatively correlated with body mass index, systolic blood pressure, hemoglobin A1c, serum creatine, serum uric acid and C reactive protein (all P<0.050). CDC42 levels were lowest in the macroalbuminuria group, followed by the microalbuminuria group, and were highest in the normoalbuminuria group (P<0.001). CDC42 indicated that it was a favorable estimator for the presence of albuminuria [area under the curve (AUC), 0.792; 95% confidence interval (CI), 0.736-0.848] and macroalbuminuria (AUC, 0.845; 95% CI, 0.775-0.915). By analyses in four different multivariate logistic regression models, increased CDC42 was independently associated with the presence of microalbuminuria (all P<0.001), macroalbuminuria (most P<0.001) and microalbuminuria + macroalbuminuria (all P<0.001). Serum CDC42 level negatively correlated with microalbuminuria and macroalbuminuria in patients with DM, suggesting its ability for estimating the development and progression of DN.
Collapse
Affiliation(s)
- Hongyu Yu
- Clinic of Integrated Traditional and Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Jian Ma
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yueru Gu
- Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Zou
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Na Zhao
- Clinic of Integrated Traditional and Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Chinese Medicine Internal Medicine, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
4
|
Iwata Y, Deng Q, Kakizoe Y, Nakagawa T, Miyasato Y, Nakagawa M, Nishiguchi K, Nagayoshi Y, Narita Y, Izumi Y, Kuwabara T, Adachi M, Mukoyama M. A Serine Protease Inhibitor, Camostat Mesilate, Suppresses Urinary Plasmin Activity and Alleviates Hypertension and Podocyte Injury in Dahl Salt-Sensitive Rats. Int J Mol Sci 2023; 24:15743. [PMID: 37958726 PMCID: PMC10650472 DOI: 10.3390/ijms242115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.
Collapse
Affiliation(s)
- Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Qinyuan Deng
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Miyuki Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yuki Narita
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| |
Collapse
|
5
|
Costa WC, Beltrami VA, Campolina-Silva GH, Queiroz-Junior CM, Florentino RM, Machado JR, Martins DG, Gonçalves WA, Barroso LC, Freitas KM, de Souza-Neto FP, Félix FB, da Silva RF, Oliveira CA, Câmara NOS, Rachid MA, Teixeira MM, Rezende BM, Pinho V. Therapeutic treatment with phosphodiesterase-4 inhibitors alleviates kidney injury and renal fibrosis by increasing MMP-9 in a doxorubicin-induced nephrotoxicity mouse model. Int Immunopharmacol 2023; 115:109583. [PMID: 36610330 DOI: 10.1016/j.intimp.2022.109583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Nephrotic syndrome (NS) is associated with kidney dysfunction and is an important cause of morbidity and mortality in industrialized countries. Here, we evaluated the effects of the phosphodiesterase-4 (PDE-4) inhibitors rolipram and roflumilast on a doxorubicin-induced NS model. Early-stage rolipram treatment preserved glomerular filtration barrier function, as indicated by reduced serum protein and albumin loss and the prevention of hypercholesterolemia. These effects were associated with reduced glomerular and tubular lesions and abrogated renal cell apoptosis. In addition, rolipram treatment reduced inflammation, which was characterized by a decrease in macrophage accumulation and reduced levels of CCL2 and TNF in the kidneys. Rolipram also reduced renal fibrosis, which was associated with decreased α-smooth muscle actin (α-SMA) area and increased metalloproteinase 9 (MMP9) activity in renal tissue. Late-stage rolipram or roflumilast treatment preserved glomerular filtration barrier function, as characterized by reduced serum albumin loss, decreased proteinuria, and the prevention of hypercholesterolemia. Importantly, only roflumilast treatment was associated with a reduction in glomerular and tubular lesions at this time point. In addition, both rolipram and roflumilast reduced renal tissue fibrosis and MMP9 activity in renal tissue.
Collapse
Affiliation(s)
- Walyson Coelho Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo M Florentino
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Rayssa Machado
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora Gonzaga Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Katia Michelle Freitas
- Programa de Pós-graduação em Engenharia de Materiais, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET), Belo Horizonte, Brazil
| | - Fernando Pedro de Souza-Neto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Franciel Batista Félix
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela Fernandes da Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cleida Aparecida Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Niels Olsen Saraiva Câmara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Milene Alvarenga Rachid
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Departamento de Enfermagem Básica, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats. Hypertens Res 2023; 46:50-62. [PMID: 36241707 DOI: 10.1038/s41440-022-01064-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Salt-sensitive hypertension is associated with poor clinical outcomes. The epithelial sodium channel (ENaC) in the kidney plays pivotal roles in sodium reabsorption and blood pressure regulation, in which its γ subunit is activated by extracellular serine proteases. In proteinuric nephropathies, plasmin filtered through injured glomeruli reportedly activates γENaC in the distal nephron and causes podocyte injury. We previously reported that Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet developed hypertension and proteinuria along with γENaC activation and that a synthetic serine protease inhibitor, camostat mesilate, mitigated these changes. However, the role of plasmin in DS rats remained unclear. In this study, we evaluated the relationship between plasmin and hypertension as well as podocyte injury and the effects of plasmin inhibitors in DS rats. Five-week-old DS rats were divided into normal-salt diet, HS diet, and HS+plasmin inhibitor (either tranexamic acid [TA] or synthetic plasmin inhibitor YO-2) groups. After blood pressure measurement and 24 h urine collection over 5 weeks, rats were sacrificed for biochemical analyses. The HS group displayed severe hypertension and proteinuria together with activation of plasmin in urine and γENaC in the kidney, which was significantly attenuated by YO-2 but not TA. YO-2 inhibited the attachment of plasmin(ogen) to podocytes and alleviated podocyte injury by inhibiting apoptosis and inflammatory/profibrotic cytokines. YO-2 also suppressed upregulation of protease-activated receptor-1 and phosphorylated ERK1/2. These results indicate an important role of plasmin in the development of salt-sensitive hypertension and related podocyte injury, suggesting plasmin inhibition as a potential therapeutic strategy.
Collapse
|
7
|
Liu T, Li CY, Chen H, Liu J, Zhong LL, Tang MM, Wang WB, Huang JP, Jiang XS. tBHQ attenuates podocyte injury in diabetic nephropathy by inhibiting NADPH oxidase-derived ROS generation via the Nrf2/HO-1 signalling pathway. Heliyon 2022; 8:e10515. [PMID: 36119860 PMCID: PMC9479023 DOI: 10.1016/j.heliyon.2022.e10515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Oxidative stress plays a crucial role in podocyte injury in diabetic nephropathy (DN). tert-Butylhydroquinone (tBHQ) is an activator of Nrf2 that exerts protective effects in diabetic mice, but the underlying mechanism of tBHQ in the podocytes of DN is not fully understood. Materials and methods A high glucose (HG)-induced HK2 cell model and streptozotocin-induced rat model of DN were established and treated with tBHQ or apocynin. The expression levels of Nrf2, HO-1, NOX2 and NOX4 were determined by Western blot or immunohistochemical staining. The level of oxidative stress in podocytes or kidney tissues was assessed using DCFH-DA or dihydroethidium (DHE) staining. Cell injury was assessed by F-actin staining and flow cytometry analysis. Key findings We showed that HG treatment increased the expressions of NOX2 and NOX4 and enhanced ROS production in podocytes. Inhibition of NADPH oxidase activity by apocynin dramatically attenuated HG-induced ROS production and further alleviated cell injury and apoptosis in podocytes. Moreover, we found that HG inhibited the Nrf2/HO-1 signalling pathway in podocytes; however, tBHQ treatment significantly activated the Nrf2 signalling pathway, inhibited NADPH oxidase activity, and attenuated ROS production and cell injury in HG-treated podocytes. Furthermore, we observed that tBHQ treatment partially attenuated renal injury, activated the Nrf2 signalling pathway, inhibited NADPH oxidase activity and reduced ROS generation in the kidneys of STZ-induced diabetic rats. Significance These results suggest that tBHQ exerts a protective role in hyperglycaemia-induced podocyte injury, and that the potential protective mechanism of tBHQ involves inhibiting NADPH oxidase-derived ROS generation by activating the Nrf2/HO-1 signalling pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Chang-Yan Li
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Hao Chen
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Juan Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Li-Li Zhong
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Ming-Min Tang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Wen-Bo Wang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Jin-Ping Huang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| |
Collapse
|
8
|
Renal and Inflammatory Proteins as Biomarkers of Diabetic Kidney Disease and Lupus Nephritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5631099. [PMID: 35355862 PMCID: PMC8958067 DOI: 10.1155/2022/5631099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
Abstract
Current methods for differentiation of kidney disease types are unspecific and may be invasive. Thus, there is a need for development of new biomarkers of kidney disorders that are specific and less invasive. In this study, we analyzed serum samples of diabetic kidney disease (DKD) and lupus nephritis (LN) patients to identify biomarkers of these two disorders. Serum samples were analyzed by Simple Plex assays. We calculated the area under the curve (AUC) as well as receiver operating characteristics (ROC) to obtain the sensitivity and specificity and other biomarker-related variables of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), interleukin- (IL-) 18, Lipocalin-2/NGAL, epidermal growth factor (EGF), u-Plasminogen Activator (uPA), and C-reactive protein (CRP) as potential biomarkers. Protein levels of ASC, IL-18, EGF, and Lipocalin-2/NGAL were higher in DKD and LN patients when compared to controls, whereas only uPA was elevated in DKD patients and CRP in LN patients. As determined by the AUC, of the six analytes studied, EGF (AUC = 0.9935), Lipocalin-2/NGAL (0.9554), ASC (0.7666), and uPA (0.7522) are reliable biomarkers of DKD, whereas EGF (1.000), Lipocalin-2/NGAL (0.9412), uPA (0.7443), and IL-18 (0.7384) are more reliable for LN. The biomarkers analyzed can differentiate between healthy and affected individuals. However, there was no difference between the levels of these biomarkers in DKD vs LN. Thus, although these biomarkers cannot be used to categorize patients between DKD and LN, they are useful as biomarkers of renal pathology.
