1
|
Jeong S, Rhee JS, Lee JH. Snapin Specifically Up-Regulates Ca v1.3 Ca 2+ Channel Variant with a Long Carboxyl Terminus. Int J Mol Sci 2021; 22:ijms222011268. [PMID: 34681928 PMCID: PMC8537452 DOI: 10.3390/ijms222011268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavβ3/α2δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.
Collapse
Affiliation(s)
- Sua Jeong
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
| | - Jeong-Seop Rhee
- Synaptic Physiology Group, Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany;
| | - Jung-Ha Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
- Correspondence: ; Tel.: +82-2-705-8791; Fax: +82-3-704-3601
| |
Collapse
|
2
|
|
3
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
4
|
Sun XL, Yuan JF, Jin T, Cheng XQ, Wang Q, Guo J, Zhang W, Zhang Y, Lu L, Zhang Z. Physical and functional interaction of Snapin with Cav1.3 calcium channel impacts channel protein trafficking in atrial myocytes. Cell Signal 2016; 30:118-129. [PMID: 27915047 DOI: 10.1016/j.cellsig.2016.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
The L-type Ca2+ channel (LTCC) Cav1.3 plays a critical role in generating electrical activity in atrial myocytes and cardiac pacemaker cells. However, the molecular and functional basis of Cav1.3 modulation in atrial myocytes has not yet been fully understood. By using the yeast two-hybrid system (Y2H), a Cav1.3-associated protein was screened, which was identified as Snapin. Physical interaction and co-localization between Snapin and Cav1.3 were then confirmed in both the heterologous expression system and mouse atrial myocytes. Direct interaction between them was additionally addressed in a GST pull down assay. Furthermore, both total and membrane expressions of Cav1.3 were significantly impaired by Snapin overexpression, resulting in the ubiquitin-proteasomal degradation of Cav1.3 and a consequent reduction of the densities of whole-cell ICa-L. Snapin-induced down-regulation of Cav1.3 was reversed by SNAP-23 competitively. What is more important is that the depressed-expression of Cav1.3 paralleled with enhanced-expression of Snapin was documented in atrial samples from atrial fibrillation (AF) patients. Our results provide the evidence of a direct regulatory role of Snapin on Cav1.3 channels in atrial myocytes, and highlight a potential role of Snapin in the regulation of Cav1.3 in atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ju-Fang Yuan
- Anesthesia Department of The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Tao Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Qing Cheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiang Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jia Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; Department of Nephrology at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016; 7:23. [PMID: 26903868 PMCID: PMC4749865 DOI: 10.3389/fphar.2016.00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments.
Collapse
Affiliation(s)
- Tanja Vukićević
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Maike Schulz
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Dörte Faust
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlin, Germany; German Centre for Cardiovascular ResearchBerlin, Germany
| |
Collapse
|
6
|
Cano-Peñalver JL, Griera M, Serrano I, Rodríguez-Puyol D, Dedhar S, de Frutos S, Rodríguez-Puyol M. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption. FASEB J 2014; 28:3645-59. [PMID: 24784577 DOI: 10.1096/fj.13-249250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the clinical alterations observed in chronic renal disease (CRD) is the impaired urine concentration, known as diabetes insipidus (DI). Tubulointerstitial fibrosis of the kidney is also a pathological finding observed in CRD and involves composition of extracellular matrix (ECM). However, an association between these two events has not been elucidated. In this study, we showed that the extracellular-to-intracellular scaffold protein integrin-linked kinase (ILK) regulates expression of tubular water channel aquaporin-2 (AQP2) and its apical membrane presence in the renal tubule. Basally, polyuria and decreased urine osmolality were present in ILK conditional-knockdown (cKD-ILK) adult mice compared with nondepleted ILK littermates. No changes were observed in arginine-vasopressin (AVP) blood levels, renal receptor (V2R), or AQP3 expression. However, tubular AQP2 was decreased in expression and apical membrane presence in cKD-ILK mice, where the canonical V2R/cAMP axis activation is still functional, but independent of the absence of ILK. Thus, cKD-ILK constitutes a nephrogenic diabetes insipidus (NDI) model. AQP2 and ILK colocalize in cultured inner medullary collecting duct (mIMCD3) cells. Specific ILK siRNAs and collagen I (Col) decrease ILK and AQP2 levels and AQP2 presence on the membrane of tubular mIMCD3 cells, which impairs the capacity of the cells to transport water under hypotonic stress. The present work points to ILK as a therapeutic target in NDI.