Collapse
|
9
|
Zeng Y, Li YM, Cheng Y, Zeng XS, Wang T, Zhang F, Zhang YL. Hypoxia-inducible factor-1α activation can attenuate renal podocyte injury and alleviate proteinuria in rats in a simulated high-altitude environment. Biochem Biophys Res Commun 2022; 602:35-40. [PMID: 35247702 DOI: 10.1016/j.bbrc.2022.02.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aims of this study were to understand whether podocyte injury is involved in proteinuria after rapid ascent to high altitude and to explore whether hypoxia-inducible factor (HIF)-1α is involved in the adaptive regulation of this proteinuria. METHODS Rats in the experimental group were housed in a low-pressure oxygen chamber to simulate a high-altitude environment (5,000 m). The intervention group was placed under the same conditions as the experimental group and prolyl-hydroxylase inhibitor (PHI) was intraperitoneally injected. The control group was housed in a low altitude environment (500 m). On days 0, 7, 14, and 28, urinary albumin quantification and electrophoresis were performed. The expression levels of CD2-associated protein (CD2AP), nephrin and HIF-1α were detected by immunofluorescence. RESULTS The medium and large molecule proteins with molecular weights ranging from 63 to 75 kD were present in the urine of rats in the experimental group and that the urinary albumin levels first increased and then decreased with time and the increase on day 14 was most significant (24.58 ± 4.30 mg on day 14 VS 5.13 ± 1.58 mg on day 0). Electron microscopy revealed podocyte lesions in rats in the experimental group. Immunofluorescence results showed that the protein expression levels of CD2AP and nephrin in the glomeruli of rats in the experimental group were lower than those in the control group (P < 0.001) and that the expression levels of which in the intervention group were higher than those in the experimental group (P < 0.001). The expression of HIF-1α protein in the renal tissues of rats in the experimental group was higher than that in the control group (P < 0.001) and lower than that in the intervention group (P < 0.001). CONCLUSION The podocyte injury may be involved in the occurrence of proteinuria after rapid ascent to high altitude. PHI may have a potential role in reducing proteinuria by upregulating local HIF-1α expression in the kidney to alleviate podocyte injury.
Collapse
Affiliation(s)
- Yan Zeng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China; Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| | - Yun-Ming Li
- Statistical Office, Department of Information, General Hospital of Western Theater Command, Chengdu, 610083, PR China; Department of Statistics, College of Mathematics, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yue Cheng
- Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China.
| | - Xiao-Shan Zeng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tao Wang
- Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| | - Fan Zhang
- Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| | - Yao-Lei Zhang
- Department of Basic Medical Laboratory, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| |
Collapse
|
10
|
S El Salamouni N, Buckley BJ, Jiang L, Huang M, Ranson M, Kelso MJ, Yu H. Disruption of Water Networks is the Cause of Human/Mouse Species Selectivity in Urokinase Plasminogen Activator (uPA) Inhibitors Derived from Hexamethylene Amiloride (HMA). J Med Chem 2021; 65:1933-1945. [PMID: 34898192 DOI: 10.1021/acs.jmedchem.1c01423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The urokinase plasminogen activator (uPA) plays a critical role in tumor cell invasion and migration and is a promising antimetastasis target. 6-Substituted analogues of 5-N,N-(hexamethylene)amiloride (HMA) are potent and selective uPA inhibitors that lack the diuretic and antikaliuretic properties of the parent drug amiloride. However, the compounds display pronounced selectivity for human over mouse uPA, thus confounding interpretation of data from human xenograft mouse models of cancer. Here, computational and experimental findings reveal that residue 99 is a key contributor to the observed species selectivity, whereby enthalpically unfavorable expulsion of a water molecule by the 5-N,N-hexamethylene ring occurs when residue 99 is Tyr (as in mouse uPA). Analogue 7 lacking the 5-N,N-hexamethylene ring maintained similar water networks when bound to human and mouse uPA and displayed reduced selectivity, thus supporting this conclusion. The study will guide further optimization of dual-potent human/mouse uPA inhibitors from the amiloride class as antimetastasis drugs.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Longguang Jiang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Mingdong Huang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021; 21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an increasing cause of morbidity and mortality worldwide. Besides the higher prevalence of diabetes, hypertension and aging worldwide, immune mediated disorders remain an important cause of kidney disease and are especially prevalent in young adults. Regardless of the initial insult, final pathway to CKD and kidney failure is always the loss of normal tissue and fibrosis development, in which the dynamic equilibrium between extracellular matrix synthesis and degradation is disturbed, leading to excessive production and accumulation. During fibrosis, a multitude of cell types intervene at different levels, but myofibroblasts and inflammatory cells are considered critical in the process. They exert their effects through different molecular pathways, of which transforming growth factor β (TGF-β) has demonstrated to be of particular importance. Additionally, CKD itself promotes fibrosis due to the accumulation of toxins and hormonal changes, and proteinuria is simultaneously a manifestation of CKD and a specific driver of renal fibrosis. Pathways involved in renal fibrosis and CKD are closely interrelated, and although important advances have been made in our knowledge of them, it is still necessary to translate them into clinical practice. Given the complexity of this process, it is highly likely that its treatment will require a multi-target strategy to control the origin of the damage but also the mechanisms that perpetuate it. Fortunately, rapid technology development over the last years and new available drugs in the nephrologist's armamentarium give reasons for optimism that more personalized assistance for CKD and renal fibrosis will appear in the future.
Collapse
|
12
|
Huang Y, Cheng J, Zhou Y, Zhang Y, Zhou S, Li Q, Peng L, Wang M, Song W, Wu G. Sulfuretted hydrogen ameliorates high dose glucose-induced podocyte apoptosis via orchestrating AMPK/mTOR cascade-mediated anti-apoptotic effects. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1586. [PMID: 34790792 PMCID: PMC8576736 DOI: 10.21037/atm-21-5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
Background Podocytes play a pivotal role in the glomerular filtration barrier and contribute to proteinuria and glomerulosclerosis through abnormal apoptosis. Longitudinal studies have indicated the protective properties of hydrogen sulfide (H2S) against neuronal cell apoptosis, whereas the biological function and the underlying molecular mechanism on glucose-induced podocyte apoptosis are largely unknown. Methods Herein, we conducted multifaceted biological analyses to verify the potential function of H2S in glucose-induced podocyte apoptosis by examining apoptotic proteins and markers (e.g., caspase 3, Hoechst) and antioxidative effects [e.g., reactive oxygen species (ROS), lipid peroxidation, superoxide dismutase (SOD), catalase (CAT)]. Then, we took advantage of transcriptome sequencing and biological analyses to further determine the potential influence of H2S as well as the accompanying molecular mechanism. Results In this study, we found that glucose-induced podocyte apoptosis could be largely rescued by H2S via antioxidative responses, which was further confirmed by transcriptome sequencing and bioinformatics analyses. According to apoptotic signaling analysis, the over-activated AMPK/mTOR signaling cascade in glucose-treated podocytes was effectively restrained. Conclusions For the first time, we indicated the protective effect and mechanism of H2S in podocytes by restricting glucose-induced apoptosis and suppressing the abnormally activated AMPK/mTOR signaling cascade. Our findings provide new references for podocyte apoptosis-associated diseases and also indicate the potential of H2S administration in clinical trials.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jie Cheng
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yehua Zhou
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yanhui Zhang
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shuhui Zhou
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qingzhen Li
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Peng
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Maohong Wang
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Weiguo Song
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guoqing Wu
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
13
|
Lu Z, Zhu X, Ye Y, Fu H, Mao J. PP2A protects podocytes against Adriamycin-induced injury and epithelial-to-mesenchymal transition via suppressing JIP4/p38-MAPK pathway. Cytotechnology 2021; 73:697-713. [PMID: 34629746 DOI: 10.1007/s10616-021-00484-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the major protein serine/threonine phosphatases (PPPs) with regulatory effects on several cellular processes, but its role and function in Adriamycin (ADR)-treated podocytes injury needs to be further explored. Mice podocytes were treated with ADR and PP2A inhibitor (okadaic acid, OA). After transfection, cell apoptosis was detected by flow cytometry. Expressions of podocytes injury-, apoptosis- and epithelial-to-mesenchymal transition (EMT)- and JNK-interacting protein 4/p38-Mitogen-Activated Protein Kinase (JIP4/p38-MAPK) pathway-related factors were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. Interaction between PP2A and JIP4/MAPK pathway was confirmed using co-immunoprecipitation (Co-Ip) assay. In podocytes, ADR inhibited PP2A, Nephrin and Wilms' tumor (WT) 1 expressions yet upregulated apoptosis and Desmin expression, and suppressing PP2A expressionenhanced the effects. PP2A overexpression reversed the effects of ADR on PP2A and podocyte injury-related factors expressions and apoptosis of podocytes. JIP4 was the candidate gene interacting with both PP2A and p38-MAPK pathway, and PP2A overexpression alleviated the effects of ADR on p38-MAPK pathway-related factors expressions. Additionally, in ADR-treated podocytes, PP2A suppression enhanced the effects of ADR, yet silencing of JIP4 reversed the effects of PP2A suppression on regulating p38-MAPK pathway-, apoptosis- and EMT-related factors expressions and apoptosis, with upregulations of B-cell lymphoma-2 (Bcl-2) and E-cadherin and down-regulations of Bcl-2 associated protein X (Bax), cleaved (C)-casapse-3, N-cadherin, Vimentin and Snail. PP2A protects ADR-treated podocytes against injury and EMT by suppressing JIP4/p38-MAPK pathway, showing their interaction in podocytes.
Collapse
Affiliation(s)
- Zhihong Lu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Xiujuan Zhu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Yuhong Ye
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| |
Collapse
|
14
|
Bohnert BN, Gonzalez-Menendez I, Dörffel T, Schneider JC, Xiao M, Janessa A, Kalo MZ, Fehrenbacher B, Schaller M, Casadei N, Amann K, Daniel C, Birkenfeld AL, Grahammer F, Izem L, Plow EF, Quintanilla-Martinez L, Artunc F. Essential role of DNA-PKcs and plasminogen for the development of doxorubicin-induced glomerular injury in mice. Dis Model Mech 2021; 14:271906. [PMID: 34423816 PMCID: PMC8461821 DOI: 10.1242/dmm.049038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg−/−) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper. Summary: Susceptibility to doxorubicin-induced nephropathy in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T single-nucleotide polymorphism in the Prkdc gene and subsequent glomerular binding of plasminogen.
Collapse
Affiliation(s)
- Bernhard N Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), University Tübingen, 72076 Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Department of Pathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Thomas Dörffel
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jonas C Schneider
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mengyun Xiao
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - M Zaher Kalo
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Nicolas Casadei
- Institute of Genetics, University Hospital Tübingen, 72076 Tübingen, Germany.,NGS Competence Center Tübingen, University Tübingen, Tübingen 72076, Germany
| | - Kerstin Amann
- Institute of Pathology, Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christoph Daniel
- Institute of Pathology, Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), University Tübingen, 72076 Tübingen, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lahoucine Izem
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Edward F Plow
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Department of Pathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Mizumoto T, Kakizoe Y, Nakagawa T, Iwata Y, Miyasato Y, Uchimura K, Adachi M, Deng Q, Hayata M, Morinaga J, Miyoshi T, Izumi Y, Kuwabara T, Sakai Y, Tomita K, Kitamura K, Mukoyama M. A serine protease inhibitor camostat mesilate prevents podocyte apoptosis and attenuates podocyte injury in metabolic syndrome model rats. J Pharmacol Sci 2021; 146:192-199. [PMID: 34116732 DOI: 10.1016/j.jphs.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
Metabolic syndrome (MetS) is associated with chronic kidney disease and proteinuria. Previously, we reported that a synthetic serine protease inhibitor, camostat mesilate (CM), mitigated hypertension and proteinuria in rodent disease models. The present study evaluated the anti-hypertensive and anti-proteinuric effects of CM in MetS model rats (SHR/ND mcr-cp). Rats were divided into normal salt-fed (NS), high salt-fed (HS), HS and CM-treated (CM), and HS and hydralazine-treated (Hyd) groups. Rats were sacrificed after four weeks of treatment. Severe hypertension and proteinuria were observed in the HS group. Although CM and Hyd equally alleviated hypertension, CM suppressed proteinuria and glomerular sclerosis more efficiently than Hyd. The HS group revealed a decrease in podocyte number and podocyte-specific molecules, together with an increase in glomerular apoptotic cells and apoptosis-related proteins in the kidney. These changes were significantly attenuated by CM, but not by Hyd. Furthermore, CM ameliorated the apoptotic signals in murine cultured podocytes stimulated with the high glucose and aldosterone medium. In conclusion, CM could exert renoprotective effects in MetS model rats, together with the inhibition of podocyte apoptosis. Our study suggests that serine protease inhibition may become a new therapeutic strategy against MetS-related hypertension and renal injuries.
Collapse
Affiliation(s)
- Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kohei Uchimura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Qinyuan Deng
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Manabu Hayata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Jun Morinaga
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Taku Miyoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshiki Sakai
- Ono Pharmaceutical Co. Ltd., Research Headquarters, 1-8-2 Kyutaromachi, Chuo-ku, Osaka 541-8564, Japan
| | - Kimio Tomita
- The Chronic Kidney Disease Research Center, Tomei Atsugi Hospital, 232 Funako, Atsugi, Kanagawa 243-8571, Japan
| | - Kenichiro Kitamura
- Kitakurihama Takuchi Clinic, 3-16-1 Negishi-cho, Yokosuka, Kanagawa 239-0807, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
16
|
Li H, Liu X, Lee MH, Li H. Vitamin C alleviates hyperuricemia nephropathy by reducing inflammation and fibrosis. J Food Sci 2021; 86:3265-3276. [PMID: 34160066 DOI: 10.1111/1750-3841.15803] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
Hyperuricemia contributes to chronic kidney disease development. However, it has been historically viewed with limited research interest. In this study, we mimicked the development of hyperuricemic nephropathy by using a potassium oxonate-induced hyperuricemia rat model. We found that administering vitamin C at 10 mg/kg/day effectively ameliorated hyperuricemic nephropathy. Compared to the control group, rats with hyperuricemia had significantly increased serum uric acid level, xanthine oxidase activity, and urine microalbumin level, by 5-fold, 1.5-fold, and 4-fold, respectively. At the same time, vitamin C supplementation reverted these values by 20% for serum uric acid level and xanthine oxidase activity and 50% for microalbumin level. Vitamin C also alleviated renal pathology and decreased the expression of pro-inflammatory and pro-fibrotic markers. A further mechanistic study suggested that vitamin C might attenuate hyperuricemic nephropathy in renal tubular epithelial cells induced by monosodium urate (MSU) crystal, at least in part, by directly inhibiting IL-6/JAK2/STAT3 signaling pathway. Meanwhile, in macrophages, vitamin C inhibited the expression of TGF-β, and reduced ROS level induced by MSU by about 35%. In short, our results suggest that vitamin C supplementation delay the progression of hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Hongling Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xuejiao Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Haitao Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Shen W, Alshehri M, Desale S, Wilcox C. The Effect of Amiloride on Proteinuria in Patients with Proteinuric Kidney Disease. Am J Nephrol 2021; 52:368-377. [PMID: 33957621 DOI: 10.1159/000515809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Proteinuric kidney diseases share an aggressive clinical course of developing end-stage renal disease. However, the treatment is limited. Amiloride, an epithelial sodium channel (ENaC) inhibitor, was reported to reduce proteinuria in animal studies and case reports independent of ENaC inhibition. We hypothesized that amiloride not triamterene (an analog of amiloride) would reduce proteinuria in the patients with proteinuric kidney disease. METHODS Patients with proteinuria >1.0 g/day and estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m2 on a maximum tolerable dose of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers were randomized to receive amiloride 5 mg twice daily or triamterene 50 mg twice daily for 8 weeks, followed by 4 weeks of washout, and then crossed over to the other drug for 8 weeks. The primary outcome was 24-h urine protein reduction. Secondary outcomes were changes in body weight, blood pressure (BP), serum potassium, and eGFR. Data were analyzed by analysis of variance. RESULTS A total of 12 patients completed the study. Amiloride reduced 24-h urine protein by 38.7% (p = 0.002) and decreased systolic BP by 12.3 mm Hg (p = 0.04). Interestingly, triamterene reduced 24 h urine protein as well, by 32.8% (p = 0.02). Triamterene lowered eGFR by 9.0 mL/min/1.73 m2 (p = 0.007), but it was reversible. The average weight change was insignificant in both groups (p = 0.40 and 0.34 respectively). Three patients withdrew the study due to hyperkalemia. CONCLUSIONS Both amiloride and triamterene significantly reduced proteinuria in patients with proteinuric kidney disease. The anti-proteinuric effect was additive to renin-angiotensin-aldosterone system (RAAS) blockade, given all patients were on RAAS blockade. Hyperkalemia was a safety concern. Larger trials might be needed to examine the antiproteinuric effects of ENaC inhibitors.
Collapse
Affiliation(s)
- Wen Shen
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Mohammed Alshehri
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Sameer Desale
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Christopher Wilcox
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
18
|
Shensu IV prevents glomerular podocyte injury in nephrotic rats via promoting lncRNA H19/DIRAS3-mediated autophagy. Biosci Rep 2021; 41:228425. [PMID: 33881140 PMCID: PMC8112846 DOI: 10.1042/bsr20203362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Shensu IV is a Chinese prescription well-known for its function in treating chronic kidney diseases. However, the potential mechanisms underlying how Shensu IV exerts its effects remain unclear. In the present study, we investigated the effects of Shensu IV on glomerular podocyte injury in nephrotic rats and puromycin-induced injury in cultured podocytes, and assessed the associated molecular mechanisms. Liquid chromatography-mass spectrometry (LC-MS) results showed that the main components of Shensu IV were l-Carnitine, P-lysoPC (LPC) 16:0, Coumaroyl tyramine, Tetramethylpyrazine, LPC 18:1, Choline, (S,S)-Butane-2,3-diol, and Scopoletin. We further found that nephrotic rats displayed pathological alterations in kidney tissues and ultrastructural changes in glomerular podocytes; however, these effects were reversed with Shensu IV treatment. Compared with the control, the numbers of autophagosomes were markedly reduced in the model group, but not in the Shensu IV treatment group. Furthermore, the expression of p62 was significantly higher in the model group than in the controls, whereas the LC3-II/I ratio was significantly lower; however, these changes were not observed when Shensu IV was administered. The protective effects of Shensu IV were further confirmed in podocytes displaying puromycin-induced injury. Compared with control group, the expression of long non-coding RNA (lncRNA) H19, mTOR, p-mTOR, and p62 was significantly increased in the puromycin group, whereas that of distinct subgroup of the RAS family member 3 (DIRAS3) was significantly decreased, as was the LC3-II/I ratio. The opposite results were obtained for both shH19- and Shensu IV-treated cells. Collectively, our data demonstrated that Shensu IV can prevent glomerular podocyte injury in nephrotic rats and puromycin-treated podocytes, likely via promoting lncRNA H19/DIRAS3-regulated autophagy.
Collapse
|
19
|
Jaimes EA, Zhou MS, Siddiqui M, Rezonzew G, Tian R, Seshan SV, Muwonge AN, Wong NJ, Azeloglu EU, Fornoni A, Merscher S, Raij L. Nicotine, smoking, podocytes, and diabetic nephropathy. Am J Physiol Renal Physiol 2021; 320:F442-F453. [PMID: 33459165 PMCID: PMC7988804 DOI: 10.1152/ajprenal.00194.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Besides glycemic and blood pressure control, environmental factors such as cigarette smoking (CS) adversely affect the progression of DN. The effects of CS on DN progression have been attributed to combustion-generated molecules without consideration to the role of nicotine (NIC), responsible for the addictive properties of both CS and electronic cigarettes (ECs). Podocytes are essential to preserve the structure and function of the glomerular filtration barrier, and strong evidence indicates that early podocyte loss promotes DN progression. We performed experiments in human podocytes and in a mouse model of diabetes that develops nephropathy resembling human DN. We determined that NIC binding to podocytes in concentrations achieved with CS and ECs activated NADPH oxidase, which sets in motion a dysfunctional molecular network integrated by cyclooxygenase 2, known to induce podocyte injury; downregulation of AMP-activated protein kinase, important for maintaining cellular energy stores and antioxidation; and upregulation of CD36, which increased lipid uptake and promoted apoptosis. In diabetic mice, NIC increased proteinuria, a recognized marker of chronic kidney disease progression, accompanied by reduced glomerular podocyte synaptopodin, a crucial stabilizer of the podocyte cytoskeleton, and increased fibronectin expression. This novel study critically implicates NIC itself as a contributor to DN progression in CS and EC users.NEW & NOTEWORTHY In this study, we demonstrate that nicotine increases the production of reactive oxygen species, increases cyclooxygenase-2 expression, and upregulates Cd36 while inducing downregulation of AMP-activated protein kinase. In vivo nicotine increases proteinuria and fibronectin expression in diabetic mice. This study demonstrates that effects of nicotine on podocytes are responsible, at least in part, for the deleterious effects of smoking in the progression of chronic kidney disease, including diabetic nephropathy.