Collapse
Affiliation(s)
- Jose Luis Cano-Peñalver
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Serrano
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain; Biomedical Research Foundation and Department of Nephrology, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - Sergio de Frutos
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain;
| | - Manuel Rodríguez-Puyol
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Su H, Liu B, Fröhlich O, Ma H, Sands JM, Chen G. Small GTPase Rab14 down-regulates UT-A1 urea transport activity through enhanced clathrin-dependent endocytosis. FASEB J 2013; 27:4100-7. [PMID: 23796783 PMCID: PMC4046183 DOI: 10.1096/fj.13-229294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/11/2013] [Indexed: 11/11/2022]
Abstract
The UT-A1 urea transporter plays an important role in the urinary concentration mechanism. However, the molecular mechanisms regarding UT-A1 trafficking, endocytosis, and degradation are still unclear. In this study, we identified the small GTPase Rab14 as a binding partner to the C terminus of UT-A1 in a yeast 2-hybrid assay. Interestingly, UT-A1 binding is preferential for the GDP-bound inactive form of Rab14. Coinjection of Rab14 in Xenopus oocytes results in a decrease of UT-A1 urea transport activity, suggesting that Rab14 acts as a negative regulator of UT-A1. We subsequently found that Rab14 reduces the cell membrane expression of UT-A1, as evidenced by cell surface biotinylation. This effect is blocked by chlorpromazine, an inhibitor of the clathrin-mediated endocytic pathway, but not by filipin, an inhibitor of the caveolin-mediated endocytic pathway. In kidney, Rab14 is mainly expressed in IMCD epithelial cells with a pattern identical to UT-A1 expression. Consistent with its role in participating in clathrin-mediated endocytosis, Rab14 localizes in nonlipid raft microdomains and codistributes with Rab5, a marker of the clathrin-mediated endocytic pathway. Taken together, our study suggests that Rab14, as a novel UT-A1 partner, may have an important regulatory function for UT-A1 urea transport activity in the kidney inner medulla.
Collapse
Affiliation(s)
- Hua Su
- 1Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
8
|
LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med 2013; 45:e36. [PMID: 23949442 PMCID: PMC3789260 DOI: 10.1038/emm.2013.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/20/2013] [Accepted: 06/10/2013] [Indexed: 01/17/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a gene that, upon mutation, causes autosomal-dominant familial Parkinson's disease (PD). Yeast two-hybrid screening revealed that Snapin, a SNAP-25 (synaptosomal-associated protein-25) interacting protein, interacts with LRRK2. An in vitro kinase assay exhibited that Snapin is phosphorylated by LRRK2. A glutathione-S-transferase (GST) pull-down assay showed that LRRK2 may interact with Snapin via its Ras-of-complex (ROC) and N-terminal domains, with no significant difference on interaction of Snapin with LRRK2 wild type (WT) or its pathogenic mutants. Further analysis by mutation study revealed that Threonine 117 of Snapin is one of the sites phosphorylated by LRRK2. Furthermore, a Snapin T117D phosphomimetic mutant decreased its interaction with SNAP-25 in the GST pull-down assay. SNAP-25 is a component of the SNARE (Soluble NSF Attachment protein REceptor) complex and is critical for the exocytosis of synaptic vesicles. Incubation of rat brain lysate with recombinant Snapin T117D, but not WT, protein caused decreased interaction of synaptotagmin with the SNARE complex based on a co-immunoprecipitation assay. We further found that LRRK2-dependent phosphorylation of Snapin in the hippocampal neurons resulted in a decrease in the number of readily releasable vesicles and the extent of exocytotic release. Combined, these data suggest that LRRK2 may regulate neurotransmitter release via control of Snapin function by inhibitory phosphorylation.