Collapse
Affiliation(s)
- Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Mohammed Siddiqui
- Renal Division, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabriel Rezonzew
- Renal Division, University of Alabama at Birmingham, Birmingham, Alabama
| | - Runxia Tian
- Nephrology Section, Miami Veterans Affairs Medical Center, Miami, Florida
| | - Surya V Seshan
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Kwiatkowska I, Hermanowicz JM, Mysliwiec M, Pawlak D. Oxidative Storm Induced by Tryptophan Metabolites: Missing Link between Atherosclerosis and Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6656033. [PMID: 33456671 PMCID: PMC7787774 DOI: 10.1155/2020/6656033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease (CKD) occurrence is rising all over the world. Its presence is associated with an increased risk of premature death from cardiovascular disease (CVD). Several explanations of this link have been put forward. It is known that in renal failure, an array of metabolites cannot be excreted, and they accumulate in the organism. Among them, some are metabolites of tryptophan (TRP), such as indoxyl sulfate and kynurenine. Scientists have become interested in them in the context of inducing vascular damage in the course of chronic kidney impairment. Experimental evidence suggests the involvement of TRP metabolites in the progression of chronic kidney disease and atherosclerosis separately and point to oxidative stress generation as one of the main mechanisms that is responsible for worsening those states. Since it is known that blood levels of those metabolites increase significantly in renal failure and that they generate reactive oxygen species (ROS), which lead to endothelial injury, it is reasonable to suspect that products of TRP metabolism are the missing link in frequently occurring atherosclerosis in CKD patients. This review focuses on reports that shed a light on TRP metabolites as contributing factors to vascular damage in the progression of impaired kidney function.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Justyna M. Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Michal Mysliwiec
- Ist Department Nephrology and Transplantation, Medical University, Bialystok, Zurawia 14, 15-540 Bialystok, Poland
- Lomza State University of Applied Sciences, Akademicka 14, 18-400 Łomża, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Pharmacology and Toxicology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
21
|
Egerman MA, Wong JS, Runxia T, Mosoyan G, Chauhan K, Reyes-Bahamonde J, Anandakrishnan N, Wong NJ, Bagiella E, Salem F, Meliambro K, Li H, Azeloglu EU, Coca SG, Campbell KN, Raij L. Plasminogenuria is associated with podocyte injury, edema, and kidney dysfunction in incident glomerular disease. FASEB J 2020; 34:16191-16204. [PMID: 33070369 PMCID: PMC7686123 DOI: 10.1096/fj.202000413r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023]
Abstract
Urinary plasminogen/plasmin, or plasmin (ogen) uria, has been demonstrated in proteinuric patients and exposure of cultured podocytes to plasminogen results in injury via oxidative stress pathways. A causative role for plasmin (ogen) as a "second hit" in kidney disease progression has yet to have been demonstrated in vivo. Additionally, association between plasmin (ogen) uria and kidney function in glomerular diseases remains unclear. We performed comparative studies in a puromycin aminonucleoside (PAN) nephropathy rat model treated with amiloride, an inhibitor of plasminogen activation, and measured changes in plasmin (ogen) uria. In a glomerular disease biorepository cohort (n = 128), we measured time-of-biopsy albuminuria, proteinuria, and plasmin (ogen) uria for correlations with kidney outcomes. In cultured human podocytes, plasminogen treatment was associated with decreased focal adhesion marker expression with rescue by amiloride. Increased glomerular plasmin (ogen) was found in PAN rats and focal segmental glomerulosclerosis (FSGS) patients. PAN nephropathy was associated with increases in plasmin (ogen) uria and proteinuria. Amiloride was protective against PAN-induced glomerular injury, reducing CD36 scavenger receptor expression and oxidative stress. In patients, we found associations between plasmin (ogen) uria and edema status as well as eGFR. Our study demonstrates a role for plasmin (ogen)-induced podocyte injury in the PAN nephropathy model, with amiloride having podocyte-protective properties. In one of the largest glomerular disease cohorts to study plasminogen, we validated previous findings while suggesting a potentially novel relationship between plasmin (ogen) uria and estimated glomerular filtration rate (eGFR). Together, these findings suggest a role for plasmin (ogen) in mediating glomerular injury and as a viable targetable biomarker for podocyte-sparing treatments.
Collapse
Affiliation(s)
- Marc A. Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Jenny S. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Tian Runxia
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | | | | | - Nicholas J. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Emilia Bagiella
- Center for Biostatistics, Department of Population health Science and Policy, Icahn School of Medicine at Mount Sinai
| | - Fadi Salem
- Department of Pathology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School
| | - Evren U. Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| |
Collapse
|
22
|
Schijvens AM, van de Kar NC, Bootsma-Robroeks CM, Cornelissen EA, van den Heuvel LP, Schreuder MF. Mitochondrial Disease and the Kidney With a Special Focus on CoQ 10 Deficiency. Kidney Int Rep 2020; 5:2146-2159. [PMID: 33305107 PMCID: PMC7710892 DOI: 10.1016/j.ekir.2020.09.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cytopathies include a heterogeneous group of diseases that are characterized by impaired oxidative phosphorylation, leading to multi-organ involvement and progressive clinical deterioration. Most mitochondrial cytopathies that cause kidney symptoms are characterized by tubular defects, but glomerular, tubulointerstitial, and cystic diseases have also been described. Mitochondrial cytopathies can result from mitochondrial or nuclear DNA mutations. Early recognition of defects in the coenzyme Q10 (CoQ10) biosynthesis is important, as patients with primary CoQ10 deficiency may be responsive to treatment with oral CoQ10 supplementation, in contrast to most mitochondrial diseases. A literature search was conducted to investigate kidney involvement in genetic mitochondrial cytopathies and to identify mitochondrial and nuclear DNA mutations involved in mitochondrial kidney disease. Furthermore, we identified all reported cases to date with a CoQ10 deficiency with glomerular involvement, including 3 patients with variable renal phenotypes in our clinic. To date, 144 patients from 95 families with a primary CoQ10 deficiency and glomerular involvement have been described based on mutations in PDSS1, PDSS2, COQ2, COQ6, and COQ8B/ADCK4. This review provides an overview of kidney involvement in genetic mitochondrial cytopathies with a special focus on CoQ10 deficiency.
Collapse
Affiliation(s)
- Anne M. Schijvens
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Nicole C. van de Kar
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Charlotte M. Bootsma-Robroeks
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Elisabeth A. Cornelissen
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Lambertus P. van den Heuvel
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
- Department of Development and Regeneration,University Hospital Leuven, Leuven, Belgium
| | - Michiel F. Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Andersen H, Hansen MH, Buhl KB, Stæhr M, Friis UG, Enggaard C, Supramaniyam S, Lund IK, Svenningsen P, Hansen PBL, Jensen BL. Plasminogen Deficiency and Amiloride Mitigate Angiotensin II-Induced Hypertension in Type 1 Diabetic Mice Suggesting Effects Through the Epithelial Sodium Channel. J Am Heart Assoc 2020; 9:e016387. [PMID: 33215566 PMCID: PMC7763785 DOI: 10.1161/jaha.120.016387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Diabetic nephropathy is a common diabetes mellitus complication associated with hypertension, proteinuria, and excretion of urinary plasmin that activates the epithelial sodium channel, ENaC, in vitro. Here we hypothesized that the deletion of plasminogen and amiloride treatment protect against hypertension in diabetes mellitus. Methods and Results Male plasminogen knockout (plasminogen-deficient [Plg-/-]) and wild-type mice were rendered diabetic with streptozotocin. Arterial blood pressure was recorded continuously by indwelling catheters before and during 10 days of angiotensin II infusion (ANGII; 30-60 ng/kg per minute). The effect of amiloride infusion (2 mg/kg per day, 4 days) was tested in wild-type, diabetic ANGII-treated mice. Streptozotocin increased plasma and urine glucose concentrations and 24-hour urine albumin and plasminogen excretion. Diabetic Plg-/- mice displayed larger baseline albuminuria and absence of urine plasminogen. Baseline mean arterial blood pressure did not differ between groups. Although ANGII elevated blood pressure in wild-type, diabetic wild-type, and Plg-/- control mice, ANGII did not change blood pressure in diabetic Plg-/- mice. Compared with ANGII infusion alone, wild-type ANGII-infused diabetic mice showed blood pressure reduction upon amiloride treatment. There was no difference in plasma renin, ANGII, aldosterone, tissue prorenin receptor, renal inflammation, and fibrosis between groups. Urine from wild-type mice evoked larger amiloride-sensitive current than urine from Plg-/- mice with or without diabetes mellitus. Full-length γ-ENaC and α-ENaC subunit abundances were not changed in kidney homogenates, but the 70 kDa γ-ENaC cleavage product was increased in diabetic versus nondiabetic mice. Conclusions Plasmin promotes hypertension in diabetes mellitus with albuminuria likely through the epithelial sodium channel.
Collapse
Affiliation(s)
- Henrik Andersen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Maria Høj Hansen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Kristian B Buhl
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Mette Stæhr
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Ulla G Friis
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Camilla Enggaard
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Shanya Supramaniyam
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Ida K Lund
- The Finsen Laboratory Copenhagen University Hospital, and Biotech Research and Innovation Center (BRIC) University of Copenhagen Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| | - Pernille B L Hansen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark.,Research and Early Development Cardiovascular, Renal and Metabolism BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| |
Collapse
|
24
|
The Krüppel-like factor 15-NFATc1 axis ameliorates podocyte injury: a novel rationale for using glucocorticoids in proteinuria diseases. Clin Sci (Lond) 2020; 134:1305-1318. [PMID: 32478397 DOI: 10.1042/cs20200075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 01/19/2023]
Abstract
Podocyte injury and loss contribute to proteinuria, glomerulosclerosis and eventually kidney failure. Recent studies have demonstrated that the loss of Kruppel-like factor 15 (KLF15) in podocytes increases the susceptibility to injury; however, the mechanism underlying the protective effects on podocyte injury remains incompletely understood. Herein, we showed that KLF15 ameliorates podocyte injury through suppressing NFAT signaling and the salutary effects of the synthetic glucocorticoid dexamethasone in podocyte were partially mediated by the KLF15-NFATc1 axis. We found that KLF15 was significantly reduced in glomerular cells of proteinuric patients and in ADR-, LPS- or HG-treated podocyets in vitro. Overexpression of KLF15 attenuated podocyte apoptosis induced by ADR, LPS or HG and resulted in decreased expression of pro-apoptotic Bax and increased expression of anti-apoptotic Bcl-2. Conversely, the flow cytometry analysis and TUNEl assay demonstrated that loss of KLF15 accelerated podocyte apoptosis and we further found that 11R-VIVIT, a specific NFAT inhibitor, and NFATc1-siRNA rescued KLF15-deficient induced podocyte apoptosis. Meanwhile, Western blot and RT-qPCR showed that the expression of NFATc1 was up-regulated in KLF15 silenced podocytes and reduced in KLF15 overexpressed podocytes. Mechanistically, ChIP analysis showed that KLF15 bound to the NFATc1 promoter region -1984 to -1861base pairs upstream of the transcription start site and the binding amount was decreased after treatment with LPS. The dual-luciferase reporter assay indicated that NFATc1 was a direct target of KLF15. In addition, we found that in vitro treatment with dexamethasone induced a decrease of NFATc1 expression in podocytes and was abrogated by knockdown of KLF15. Hence, our results identify the critical role of the KLF15-NFATc1 axis in podocyte injury and loss, which may be involved in mediating the salutary effects of dexamethasone in podocytes.
Collapse
|
25
|
Chen X, Liu W, Xiao J, Zhang Y, Chen Y, Luo C, Huang Q, Peng F, Gong W, Li S, He X, Zhuang Y, Wu N, Liu Y, Wang Y, Long H. FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. FASEB J 2020; 34:13300-13316. [PMID: 32786113 DOI: 10.1096/fj.202000783r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Podocyte injury is the primary cause of glomerular injury in diabetic nephropathy (DN). Advanced oxidation protein products (AOPPs), the triggers and markers of oxidative stress in DN, have been linked to podocyte damage. However, the underlying mechanism is not yet clear. Here, we investigated the potential role of FOXO3a, a key transcription factor in the response to stress, in mediating AOPPs-induced podocyte injury. We found that FOXO3a expression was increased in the glomeruli of kidney biopsies from patients with DN and it was positively correlated with proteinuria. The serum from patients with DN significantly increased FOXO3a and its downstream genes FasL and Bim, thereby inducing the high level of cleaved caspase3 and the loss of nephrin and podocin expressions in podocytes. Blockade of AOPPs signaling by a neutralizing antibody against the receptor of advanced glycation end products (αRAGE) abolished the effect of DN serum on podocytes, confirming the pathogenic role of AOPPs in DN serum. Downregulation of FOXO3a decreased AOPPs-induced podocyte apoptosis and restored the levels of podocyte markers nephrin and podocin, and upregulation of FOXO3a exacerbated these changes in podocytes after AOPPs treatment. Furthermore, FOXO3a specifically activated proapoptotic genes in podocytes only in the presence of AOPPs. Mechanistically, AOPPs increased the FOXO3a protein levels by inhibiting their autophagic degradation in a ROS/mTOR-dependent manner. Moreover AOPPs activated the accumulated FOXO3a by maintaining FOXO3a in the nucleus, and this process was dependent on ROS-mediated AKT signaling deactivation. These studies suggest that FOXO3a plays a critical role in mediating AOPPs-induced podocyte injury and reveal a new mechanistic linkage of oxidative stress, FOXO3a activation and podocyte injury in DN.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenting Liu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yihua Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyin Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Zhuang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxian Wang
- Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Zhang M, Zhang J, Xiong Y, Peng J, Wu X. Pyrroloquinoline Quinone Inhibits Oxidative Stress in Rats with Diabetic Nephropathy. Med Sci Monit 2020; 26:e924372. [PMID: 32592386 PMCID: PMC7336833 DOI: 10.12659/msm.924372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the chronic microvascular complications of diabetes. This study focused on the protective effects of pyrroloquinoline quinone (PQQ) on oxidative stress (OS) in DN. Material/Methods Thirty Sprague Dawley rats were randomly selected for this study; 10 rats were randomly selected as the control group. The other 20 rats were established for the DN model. After establishment of the successful model, the DN model rats were randomly divided into a DN group and a PQQ group. The PQQ group was fed with a PQQ diet. Blood urea nitrogen (BUN), serum creatinine (SCr), and blood glucose levels were measured in each group, and OS-related protein expression and AMPK pathway were detected by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). At the same time, we constructed a DN model by culturing NRK-52E cells with high glucose to detect the molecular mechanisms. Results The kidney function of the DN group was significantly decreased, SCr and BUN levels were significantly increased, and the renal structure under the microscope was disordered, and interstitial edema was obvious. The expression of SOD1, SOD2, GPX1, and GPX3 were significantly decreased, and the level of reactive oxygen species (ROS) was significantly increased. PQQ treatment can effectively alleviate renal function, improve structural damage, and inhibit OS. In vivo, PQQ can effectively inhibit high glucose-induced OS damage and activate the AMPK/FOXO3a signaling pathway. Conclusions PQQ improves renal structural damage and functional damage, and protects kidney cells in DN by inhibiting OS, which may be related to activating the AMPK/FOXO3a pathway.
Collapse
Affiliation(s)
- Min Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Department of Nephrology, Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Jiangzhao Zhang
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Yan Xiong
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Jiaqing Peng
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
27
|
Abstract
Arterial hypertension has a large prevalence in the general population and as a major hypertensive target organ, the involvement of kidney is usually hard to avoid and gradually develops into chronic kidney disease (CKD). Acute hypertension is defined as a blood pressure greater than 180/120, also known as hypertensive emergency (HE). In acute severe hypertension, the pathophysiology damage to the kidney tends to worsen on the basis of chronic damage, and accounts for more significant mortality. However, the mechanisms of renal injury induced by acute hypertension remain unclear. This review summarizes the clinical and histopathological features of hypertensive renal injury by using "in vivo cyrotechnique" and focusses on the interplay of distinct systemic signaling pathways, which drive glomerular podocyte injury. A thorough understanding of the cellular and molecular mechanisms of kidney damage and repair in hypertension will provide significant insight into the development of new research methods and therapeutic strategies for global CKD progression.
Collapse
|
28
|
Wu S, Guo H, Horng H, Liu Y, Li H, Daneshpajouhnejad P, Rosenberg A, Albanese C, Ranjit S, Andrews PM, Levi M, Tang Q, Chen Y. Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo. JOURNAL OF BIOPHOTONICS 2020; 13:e201900246. [PMID: 31688977 DOI: 10.1002/jbio.201900246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
Age-related kidney disease, which is chronic and naturally occurring, is a general term for a set of heterogeneous disorders affecting kidney structures and characterized by a decline in renal function. Age-related renal insufficiency has important implications with regard to body homeostasis, drug toxicity and renal transplantation. In our study, two-photon microscopy was used to image kidney morphological and functional characteristics in an age-related rat model in vivo. The changes in morphology are analyzed based on autofluorescence and Hoechst 33342 labeling in rats with different ages. Structural parameters including renal tubular diameter, cell nuclei density, size and shape are studied and compared with Hematoxylin and Eosin histological analysis. Functional characteristics, such as blood flow, and glomerular filtration rate are studied with high-molecular weight (MW) 500-kDa dextran-fluorescein and low-MW 10-kDa dextran-rhodamine. Results indicate that morphology changes significantly and functional characteristics deteriorate with age. These parameters are potential indicators for evaluating age-related renal morphology and function changes. Combined analyses of these parameters could provide a quantitative, novel method for monitoring kidney diseases and/or therapeutic effects of kidney drugs.
Collapse
Affiliation(s)
- Shulian Wu
- Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, College of Photonic and Electronic Engineering, Fujian Normal University, Ministry of Education, Fuzhou, China
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hengchang Guo
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hannah Horng
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hui Li
- Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, College of Photonic and Electronic Engineering, Fujian Normal University, Ministry of Education, Fuzhou, China
| | | | - Avi Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher Albanese
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Peter M Andrews
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Yu Chen
- Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, College of Photonic and Electronic Engineering, Fujian Normal University, Ministry of Education, Fuzhou, China
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
29
|
Zhang W, Gao Z, Zeng G, Xie H, Liu J, Liu N, Wang G. Clinical significance of urinary plasminogen and fibrinogen gamma chain as novel potential diagnostic markers for non-small-cell lung cancer. Clin Chim Acta 2019; 502:55-65. [PMID: 31821791 DOI: 10.1016/j.cca.2019.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Urinary proteins could be useful as markers for the detection of non-small-cell lung cancer (NSCLC). We investigated the levels of two different proteins in urine samples from NSCLC patients and assessed their diagnostic value. METHODS Urinary plasminogen (PLG) and fibrinogen gamma chain (FGG) levels in 112 NSCLC patients and 197 controls were detected using enzyme linked immunosorbent assay (ELISA). The expression of FGG and PLG in 20 NSCLC tissues and paired adjacent non-tumour tissues were detected through immunohistochemistry. The diagnostic value of FGG and PLG for NSCLC was evaluated through a receiver operating characteristic curve (ROC). RESULTS PLG and FGG were significantly elevated in NSCLC tissues vs paired adjacent non-tumour tissues (p = 0.000) and in urinary samples from NSCLC patients vs healthy controls (p = 0.000). The expression level of PLG in urinary samples was related only to the histological type (p = 0.001). Further, ROC curve analysis revealed that PLG, FGG, and their combination could distinguish NSCLC and its subtypes from healthy controls with an AUC ranging from 0.827 to 0. 947. By comparing urine samples with matching plasma CEA from NSCLC stage I-IV patients (n = 81) and healthy controls (n = 31), the combination of CEA with PLG or FGG showed that the AUC was 0.889 and 0.806, respectively, which is superior to a single biomarker alone. CONCLUSIONS These two urinary proteins could serve as potential markers for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of oncology, Tianjin Baodi hospital, Baodi Clinical College of Tianjin Medical University, China.
| | - Zhouyong Gao
- Department of oncology, Tianjin Baodi hospital, Baodi Clinical College of Tianjin Medical University, China.
| | - Guang Zeng
- Department of thoracic surgery, Tianjin Baodi hospital, Baodi Clinical College of Tianjin Medical University, China.
| | - Hui Xie
- Department of thoracic surgery, Tianjin Baodi hospital, Baodi Clinical College of Tianjin Medical University, China.
| | - Jinbo Liu
- Department of oncology, Tianjin Baodi hospital, Baodi Clinical College of Tianjin Medical University, China.
| | - Ning Liu
- Department of pathology, Tianjin Baodi hospital, Baodi Clinical College of Tianjin Medical University, China.
| | - Guangshun Wang
- Department of oncology, Tianjin Baodi hospital, Baodi Clinical College of Tianjin Medical University, China.
| |
Collapse
|
30
|
Sun D, Wang JJ, Wang W, Wang J, Wang LN, Yao L, Sun YH, Li ZL. Human podocyte injury in the early course of hypertensive renal injury. World J Clin Cases 2019; 7:3698-3710. [PMID: 31799294 PMCID: PMC6887599 DOI: 10.12998/wjcc.v7.i22.3698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hypertension is prevalent in the general population and is regarded as the second leading cause of renal damage and dysfunction, outnumbered only by diabetes. However, the mechanisms remain unclear.