Collapse
|
9
|
Besserer A, Burnotte E, Bienert GP, Chevalier AS, Errachid A, Grefen C, Blatt MR, Chaumont F. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. THE PLANT CELL 2012; 24:3463-81. [PMID: 22942383 PMCID: PMC3462644 DOI: 10.1105/tpc.112.101758] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.
Collapse
Affiliation(s)
- Arnaud Besserer
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Emeline Burnotte
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Adrien S. Chevalier
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Abdelmounaim Errachid
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - François Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Address correspondence to
| |
Collapse
|
10
|
Cell biology of vasopressin-regulated aquaporin-2 trafficking. Pflugers Arch 2012; 464:133-44. [DOI: 10.1007/s00424-012-1129-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 01/03/2023]
|
11
|
Oh E, Kalwat MA, Kim MJ, Verhage M, Thurmond DC. Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem 2012; 287:25821-33. [PMID: 22685295 DOI: 10.1074/jbc.m112.361501] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and β-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ∼20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in β-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Pediatrics, Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
12
|
Xu G, Su H, Carter CB, Fröhlich O, Chen G. Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking. Am J Physiol Cell Physiol 2012; 302:C1012-8. [PMID: 22262062 PMCID: PMC3330733 DOI: 10.1152/ajpcell.00440.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/17/2012] [Indexed: 11/22/2022]
Abstract
The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that actin binding to UT-A1's carboxyl terminus was abolished when serine 918 was mutated to alanine. In polarized UT-A1-MDCK cells, cortical filamentous (F) actin colocalizes with UT-A1 at the apical membrane and the subapical cytoplasm. In the cell surface, both actin and UT-A1 are distributed in the lipid raft microdomains. Disruption of the F-actin cytoskeleton by latrunculin B resulted in UT-A1 accumulation in the cell membrane as measured by biotinylation. This effect was mainly due to inhibition of UT-A1 endocytosis in both clathrin and caveolin-mediated endocytic pathways. In contrast, actin depolymerization facilitated forskolin-stimulated UT-A1 trafficking to the cell surface. Functionally, depolymerization of actin by latrunculin B significantly increased UT-A1 urea transport activity in an oocyte expression system. Our study shows that cortical F-actin not only serves as a structural protein, but directly interacts with UT-A1 and plays an important role in controlling UT-A1 cell surface expression by affecting both endocytosis and trafficking, therefore regulating UT-A1 bioactivity.
Collapse
Affiliation(s)
- Gang Xu
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
14
|
Edemir B, Pavenstädt H, Schlatter E, Weide T. Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflugers Arch 2011; 461:607-21. [PMID: 21327781 DOI: 10.1007/s00424-011-0928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 01/02/2023]
Abstract
The kidneys participate in whole-body homeostasis, regulating acid-base balance, electrolyte concentrations, extracellular fluid volume, and regulation of blood pressure. Many of the kidney's functions are accomplished by relatively simple mechanisms of filtration, reabsorption, and secretion, which take place in the nephron. The kidneys generate 140-180 l of primary urine per day, while reabsorbing a large percentage, allowing for only the excretion of approximately 2 l of urine. Within the nephron, the majority of the filtered water and solutes are reabsorbed. This is mainly facilitated by specialized transporters and channels which are localized at different segments of the nephron and asymmetrically localized within the polarized epithelial cells. The asymmetric localization of these transporters and channels is essential for the physiological tasks of the renal tissues. One family of these proteins are the water-permeable aquaporins which are selectively expressed in cells along the nephron and localized at different compartments. Here, we discuss potential molecular links between mechanisms involved in the establishment of cell polarity and the members of the aquaporin family. In the first part of this review, we will focus on aspects of apical cell polarity. In the second part, we will review the motifs identified so far that are involved in aquaporin sorting and point out potential molecular links.