AIM To investigate podocyte injury induced by hypertension in the early course without massive proteinuria or renal dysfunction.
METHODS The hypertension group comprised 18 patients with hypertension accompanied by microalbuminuria, diagnosed with hypertensive renal injury according to biopsy results. For a comparison of pathological changes in renal tissue, control group 1 comprised 10 healthy volunteers, and control group 2 comprised 16 patients who underwent surgery for renal trauma.
RESULTS The hypertension group had significantly higher blood pressure (P = 0.000) and microalbuminuria (P = 0.000) compared with control group 1. In the hypertension group, urinary podocytes were detected following positive staining of podocyte-specific nephrin and/or CD2-associated protein (CD2AP) in urine sediment. Podocyte foot process fusion and a significant decrease in nephrin and/or CD2AP expression in glomeruli were observed in the hypertension group compared with control group 2. This indicated that hypertension caused podocyte injury and detachment from the glomerular basement membrane, which was consistent with urinary detection of podocytes.
CONCLUSION Our results suggest that podocyturia appears early in the course of hypertensive renal injury, and may be a sensitive marker for early prediction of hypertensive renal injury.
Collapse
Affiliation(s)
- Da Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jiao-Jiao Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wei Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Juan Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Ning Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ying-Hui Sun
- Department of Experimental Medicine, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Zi-Long Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
31
|
Kearns AC, Liu F, Dai S, Robinson JA, Kiernan E, Tesfaye Cheru L, Peng X, Gordon J, Morgello S, Abuova A, Lo J, Zanni MV, Grinspoon S, Burdo TH, Qin X. Caspase-1 Activation Is Related With HIV-Associated Atherosclerosis in an HIV Transgenic Mouse Model and HIV Patient Cohort. Arterioscler Thromb Vasc Biol 2019; 39:1762-1775. [PMID: 31315440 PMCID: PMC6703939 DOI: 10.1161/atvbaha.119.312603] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Atherosclerotic cardiovascular disease (ASCVD) is an increasing cause of morbidity and mortality in people with HIV since the introduction of combination antiretroviral therapy. Despite recent advances in our understanding of HIV ASCVD, controversy still exists on whether this increased risk of ASCVD is due to chronic HIV infection or other risk factors. Mounting biomarker studies indicate a role of monocyte/macrophage activation in HIV ASCVD; however, little is known about the mechanisms through which HIV infection mediates monocyte/macrophage activation in such a way as to engender accelerated atherogenesis. Here, we experimentally investigated whether HIV expression is sufficient to accelerate atherosclerosis and evaluated the role of caspase-1 activation in monocytes/macrophages in HIV ASCVD. Approach and Results: We crossed a well-characterized HIV mouse model, Tg26 mice, which transgenically expresses HIV-1, with ApoE-/- mice to promote atherogenic conditions (Tg26+/-/ApoE-/-). Tg26+/-/ApoE-/- have accelerated atherosclerosis with increased caspase-1 pathway activation in inflammatory monocytes and atherosclerotic vasculature compared with ApoE-/-. Using a well-characterized cohort of people with HIV and tissue-banked aortic plaques, we documented that serum IL (interleukin)-18 was higher in people with HIV compared with non-HIV-infected controls, and in patients with plaques, IL-18 levels correlated with monocyte/macrophage activation markers and noncalcified inflammatory plaques. In autopsy-derived aortic plaques, caspase-1+ cells and CD (clusters of differentiation) 163+ macrophages correlated. CONCLUSIONS These data demonstrate that expression of HIV is sufficient to accelerate atherogenesis. Further, it highlights the importance of caspase-1 and monocyte/macrophage activation in HIV atherogenesis and the potential of Tg26+/-/ApoE-/- as a tool for mechanistic studies of HIV ASCVD.
Collapse
Affiliation(s)
- Alison C. Kearns
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
- Co-first author, these authors contributed equally to this work
| | - Fengming Liu
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
- Division of Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433
- Co-first author, these authors contributed equally to this work
| | - Shen Dai
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Jake A. Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Elizabeth Kiernan
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Lediya Tesfaye Cheru
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Xiao Peng
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mount Sinai Medical Center, New York, NY
| | - Aishazhan Abuova
- Departments of Neurology, Neuroscience, and Pathology, Mount Sinai Medical Center, New York, NY
| | - Janet Lo
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Markella V. Zanni
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Steven Grinspoon
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Tricia H. Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
- Division of Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433
| |
Collapse
|
32
|
Li X, Ma A, Liu K. Geniposide alleviates lipopolysaccharide-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1524-1532. [PMID: 30982359 DOI: 10.1080/21691401.2019.1601630] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteinuria is one of the most important clinical features of nephrotic syndrome (NS). Injury of podocyte has been proved to contribute to the occurrence of proteinuria. This study explored the effects of geniposide (GEN) on lipopolysaccharide (LPS)-caused murine kidney podocyte MPC5 apoptosis and autophagy. Viability and apoptosis of MPC5 cells were respectively detected with the help of CCK-8 assay and Guava Nexin assay. 3-Methyladenine (3-MA) was used as an autophagy inhibitor, while rapamycin as autophagy activator. Si-Beclin-1 was transfected in MPC5 cells to down-regulate the expression of Beclin-1. We found that LPS stimulation significantly caused MPC5 cell viability reduction, apoptosis and autophagy (P < .05 or P < .01). GEN treatment remarkably alleviated the LPS-caused MPC5 cell viability reduction and apoptosis, but promoted cell autophagy (P < .05). Moreover, 3-MA incubation or si-Beclin-1 transfection notably weakened the effects of GEN on LPS-caused MPC5 cell apoptosis and autophagy (P < .05), while rapamycin had opposite effects (P < .05). Furthermore, GEN activated Ras/Raf/MEK/ERK pathway in LPS-treated MPC5 cells (P < .05). In conclusion, this research verified the protective effects of GEN on podocytes damage. GEN alleviates LPS-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy. Highlights: LPS causes podocyte MPC5 apoptosis and autophagy. GEN alleviates LPS-caused MPC5 cell apoptosis, but promotes cell autophagy. 3-MA or si-Beclin-1 weakens the effects of GEN on LPS-treated MPC5 cells. Rapamycin strengthens the effects of GEN on LPS-treated MPC5 cells. GEN activates Ras/Raf/MEK/ERK pathway in LPS-treated MPC5 cells.
Collapse
Affiliation(s)
- Xia Li
- a Department of Nephrology , Jining No.1 People's Hospital , Jining , China.,b Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University , Jining , China
| | - Aijing Ma
- c Department of Nephrology , The Ninth People's Hospital of Chongqing , Chongqing , China
| | - Kun Liu
- a Department of Nephrology , Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
33
|
Elevated indoleamine-2,3-dioxygenase enzyme activity in a novel mouse model of HIV-associated atherosclerosis. AIDS 2019; 33:1557-1564. [PMID: 31306164 DOI: 10.1097/qad.0000000000002255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE HIV atherosclerosis and cardiovascular disease (CVD) represent a significant human health burden in the era of combination antiretroviral therapy (cART). The pathogenesis of HIV atherosclerosis is still poorly understood, due, in part, to the lack of a suitable small animal model. Indoleamine-2,3-dioxygenase (IDO) enzyme activity is the first and rate-limiting step in tryptophan catabolism and is measured by the kynurenine to tryptophan ratio (KTR). The serum KTR is a biomarker of inflammation and has recently been implicated as an important risk factor for CVD in patients living with HIV (PLWH) who are virologically suppressed under cART. However, IDO activity in HIV-associated CVD has not been studied in mouse model before. DESIGN A novel mouse model of HIV atherosclerosis (Tg26/ApoE) was generated and examined for IDO activity and atherogenesis throughout 8 weeks on a high-fat diet. Tg26/ApoE mice were compared with Tg26 and ApoE single transgenic mice, before and during a high-fat diet. METHOD Serum kynurenine, tryptophan and percentage of aortic plaque formation were measured. Additionally, levels of relevant cytokines were investigated in Tg26/ApoE and ApoE. RESULTS Tg26/ApoE developed an accelerated atherosclerosis with increasing levels of KTR that were associated with plaque progression. This accelerated plaque was potentially driven by elevated levels of circulating IL-6. CONCLUSION These results indicate that Tg26/ApoE serve as a new mouse model for HIV-induced atherogenesis, and aid in understanding the role of tryptophan catabolism in the pathogenesis of HIV atherosclerosis/CVD.
Collapse
|
34
|
Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne's Thread. Int J Mol Sci 2019; 20:ijms20153711. [PMID: 31362427 PMCID: PMC6695865 DOI: 10.3390/ijms20153711] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Amplification of oxidative stress is present since the early stages of chronic kidney disease (CKD), holding a key position in the pathogenesis of renal failure. Induction of renal pro-oxidant enzymes with excess generation of reactive oxygen species (ROS) and accumulation of dityrosine-containing protein products produced during oxidative stress (advanced oxidation protein products—AOPPs) have been directly linked to podocyte damage, proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) as well as tubulointerstitial fibrosis. Vascular oxidative stress is considered to play a critical role in CKD progression, and ROS are potential mediators of the impaired myogenic responses of afferent renal arterioles in CKD and impaired renal autoregulation. Both oxidative stress and inflammation are CKD hallmarks. Oxidative stress promotes inflammation via formation of proinflammatory oxidized lipids or AOPPs, whereas activation of nuclear factor κB transcription factor in the pro-oxidant milieu promotes the expression of proinflammatory cytokines and recruitment of proinflammatory cells. Accumulating evidence implicates oxidative stress in various clinical models of CKD, including diabetic nephropathy, IgA nephropathy, polycystic kidney disease as well as the cardiorenal syndrome. The scope of this review is to tackle the issue of oxidative stress in CKD in a holistic manner so as to provide a future framework for potential interventions.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
35
|
Artunc F, Wörn M, Schork A, Bohnert BN. Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol (Oxf) 2019; 225:e13249. [PMID: 30597733 DOI: 10.1111/apha.13249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Sodium retention and extracellular volume expansion are typical features of patients with nephrotic syndrome. In recent years, from in vitro data, endoluminal activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases has been proposed as an underlying mechanism. Recently, this concept was supported in vivo in nephrotic mice that were protected from proteolytic ENaC activation and sodium retention by the use of aprotinin for the pharmacological inhibition of urinary serine protease activity. These and other findings from studies in both rodents and humans highlight the impact of active proteases in the urine, or proteasuria, on ENaC-mediated sodium retention and edema formation in nephrotic syndrome. Targeting proteasuria could become a therapeutic approach to treat patients with nephrotic syndrome. However, pathophysiologically relevant proteases remain to be identified. In this review, we introduce the concept of proteasuria to explain tubular sodium avidity and conclude that proteasuria can be considered as a key mechanism of sodium retention in patients with nephrotic syndrome.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Anja Schork
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
36
|
Yang XQ, Huang YJ, Zhai WS, Ren XQ, Guo QY, Zhang X, Yang M, Zhang J, Ding Y, Zhu S, Yamamoto T, Sun Y. Correlation between endocapillary proliferative and nephrotic-range proteinuria in children with Henoch-Schönlein purpura nephritis. Pediatr Nephrol 2019; 34:663-670. [PMID: 30415419 DOI: 10.1007/s00467-018-4134-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The endocapillary proliferative (EP) lesion is not included in the International Study of Kidney Disease in Children (ISKDC) pathological classification of Henoch-Schönlein purpura nephritis (HSPN). The main objective of the study was to determine the pathological importance of EP in the development of proteinuria in children with Henoch-Schönlein purpura nephritis (HSPN). METHODS The pathological features of 148 HSPN children with nephrotic-range proteinuria were investigated retrospectively. Urinary IgG, transferrin, and albumin levels were measured by immunonephelometry. The correlations between EP lesion and 24-h proteinuria, urinary IgG, urinary transferrin, and urinary albumin were analyzed. Renal biopsy specimens were immunohistochemically stained for nephrin and podocalyxin. RESULTS Of the total 581 cases of children with HSPN who underwent renal biopsy, 148 cases (25.5%) presented with nephrotic-range proteinuria. The pathological types of HSPN with nephrotic-range proteinuria were categorized as IIb, IIIa, IIIb, IIIb with diffuse EP, IVb, pure focal EP type, and pure diffuse EP type. Among these types, pure diffuse EP type accounted for 7.4%. The levels of 24-h proteinuria and urinary albumin were the highest in pure diffuse EP type among all pathological types, and the percentage of EP correlated with 24-h proteinuria and urinary albumin levels. 24-h proteinuria was significantly higher in pure diffuse EP type relative to HSPN IIb type, and significantly higher in IIIb with EP, compared with HSPN IIIb. Nephrin, but not podocalyxin, was downregulated in EP segment. CONCLUSIONS EP is an independent pathogenic factor in HSPN with nephrotic-range proteinuria. Downregulation of nephrin in EP segment is a potential molecular mechanism of nephrotic-range proteinuria. Albumin is the major urinary protein component in HSPN with EP.
Collapse
Affiliation(s)
- Xiao-Qing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Yan-Jie Huang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China.
| | - Wen-Sheng Zhai
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Xian-Qing Ren
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Qing-Yin Guo
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Xia Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Meng Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Jian Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Ying Ding
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| | - Shan Zhu
- Department of Pediatrics, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, 6 Dongfeng Road, Zhengzhou, 450000, Henan, China.
| | - Tatsuo Yamamoto
- Division of Nephrology, Fujieda Municipal General Hospital, Shizuoka, Japan
| | - Yuan Sun
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
37
|
Cui FQ, Wang YF, Gao YB, Meng Y, Cai Z, Shen C, Liu ZQ, Jiang XC, Zhao WJ. Effects of BSF on Podocyte Apoptosis via Regulating the ROS-Mediated PI3K/AKT Pathway in DN. J Diabetes Res 2019; 2019:9512406. [PMID: 31886291 PMCID: PMC6925942 DOI: 10.1155/2019/9512406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The ROS-mediated PI3K/AKT pathway plays a key role in podocyte apoptosis and DN progression. Our previous study demonstrated that Baoshenfang (BSF) can decrease proteinuria and attenuate podocyte injury. However, the effects of BSF on podocyte apoptosis induced by the ROS-mediated PI3K/AKT pathway remain unclear. Herein, in vivo and in vitro studies have been performed. In our in vivo study, BSF significantly decreased 24-h urinary protein, serum creatinine, and blood urea nitrogen levels in DN mice. Meanwhile, BSF significantly inhibited oxidative stress and podocyte apoptosis in our in vivo and in vitro studies. Moreover, BSF significantly decreased the inhibition of the PI3K/AKT pathway induced by HG in DN. More importantly, the effects of BSF on podocyte apoptosis were reversed by PI3K siRNA transfection. In conclusion, BSF can decrease proteinuria and podocyte apoptosis in DN, in part through regulating the ROS-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fang-qiang Cui
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yue-Fen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yan-bin Gao
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhen Cai
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhi-qiang Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Xin-can Jiang
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wen-jing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|
38
|
Vaněčková I, Hojná S, Kadlecová M, Vernerová Z, Kopkan L, Červenka L, Zicha J. Renoprotective effects of ET(A) receptor antagonists therapy in experimental non-diabetic chronic kidney disease: Is there still hope for the future? Physiol Res 2018; 67:S55-S67. [PMID: 29947528 DOI: 10.33549/physiolres.933898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is a life-threatening disease arising as a frequent complication of diabetes, obesity and hypertension. Since it is typically undetected for long periods, it often progresses to end-stage renal disease. CKD is characterized by the development of progressive glomerulosclerosis, interstitial fibrosis and tubular atrophy along with a decreased glomerular filtration rate. This is associated with podocyte injury and a progressive rise in proteinuria. As endothelin-1 (ET-1) through the activation of endothelin receptor type A (ET(A)) promotes renal cell injury, inflammation, and fibrosis which finally lead to proteinuria, it is not surprising that ET(A) receptors antagonists have been proven to have beneficial renoprotective effects in both experimental and clinical studies in diabetic and non-diabetic CKD. Unfortunately, fluid retention encountered in large clinical trials in diabetic CKD led to the termination of these studies. Therefore, several advances, including the synthesis of new antagonists with enhanced pharmacological activity, the use of lower doses of ET antagonists, the addition of diuretics, plus simply searching for distinct pathological states to be treated, are promising targets for future experimental studies. In support of these approaches, our group demonstrated in adult subtotally nephrectomized Ren-2 transgenic rats that the addition of a diuretic on top of renin-angiotensin and ET(A) blockade led to a further decrease of proteinuria. This effect was independent of blood pressure which was normalized in all treated groups. Recent data in non-diabetic CKD, therefore, indicate a new potential for ET(A) antagonists, at least under certain pathological conditions.
Collapse
Affiliation(s)
- I Vaněčková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
39
|
Qiao J, Liu Y, Jiang Z, Yang Y, Liu W, Han B. Preparation and renoprotective effects of carboxymethyl chitosan oligosaccharide on adriamycin nephropathy. Carbohydr Polym 2018; 201:347-356. [PMID: 30241828 DOI: 10.1016/j.carbpol.2018.06.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022]
Abstract
Carboxymethyl chitosan oligosaccharide (CMCOS), the hydrolytic product of carboxymethyl chitosan, is nontoxic, easily absorbable and good antioxidant. In this study, CMCOS was prepared and its properties in adriamycin nephropathy therapy were investigated. Our results showed that CMCOS had good curative effects on renal function and parenchymal injury induced by adriamycin. CMCOS administration significantly relieved symptoms of proteinuria, hypoalbuminemia, hyperlipidemia, renal hyperplasia and histological lesions in rats (P < 0.01). Further exploration for the underlying mechanisms indicated that CMCOS treatment reduced macrophage accumulation, myofibroblast transdifferentiation and podocyte apoptosis. CMCOS treatment could regulate secretions of cytokines (IL-1β, TNF-ɑ and TGF-β1) and improve activities of antioxidative enzymes (SOD, GSH-Px) (P < 0.01). In conclusion, therapeutic effects of CMCOS on renal injury mediated by inflammation, fibrosis and oxidative stress made it a good kidney health product and a promising candidate in clinical treatment of human chronic kidney disease.
Collapse
Affiliation(s)
- Jing Qiao
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Yuying Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Yan Yang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
40
|
Daehn IS. Glomerular Endothelial Cell Stress and Cross-Talk With Podocytes in Early [corrected] Diabetic Kidney Disease. Front Med (Lausanne) 2018; 5:76. [PMID: 29629372 PMCID: PMC5876248 DOI: 10.3389/fmed.2018.00076] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the major causes of morbidity and mortality in diabetic patients and also the leading single cause of end-stage renal disease in the United States. A large proportion of diabetic patients develop DKD and others don't, even with comparable blood glucose levels, indicating a significant genetic component of disease susceptibility. The glomerulus is the primary site of diabetic injury in the kidney, glomerular hypertrophy and podocyte depletion are glomerular hallmarks of progressive DKD, and the degree of podocyte loss correlates with severity of the disease. We know that chronic hyperglycemia contributes to both microvascular and macrovascular complications, as well as podocyte injury. We are beginning to understand the role of glomerular endothelial injury, as well as the involvement of reactive oxygen species and mitochondrial stress, which play a direct role in DKD and in other diabetic complications. There is, however, a gap in our knowledge that links genetic susceptibility to early molecular mechanisms and proteinuria in DKD. Emerging research that explores glomerular cell's specific responses to diabetes and cell cross-talk will provide mechanistic clues that underlie DKD and provide novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Ilse Sofia Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York City, NY, United States
| |
Collapse
|
41
|
Bohnert BN, Menacher M, Janessa A, Wörn M, Schork A, Daiminger S, Kalbacher H, Häring HU, Daniel C, Amann K, Sure F, Bertog M, Haerteis S, Korbmacher C, Artunc F. Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. Kidney Int 2018; 93:159-172. [DOI: 10.1016/j.kint.2017.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022]
|
42
|
Cao S, Liu YG. [Research advances in the association between transient receptor potential cation channel 6 and kidney disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:72-76. [PMID: 29335087 PMCID: PMC7390320 DOI: 10.7499/j.issn.1008-8830.2018.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Transient receptor potential cation channel 6 (TRPC6) is a member of the transient receptor superfamily encoded by the TRPC6 gene and is widely expressed in tissues and organs of the human body, especially in the glomerular podocytes. TRPC6 interacts with various slit diaphragm (SD) proteins including podocin, nephrin, ACTN4, and CD2AP to maintain the normal structure and function of glomerular podocytes. Foot process fusion caused by podocyte damage due to various factors is the most important morphological change in kidney disease. This article reviews the biological function of TRPC6 and its effect on kidney disease.