Collapse
Affiliation(s)
- Bayram Edemir
- Medizinische Klinik und Poliklinik D, Experimentelle und Molekulare Nephrologie, Universität Münster, Germany.
| | | | | | | |
Collapse
|
15
|
Rieg T, Tang T, Murray F, Schroth J, Insel PA, Fenton RA, Hammond HK, Vallon V. Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking in inner medulla. J Am Soc Nephrol 2010; 21:2059-68. [PMID: 20864687 DOI: 10.1681/asn.2010040409] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arginine vasopressin (AVP) enhances water reabsorption in the renal collecting duct by vasopressin V₂ receptor (V₂R)-mediated activation of adenylyl cyclase (AC), cAMP-promoted phosphorylation of aquaporin-2 (AQP2), and increased abundance of AQP2 on the apical membrane. Multiple isoforms of adenylate cyclase exist, and the roles of individual AC isoforms in water homeostasis are not well understood. Here, we found that levels of AC6 mRNA, the most highly expressed AC isoform in the inner medulla, inversely correlate with fluid intake. Moreover, mice lacking AC6 had lower levels of inner medullary cAMP, reduced abundance of phosphorylated AQP2 (at both serine-256 and serine-269), and lower urine osmolality than wild-type mice. Water deprivation or administration of the V₂R agonist dDAVP did not increase urine osmolality of AC6-deficient mice to the levels of wild-type mice. Furthermore, AC6-deficient mice lacked dDAVP-promoted inner medullary cAMP formation and phosphorylation of serine-269 and had attenuated increases in both phosphorylation of serine-256 and apical membrane AQP2 trafficking. In summary, AC6 expression determines inner medullary cAMP formation and AQP2 phosphorylation and trafficking, the absence of which causes nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, Division of Nephrology/Hypertension, University of California San Diego and VA San Diego Healthcare System, 3350 La Jolla Village Drive (9151), San Diego, CA 92161, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 2010; 460:925-52. [PMID: 20686783 DOI: 10.1007/s00424-010-0863-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 12/11/2022]
Abstract
The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.
Collapse
|
17
|
Mistry AC, Mallick R, Klein JD, Sands JM, Fröhlich O. Functional characterization of the central hydrophilic linker region of the urea transporter UT-A1: cAMP activation and snapin binding. Am J Physiol Cell Physiol 2010; 298:C1431-7. [PMID: 20457831 PMCID: PMC2889632 DOI: 10.1152/ajpcell.00497.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/22/2010] [Indexed: 11/22/2022]
Abstract
Of the three major protein variants produced by the UT-A gene (UT-A1, UT-A2, and UT-A3) UT-A1 is the largest. It contains UT-A3 as its NH(2)-terminal half and UT-A2 as its COOH-terminal half. When being part of UT-A1, UT-A3 and UT-A2 are joined by a segment, Lp, whose central part, Lc, is not part of UT-A3 or UT-A2 but is present only in UT-A1. Lc contains the phosphorylation sites S486 and S499 that are involved in protein kinase A-dependent activation, as well as the binding site for snapin, a protein involved in soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-mediated vesicle trafficking and fusion to the plasma membrane. We attached Lc to UT-A2 and UT-A3 to test how these phosphorylation sites influenced their urea transport activity. Adding Lc to UT-A2 conferred stimulation by cAMP to the cAMP-unresponsive UT-A2, and adding Lc to UT-A3 did not further enhance its already existing cAMP response. These findings suggest that the responsiveness to vasopressin that is observed with UT-A1 can be introduced into the unresponsive UT-A2 variant through the Lc segment that is unique to UT-A1. In UT-A3, however, the Lc segment plays no significant role in its activation by cAMP. In addition, the Lc segment also gave UT-A2 the ability to bind snapin and, in Xenopus oocytes, to be stimulated in its urea transport activity by snapin and syntaxins 3 and 4, in the same way as UT-A1.
Collapse
Affiliation(s)
- Abinash C Mistry
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
18
|
Blount MA. A timely characterization of vasopressin-sensitive adenylyl cyclase isoforms in the mouse inner medullary collecting duct. Am J Physiol Renal Physiol 2009; 298:F857-8. [PMID: 20032113 DOI: 10.1152/ajprenal.00725.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|