Collapse
Affiliation(s)
- Shan Cao
- Graduate School of Youjiang University for Nationalities, Baise, Gangxi 533000, China.
| | | |
Collapse
|
43
|
Coelho SC, Berillo O, Caillon A, Ouerd S, Fraulob-Aquino JC, Barhoumi T, Offermanns S, Paradis P, Schiffrin EL. Three-Month Endothelial Human Endothelin-1 Overexpression Causes Blood Pressure Elevation and Vascular and Kidney Injury. Hypertension 2018; 71:208-216. [DOI: 10.1161/hypertensionaha.117.09925] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/08/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Suellen C. Coelho
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Olga Berillo
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Antoine Caillon
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Sofiane Ouerd
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Júlio C. Fraulob-Aquino
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Tlili Barhoumi
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Stefan Offermanns
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Pierre Paradis
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| | - Ernesto L. Schiffrin
- From the Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (S.C.C., O.B., A.C., S.O., J.C.F.-A., T.B., P.P., E.L.S.), and Department of Medicine (E.L.S.), Sir Mortimer B. Davis–Jewish General Hospital, McGill University, Montreal, Québec, Canada; and Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany (S.O.)
| |
Collapse
|
44
|
Saurus P, Tolvanen TA, Lindfors S, Kuusela S, Holthöfer H, Lehtonen E, Lehtonen S. Inhibition of SHIP2 in CD2AP-deficient podocytes ameliorates reactive oxygen species generation but aggravates apoptosis. Sci Rep 2017; 7:10731. [PMID: 28878342 PMCID: PMC5587593 DOI: 10.1038/s41598-017-10512-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/09/2017] [Indexed: 01/11/2023] Open
Abstract
Lack of CD2-associated protein (CD2AP) in mice increases podocyte apoptosis and leads to glomerulosclerosis and renal failure. We showed previously that SHIP2, a negative regulator of the PI3K/AKT signalling pathway, interacts with CD2AP. Here, we found that the expression level and activity of SHIP2 and production of reactive oxygen species (ROS) are increased in cultured CD2AP knockout (CD2AP−/−) mouse podocytes. Oxidative stress was also increased in CD2AP−/− mouse glomeruli in vivo. We found that puromycin aminonucleoside (PA), known to increase ROS production and apoptosis, increases SHIP2 activity and reduces CD2AP expression in cultured human podocytes. PDK1 and CDK2, central regulators of AKT, were downregulated in CD2AP−/− or PA-treated podocytes. Downregulation of PDK1 and CDK2, ROS generation and apoptosis were prevented by CD2AP overexpression in both models. Notably, inhibition of SHIP2 activity with a small molecule inhibitor AS1949490 ameliorated ROS production in CD2AP−/− podocytes, but, surprisingly, further reduced PDK1 expression and aggravated apoptosis. AKT- and ERK-mediated signalling was diminished and remained reduced after AS1949490 treatment in the absence of CD2AP. The data suggest that inhibition of the catalytic activity of SHIP2 is beneficial in reducing oxidative stress, but leads to deleterious increase in apoptosis in podocytes with reduced expression of CD2AP.
Collapse
Affiliation(s)
- Pauliina Saurus
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | | | - Sonja Lindfors
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Sara Kuusela
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Harry Holthöfer
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
45
|
Autophagy upregulation ameliorates cell injury in Sequestosome 1 knockout podocytes in vitro. Biochem Biophys Res Commun 2017; 490:98-103. [DOI: 10.1016/j.bbrc.2017.05.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
|
46
|
Bhatia S, Qualls C, Crowell TA, Arynchyn A, Thyagarajan B, Smith LJ, Kalhan R, Jacobs DR, Kramer H, Duprez D, Celli B, Sood A. Rapid decline in lung function in healthy adults predicts incident excess urinary albumin excretion later in life. BMJ Open Respir Res 2017; 4:e000194. [PMID: 29071073 PMCID: PMC5647541 DOI: 10.1136/bmjresp-2017-000194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Chronic lung disease, often characterised by rapid decline in lung function, is associated with vascular endothelial dysfunction (characterised by moderate to severe excess urinary albumin excretion (eUAE) but their longitudinal relationship is inadequately studied. In a bidirectional longitudinal examination of healthy adults, we analysed the following two hypotheses: (1) rapid decline (ie, highest tertile of lung function decline) predicts eUAE and (2) eUAE predicts rapid decline. Methods We performed a secondary data analysis from 3052 eligible participants from the Coronary Artery Risk Development in Young Adults (CARDIA) study. For analysis 1, the predictor was rapid decline in lung function between the peak value (attained at or before CARDIA visit year 10 or Y10 at a mean age of 35 years) and Y20; and the outcome was incident eUAE at Y20 and/or Y25. For analysis 2, the predictor was eUAE at Y10 and the outcome was rapid decline between Y10 and Y20. Results After adjustment for covariates in analysis 1, rapid decline in FEV1 or FVC between peak and Y20 predicted incident eUAE at Y20 and/or Y25 (OR 1.51 and 1.44, respectively; p≤0.05 for both analyses). In analysis 2, eUAE at Y10 did not predict subsequent rapid decline. Conclusions Healthy adults with rapid decline in lung function are at risk for developing vascular endothelial dysfunction, as assessed by incident eUAE, later in life.
Collapse
Affiliation(s)
- Sapna Bhatia
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Clifford Qualls
- Office of Research, Clinical Translational Science Center,University of New Mexico, Albuquerque, New Mexico, USA
| | - Thomas A Crowell
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Alexander Arynchyn
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Lewis J Smith
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ravi Kalhan
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Holly Kramer
- Department of Medicine, Loyola University School of Medicine, Maywood, Illinois, USA
| | - Daniel Duprez
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | | | - Akshay Sood
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
47
|
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469:1415-1423. [DOI: 10.1007/s00424-017-2014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022]
|
48
|
Conley SM, Abais-Battad JM, Yuan X, Zhang Q, Boini KM, Li PL. Contribution of guanine nucleotide exchange factor Vav2 to NLRP3 inflammasome activation in mouse podocytes during hyperhomocysteinemia. Free Radic Biol Med 2017; 106:236-244. [PMID: 28193546 PMCID: PMC5423457 DOI: 10.1016/j.freeradbiomed.2017.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 01/08/2023]
Abstract
NADPH oxidase (NOX)-derived reactive oxygen species (ROS) have been demonstrated to mediate the activation of NOD-like receptor protein 3 (NLRP3) inflammasomes in podocytes in response to elevated levels of homocysteine (Hcys). However, it remains unknown how NLRP3 inflammasome activation is triggered by NOX. The present study tested whether the guanine nucleotide exchange factor Vav2 mediates Rac1-mediated NOX activation in response to elevated Hcys leading to NLRP3 inflammasome activation in podocytes and consequent glomerular injury. In a mouse model of hyperhomocysteinemia (hHcys), we found that mice with hHcys (on the FF diet) or oncoVav2 (a constitutively active form of Vav2) transfection in the kidney exhibited increased colocalization of NLRP3 with apoptosis-associated speck-like protein (ASC) or caspase-1 and elevated IL-1β levels in glomeruli, indicating the formation and activation of the NLRP3 inflammasome. This glomerular NLRP3 inflammasome activation was accompanied by podocyte dysfunction and glomerular injury, even sclerosis. Local transfection of Vav2 shRNA plasmids significantly attenuated hHcys-induced NLRP3 inflammasome activation, podocyte injury, and glomerular sclerosis. In cultured podocytes, Hcys treatment and oncoVav2 transfection were also found to increase NLRP3 inflammasome formation and activation, which were all inhibited by Vav2 shRNA. Furthermore, Vav2 shRNA prevented Hcys-induced podocyte damage as shown by restoring Hcys-impaired VEGF secretion and podocin production. This inhibitory action of Vav2 shRNA on Hcys-induced podocyte injury was associated with reduction of Rac1 activity and ROS production. These results suggest that elevated Hcys levels activate Vav2 and thereby increase NOX activity leading to ROS production, which triggers NLRP3 inflammasome activation, podocyte dysfunction and glomerular injury.
Collapse
Affiliation(s)
- Sabena M Conley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Justine M Abais-Battad
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Xinxu Yuan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Qinghua Zhang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Krishna M Boini
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
49
|
Ono S, Kume S, Yasuda-Yamahara M, Yamahara K, Takeda N, Chin-Kanasaki M, Araki H, Sekine O, Yokoi H, Mukoyama M, Uzu T, Araki SI, Maegawa H. O-linked β-N-acetylglucosamine modification of proteins is essential for foot process maturation and survival in podocytes. Nephrol Dial Transplant 2017; 32:1477-1487. [DOI: 10.1093/ndt/gfw463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 11/14/2022] Open
|
50
|
Abstract
It has become clear that reactive oxygen species (ROS) contribute to the development of hypertension via myriad effects. ROS are essential for normal cell function; however, they mediate pathologic changes in the brain, the kidney, and blood vessels that contribute to the genesis of chronic hypertension. There is also emerging evidence that ROS contribute to immune activation in hypertension. This article discusses these events and how they coordinate to contribute to hypertension and its consequent end-organ damage.
Collapse
Affiliation(s)
- Roxana Loperena
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2220 Pierce Drive, Room 536 Robinson Research Building, Nashville, TN 37232, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, 2220 Pierce Drive, Room 536 Robinson Research Building, Nashville, TN 37232, USA.
| |
Collapse
|